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A complete Riemann zeta distribution and
the Riemann hypothesis
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Let σ, t ∈ R, s = σ + it , �(s) be the Gamma function, ζ(s) be the Riemann zeta function and ξ(s) :=
s(s − 1)π−s/2�(s/2)ζ(s) be the complete Riemann zeta function. We show that �σ (t) := ξ(σ − it)/ξ(σ )

is a characteristic function for any σ ∈ R by giving the probability density function. Next we prove that
the Riemann hypothesis is true if and only if each �σ (t) is a pretended-infinitely divisible characteristic
function, which is defined in this paper, for each 1/2 < σ < 1. Moreover, we show that �σ (t) is a pretended-
infinitely divisible characteristic function when σ = 1. Finally we prove that the characteristic function
�σ (t) is not infinitely divisible but quasi-infinitely divisible for any σ > 1.
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1. Introduction and main results

1.1. Riemann zeta function and distribution

The famous Riemann zeta function ζ(s) is a function of a complex variable s = σ + it , for σ > 1
defined by

ζ(s) :=
∞∑

n=1

1

ns
=

∏
p

(
1 − 1

ps

)−1

,

where the letter p is a prime number, and the product of
∏

p is taken over all primes. The Dirich-

let series
∑∞

n=1 n−s and the Euler product
∏

p(1−p−s)−1 converges absolutely in the half-plane
σ > 1 and uniformly in each compact subset of this half-plane. The Riemann zeta function is a
meromorphic function on the whole complex plane, which is holomorphic everywhere except
for a simple pole at s = 1 with residue 1. Denote the Gamma function by �(s). We have the
following functional equation of the complete Riemann zeta function ξ(s) (see, for example,
Titchmarsh [15], (2.1.13))

ξ(s) = ξ(1 − s), ξ(s) := s(s − 1)π−s/2�

(
s

2

)
ζ(s). (1.1)

In view of the Euler product, it is seen easily that ζ(s) has no zeros in the half-plane σ > 1.
It follows from the functional equation (1.1) and basic properties of the Gamma-function that
ζ(s) vanishes in σ < 0 exactly at the so-called trivial zeros s = −2m, m ∈ N. In 1859, Riemann
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stated that it seems likely that all nontrivial zeros lie on the so-called critical line σ = 1/2. This
is the famous, yet unproved Riemann hypothesis. In 1896, Hadamard and de la Vallée-Poussin
independently proved that ζ(1 + it) �= 0 for any t ∈ R (see Titchmarsh [15], page 45). Hence,
we can also see that no zeros of ζ(s) lie on the line �(s) = 0 by (1.1). Therefore, the Riemann
hypothesis is rewritten equivalently as

Riemann hypothesis ζ(s) �= 0 for 1/2 < σ < 1.

Put Zσ (t) := ζ(σ − it)/ζ(σ ), t ∈ R, then Zσ (t) is known to be a characteristic function when
σ > 1 (see Khintchine [5] or Gnedenko and Kolmogorov [3], page 75). A distribution μσ on R

is said to be a Riemann zeta distribution with parameter σ if it has Zσ (t) as its characteristic
function. Recently, the Riemann zeta distribution is investigated by Lin and Hu [7], and Gut [4].
On the other hand, in Aoyama and Nakamura [1], Remark 1.13, it is showed that Zσ (t) is not
a characteristic function for any 1/2 ≤ σ ≤ 1. Afterwards, Nakamura [9] showed that Fσ (t),
where Fσ (t) := fσ (t)/fσ (0) and fσ (t) := ζ(σ − it)/(σ − it), is a characteristic function for any
0 < σ �= 1.

Note that there are some other papers connected to Riemann zeta function in probabilistic
view. Biane Pitman and Yor [2] reviewed known results about ξ(s) which are related to one-
dimensional Brownian motion and to higher dimensional Bessel processes. Lagarias and Rains
[6] treated π−s/2�(s/2)ζ(s) and its generalizations and gave results connected to infinite divisi-
bility.

1.2. Infinitely divisible and quasi-infinitely divisible distributions

A probability measure μ on R is infinitely divisible if, for any positive integer n, there is a prob-
ability measure μn on R such that μ = μn∗

n , where μn∗
n is the n-fold convolution of μn. For

instance, normal, degenerate, Poisson and compound Poisson distributions are infinitely divisi-
ble.

