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A Complete Terrestrial Radiocarbon
Record for 11.2 to 52.8 kyr B.P.
Christopher Bronk Ramsey,1* Richard A. Staff,1 Charlotte L. Bryant,2 Fiona Brock,1

Hiroyuki Kitagawa,3 Johannes van der Plicht,4,5 Gordon Schlolaut,6 Michael H. Marshall,7

Achim Brauer,6 Henry F. Lamb,7 Rebecca L. Payne,8 Pavel E. Tarasov,9 Tsuyoshi Haraguchi,10

Katsuya Gotanda,11 Hitoshi Yonenobu,12 Yusuke Yokoyama,13 Ryuji Tada,13 Takeshi Nakagawa8

Radiocarbon (14C) provides a way to date material that contains carbon with an age up to
~50,000 years and is also an important tracer of the global carbon cycle. However, the lack of
a comprehensive record reflecting atmospheric 14C prior to 12.5 thousand years before the
present (kyr B.P.) has limited the application of radiocarbon dating of samples from the Last
Glacial period. Here, we report 14C results from Lake Suigetsu, Japan (35°35′N, 135°53′E),
which provide a comprehensive record of terrestrial radiocarbon to the present limit of the
14C method. The time scale we present in this work allows direct comparison of Lake Suigetsu
paleoclimatic data with other terrestrial climatic records and gives information on the connection
between global atmospheric and regional marine radiocarbon levels.

L
ake Suigetsu contains annually laminated

sediments that preserve both paleoclimate

proxies and terrestrial plant macrofossils

that are suitable for radiocarbon dating. The lake’s

potential to provide an important archive of at-

mospheric radiocarbon (14C)was realized in 1993

(1). However, the single SG93 sediment core

then recovered included missing intervals be-

tween successive sections (2). This, together with

the difficulty of visual varve counting, resulted in

inconsistency between the SG93 and other 14C

calibration records (3). The SG06 core-set re-

covered in 2006 consists of four parallel cores

that together avoid any such sedimentary gaps

(4). Here, we report 651 14C measurements cov-

ering the period between 11.2 and 52.8 thousand

years before the present (kyr B.P.) tied to a time

scale derived from varve counting and temporal

constraints from other records. Using visualmark-

ers, we applied a composite depth (CD) scale to

all cores, including SG93.We also define an event-

free depth (EFD), which is the CD with substan-

tial macroscopic event layers (such as turbidites

and tephras) removed.

Accelerator mass spectrometry radiocarbon

dating (5) has been conducted on terrestrial plant

macrofossils selected from the SG06 cores to

cover the full 14C time range, from the present to

the detection limit of the 14C method (0 to 41 m

CD) (table S1). The results already reported from

the control period (0 to 12.2 kyr B.P.) (6), covered

by the tree-ring–derived calibration curve (7), act

to demonstrate the integrity of the sediments and

to anchor the floating SG06 varve chronology,

because varves do not extend into the Holocene.

The varve-based chronology for SG06 (5, 8, 9)

provides our best estimate of the true age of the

cores for the period ~10.2 to 40.0 kyr B.P., based

only on information from the site. It provides

good relative chronological precision and has the

advantage of being independent of other dating

techniques. However, the cumulative counting un-

certainty inevitably increases with age (~6% at

40 kyr B.P.). The full varve chronology (Fig. 1A

and table S1) has been extrapolated on the basis

of EFD to cover the period 40 to 53 kyr B.P.

