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Abstract

This article introduces a relatively complete proof calculus for differential dynamic logic

(dL) that is entirely based on uniform substitution, a proof rule that substitutes a formula for a

predicate symbol everywhere. Uniform substitutions make it possible to use axioms instead of

axiom schemata, thereby substantially simplifying implementations. Instead of subtle schema

variables and soundness-critical side conditions on the occurrence patterns of logical variables

to restrict infinitely many axiom schema instances to sound ones, the resulting calculus adopts

only a finite number of ordinary dL formulas as axioms, which uniform substitutions instan-

tiate soundly. The static semantics of differential dynamic logic and the soundness-critical

restrictions it imposes on proof steps is captured exclusively in uniform substitutions and vari-

able renamings as opposed to being spread in delicate ways across the prover implementation.

In addition to sound uniform substitutions, this article introduces differential forms for dif-

ferential dynamic logic that make it possible to internalize differential invariants, differential

substitutions, and derivatives as first-class axioms to reason about differential equations ax-

iomatically. The resulting axiomatization of differential dynamic logic is proved to be sound

and relatively complete.

Keywords: Differential dynamic logic, Uniform substitution, Axioms, Differentials, Static

semantics, Axiomatization

1 Introduction

Differential dynamic logic (dL) [13, 15] is a logic for proving correctness properties of hybrid sys-

tems. It has a sound and complete proof calculus relative to differential equations [13, 15] and a

sound and complete proof calculus relative to discrete systems [15]. Both sequent calculi [13] and

Hilbert-type axiomatizations [15] have been presented for dL but only the former have been imple-

mented. The implementation of dL’s sequent calculus in KeYmaera [21] makes it straightforward

for users to prove properties of hybrid systems, because it provides proof rules that perform natural

decompositions for each operator. The downside is that the implementation of the rule schemata
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and their different and subtle side conditions on occurrence constraints and relations of reading

and writing of variables as well as rule applications in a formula context is quite nontrivial and

inflexible in KeYmaera.

The goal of this article is to identify how to, instead, make it straightforward to implement

the proof calculus of differential dynamic logic in a parsimonious way by writing down a finite

list of axioms (concrete formulas, not axiom schemata that represent an infinite list of axioms

subject to sophisticated soundness-critical schema variable matching and side condition checking

implementations). The resulting calculus features more modular axioms that can be combined with

one another to regain the effect of a single dL sequent proof rule. The axioms are implemented in

the object language without meta constructs, which enables a substantially simpler prover core.

As a mechanism for instantiating axioms, this article follows observations for differential game

logic [17] highlighting the significance and elegance of uniform substitution, a classical proof rule

for first-order logic [2, §35,40]. Uniform substitutions uniformly instantiate predicate and function

symbols with formulas and terms, respectively, as functions of their arguments. In the presence of

the nontrivial binding structure that nondeterminism and differential equations of hybrid systems

induce for the dynamic modalities of differential dynamic logic, flexible but sound uniform sub-

stitutions become more complex, but can still be read off directly from the static semantics. The

static semantics of dL directly determines uniform substitutions (and variable renamings), which,

in turn, are the only elements of the prover core that need to know anything about the language and

its static semantics. A proof may simply start from a dL formula that is an axiom.

This approach is dual to other successful ways of solving the intricacies and subtleties of sub-

stitutions [1, 9] by imposing occurrence side conditions on axiom schemata and proof rules, which

is what uniform substitutions get rid of. The uniform substitution framework shares many goals

with other logical frameworks [12], including leading to smaller soundness-critical cores, more

flexibility when augmenting reasoning techniques, and reducing the gap between a logic and its

theorem prover. Logical frameworks shine when renaming and substitution of the object language

are in line with those of the meta-language. Uniform substitutions provide a simpler approach

for languages with the intricate binding of imperative and especially hybrid system dynamics in

which, e.g., the same occurrence of a variable can be both free and bound.

Side conditions for axiom schemata can be nontrivial. Classical dL calculi [13, 15] have an

axiom schema expressing that a formula φ holds always after following a differential equation

x′ = θ (as expressed by dL formula [x′ = θ ]φ ) iff φ holds for all times t ≥ 0 after the discrete

assignment x :=y(t) assigning the solution y(t) to x:

([′]) [x′ = θ ]φ ↔∀t≥0 [x :=y(t)]φ (y′(t) = θ)

Soundness-critical side conditions need to ensure that t is a sufficiently fresh variable and that y(t)
indeed solves the differential equation and obeys the symbolic initial value condition y(0) = x.

Uniform substitutions obviate the need for such side conditions. An axiom is simply a single

object-level formula as opposed to an algorithm accepting infinitely many formulas under certain

side conditions. A proof rule is simply a pair of object-level formulas as opposed to an algorithm

transforming formulas. Derived axioms, derived rules, rule application mechanisms, lemmas, def-

initions, and parametric invariant search are all definable from uniform substitutions. Differential
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forms are added to dL in this article for the purpose of internalizing differential invariants [14],

differential cuts [14, 16], differential ghosts [16], differential substitutions, total differentials and

Lie-derivatives [14, 16] as separate first-class axioms in dL.

This article presents a highly modular and straightforward approach. It introduces differential-

form dL and its dynamic semantics, and proves its static semantics sound for the dynamic semantics

(Section 2). It then defines uniform substitutions that are proved sound from the static semantics

(Section 3). Uniform substitutions enable a parsimoniously implementable axiomatization (Sec-

tion 4) with concrete dL formulas (or pairs for rules), which are proved sound individually from

the dynamic semantics (Section 5) without having to worry how they might be instantiated. Differ-

ential forms are used to obtain axioms for proving properties of differential equations (Section 5).

This modular approach with separate soundness proofs is to be contrasted with previous complex

built-in algorithms that mix multiple axioms into special-purpose rules [14, 16]. Finally, the logic

is proved to be sound and relatively complete (Section 5). Proofs are provided in Appendix A.

Overall, uniform substitutions significantly simplify prover core implementations, because uni-

form substitutions are straightforward and reduce implementing axioms and axiomatic rules to

copy&paste.

2 Differential-Form Differential Dynamic Logic

This section presents differential-form differential dynamic logic, which adds differential forms to

differential dynamic logic [13, 15] in order to axiomatically internalize reasoning about differential

equations and differentials as first-class citizens. Because the logic itself did not otherwise change,

the relationship to related work from previous presentations of differential dynamic logic [13, 15]

continues to apply. The primary purpose of the uniform substitution approach is to lead to a

significantly simpler implementation, which could benefit other approaches [4, 11, 3], too.