Let μ̂(t) be the characteristic function of a probability measure μ on R and ID(R) be the
class of all infinitely divisible distributions on R. The following Lévy–Khintchine representation
is well known (see Sato [14], Section 2). Put Db := {x ∈ R: −b ≤ x ≤ b}, where b > 0. If
μ ∈ ID(R), then one has

μ̂(t) = exp

[
−a

2
t2 + iλt +

∫
R

(
eitx − 1 − itx1Db

(x)
)
ν(dx)

]
, t ∈ R, (1.2)

where a ≥ 0, λ ∈ R and ν is a measure on R satisfies ν({0}) = 0 and
∫
R
(|x|2 ∧ 1)ν(dx) < ∞.

Moreover, the representation of μ̂ in (1.2) by a, ν, and λ is unique. If the Lévy measure ν in
(1.2) satisfies

∫
|x|<1 |x|ν(dx) < ∞, then (1.2) can be written by

μ̂(t) = exp

[
−a

2
t2 + iλ0t +

∫
R

(
eitx − 1

)
ν(dx)

]
, λ0 ∈R. (1.3)
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For example, the Lévy measure of Zσ (t) := ζ(σ − it)/ζ(σ ) can be given as in the following
(see Gnedenko and Kolmogorov [3], page 75). Let δx be the delta measure at x. Then we have

logZσ (t) =
∫ ∞

0

(
eitx − 1

)
Nσ (dx), Nσ (dx) :=

∑
p

∞∑
r=1

p−rσ

r
δr logp(dx). (1.4)

On the other hand, there are non-infinitely divisible distributions whose characteristic func-
tions are the quotients of two infinitely divisible characteristic functions. That class is called
class of quasi-infinitely divisible distributions and is defined as follows.

Quasi-infinitely divisible distribution. A distribution μ on R is called quasi-infinitely divisible
if it has a form of (1.2) with a ∈ R and the corresponding measure ν is a signed measure on R

with total variation measure |ν| satisfying ν({0}) = 0 and
∫
R
(|x|2 ∧ 1)|ν|(dx) < ∞.

We have to mention that the triplet (a, ν,λ) in this case is also unique if each component exists
and that infinitely divisible distributions on R are quasi-infinitely divisible if and only if a ≥ 0
and the negative part of ν in the Jordan decomposition equals zero. The measure ν is called
quasi-Lévy measure and has appeared in some books and papers, for example, Gnedenko and
Kolmogorov [3], page 81, Lindner and Sato [8], Niedbalska-Rajba [10], and others (see also Sato
[13], Section 2.4).

1.3. Main results

In the present paper, we give a complete Riemann zeta distribution by the normalized complete
Riemann zeta function

�σ (t) := ξ(σ − it)

ξ(σ )
,

ξ(σ − it) := (σ − it)(σ − 1 − it)π(it−σ)/2�

(
σ − it

2

)
ζ(σ − it),

for any σ ∈ R. It should be mentioned that �σ (t) is symmetric about the vertical axis σ = 1/2
by the functional equation (1.1). Therefore, we only have to consider the case σ ≥ 1/2. In order
to state the main results, we introduce the following pretended-infinitely divisible distribution.

Pretended-infinitely divisible distribution. A distribution μ on R is called pretended-infinitely
divisible if it has a form of (1.2) with a ∈ R and the corresponding measure ν is a signed measure
on R with ν({0}) = 0.

Namely, pretended-infinitely divisible distributions are infinitely divisible or quasi-infinitely
divisible distributions without the condition

∫
R
(|x|2 ∧ 1)|ν|(dx) < ∞.

The main results in this paper are following four theorems.
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Theorem 1.1. The function �σ (t) is a characteristic function for any σ ∈ R. Moreover, the
probability density function Pσ (y) is given as follows:

Pσ (y) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

ξ(σ )

∞∑
n=1

f
(
ne−y

)
e−σy, y ≤ 0,

2

ξ(σ )

∞∑
n=1

f
(
ney

)
e(1−σ)y, y > 0,

(1.5)

where f (x) := 2π(2πx4 − 3x2)e−πx2
.