To better constrain the uncertainties in the

varve chronology, we can directly compare the

Suigetsu data set and other archives that provide

information on atmospheric 14C and associated

independent ages. The two most useful records

for this purpose are theBahamas speleothemGB89-

25-3 (10) and the Hulu Cave speleothem H82

(11), both of which have extensive 14C- andU-Th–

based chronologies. In both cases, we would ex-

pect the radiocarbon in the speleothems to respond

to changes in atmospheric 14C content, despite the

groundwater containing a dead-carbon fraction

(DCF) from dissolved carbonates. Estimated DCF

for these speleothemswas 2075 T 270 radiocarbon

1University of Oxford, Oxford, UK. 2Natural Environment Re-
search Council Radiocarbon Facility, Scottish Universities
Environmental Research Centre, East Kilbride, UK. 3Nagoya
University, Nagoya, Japan. 4University of Groningen, Groningen,
Netherlands. 5University of Leiden, Leiden, Netherlands.
6GeoForschungsZentrum German Research Centre for Geosci-
ences, Potsdam, Germany. 7Aberystwyth University, Aberystwyth,
UK. 8University of Newcastle, Newcastle upon Tyne, UK. 9Free
University Berlin, Berlin, Germany. 10Osaka City University,
Osaka, Japan. 11Chiba University of Commerce, Chiba, Japan.
12Naruto University of Education, Naruto, Japan. 13University
of Tokyo, Tokyo, Japan.
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Fig. 1. (A) Age-depth
model for SG06, based
on varves (red), extrapo-
lated by EFD (pink), and
constrainedby speleothems
H82andGB89-25-3 (blue).
(B) Inferred differences in
the age models for the
Cariaco Basin (22) (solid
curves) and Iberian Mar-
gin (23) (dotted curves)
data sets in IntCal09 (7)
compared to the SG062012
modeled chronology (high-
er offset implies that the
time scale is older); see
figs. S9 and S10.

A B

Fig. 2. Comparison of raw (black) and five-point moving mean (gray) Lake
Suigetsu 14C data against IntCal09 (7) (light blue), as well as (A) GB89-25-3
data (10) (orange), (B) H82 speleothem data (11) (pink) for the latter part of
the H82 time scale, and (C) the LGP record (17) (blue). Whereas the match to
the LGP data are good for most individual data points, the match would be
improved if the SG062012 chronology were stretched by ~5%over this period
(possible within errors). See also fig. S6. Error bars denote 1s.
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years (14C yr) for GB89-25-3 (10) and 450 T

70 14C yr for H82 (11), each at 1s. We have mod-

eled these two records onto the SG062012 varve

chronology using a Poisson process model (12),

which allows for nonlinear random deviation be-

tween the SG062012 varve chronology and theU-Th

time scale underlying the speleothem records (5).

The model provides independent estimates for

the mean DCF of the speleothems of 2500 T 90

for GB89-25-3 and 440 T 25 for H82, in agree-

ment with the initial estimates.

The model results can also be used to refine

the SG06 chronology by including the constraints

provided by the speleothem U-Th dates to 44 kyr

B.P. This greatly reduces the uncertainty in the

absolute chronology of the age-depth profile

(Fig. 1A and table S1) and ensures that the SG06

data are on a U-Th–moderated time scale. There

are some significant differences between the varve

chronology and the model (notably in the period

around 12.6 kyr B.P.), possibly associated with

changes in the sedimentation rate and sedimentary

processes at Suigetsu through that period; howev-

er, for most of the core, the agreement between

the chronologies is good (Fig. 1A), with the ratio

between the varve-only and model-inferred dep-

osition rates being 1.01 T 0.10.

The modeled chronology (SG062012 yr B.P.)

is based on all of the available information from

both Suigetsu and the other long records of atmo-

spheric radiocarbon. This precise time scale (sub-

centennial 1s uncertainties to ~25 kyr B.P.) allows

us to place the detailed paleoclimate data from

Suigetsu in a global context, facilitating the iden-

tification of potential leads and lags in climate change

recorded in key paleoenvironmental archives.

The 651 terrestrial radiocarbon dates from the

period 11,241 to 52,820 SG062012 yr B.P. pro-

vide a quasi-continuous record of atmospheric
14C for this period (Fig. 2), for which the current

calibration curve (7) is largely based on reservoir-

affected marine data. As such, the Suigetsu cali-

bration data set provides the first “backbone” upon

which a comprehensive atmospheric calibration

curve can be built. It will allow, for example, the

archeology related to the extinction of Neander-

thals and spread of anatomically modern humans

into Europe to be calibrated against terrestrial ref-

erence data. With its high density of 14C mea-

surements, this data set also allows direct linking

between SG06 and any other paleoenvironmental

record with terrestrial radiocarbon data.