2.1 Syntax

This section defines the syntax of the language of (differential-form) differential dynamic logic dL

and its hybrid programs. The syntax first defines terms. The set of all variables is V . Variables

of the form x′ for a variable x ∈ V are called differential symbols. Differential symbol x′ is just

an independent variable associated to variable x. For any subset V ⊆ V is V ′
def
= {x′ : x ∈ V} the

set of differential symbols x′ for the variables in V . The set of all variables is assumed to already

contain all its differential symbols V ′ ⊆ V . So x ∈ V implies x′,x′′ ∈ V etc. even if x′′ is not used

here. Function symbols are written f ,g,h, predicate symbols p,q,r, and variables x,y,z ∈ V with

corresponding differential symbols x′,y′,z′ ∈ V ′. Program constants are a,b,c.

Definition 1 (Terms). Terms are defined by this grammar (with θ ,η ,θ1, . . . ,θk as terms, x ∈ V as

variable, and f as function symbol):

θ ,η ::= x | f (θ1, . . . ,θk) | θ +η | θ ·η | (θ)′

3



A. Platzer A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Number literals such as 0,1 are allowed as function symbols without arguments that are inter-

preted as the numbers they denote. Occasionally, constructions will be simplified by considering

θ +η and θ ·η as special cases of function symbols f (θ ,η), but + and · always denote addi-

tion and multiplication. Differential-form dL allows differentials (θ)′ of terms θ as terms for the

purpose of axiomatically internalizing reasoning about differential equations. The differential (θ)′

describes how the value of θ changes locally depending on how the values of its variables x change,

i.e. as a function of the values of the corresponding differential symbols x′. Differentials will make

it possible to reduce reasoning about differential equations to reasoning about equations of differ-

entials, which, quite unlike differential equations, have a local semantics in isolated states and are,

thus, amenable to an axiomatic treatment.

Formulas and hybrid programs (HPs) of dL are defined by simultaneous induction, because for-

mulas can occur in programs and programs can occur in formulas. Similar simultaneous inductions

are, thus, used throughout the proofs in this article.

Definition 2 (dL formula). The formulas of (differential-form) differential dynamic logic (dL) are

defined by the grammar (with dL formulas φ ,ψ , terms θ ,η ,θ1, . . . ,θk, predicate symbol p, quan-

tifier symbol C, variable x, HP α):

φ ,ψ ::= θ ≥ η | p(θ1, . . . ,θk) |C(φ ) | ¬φ | φ ∧ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Operators >,≤,<,∨,→,↔ are definable, e.g., φ → ψ as ¬(φ ∧¬ψ). Also [α]φ is equivalent

to ¬〈α〉¬φ and ∀xφ equivalent to ¬∃x¬φ . The modal formula [α]φ expresses that φ holds after

all runs of α , while the dual 〈α〉φ expresses that φ holds after some run of α . Quantifier symbols

C (with formula φ as argument), i.e. higher-order predicate symbols that bind all variables of φ ,

are unnecessary but included for convenience since they internalize contextual congruence reason-

ing efficiently with uniform substitutions. The concrete quantifier chain in ∀x∃yφ evaluates the

formula φ at multiple x and y values to determine whether the whole formula is true. Similarly, an

abstract quantifier symbol C can evaluate its formula argument φ for different variable values to

determine whether C(φ ) is true. Whether C(φ ) is true, and where exactly C evaluates its argument

φ to find out, depends on the interpretation of C.

Definition 3 (Hybrid program). Hybrid programs (HPs) are defined by the following grammar

(with α,β as HPs, program constant a, variable x, term θ possibly containing x, and with dL

formula1 ψ):

α,β ::= a | x :=θ | ?ψ | x′ = θ &ψ | α ∪β | α;β | α∗

Assignments x :=θ of θ to variable x, tests ?ψ of the formula ψ in the current state, differen-

tial equations x′ = θ &ψ restricted to the evolution domain ψ , nondeterministic choices α ∪ β ,

sequential compositions α;β , and nondeterministic repetition α∗ are as usual in dL [13, 15].

The assignment x :=θ instantaneously changes the value of x to that of θ . The test ?ψ checks

whether ψ is true in the current state and discards the program execution otherwise. The con-

tinuous evolution x′ = θ &ψ will follow the differential equation x′ = θ for any nondeterministic

amount of time, but cannot leave the region where the evolution domain constraint ψ holds. For

1Quantifier-free formulas of first-order logic of real arithmetic are enough for most purposes.
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example, x′ = v,v′ = a&v ≥ 0 follows the differential equation where position x changes with

time-derivative v while the velocity v changes with time-derivative a for any arbitrary amount of

time, but without ever allowing a negative velocity v (which would, otherwise, ultimately happen

for negative accelerations a < 0). Usually, the value of differential symbol x′ is unrelated to the

value of variable x. But along a differential equation x′ = θ , differential symbol x′ has the value

of the time-derivative of the value of x (and is, furthermore, equal to θ ). Differential equations

x′ = θ &ψ have to be in explicit form, so y′ and (η)′ cannot occur in θ and x 6∈ V ′. The nonde-

terministic choice α ∪β either executes subprogram α or β , nondeterministically. The sequential

composition α;β first executes α and then, upon completion of α , runs β . The nondeterministic

repetition α∗ repeats α any number of times, nondeterministically.

The effect of an assignment x′ :=θ to differential symbol x′ ∈V , called differential assignment,

is like the effect of an assignment x :=θ to variable x, except that it changes the value of the

differential symbol x′ instead of the value of x. It is not to be confused with the differential equation

x′ = θ , which will follow said differential equation continuously for an arbitrary amount of time.

The differential assignment x′ :=θ , instead, only assigns the value of θ to the differential symbol

x′ discretely once at an instant of time. Program constants a are uninterpreted, i.e. their behavior

depends on the interpretation in the same way that the values of function symbols f , predicate

symbols p, and quantifier symbols C depend on their interpretation.

Example 1 (Simple car). The dL formula

v≥ 2∧b > 0→ [((a :=−b∪a :=5); x′ = v,v′ = a&v≥ 0)
∗
]v≥ 0 (1)

expresses that a car starting with velocity v≥ 2 and braking constant b > 0 will always have non-

negative velocity v ≥ 0 when following a HP that repeatedly provides a nondeterministic control

choice between putting the acceleration a to braking (a :=−b) or to a positive constant (a :=5)

before following the differential equation system x′ = v,v′ = a restricted to the evolution domain

constraint v ≥ 0 for any amount of time. The formula in (1) is true, because the car never moves

backward in the HP. But similar questions quickly become challenging, e.g., about safe distances

to other cars or for models with more detailed physical dynamics.