Let Z and Z+ be the set of zeros of the Riemann zeta function which lie in the critical strip
{s ∈ C: 0 < �(s) < 1}, and the region {s ∈ C: 0 < �(s) < 1,
(s) > 0}, respectively. If the
Riemann hypothesis is true, then each ρ ∈ Z+ can be expressed by ρ = 1/2 + iγ , where γ > 0.

Theorem 1.2. The characteristic function �σ (t) is a pretended-infinitely divisible characteristic
function for any 1/2 < σ < 1 if and only if the Riemann hypothesis is true. Furthermore, we have

�σ (t) = exp

[∫ ∞

0

(
eitx − 1

)
νσ (dx)

]
,

(1.6)

νσ (dx) := −
∑

1/2+iγ∈Z+

2 cos(γ x)

xe(σ−1/2)x
(dx),

under the Riemann hypothesis.

Let ZR+ be the set of zeros of ζ(s) which lie on the half line {s ∈ C: �(s) = 1/2,
(s) > 0}
and ZN+ be the set of zeros of ζ(s) which lie in the region {s ∈ C: 1/2 < �(s) < 1,
(s) > 0}.
Note that ZN+ = ∅ if and only if the Riemann hypothesis is true. One has Z = {ρ,1 − ρ: ρ ∈
ZR+} ∪ {ρ,1 − ρ,ρ,1 − ρ: ρ ∈ZN+ } from ξ(s) = ξ(1 − s) and ξ(s) = ξ(s).

Theorem 1.3. When σ ≥ 1, we have

�σ (t) = exp

[∫ ∞

0

(
eitx − 1

)
νσ (dx)

]
,

(1.7)

νσ (dx) := −
∑

1/2+iγ∈ZR+

2 cos(γ x)

xe(σ−1/2)x
(dx) −

∑
β+iγ∈ZN+

(
2 cos(γ x)

xe(σ−β)x
+ 2 cos(γ x)

xe(σ−1+β)x

)
(dx).

Especially, �σ (t) is a pretended-infinitely divisible characteristic function when σ = 1.

Theorem 1.4. When σ > 1, we have

�σ (t) = exp

[
itλσ +

∫ ∞

0

(
eitx − 1 − itx1D1/2(x)

)
νσ (dx)

]
,
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λσ := e−σ/2 − 1

σ
+ e(1−σ)/2 − 1

σ − 1
+ logπ

2

+ 1

2

∫ 1

0

(
e−σx/2

1 − e−x
− e−x

x

)
dx − 1

2

∫ ∞

1
e−x dx

x
,

νσ (dx) := 1(dx)

xeσx(1 − e−2x)
− 1 + ex

xeσx
(dx) +

∑
p

∞∑
r=1

p−rσ

r
δr logp(dx).

Therefore, the characteristic function �σ (t) is not infinitely divisible but quasi-infinitely divisible
when σ > 1.

We call the distribution defined by the characteristic function �σ (t) the completed Riemann
zeta distribution. It is well known that ζ(s) has zeros on �(s) = 1/2 (see Titchmarsh [15],
Section 10). By the definition of pretended-infinitely divisible distribution and the fact that
exp(z) �= 0 for any z ∈ C, the characteristic function does not have zeros. Thus, �σ (t) is not
even a pretended-infinitely divisible characteristic function when σ = 1/2.

2. Proofs

2.1. Proof of Theorem 1.1

We quote the following fact from Patterson [12] (see also Biane Pitman and Yor [2], Section 2).

Lemma 2.1 (see Patterson [12], Section 2.10). Let f (x) := 2π(2πx4 − 3x2)e−πx2
. Then we

have

ξ(s) = 2
∫ ∞

1

∞∑
n=1

f (nx)
(
xs−1/2 + x1/2−s

)
x−1/2 dx. (2.1)

Note that the last integral is absolutely convergent for all values of s.