In addition to its importance for radiocarbon

calibration and correlation between different cli-

mate records using radiocarbon, a full record of

atmospheric 14C has important implications for

our understanding of the carbon cycle. The links

between atmospheric 14C and primary produc-

tion are key, as is the connection between the

atmosphere and the ocean. Figure 3 shows the

inferred level of radiocarbon in the atmosphere

(D14C) at Lake Suigetsu, compared to the 10Be

record fromGreenland (13, 14). The peak in 10Be

production around 41 kyr B.P., assumed to be en-

hanced by the Laschamp geomagnetic excursion

(15), is clearly visible in the Suigetsu data; the

similar timing indicates congruence between the

SG062012 and North Greenland Ice Core Project

(NGRIP) GICC05 (16) time scales at this point.

Agreement between the Suigetsu radiocarbon

record and those of the speleothems (GB89-25-3

and H82) is generally good (Fig. 2, A and B),

though for the period 28-32 SG062012 kyr B.P.,

the implied reservoir offset for GB89-25-3 seems

higher than for the older sections (Fig. 2A). An-

other 14C record of great importance is the Euro-

pean Late Glacial Pine (LGP) record (17). Figure

2C shows the match of this record to that of

Suigetsu. The match puts the younger end of the

LGP sequence at 12627 T 35 yr B.P. and gives

the average radiocarbon offset of Suigetsu to the

LGP data set as 8 T 6 14C yr (older). Our mod-

eling supports the fit provided by the linkage of

the LGP to Tasmanian Huon Pine (18), rather

than the suggested 10Be-based fit to NGRIP (19).

We have used the radiocarbon sequence from

Lake Soppensee, Switzerland, as an example of

direct comparison with European varved lake sed-

iments (20). This enables us to place the climate

proxy signal associated with the Younger Dryas

onset at Soppensee at 12607 T 85 SG062012 yr B.P.,

some 156 T 88 years later than cooling in Suigetsu,

which, assuming congruencewithGICCO5, prob-

ably lags the rapid cooling in Greenland (but only

by 83 years, which could be synchronous within

error margins). The match to Soppensee also en-

ables us to place the European tephra marker of

the Laacher See at 12842 T 53 SG062012 yr B.P.,

which agrees well with the independent age es-

timate of 12880 T 40 varve years (vyr) B.P. in

Meerfelder Maar, Germany (21).

Direct comparison of the terrestrial radiocar-

bon signal from Suigetsu can also bemade to that

recorded inmarine archives. The long records from

the Cariaco Basin, west Atlantic (22), and the

Iberian Margin record, northeast Atlantic (23),

are climatically tuned to the Hulu Cave U-Th

chronology. By constraining the total marine res-

ervoir age for these two locations within reason-

able limits (5), we are able to quantify offsets

between the tuned chronologies and that of SG06

Fig. 3. Inferred D14C values from Lake Suigetsu compared to data from GB89-25-3 (10) uncorrected for
DCF. The 10Be flux in Greenland (13, 14) is shown for comparison.
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(Fig. 1B). The Iberian Margin time scale is most-

ly consistent with SG06 (within uncertainties),

except that it is ~200 years older at ~40 kyr B.P.

and ~200 years younger at ~15 kyr B.P. The latter

could be due to greater reservoir ages in the north-

east Atlantic at the Last Glacial Maximum (LGM)

than have previously been allowed. The Cariaco

Basin time scale seems consistent with that for

SG06 back to ~26 kyr B.P., at which point there is

a discrete peak (amplitude ~500 years), perhaps

due to specific choices in the climate-tuning. At

~40 kyr B.P., the Cariaco time scale, like that of

the Iberian Margin, is older than that of SG062012,

but by a much greater extent (~700 years). Given

that both records are tuned to the same (Hulu)

chronology, these differences are more likely to

be due to lags in different regional environmental

responses to global climate rather than offsets be-

tween the fundamental time scales of Hulu and

GB89-25-3 (and, hence, SG062012) over this period.