2.2 Dynamic Semantics

The (denotational) dynamic semantics of dL defines, depending on the values of the symbols, what

real value terms evaluate to, what truth-value formulas have, and from what initial states which

final states are reachable by running its HPs. Since the values of variables and differential symbols

can change over time, they receive their value by the state. A state is a mapping ν : V → R from

variables V including differential symbols V ′ ⊆ V to R. The set of states is denoted S. The set

X∁ = S \X is the complement of a set X ⊆ S. Let νr
x denote the state that agrees with state ν

except for the value of variable x, which is changed to r ∈ R. The interpretation of a function

symbol f of arity n (i.e. with n arguments) in interpretation I is a (smooth, i.e. with derivatives of

any order) function I( f ) : Rn→R of n arguments (continuously differentiable suffices). The set of

interpretations is denoted I . The semantics of a term θ is a mapping [[θ ]] : I → (S→ R) from

interpretations and states to a real number.
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Definition 4 (Semantics of terms). The semantics of a term θ in interpretation I and state ν ∈S

is its value Iν [[θ ]] in R. It is defined inductively as follows

1. Iν [[x]] = ν(x) for variable x ∈ V

2. Iν [[ f (θ1, . . . ,θk)]] = I( f )
(

Iν [[θ1]], . . . , Iν [[θk]]
)

for function symbol f

3. Iν [[θ +η ]] = Iν [[θ ]]+ Iν [[η ]]
4. Iν [[θ ·η ]] = Iν [[θ ]] · Iν [[η ]]

5. Iν [[(θ)′]] = ∑
x∈V

ν(x′)
∂ I[[θ ]]

∂x
(ν) = ∑

x∈V

ν(x′)
∂ Iν [[θ ]]

∂x

Time-derivatives are undefined in an isolated state ν . The clou is that differentials can, neverthe-

less, be given a local semantics in a single state: Iν [[(θ)′]] is the sum of all (analytic) spatial partial

derivatives at ν of the value of θ by all variables x multiplied by the corresponding direction de-

scribed by the value ν(x′) of differential symbol x′. That sum over all variables x ∈ V is finite,

because θ only mentions finitely many variables x and the partial derivative by variables x that do

not occur in θ is 0. As usual,
∂g
∂x
(ν) is the partial derivative of function g at point ν by variable

x, which is sometimes also just denoted
∂g(ν)

∂x
. Hence, the partial derivative

∂ I[[θ ]]
∂x

(ν) = ∂ Iν [[θ ]]
∂x

is

the derivative of the one-dimensional function IνX
x [[θ ]] of X at ν(x). The spatial partial derivatives

exist since Iν [[θ ]] is a composition of smooth functions, so is itself smooth. Thus, the semantics of

Iν [[(θ)′]] is the differential2 of (the value of) θ , hence a differential one-form giving a real value for

each tangent vector (i.e. point of a vector field) described by the values ν(x′). The values ν(x′) of

the differential symbols x′ select the direction in which x changes, locally. The partial derivatives

of Iν [[θ ]] by x describe how the value of θ changes with a change of x. Along the solution of (the

vector field corresponding to) a differential equation, the value of differential (θ)′ coincides with

the analytic time-derivative of θ (Lemma 12).

The semantics of a formula φ is a mapping [[φ ]] : I →℘(S) from interpretations to the set of

all states in which φ is true, where ℘(S) is the powerset of S. The semantics of an HP α is a

mapping [[α]] : I →℘(S×S) from interpretations to a reachability relation on states. The set of

states I[[φ ]]⊆S in which formula φ is true and the relation I[[α]]⊆S×S of HP α are defined by

simultaneous induction as their syntax is simultaneously inductive. The interpretation of predicate

symbol p with arity n is an n-ary relation I(p)⊆R
n. The interpretation of quantifier symbol C is a

functional I(C) : ℘(S)→℘(S) mapping sets M ⊆S of states where its argument is true to sets

I(C)(M)⊆S of states where C applied to that argument is then true.

Definition 5 (dL semantics). The semantics of a dL formula φ , for each interpretation I with a

corresponding set of states S, is the subset I[[φ ]]⊆S of states in which φ is true. It is defined

inductively as follows

1. I[[θ ≥ η ]] = {ν ∈S : Iν [[θ ]]≥ Iν [[η ]]}
2. I[[p(θ1, . . . ,θk)]] = {ν ∈S : (Iν [[θ1]], . . . , Iν [[θk]]) ∈ I(p)}
3. I[[C(φ )]] = I(C)

(

I[[φ ]]
)

for quantifier symbol C

2The usual point-free abuse of notation aligns Def. 4 with its mathematical counterparts by rewriting the differential

as I[[(θ)′]] = d(I[[θ ]]) = ∑
n
i=1

∂ I[[θ ]]
∂xi dxi when x1, . . . ,xn are the variables in θ and their differentials dxi form the basis of

the cotangent space, which, when evaluated at a point ν whose values ν(x′) determine the actual tangent vector alias

vector field.
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4. I[[¬φ ]] = (I[[φ ]])∁ = S \ (I[[φ ]])
5. I[[φ ∧ψ]] = I[[φ ]]∩ I[[ψ]]
6. I[[∃xφ ]] = {ν ∈S : νr

x ∈ I[[φ ]] for some r ∈ R}
7. I[[∀xφ ]] = {ν ∈S : νr

x ∈ I[[φ ]] for all r ∈ R}
8. I[[〈α〉φ ]] = I[[α]]◦ I[[φ ]] = {ν : ω ∈ I[[φ ]] for some ω such that (ν ,ω) ∈ I[[α]]}
9. I[[[α]φ ]] = I[[¬〈α〉¬φ ]] = {ν : ω ∈ I[[φ ]] for all ω such that (ν ,ω) ∈ I[[α]]}

A dL formula φ is true at state ν in I, also written I,ν |= φ iff ν ∈ I[[φ ]]. A dL formula φ is valid

in I, written I |= φ , iff I[[φ ]] = S, i.e. ν ∈ I[[φ ]] for all states ν . Formula φ is valid, written � φ , iff

I |= φ for all interpretations I.

The relation composition operator ◦ in Case 8 is also used for sets which are unary relations. The

interpretation of program constant a is a state-transition relation I(a)⊆S×S, where (ν ,ω)∈ I(a)
iff HP a can run from initial state ν to final state ω .

Definition 6 (Transition semantics of HPs). For each interpretation I, each HP α is interpreted

semantically as a binary transition relation I[[α]]⊆S×S on states, defined inductively by

1. I[[a]] = I(a) for program constants a

2. I[[x :=θ ]] = {(ν ,νr
x) : r = Iν [[θ ]]}= {(ν ,ω) : ω = ν except ω(x) = Iν [[θ ]]}

3. I[[?ψ]] = {(ν ,ν) : ν ∈ I[[ψ]]}

4. I[[x′ = θ &ψ]] = {(ν ,ω) : ν = ϕ(0) on {x′}∁ and ω =ϕ(r) for some function ϕ : [0,r]→S

of some duration r satisfying I,ϕ |= x′ = θ ∧ψ}

where I,ϕ |= x′ = θ ∧ψ iff ϕ(ζ ) ∈ I[[x′ = θ ∧ψ]] and ϕ(0) = ϕ(ζ ) on {x,x′}∁ for all 0 ≤

ζ ≤ r and if
dϕ(t)(x)

dt
(ζ ) exists and is equal to ϕ(ζ )(x′) for all 0≤ ζ ≤ r.