Proof of Theorem 1.1. By (2.1) and the change of variables x = e−y and x = ey , we have

ξ(σ − it) = 2
∫ ∞

1

∞∑
n=1

f (nx)xσ−it−1 dx + 2
∫ ∞

1

∞∑
n=1

f (nx)xit−σ dx

= 2
∫ −∞

0

∞∑
n=1

f
(
ne−y

)
e(1+it−σ)y

(−e−y
)

dy + 2
∫ ∞

0

∞∑
n=1

f
(
ney

)
e(it−σ)y

(
ey

)
dy

= 2
∫ 0

−∞
eity

∞∑
n=1

f
(
ne−y

)
e−σy dy + 2

∫ ∞

0
eity

∞∑
n=1

f
(
ney

)
e(1−σ)y dy.
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Obviously, we have f (x) = 2π(2πx4 −3x2)e−πx2
> 0 for any x ≥ 1. Hence, one has f (ne−y) >

0 for any y ≤ 0 and n ∈N, and f (ney) > 0 for any y > 0 and n ∈N. Thus it holds that

∞∑
n=1

f
(
ne−y

)
e−σy > 0, y ≤ 0 and

∞∑
n=1

f
(
ney

)
e(1−σ)y > 0, y > 0.

On the other hand, we have

ξ(σ ) = 2
∫ 0

−∞

∞∑
n=1

f
(
ne−y

)
e−σy dy + 2

∫ ∞

0

∞∑
n=1

f
(
ney

)
e(1−σ)y dy > 0

from (2.1) and the argument above. Hence, Pσ (y) defined by (1.5) is nonnegative. Therefore, we
have �σ (t) = ∫

R
eityPσ (y)dy, where Pσ (y) is the probability density function. �

Remark 2.2. It should be emphasised that �σ (t) is a characteristic function for any σ ∈ R. On
the other hand, Fσ (t) := fσ (t)/fσ (0), where fσ (t) := ζ(σ − it)/(σ − it), is not a characteristic
function for σ = 0,1 and σ < −1/2. This is proved as follows. When σ = 1, it is well known
that ζ(1 + it) �= 0, t �= 0, and ζ(s) has an only one pole at s = 1. Hence, we have

F1(t) = 1

ζ(1)

ζ(1 + it)

1 + it
= 0 for any t �= 0,

which contradicts the uniform continuity of characteristic function μ̂(t) and μ̂(0) = 1. A similar
argument can be done when σ = 0 since ζ(s)/s has a simple pole at s = 0. By (1.1) and Stirling’s
formula, one has∣∣ζ(s)

∣∣ = πσ−1/2(|t/2| + 2
)−σ+1/2(1 + O

((|t | + 2
)−1))∣∣ζ(1 − s)

∣∣
for σ < 0. On the other hand, for any ε > 0 there are arbitrarily large t which satisfy |ζ(σ + it)| >
(1 − ε)ζ(σ ) when σ > 1 (see Titchmarsh [15], Theorem 8.4). Thus, we can find t which satisfies
|ζ(s)| > πσ−1/2|t/2|−σ+1/2ζ(1 − σ)/2. Hence, there exists t ∈ R such that |Fσ (t)| > 1 when
σ < −1/2 by the factor |t/2|−σ+1/2.

The absolute value of a characteristic function is not greater than 1 (see for instance Sato [14],
Proposition 2.5). Hence, we have the following inequality by Theorem 1.1.

Corollary 2.3 (see Patterson [12], Section 2.11). For any t ∈R and 1/2 ≤ σ , we have∣∣∣∣(σ + it)(σ − 1 + it)π−(σ+it)/2�

(
σ + it

2

)
ζ(σ + it)

∣∣∣∣ ≤ σ(σ − 1)π−σ/2�

(
σ

2

)
ζ(σ ).

2.2. Proof of Theorem 1.2

Recall that Z is the set of zeros of the Riemann zeta function which lie in the critical strip
{s ∈ C: 0 < �(s) < 1} (see Section 1.3). Observe that by the functional equation and ζ(s) = ζ(s)
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if ρ ∈ Z then ρ,1−ρ,1−ρ ∈Z . There are no real elements of Z since ξ(σ ) < 0 and 0 < �(σ/2)

when 0 < σ < 1 (see Section 1.1 and the proof of Theorem 1.1). Now we quote the following
fact from Patterson [12].