We can also infer total marine reservoir age

(R) from these models (Fig. 4 and fig. S11). In

general, most of the signal we see for the Cariaco

Basin is due to greater fluctuations in the D14C of

the atmosphere from that recorded in marine sed-

iments. Some of the features mirror those of the
10Be production rate in Greenland and might be

related to 14Cproduction, othersmay reflect changes

in local ocean dynamics. Although there are fewer

data from the Iberian Margin, the rise in R be-

tween 16 and 15 kyr B.P. is still apparent, and

there is a higher reservoir age inferred at ~22 kyr

B.P., during the LGM.

For the marine coral data from IntCal09 (7),

we additionally have direct U-Th dates; thus, R

can be calculated more directly. Coral data, how-

ever, are not available at regular intervals, so we

do not have a continuous record. Pacific coral

data (7) in the range 30 to 39 kyr B.P. are con-

sistently higher in D
14C than the terrestrial data

from Suigetsu (fig. S12). We have to deduce that

either the SG062012 time scale is substantially too

young (a hypothesis not supported by the Iberian

Margin data, identification of the Laschamp event

as compared to Greenland, or the speleothem data

used to correct the modeled SG062012 time scale)

or some of the coral data have elevated U-Th ages

or overestimated 14C measurements (more likely,

given the range of 14C measurements on some

coeval samples). It is clear that R for the Pacific

and Barbados corals (7), as for the Cariaco Basin

and the Iberian Margin foraminifera, is greater at

~22 kyr B.P. (Fig. 4)—possibly a consequence of

lower global CO2 during the LGM. In the period

around 16 to 14 kyr B.P., there is a similar pattern

in the Pacific/Indian Ocean as in Cariaco: a rapid

rise in R, followed by a gradual fall.

The terrestrial radiocarbon record from Lake

Suigetsu presented here, together with Holocene

measurements (6), comprises 808 radiocarbon de-

terminations from two core sites in the center of

the lake, measured by three laboratories. Togeth-

er, these give us a single, quasi-continuous record

of purely atmospheric 14C covering the full range

of the radiocarbon technique. This will greatly ben-

efit calibration of terrestrial radiocarbon samples

in the period 12.5 to 52.8 kyr B.P. and will enable

direct correlation between other key climate re-

cords and the Lake Suigetsu record itself, with-

out any assumptions of climatic synchrony. An

atmospheric record of 14C over this whole time

scale also facilitates amore comprehensive under-

standing of the longmarine records in their oceanic

context, rather than simply assuming that they

represent atmospheric 14C.

Fig. 4. Marine reservoirs
relative to atmosphere
(R), as deduced from the
Suigetsudataon themod-
eled SG062012 chronol-
ogy. For comparison, we
show the 10Be flux (13,14)
and the d18O signal from
Greenland on theGICC05
time scale (16).
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Genomic Variation in Seven Khoe-San
Groups Reveals Adaptation and
Complex African History
Carina M. Schlebusch,1*† Pontus Skoglund,1† Per Sjödin,1 Lucie M. Gattepaille,1

Dena Hernandez,2 Flora Jay,3 Sen Li,1 Michael De Jongh,4 Andrew Singleton,2

Michael G. B. Blum,5 Himla Soodyall,6 Mattias Jakobsson1,7*

The history of click-speaking Khoe-San, and African populations in general, remains poorly
understood. We genotyped ∼2.3 million single-nucleotide polymorphisms in 220 southern Africans
and found that the Khoe-San diverged from other populations ≥100,000 years ago, but population
structure within the Khoe-San dated back to about 35,000 years ago. Genetic variation in various
sub-Saharan populations did not localize the origin of modern humans to a single geographic
region within Africa; instead, it indicated a history of admixture and stratification. We found
evidence of adaptation targeting muscle function and immune response; potential adaptive
introgression of protection from ultraviolet light; and selection predating modern human
diversification, involving skeletal and neurological development. These new findings illustrate
the importance of African genomic diversity in understanding human evolutionary history.