5. I[[α ∪β ]] = I[[α]]∪ I[[β ]]
6. I[[α;β ]] = I[[α]]◦ I[[β ]] = {(ν ,ω) : (ν ,µ) ∈ I[[α]],(µ,ω) ∈ I[[β ]] for some µ}

7. I[[α∗]] =
(

I[[α]]
)∗

=
⋃

n∈N

I[[αn]] with αn+1 ≡ αn;α and α0 ≡?true

where ρ∗ denotes the reflexive transitive closure of relation ρ .

The equality in I[[α∗]] follows from the Scott-continuity of HPs [17, Lemma 3.7]. The case

I[[x′ = θ &ψ]] expresses that ϕ solves the differential equation and satisfies ψ at all times. In case

r = 0, the only condition is that ν = ω on {x′}∁ and ω(x′) = Iω[[θ ]] and ω ∈ I[[ψ]]. Since ν and

ϕ(0) are only assumed to agree on the complement {x′}∁ of the set {x′}, the initial values ν(x′) of

differential symbols x′ do not influence the behavior of (ν ,ω) ∈ I[[x′ = θ &ψ]], because they may

not be compatible with the time-derivatives for the differential equation, e.g. in x′ :=1;x′ = 2 with

a discontinuity in x′. The final values ω(x′) after x′ = θ &ψ will coincide with the derivatives at

the final state, though, even for evolutions of duration zero.

2.3 Static Semantics

The dynamic semantics gives a precise meaning to dL formulas and HPs but is inaccessible for

effective reasoning purposes. By contrast, the static semantics of dL and HPs defines only simple

7
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aspects of the dynamics concerning the variable usage that follows more directly from the syn-

tactic structure without running the programs or evaluating their dynamical effects. The correct-

ness of uniform substitutions depends only on the static semantics, which identifies free variables

(FV(θ),FV(φ),FV(α) of terms θ , formulas φ and programs α) and bound variables (BV(α)). The

static semantics first characterizes free and bound variables semantically from the dynamic seman-

tics and subsequently shows algorithms for computing them conservatively.

Definition 7 (Static semantics). The static semantics defines the free variables, which are all vari-

ables that the value of an expression depends on, as well as bound variables, which can change

their value during the evaluation of an expression, as follows:

FV(θ) =
⋃

{x ∈ V : there are I and ν = ν̃ on {x}∁ such that Iν [[θ ]] 6= Iν̃ [[θ ]]}

FV(φ) =
⋃

{x ∈ V : there are I and ν = ν̃ on {x}∁ such that ν ∈ I[[θ ]] 6∋ ν̃}

FV(α) =
⋃

{x ∈ V : there are I,ν , ν̃ ,ω such that ν = ν̃ on {x}∁ and (ν ,ω) ∈ I[[α]]

but there is no ω̃ with ω = ω̃ on {x}∁ such that (ν̃ , ω̃) ∈ I[[α]]}

BV(α) =
⋃

{x ∈ V : there are I and (ν ,ω) ∈ I[[α]] such that ν(x) 6= ω(x)}

The signature, i.e. set of function, predicate, quantifier symbols, and program constants in φ is

denoted Σ(φ); accordingly Σ(θ) for term θ and Σ(α) for program α .

For example, only {v,b,x} are free variables of the formula (1), yet {a,x,x′,v,v′} are the bound

variables of its program. Acceleration a is not a free variable of (1), because a is never actually

read, as a must have been written on every execution path before being read anywhere. No execu-

tion of the program in (1) depends on the initial value of a, so a is not free since a is not free after

the loop or in the postcondition.

The static semantics provides uniform substitutions with all they need to know to determine

what changes during substitutions go unnoticed (only changes to free variables have an impact

on the value of an expression Lemma 2–4) and what state-change an expression may cause itself

(only bound variables can change their value during the evaluation of an expression Lemma 1).

Whether a uniform substitution preserves truth in a proof depends on the interaction of the free

and bound variables. If it introduces a free variable into a context where that variable is bound,

then the possible change in value of that bound variable may affect the overall truth-value.

The first property that uniform substitutions depend on is that HPs have bounded effect: only

bound variables of HP α are modified during runs of α .

Lemma 1 (Bound effect). The set BV(α) is the smallest set with the bound effect property: If

(ν ,ω) ∈ I[[α]], then ν = ω on BV(α)∁.

Proof. First prove that BV(α) has the bound effect property. Consider any (ν ,ω) ∈ I[[α]] and

x 6∈ BV(α) then ν(x) = ω(x) by Def. 7.

Suppose there was a set V 6⊇ BV(α) satisfying the bound effect property for α . Then there

is a variable x ∈ BV(α) \V , which implies that there are I and there are (ν ,ω) ∈ I[[α]] such that

ν(x) 6= ω(x). But, then V does not have the bound effect property, as (ν ,ω) ∈ I[[α]] but it is not the

case that ν = ω on V ∁, since V ∁ ⊇ {x} yet ν(x) 6= ω(x).

8
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With a small-step operational semantics, a corresponding notion of bound variables of a for-

mula could be defined as those that change their value during the evaluation of formulas, but that

is not needed here.

The value of a term only depends on the values of its free variables. When evaluating a term

θ in two different states ν , ν̃ that agree on its free variables FV(θ), the values of θ in both states

coincide. Accordingly, the value of a term will agree for different interpretations I,J that agree on

the symbols Σ(θ) that occur in θ .

Lemma 2 (Coincidence for terms). The set FV(θ) is the smallest set with the coincidence property

for θ : If ν = ν̃ on FV(θ) and I = J on Σ(θ), then Iν [[θ ]] = Jν̃ [[θ ]].

Proof. To prove that FV(θ) has the coincidence property, it is enough to show by induction that,

for any set of variables S ⊆ FV(θ)∁, the state ν ′ in between ν and ν̃ that is defined as ν ′ = ν on S

and as ν ′ = ν̃ on S∁ agrees with ν̃ in the value Iν ′[[θ ]] = Iν̃ [[θ ]].
0. For S = /0, there is nothing to show as ν ′ = ν̃ .

1. For S∪ {z} with a variable z 6∈ FV(θ), abbreviate the modified state ν ′ν(z)z by ν ′z, which

satisfies ν ′z = ν ′ on {z}∁, so Iν ′z[[θ ]] = Iν ′[[θ ]] = Iν̃ [[θ ]], because z 6∈ FV(θ) and by induction

hypothesis.

When S is the set of all variables where ν and ν̃ differ, which is S ⊆ FV(θ)∁ by assumption,

this implies ν ′ = ν so Iν [[θ ]] = Iν̃ [[θ ]]. Finally, if I = J on Σ(θ) then also Iν̃ [[θ ]] = Jν̃ [[θ ]] by an

induction.