Lemma 2.4 (see Patterson [12], page 34). Let Z+ := {ρ ∈ Z: 
(ρ) > 0}. Then
∑

ρ∈Z+ |ρ|−a

converges for all a > 1 and it holds that

ξ(s) = s(s − 1)π−s/2�

(
s

2

)
ζ(s) =

∏
ρ∈Z+

(
1 − s

ρ

)(
1 − s

1 − ρ

)
(2.2)

the product being absolutely convergent for all s ∈C.

Proof of Theorem 1.2. If �σ (t) is a pretended-infinitely divisible characteristic function for any
1/2 < σ < 1, then ζ(s) �= 0 for any 1/2 < σ < 1 by exp(z) �= 0 for all z ∈ C, �(s) �= 0 for any
1/2 < σ < 1 and the representation (1.2).

Next suppose that the Riemann hypothesis is true. Then we have ρ = 1/2 + iγ and 1 − ρ =
1/2 − iγ , where γ > 0 for ρ ∈ Z+. Note that the exponential distribution with parameter a >

0 is defined by μ(B) := a
∫
B∩(0,∞)

e−ax dx, where B ∈ B(R). The characteristic function is
given by μ̂(t) = a/(a − it) (see, for example, Sato [14], page 13). Moreover, it is well known
that

a

a − iz
= exp

[∫ ∞

0

(
eizx − 1

)
x−1e−ax dx

]
, a > 0, z ∈R (2.3)

(see, for instance, Sato [14], page 45). The formula above holds if a is replaced by α

with �(α) > 0. This is proved as follows. Put α = a + ib, a > 0 and b ∈ R. Then one
has

α

α − iz
= a + ib

a

a

a + ib − iz

= exp

[∫ ∞

0

(
ei(z−b)x − 1

)
x−1e−ax dx −

∫ ∞

0

(
e−ibx − 1

)
x−1e−ax dx

]
(2.4)

= exp

[∫ ∞

0

(
eizx − 1

)
x−1e−αx dx

]
, �(α) > 0,

by (2.3). Thus, it holds that

(
1 − σ − it

ρ

)(
1 − σ

ρ

)−1

= 1/2 − σ + i(γ + t)

1/2 + iγ

1/2 + iγ

1/2 − σ + iγ
= σ − 1/2 − iγ − it

σ − 1/2 − iγ

= exp

[
−

∫ ∞

0

(
eitx − 1

)
e(1/2−σ+iγ )x dx

x

]
,
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where σ > 1/2. It should be noted that we have σ − it �= ρ,1 − ρ when σ > 1/2 under the
Riemann hypothesis. Therefore, one has

ϕρ(t) :=
(

1 − σ − it

ρ

)(
1 − σ

ρ

)−1(
1 − σ − it

1 − ρ

)(
1 − σ

1 − ρ

)−1

= σ − 1/2 − iγ − it

σ − 1/2 − iγ

σ − 1/2 + iγ − it

σ − 1/2 + iγ
(2.5)

= exp

[
−2

∫ ∞

0

(
eitx − 1

) cos(γ x)

xe(σ−1/2)x
dx

]
.

We remark that x−1 cos(γ x)e(1/2−σ)x(dx) is not a measure but a signed measure since one has
−1 ≤ cos(γ x) ≤ 1 when γ ∈ R. By (2.2) and the definition of �σ (t), we have

�σ (t) =
∏

γ∈Z+

σ − 1/2 − iγ + it

σ − 1/2 − iγ

σ − 1/2 + iγ + it

σ − 1/2 + iγ

= exp

[
−2

∑
1/2+iγ∈Z+

∫ ∞

0

(
eitx − 1

) cos(γ x)

xe(σ−1/2)x
dx

]
.

This equality implies (1.6). �

Remark 2.5. It should be mentioned that ϕ1/2+iγ (t) defined by (2.5) is not a characteristic func-
tion for any σ > 1/2. It is proved by as follows. Obviously, one has

∣∣ϕ1/2+iγ (t)
∣∣2 = (σ − 1/2)2 + γ 2 − t2 + (2σ − 1)it

(σ − 1/2)2 + γ 2
.