G
enetic, anthropological, and archaeolog-

ical studies provide substantial support

for an African origin of modern humans,

but the process by which modern humans arose

has been vigorously debated (1, 2). African pop-

ulations show the greatest genetic diversity, with

genetic variation in Eurasia, Oceania and the

Americas largely being a subset of the African

diversity (3–6), with limited contribution from ar-

chaic humans (7). Within Africa, click-speaking

southern African San and Khoe populations

[“Khoe-San” from here on, following the San

Council recommendations] harbor the deepest

mitochondrial DNA lineages (5), have great ge-

nomic diversity (8–10), and probably represent the

deepest historical population divergences among

extant human populations (11, 12). However,

African populations have been underrepresented

in genome-wide studies of genetic diversity, in-

cluding assessment of the ethnic diversity within

the Khoe-San in southern Africa, where previous

studies have focused either on single-locus mark-

ers (13) or a few individuals from one or two

populations (3, 4, 8–10).

We genotyped, quality-filtered, and phased

∼2.3 million single-nucleotide polymorphisms

(SNPs) in 220 individuals representing 11 popula-

tions from southern Africa: Ju/'hoansi, !Xun, /Gui

and //Gana, Karretjie People (hereafter “Karretjie”),

≠Khomani, Nama, Khwe, “Coloured” (Colesberg),

“Coloured” (Wellington), Herero, and Bantu-

speakers (South Africa) [Fig. 1A, (14), and table

S4]. These data were analyzed together with pub-

lished data (4, 9, 10, 15) after the removal of

related and recently admixed individuals (14).

To minimize the potential effect of ascertainment

bias on results, we used several approaches that

have previously been shown to be robust to these

biases, including analyzing haplotypes, usingmi-

nor allele frequency filtering within populations,

and comparing results to available sequence data

(14). In a principal components analysis (PCA),

the first two PCs closely recapitulate many aspects

of a geographicmap of Africa [Fig. 1B, Procrustes

correlation: 0.585, P < 10−5 (14)], with the first

PC representing a north-south axis that separates

southernAfricanKhoe-San populations from other

populations, and the second PC representing an

east-west axis that separates east African pop-

ulations (including Hadza and Sandawe hunter-

gatherers) from central African hunter-gatherers

(Mbuti andBiakaPygmies) andNiger-Kordofanian

speakers (Fig. 1B). In this two-dimensional repre-

sentation of sub-Saharan genetic diversity, hunter-

gatherer populations from southern, central, and

eastern Africa constitute three extremes, respec-

tively, of a scaffold, where the fourth extreme is

represented by all Niger-Kordofanian–speaking

groups from across theAfrican continent. Although

Niger-Kordofanian–speakingpopulations havebeen

sampled from southern, eastern, and western Af-

rica, they all cluster closely in the vicinity ofWest

African populations (Fig. 1B), a consequence of

the recent “Bantu expansion.” If Bantu-speaking

populations are removed from the analysis, the

correlation between the first two PCs and geo-

graphy increases to 0.715 (P < 10−5). In addition

to geography, genetic structure can also be corre-

latedwith language and subsistence strategies, and

we assessed the capacity of these factors to predict

genetic components in sub-Saharan Africa (14).

Geography predicted genetic components better

than either language or subsistence, but combin-

ing geographic information with subsistence and

especially linguistic information improved the predic-

tion (Fig. 1E), suggesting that all of these factors

contribute to genetic structure in sub-Saharan Africa.

Genetic cluster analysis (16) showed sub-

stantial structure among sub-Saharan individuals

and reiterated the substructure among Khoe-San

populations, Niger-Kordofanian speakers, east Af-

rican populations, and central African hunter-

gatherers (Fig. 2B) (14). Increasing the number

of allowed clusters distinguishes finer levels of

population substructure (Fig. 2B), including dis-

tinct non-African ancestry components for indi-

viduals who self-identify as “Coloured” (figs. S16,

S18, and S21). Within the Khoe-San group, there

was a distinct separation of Northern San pop-

ulations (Ju speakers: !Xun and Ju/'hoansi) and
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