Suppose there was a set V 6⊇ FV(θ) satisfying the coincidence property for θ . Then there is

a variable x ∈ FV(θ) \V , which implies that there are I, ν = ν̃ on {x}∁ such that Iν [[θ ]] 6= Iν̃ [[θ ]].
Then V does not have the coincidence property, as ν = ν̃ on V but Iν [[θ ]] 6= Iν̃ [[θ ]].

In particular, the semantics of differentials is a sum over just the free variables:

Iν [[(θ)′]] = ∑
x∈FV(θ)

ν(x′)
∂ I[[θ ]]

∂x
(ν) = ∑

x∈FV(θ)

ν(x′)
∂ Iν [[θ ]]

∂x

When evaluating a dL formula φ in two different states ν , ν̃ that agree on its free variables

FV(φ) in I = J on Σ(φ), the truth-values of φ in both states coincide.

Lemma 3 (Coincidence for formulas). The set FV(φ) is the smallest set with the coincidence

property for φ : If ν = ν̃ on FV(φ) and I = J on Σ(φ), then ν ∈ I[[φ ]] iff ν̃ ∈ J[[φ ]].

Proof. To prove that FV(φ) has the coincidence property, it is enough to show by induction that,

for any set of variables S ⊆ FV(φ)∁, the state ν ′ in between ν and ν̃ that is defined as ν ′ = ν on S

and as ν ′ = ν̃ on S∁ agrees with ν̃ in the truth-value ν ′ ∈ I[[φ ]] iff ν̃ ∈ I[[φ ]].
0. For S = /0, there is nothing to show as ν ′ = ν̃ .

1. For S∪ {z} with a variable z 6∈ FV(φ), abbreviate the modified state ν ′ν(z)z by ν ′z, which

satisfies ν ′z = ν ′ on {z}∁, so ν ′z ∈ I[[φ ]] iff ν ′ ∈ I[[φ ]], because z 6∈ FV(φ), iff ν̃ ∈ I[[φ ]] by

induction hypothesis.

9
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When S is the set of all variables where ν and ν̃ differ, which is S ⊆ FV(φ)∁ by assumption, this

implies ν ′ = ν so ν ∈ I[[φ ]] iff ν̃ ∈ I[[φ ]]. Finally, if I = J on Σ(φ) then also ν̃ ∈ I[[φ ]] iff ν̃ ∈ J[[φ ]]
by an induction.

Suppose there was a set V 6⊇ FV(φ) satisfying the coincidence property for φ . Then there is a

variable x ∈ FV(φ)\V , which implies that there are I, ν = ν̃ on {x}∁ such that ν ∈ I[[φ ]] 6∋ ν̃ . Then

V does not have the coincidence property, as ν = ν̃ on V but ν ∈ I[[φ ]] 6∋ ν̃ .

The runs of an HP α only depend on the values of its free variables, because its behavior cannot

depend on the values of variables that it never reads. If ν = ν̃ on FV(α) and I = J on Σ(φ) and

(ν ,ω) ∈ I[[α]], then there is an ω̃ such that (ν̃ , ω̃) ∈ J[[α]] and ω and ω̃ agree on FV(α). In fact,

the final states ω, ω̃ continue to agree on any set V ⊇ FV(α) that the initial states ν , ν̃ agreed on.

The respective pairs of initial and final states of a run of HP α already agree on the complement

BV(α)∁ by Lemma 1.

Lemma 4 (Coincidence for programs). The set FV(α) is the smallest set with the coincidence

property for α: If ν = ν̃ on V ⊇ FV(α), I = J on Σ(α) and (ν ,ω) ∈ I[[α]], then there is a ω̃ such

that (ν̃ , ω̃) ∈ J[[α]] and ω = ω̃ on V .

ν ω

ν̃ ω̃

on V ⊇ FV(α)

α

α

on V

on BV(α)∁

on BV(α)∁

Proof. To prove that FV(α) has the coincidence property, it is enough to show by induction for all

S⊆ FV(α)∁ that the state ν ′ in between ν̃ and ν that is defined as ν ′ = ν̃ on S and as ν ′ = ν on S∁

has a state ω ′ that agrees with ω ′ = ω on S∁ such that (ν ′,ω ′) ∈ I[[α]] as well.

0. For S = /0, there is nothing to show for ν ′ = ν and ω ′ = ω , because (ν ,ω) ∈ I[[α]].

1. For S∪{z} with a variable z 6∈ FV(α), let ν ′z denote modified state ν ′ν̃(z)z . Then ν ′z = ν ′ on

{z}∁ and, by induction hypothesis, (ν ′,ω ′) ∈ I[[α]] for some ω ′ with ω ′ = ω on S∁. Since

z 6∈ FV(α), this implies there is a state ω ′z such that ω ′z = ω ′ on {z}∁ and (ν ′z,ω
′
z) ∈ I[[α]].

Thus, ω ′z = ω ′ = ω on (S∪{z})∁.

Finally the state ν ′ resulting for S = V ∁ satisfies ν ′ = ν̃ because ν ′ = ν̃ on V ∁ and ν ′ = ν = ν̃ on

(V ∁)∁ =V already and the state ω̃ defined as ω ′ satisfies ω ′ = ω on V and (ν̃ , ω̃) ∈ I[[α]]. Finally,

if I = J on Σ(α) then also (ν̃ , ω̃) ∈ J[[α]].
Suppose there was a set V 6⊇ FV(α) satisfying the coincidence property for α . Then there

is a variable x ∈ FV(α) \V , which implies that there are I,ν , ν̃ ,ω such that ν = ν̃ on {x}∁ and

10
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(ν ,ω) ∈ I[[α]], but there is no ω̃ with ω = ω̃ on {x}∁ such that (ν̃ , ω̃) ∈ I[[α]]. Then V does not

have the coincidence property, because ν = ν̃ on {x}∁ ⊇ V and (ν ,ω) ∈ I[[α]], but there is no ω̃

with ω = ω̃ on {x}∁ such that (ν̃ , ω̃) ∈ I[[α]].

2.4 Correct Static Semantics Computations

Lemmas 1–4 hold for any superset of BV(α),FV(θ),FV(φ),FV(α), respectively. Supersets of the

static semantics can be computed easily from the syntactic structure and provide the sole input that

uniform substitutions depend on, which, in turn, are the only part of the calculus where the static

semantics is relevant. Only variables that are read in a formula or program can be free variables.

And only variables that have quantifiers or are written to or have differential equations can be

bound variables.

Bound variables x of a formula are those that are bound by ∀xor ∃x , but also those that are

bound by modalities such as [x :=5y] or 〈x′ = 1〉 or [x :=1∪ x′ = 1] or [x :=1∪ ?true] because of

the assignment to x or differential equation for x they contain. The scope of the bound variable x

is limited to the quantified formula or to the postcondition and remaining program of a modality.