If we take t2 = 2((σ − 1/2)2 + γ 2), then |ϕ1/2+iγ (t)|2 > 1.

2.3. Proof of Theorem 1.3

Recall that Z , ZR+ and ZN+ is the set of zeros of ζ(s) which lie in {s ∈ C: 0 < �(s) < 1}, {s ∈
C: �(s) = 1/2,
(s) > 0} and {s ∈ C: 1/2 < �(s) < 1,
(s) > 0}, respectively. Then one has
Z = {ρ,1 − ρ: ρ ∈ZR+} ∪ {ρ,1 − ρ,ρ,1 − ρ: ρ ∈ ZN+ }. We have the following by Lemma 2.4.

Lemma 2.6. The sums
∑

ρ∈ZR+ |ρ|−a and
∑

ρ∈ZN+ |ρ|−a converge for all a > 1 and it holds that

ξ(s) =
∏

1/2+iγ∈ZR+

(
1 − s

1/2 + iγ

)(
1 − s

1/2 − iγ

)
(2.6)

×
∏

ρ∈ZN+

(
1 − s

ρ

)(
1 − s

1 − ρ

)(
1 − s

ρ

)(
1 − s

1 − ρ

)
,
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the products being absolutely convergent for all s ∈ C.

Proof of Theorem 1.3. Put s = σ − it . Then we have(
1 − s

ρ

)(
1 − σ

ρ

)−1(
1 − s

1 − ρ

)(
1 − σ

1 − ρ

)−1

= σ − β − iγ − it

σ − β − iγ

σ − 1 + β − iγ − it

σ − 1 + β − iγ

= exp

[
−

∫ ∞

0

(
eitx − 1

)
e(β−σ+iγ )x dx

x
−

∫ ∞

0

(
eitx − 1

)
e(1−β−σ+iγ )x dx

x

]

from (2.4). By replacing ρ by ρ, we obtain(
1 − s

ρ

)(
1 − σ

ρ

)−1(
1 − s

1 − ρ

)(
1 − σ

1 − ρ

)−1

= exp

[
−

∫ ∞

0

(
eitx − 1

)
e(β−σ−iγ )x dx

x
−

∫ ∞

0

(
eitx − 1

)
e(1−β−σ−iγ )x dx

x

]
.

We have to mention that one has β − σ < 0 and 1 − β − σ < 0 since ζ(s) �= 0 for σ ≥ 1 (see
Remark 2.7 below). Hence, one has

(1 − s/ρ)(1 − s/ρ)(1 − s/(1 − ρ))(1 − s/(1 − ρ))

(1 − σ/ρ)(1 − σ/ρ)(1 − σ/(1 − ρ))(1 − σ/(1 − ρ))

= exp

[
−2

∫ ∞

0

(
eitx − 1

)
cos(γ x)

(
e(β−σ)x + e(1−β−σ)x

)dx

x

]
.

Therefore, we have

�σ (t) = exp

[
−2

∑
1/2+iγ∈ZR+

∫ ∞

0

(
eitx − 1

)
cos(γ x)e(1/2−σ)x dx

x

− 2
∑

β+iγ∈ZN+

∫ ∞

0

(
eitx − 1

)
cos(γ x)

(
e(β−σ)x + e(1−β−σ)x

)dx

x

]

by (2.6) and the definition of �σ (t). �

Remark 2.7. By modifying the proof above, we can see that one has (1.7) for any σ ≥ σ0 > 1/2
if ζ(s) does not vanish for σ ≥ σ0.

2.4. Proof of Theorem 1.4

In order to prove Theorem 1.4, we first prove the following lemma which is an analogue of
Nikeghbali and Yor [11], Lemma 2.9.
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Lemma 2.8. Let Gσ (t) = �(σ − it)/�(σ ) for 0 < σ . Then Gσ (t) is an infinitely divisible char-
acteristic function for any σ > 0. Moreover, one has

logGσ (t) = itλ#
σ +

∫ ∞

0

(
eitx − 1 − itx1[0,1](x)

)
ν#
σ (dx),

λ#
σ = C(σ) :=

∫ 1

0

(
e−σx

1 − e−x
− e−x

x

)
dx −

∫ ∞

1
e−x dx

x
,

ν#
σ (dx) := 1(dx)

xeσx(1 − e−x)
.