Definition 8 (Bound variable). The set BV(φ) ⊆ V of (syntactically) bound variables of dL for-

mula φ is defined inductively as:

BV(p(θ1, . . . ,θk)) = /0 where p can also be ≥

BV(C(φ )) = V

BV(¬φ) = BV(φ)

BV(φ ∧ψ) = BV(φ)∪BV(ψ)

BV(∀xφ) = BV(∃xφ) = {x}∪BV(φ)

BV([α]φ) = BV(〈α〉φ) = BV(α)∪BV(φ)

The set BV(α)⊆ V of (syntactically) bound variables of HP α , i.e. all those that may potentially

be written to, is defined inductively as:

BV(a) = V for program constant a

BV(x :=θ) = {x}

BV(?ψ) = /0

BV(x′ = θ &ψ) = {x,x′}

BV(α ∪β ) = BV(α;β ) = BV(α)∪BV(β )

BV(α∗) = BV(α)

Both x and x′ are bound by a differential equation x′ = θ , as both may change their value. All

variables V is the only option for program constants and quantifier symbols C, since, depending

on their interpretation, both may change the value of any x ∈ V .

The free variables of a quantified formula are defined by removing its bound variable as

FV(∀xφ) = FV(φ)\{x}, since all occurrences of x in φ are bound by ∀x. The bound variables of a

11
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program in a modality act in a similar way, except that the program itself may read variables during

the computation, so its free variables need to be taken into account. By analogy to the quantifier

case, it is often suspected that FV([α]φ) could be defined as FV(α)∪ (FV(φ)\BV(α)). But that

would be unsound, because [x :=1∪ y :=2]x≥ 1 would have no free variables then, contradicting

the fact that its truth-value depends on the initial value of x. The reason is that x is a bound variable

of that program, but only written to on some but not on all paths. So the initial value of x may

be needed to evaluate the truth of the postcondition x ≥ 1 on some execution paths. If a variable

is must-bound, so written to on all paths of the program, however, it can safely be removed from

the free variables of the postcondition. The static semantics defines the subset of variables that are

must-bound (MBV(α)), so must be written to on all execution paths of α . This complication does

not happen for ordinary quantifiers or strictly nested languages like pure λ -calculi.

Definition 9 (Must-bound variable). The set MBV(α) ⊆ BV(α) ⊆ V of (syntactically) must-

bound variables of HP α , i.e. all those that must be written to on all paths of α , is defined induc-

tively as:

MBV(a) = /0 for program constant a

MBV(α) = BV(α) for atomic HPs α except program constants

MBV(α ∪β ) = MBV(α)∩MBV(β )

MBV(α;β ) = MBV(α)∪MBV(β )

MBV(α∗) = /0

Finally, the static semantics also defines which variables are free so may be read. The definition

of free variables is simultaneously inductive for formulas (FV(φ)) and programs (FV(α)) owing

to their mutually recursive syntactic structure.

Definition 10 (Free variable). The set FV(θ) ⊆ V of (syntactically) free variables of term θ , i.e.

those that occur in θ directly or indirectly, is defined inductively as:

FV(x) = {x} hence FV(x′) = {x′}

FV( f (θ1, . . . ,θk)) = FV(θ1)∪·· ·∪FV(θk) where f can also be + or ·

FV((θ)′) = FV(θ)∪FV(θ)′

The set FV(φ) of (syntactically) free variables of dL formula φ , i.e. all that occur in φ outside the

scope of quantifiers or modalities binding it, is defined inductively as:

FV(p(θ1, . . . ,θk)) = FV(θ1)∪·· ·∪FV(θk) where p can also be ≥

FV(C(φ )) = V

FV(¬φ) = FV(φ)

FV(φ ∧ψ) = FV(φ)∪FV(ψ)

FV(∀xφ) = FV(∃xφ) = FV(φ)\{x}

FV([α]φ) = FV(〈α〉φ) = FV(α)∪ (FV(φ)\MBV(α))

12
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The set FV(α)⊆ V of (syntactically) free variables of HP α , i.e. all those that may potentially be

read, is defined inductively as:

FV(a) = V for program constant a

FV(x :=θ) = FV(θ)

FV(?ψ) = FV(ψ)

FV(x′ = θ &ψ) = {x}∪FV(θ)∪FV(ψ)

FV(α ∪β ) = FV(α)∪FV(β )

FV(α;β ) = FV(α)∪ (FV(β )\MBV(α))

FV(α∗) = FV(α)

The variables of dL formula φ , whether free or bound, are V(φ) = FV(φ)∪BV(φ). The variables

of HP α , whether free or bound, are V(α) = FV(α)∪BV(α).

Soundness requires FV((θ)′) to be the union of FV(θ) and its differential closure FV(θ)′ of all

differential symbols corresponding to the variables in FV(θ), because the value of (xy)′ depends

on FV((xy)′) = {x,x′,y,y′} so the current and differential symbol values. Indeed, (xy)′ will turn

out to equal x′y+ xy′ (Lemma 14), which has the same set of free variables {x,x′,y,y′} for more

obvious reasons. Both x and x′ are bound in x′ = θ &ψ since both change their value, but only x is

added to the free variables, because the behavior can only depend on the initial value of x, not of

that of x′. All variables V are free and bound variables for program constants a, because their effect

depends on the interpretation I, so they may read and write any variable in FV(a) = BV(a) = V

but possibly not on all paths, so MBV(a) = /0.

For example, FV(φ) = FV(φ) = {v,b,x} are the free variables of the formula φ in (1), while

BV(α)=BV(α)= {a,x,x′,v,v′} are the bound variables (and must-bound variables) of its program

α . This would have been different for the less precise definition FV(α;β ) = FV(α)∪FV(β ). Of

course [22], syntactic computations may give bigger sets, e.g., FV(x2−x2) = {x} 6= FV(x2−x2) =
/0 or BV(x :=x) = {x} 6= BV(x :=x) = /0, or similarly when some differential equation can never be

executed.

Since uniform substitutions depend on the static semantics, soundness of uniform substitutions

requires the static semantics to be computed correctly. Correctness of the static semantics is easy to

prove by straightforward structural induction with some attention for differential cases. There is a

subtlety in the soundness proof for the free variables of programs and formulas, though. The states

ω and ω̃ resulting from Lemma 4 continue to agree on FV(α) and the variables that are bound on

the particular path that α ran for the transition (ν ,ω) ∈ I[[α]]. They may disagree on variables z

that are neither free (so the initial states ν and ν̃ have not been assumed to coincide) nor bound on

the particular path that α took, because z has not been written to.

Example 2 (Bound variables may not agree after an HP). Let (ν ,ω) ∈ I[[α]]. It is not enough

to assume ν = ν̃ only on FV(α) in order to guarantee ω = ω̃ on V(α) for some ω̃ such that

(ν̃ , ω̃) ∈ J[[α]], because α
def
≡ x :=1∪y :=2 will force the final states to agree only on either x or on

y, whichever one was assigned to during the respective run of α , not on both BV(α) = {x,y}, even

though any initial states ν , ν̃ agree on FV(α) = /0. This can only happen because /0 = MBV(α) 6=
BV(α) = {x,y}.

13
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Yet, the respective resulting states ω and ω̃ still agree on the must-bound variables that are

bound on all paths of α , rather than just somewhere in α . If initial states agree on (at least) all

free variables FV(α) that HP α may read, then the final states continue to agree on those (even if

overwritten since) as well as on all variables that α must write on all paths, i.e. MBV(α). This

is crucial for the soundness proof of the syntactic static semantics, because, e.g., free occurrences

in φ of must-bound variables of α will not be free in [α]φ , so the initial states will not have been

assumed to agree initially. It is of similar significance that the resulting states continue to agree on

any superset V ⊇ FV(α) of the free variables that the initial states agreed on.

Lemma 5 (Soundness of static semantics). The static semantics correctly computes supersets and,

thus, Lemmas 1–4 hold for BV(α),FV(θ),FV(φ),FV(α):

BV(α)⊇ BV(α) FV(θ)⊇ FV(θ) FV(φ)⊇ FV(φ) FV(α)⊇ FV(α)

Proof. First prove BV(α)⊇ BV(α) by a straightforward structural induction on α .

1. For program constant a, the statement is obvious, since BV(a) = V .

2. (ν ,ω) ∈ I[[x :=θ ]] iff ω = νr
x with r = Iν [[θ ]] so ν = ω except for {x} = BV(x := θ) ⊇

BV(x :=θ).
3. (ν ,ω) ∈ I[[?ψ]] = {(ν ,ν) : ν ∈ I[[ψ]]} implies ν = ω so BV(?ψ) = BV(?ψ) = /0.

4. (ν ,ω) ∈ I[[x′ = θ &ψ]] implies ν =ϕ(0) on {x′}∁ and ω =ϕ(r) for some ϕ with I,ϕ |= x′ = θ ∧ψ ,

so ϕ(ζ )= ν on {x,x′}∁ for all ζ . Thus ν =ω on {x,x′}∁ by Def. 6. Hence, BV(x′ = θ &ψ)⊆
{x,x′}= BV(x′ = θ &ψ).

5. (ν ,ω) ∈ I[[α ∪β ]] = I[[α]]∪ I[[β ]] implies (ν ,ω) ∈ I[[α]] or (ν ,ω) ∈ I[[β ]], By induction hy-

pothesis, BV(α) ⊆ BV(α) and BV(β ) ⊆ BV(β ). Either way, ν = ω on (BV(α)∪BV(β ))∁.

So, BV(α ∪β )⊆ BV(α)∪BV(β )⊆ BV(α)∪BV(β ) = BV(α ∪β ).
6. (ν ,ω) ∈ I[[α;β ]] = I[[α]]◦ I[[β ]], i.e. there is a µ such that (ν ,µ) ∈ I[[α]] as well as (µ,ω) ∈ [[β ]].

By induction hypothesis, BV(α) ⊆ BV(α) and BV(β ) ⊆ BV(β ). Thus, ν = µ = ω on

(BV(α)∪BV(β ))∁. So BV(α;β )⊆ BV(α)∪BV(β )⊆ BV(α)∪BV(β ) = BV(α;β ).

7. The case (ν ,ω) ∈ I[[α∗]] =
⋃

n∈N

I[[αn]] follows by induction on n.

The second part proves FV(θ)⊇ FV(θ). Let y ∈ FV(θ), which implies that there are I and ν = ν̃

on {x}∁ such that Iν [[θ ]] 6= Iν̃ [[θ ]]. The proof is a structural induction on θ . IH is short for induction

hypothesis.

1. For any variable including y, FV(y) = FV(y) since y is the only variable that its value depends

on.

2. Iν [[ f (θ1, . . . ,θk)]] 6= Iν̃ [[ f (θ1, . . . ,θk)]] implies for some i that Iν [[θi]] 6= Iν̃ [[θi]]. Hence, y ∈
FV(θi) since y is the only variable that ν and ν̃ differ at. By IH, this implies y ∈ FV(θi) ⊆
FV( f (θ1, . . . ,θk)). This includes the case where f is + or · as well.

3. Iν [[(θ)′]] = ∑
x

ν(x′)
∂ Iν [[θ ]]

∂x
6= ∑

x

ν̃(x′)
∂ Iν̃ [[θ ]]

∂x
= Iν̃ [[(θ)′]]. Since ν and ν̃ only differ in y,

it is the case that i) for some x,
∂ Iν [[θ ]]

∂x
6= ∂ Iν̃ [[θ ]]

∂x
, or ii) y is some x′ and ν(x′) 6= ν̃(x′) and

∂ Iν [[θ ]]
∂x
6= 0 or

∂ Iν̃ [[θ ]]
∂x
6= 0. In Case 3i, there are states ω = ω̃ that agree on {y}∁ such that

Iω[[θ ]] 6= Iω̃[[θ ]] as otherwise their partial derivatives by x would agree. Thus, y ∈ FV(θ)
IH
⊆
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FV(θ) ⊆ FV((θ)′) by IH. In Case 3ii, x ∈ FV(θ) as, otherwise,
∂ Iν [[θ ]]

∂x
= 0 for all states ν

since there would not be any state ω agreeing ω = ν on {x}∁ with a different value Iω[[θ ]] 6=
Iν [[θ ]] then, so that their partial derivatives by x would both be 0. By IH, x ∈ FV(θ) implies

x ∈ FV(θ), which implies x′ ∈ FV((θ)′).
The proof of soundness of FV(φ) and FV(α) is indirect by a simultaneous inductive prove that both

satisfy their respective coincidence property and are, thus, sound FV(φ) ⊇ FV(φ) and FV(α) ⊇
FV(α) by Lemma 3 and 4, since FV(φ) and FV(α) are the smallest sets satisfying coincidence.

In fact, the inductive proof for programs shows a stronger coincidence property augmented with

must-bound variables.

The proof that FV(φ) satisfies the coincidence property, and thus FV(α)⊇ FV(α), is by struc-

tural induction on φ , simultaneously with the coincidence property for programs. To simplify

the proof, doubly negated existential quantifiers are considered structurally smaller than universal

quantifiers and doubly negated diamond modalities smaller than box modalities.

1. ν ∈ I[[p(θ1, . . . ,θk)]] iff (Iν [[θ1]], . . . , Iν [[θk]])∈ I(p) iff (Jν̃ [[θ1]], . . . ,Jν̃ [[θk]])∈ J(p) iff ν̃ ∈ J[[p(θ1, . . . ,θk)]]
by Lemma 2 and FV(θ) ⊇ FV(θ) since FV(θi) ⊆ FV(p(θ1, . . . ,θk)) and I and J were as-

sumed to agree on the function symbol p that occurs in the formula. This includes the case

where p is ≥ so that I and J agree by definition.