Proof. By the integral representation of �(s) and the change of variables x = e−y , we have

Gσ (t) = 1

�(σ)

∫ ∞

0
e−xxσ−1−it dx = −1

�(σ)

∫ −∞

∞
e−e−y

ey(1−σ+it)ye−y dy

= 1

�(σ)

∫ ∞

−∞
eity exp

(−σy − e−y
)

dy, σ > 0.

Therefore, the probability density function is given by exp(−σy − e−y)/�(σ ).
Next, we quote Malmstén’s formula (see, for example, Whittaker and Watson [16], page 249)

log�(s) =
∫ ∞

0

(
e−sx − e−x

1 − e−x
+ (s − 1)e−x

)
dx

x
, σ > 0.

Hence, it holds that

logGσ (t) =
∫ ∞

0

(
e−(σ−it)x − e−σx

1 − e−x
− ite−x

)
dx

x

=
∫ 1

0

(
eitx − 1 − itx

eσx(1 − e−x)
− ite−x + itxe−σx

1 − e−x

)
dx

x
+

∫ ∞

1

(
eitx − 1

eσx(1 − e−x)
− ite−x

)
dx

x

=
∫ ∞

0

eitx − 1 − itx1[0,1](x)

xeσx(1 − e−x)
dx + it

∫ 1

0

(
e−σx

1 − e−x
− e−x

x

)
dx − it

∫ ∞

1
e−x dx

x
.

Therefore, we obtain Lemma 2.8. �

For the reader’s convenience, we give a proof of (1.4). By the Euler product of ζ(s) and the
Taylor expansion of log(1 − x), |x| < 1, one has

log
ζ(σ − it)

ζ(σ )
=

∑
p

log
1 − p−σ

1 − p−σ+it
=

∑
p

∞∑
r=1

1

r
p−rσ

(
prit − 1

)

=
∑
p

∞∑
r=1

1

r
p−rσ

(
erit logp − 1

) =
∫ ∞

−∞
(
eitx − 1

)∑
p

∞∑
r=1

1

r
prσ δr logp(dx).
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This equality implies (1.4).

Proof of Theorem 1.4. We have

�σ (t) = πit/2Gσ/2(t/2)
σ − it

σ

σ − 1 − it

σ − 1

ζ(σ − it)

ζ(σ )

by the definition of �σ (t). It holds that

logGσ/2(t/2) = it

2
C(σ/2) +

∫ ∞

0

ei(t/2)x − 1 − i(t/2)x1[0,1](x)

xeσx/2(1 − e−x)
dx

= it
C(σ/2)

2
+

∫ ∞

0

eitx − 1 − itx1[0,1/2](x)

xeσx(1 − e−2x)
dx

from Lemma 2.8. Obviously, one has 1/2 < r logp for any integer r and prime number p since
log 2 = 0.6931471806 . . . . Hence by using (1.4), we have

log
ζ(σ − it)

ζ(σ )
=

∫ ∞

−∞
(
eitx − 1 − itx1[0,1/2](x)

)∑
p

∞∑
r=1

1

r
p−rσ δr logp(dx).

When σ > 1, one has

σ − it

σ
= exp

[
−

∫ ∞

0

(
eitx − 1 − itx1[0,1/2] + itx1[0,1/2]

)
e−σx dx

x

]

= exp

[
−

∫ ∞

0

eitx − 1 − itx1[0,1/2](x)

xeσx
dx − it

1 − e−σ/2

σ

]

by (2.3). Thus, it holds that

σ − it

σ

σ − 1 − it

σ − 1

= exp

[
−

∫ ∞

0

(
eitx − 1 − itx1[0,1/2](x)

)1 + ex

xeσx
dx − it

(
1 − e−σ/2

σ
+ 1 − e−(σ−1)/2

σ − 1

)]
.

If x is sufficiently large, then we have

1

xeσx(1 − e−2x)
− 1 + ex

xeσx
< 0.

Thus νσ in Theorem 1.4 is not a measure but a signed measure.
Finally, we show

∫
R
(|x|2 ∧ 1)|νσ |(dx) < ∞ when σ > 1. By using (1 − e−2)x ≤ 1 − e−2x for

0 ≤ x < 1 and 1 − e−2 ≤ 1 − e−2x for x ≥ 1, we have∫ ∞

0

(1 − e−2)(|x|2 ∧ 1)

xeσx(1 − e−2x)
dx ≤

∫ 1

0

dx

eσx
+

∫ ∞

1

dx

xeσx
<

∫ ∞

0

dx

eσx
< ∞.
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Obviously, it holds that∫ ∞

0

(1 + ex)(|x|2 ∧ 1)

xeσx
dx < 2

∫ ∞

0

(|x|2 ∧ 1)dx

xe(σ−1)x
< 2

∫ ∞

0

dx

e(σ−1)x
< ∞.

From
∑

p p−σ <
∑∞

n=2 n−σ = ζ(σ ) − 1, one has

∫ ∞

0

∑
p

∞∑
r=1

1

r
p−rσ δr logp(dx)

=
∑
p

∞∑
r=1

1

r
p−rσ <

∑
p

∞∑
r=1

p−rσ <

∞∑
n=1

n−σ +
∑
p

∞∑
r=2

p−rσ

= ζ(σ ) +
∑
p

p−2σ

1 − p−σ
< ζ(σ ) +

∞∑
n=2

n−2σ

1 − 2−σ

< ζ(σ ) + (
1 − 2−σ

)−1
ζ(2σ) < ∞.

Therefore the characteristic function �σ (t) is not infinitely divisible but quasi-infinitely divisi-
ble. �

Remark 2.9. Suppose σ �= 1 and put

�∗
σ (t) := σ − 1

σ − 1 − it
�σ (t).

Then �∗
σ (t) is a characteristic function for any σ �= 1 by the fact that the product of a finite

number of characteristic functions is also a characteristic function. By modifying the proof above,
we have

�∗
σ (t) = exp

[
itλ∗

σ +
∫ ∞

0

(
eitx − 1 − itx1[0,1/2](x)

)
ν∗
σ (dx)

]
,

λ∗
σ := 1 − e−σ/2

σ
+ logπ

2
+ 1

2

∫ 1

0

(
e−σx/2

1 − e−x
− e−x

x

)
dx − 1

2

∫ ∞

1
e−x dx

x
,

ν∗
σ (dx) := 1(dx)

xeσx(1 − e−2x)
− 1(dx)

xeσx
+

∑
p

∞∑
r=1

p−rσ

r
δr logp(dx)

for σ > 1. Therefore the characteristic function �∗
σ (t) is infinitely divisible for any σ > 1 since

one has
1

xeσx(1 − e−2x)
− 1

xeσx
> 0, x > 0.

Moreover, we can see that every characteristic function �∗
σ (t) is a pretended-infinitely divisi-

ble characteristic function for each 1/2 < σ < 1 if and only if the Riemann hypothesis is true by
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an argument similar to that in the proof of Theorem 1.2. In addition, it holds that

�∗
σ (t) = exp

[∫ ∞

−∞
(
eitx − 1

)
ν∗
σ (dx)

]
,

ν∗
σ (dx) := 1(−∞,0)(dx)

−xe(σ−1)x
−

∑
1/2+iγ∈Z+

2 cos(γ x)

xe(σ−1/2)x
1(0,∞)(dx),

for 1/2 < σ < 1, under the Riemann hypothesis. This is proved by (1.6) and

σ − 1

σ − 1 − it
= 1 − σ

1 − σ + it
= exp

[∫ ∞

0

(
e−itx − 1

)
e(σ−1)x dx

x

]

= exp

[∫ −∞

0

(eitx − 1)dx

xe(σ−1)x

]
= exp

[
−

∫ 0

−∞
(eitx − 1)dx

xe(σ−1)x

]

when 1/2 < σ < 1.
It is well known that convolving a density with a normal density to make distributions more

well-behaved. In this case the exponential distribution is the one that makes things nicer since
when σ > 1, the complete Riemann zeta distribution defined by �σ (t) and the distribution de-
fined by �∗

σ (t) are quasi-infinitely divisible and infinitely divisible, respectively.
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