2. ν ∈ I[[C(φ )]] = I(C)
(

I[[φ ]]
)

iff, by IH, ν̃ ∈ J[[C(φ )]] = J(C)
(

J[[φ ]]
)

since ν = ν̃ on FV(C(φ )) =
V , so ν = ν̃ , and I = J on Σ(C(φ )) = {C}∪Σ(φ), so I(C) = J(C) and, by induction hypoth-

esis, implies I[[φ ]] = J[[φ ]] using I = J on Σ(φ)⊆ Σ(C(φ )).

3. ν ∈ I[[¬φ ]] iff ν 6∈ I[[φ ]] iff, by IH, ν̃ 6∈ J[[φ ]] iff ν̃ ∈ J[[¬φ ]] using FV(¬φ) = FV(φ).

4. ν ∈ I[[φ ∧ψ]] iff ν ∈ I[[φ ]]∩ I[[ψ]] iff, by IH, ν̃ ∈ J[[φ ]]∩ J[[ψ]] iff ν̃ ∈ J[[φ ∧ψ]] using FV(φ ∧
ψ) = FV(φ)∪FV(ψ).

5. ν ∈ I[[∃xφ ]] iff νr
x ∈ I[[φ ]] for some r ∈ R iff ν̃r

x ∈ I[[φ ]] for some r ∈ R iff ν̃ ∈ J[[∃xφ ]] for the

same r by induction hypothesis using that νr
x = ν̃r

x on FV(φ)⊆ {x}∪FV(∃xφ).

6. The case ∀xφ follows from the equivalence ∀xφ ≡ ¬∃x¬φ using FV(¬∃x¬φ) = FV(∀xφ).

7. ν ∈ I[[〈α〉φ ]] iff there is a ω such that (ν ,ω) ∈ I[[α]] and ω ∈ I[[φ ]]. Since ν = ν̃ on FV(〈α〉φ)⊇
FV(α) and (ν ,ω) ∈ I[[α]], the simultaneous induction hypothesis implies with I = J on

Σ(α) ⊆ Σ(〈α〉φ) that there is an ω̃ such that (ν̃ , ω̃) ∈ J[[α]] and ω = ω̃ on FV(〈α〉φ)∪
MBV(α)=FV(α)∪(FV(φ)\MBV(α))∪MBV(α)=FV(α)∪FV(φ)∪MBV(α)⊇FV(φ).

ν ω

ν̃ ω̃

on FV(〈α〉φ)
⊇ FV(α)

α

α

on FV(〈α〉φ)∪MBV(α)⊇ FV(φ)

Since, ω = ω̃ on FV(φ) and I = J on Σ(φ)⊆ Σ(〈α〉φ), the induction hypothesis implies that

ω̃ ∈ J[[φ ]] since ω ∈ I[[φ ]]. Since (ν̃ , ω̃) ∈ J[[α]], this implies ν̃ ∈ J[[〈α〉φ ]].

8. ν ∈ I[[[α]φ ]] = I[[¬〈α〉¬φ ]] iff ν 6∈ I[[〈α〉¬φ ]], so by IH, iff ν̃ 6∈ J[[〈α〉¬φ ]] iff ν̃ ∈ J[[[α]φ ]]
using that FV(〈α〉¬φ) = FV([α]φ).
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The proof that FV(α) satisfies the coincidence property, and thus FV(φ)⊇FV(φ), shows a stronger

property. If ν = ν̃ on V ⊇ FV(α), I = J on Σ(α) and (ν ,ω) ∈ I[[α]], then there is a ω̃ such that

(ν̃ , ω̃) ∈ J[[α]] and ω = ω̃ on V ∪MBV(α). The proof is by (simultaneous) induction on the

structural complexity of α , where α∗ is considered to be structurally more complex than HPs

of any length but with less nested repetitions, which induces a well-founded order on HPs. For

atomic programs α for which BV(α) = MBV(α), it is enough to show agreement on V(α) =

FV(α)∪BV(α) = FV(α)∪MBV(α), because any variable in V \V(α) is in BV(α)∁, which

remain unchanged by α according to Lemma 1 and BV(α)⊇ BV(α).
1. Since FV(a) = V so ν = ν̃ , the statement is vacuously true for program constant a.

2. (ν ,ω) ∈ I[[x :=θ ]] = {(ν ,ω) : ω = ν except that Iω[[x]] = Iν [[θ ]]} then there is (ν̃ , ω̃) ∈ J[[x :=θ ]]
and ω̃(x) = Jω̃[[x]] = Jν̃ [[θ ]] = Iν [[θ ]] = Iω[[x]] = ν(x) by Lemma 2, since ν = ν̃ on FV(x :=
θ) = FV(θ) and I = J on Σ(θ). So, ω = ω̃ on BV(x := θ) = {x}. Also, ν = ω on

BV(x := θ)∁ and ν̃ = ω̃ on BV(x := θ)∁ by Lemma 1. Since ν = ν̃ on FV(x := θ), these

imply ω = ω̃ on FV(x := θ) \BV(x := θ). Since ω = ω̃ on BV(x := θ) had been shown

already, this implies ω = ω̃ on V(x :=θ).
3. (ν ,ω) ∈ I[[?ψ]] = {(ν ,ν) : ν ∈ I[[ψ]]} then ω = ν by Def. 6. Since, ν ∈ I[[ψ]] and ν = ν̃

on FV(?ψ) and I = J on Σ(ψ) = Σ(?ψ), Lemma 3 and the simultaneous induction for

FV(ψ) ⊇ FV(ψ) implies that ν̃ ∈ J[[ψ]], so (ν̃ , ν̃) ∈ J[[?ψ]]. So ν = ν̃ on V(?ψ) = FV(?ψ)
since BV(?ψ) = /0.

4. (ν ,ω) ∈ I[[x′ = θ &ψ]] implies that there is an ω̃ reached from ν̃ by following the differ-

ential equation for the same amount it took to reach ω from ν . That is, ν = ϕ(0) on

{x′}∁ and ω = ϕ(r) for some function ϕ : [0,r]→S satisfying I,ϕ |= x′ = θ ∧ψ , espe-

cially ϕ(ζ ) ∈ I[[x′ = θ ∧ψ]] for all 0≤ ζ ≤ r. Define ϕ̃ : [0,r]→S at ζ as ϕ̃(ζ ) = ϕ(ζ ) on

{x,x′} and as ϕ̃(ζ ) = ν̃ on {x,x′}∁. Fix any 0 ≤ ζ ≤ r. Then it only remains to show that

ϕ̃(ζ ) ∈ J[[x′ = θ ∧ψ]], i.e. ϕ̃(ζ ) ∈ J[[x′ = θ ]]∩J[[ψ]], which follows from ϕ(ζ ) ∈ I[[x′ = θ ]]∩
I[[ψ]] by Lemma 3 and the simultaneous induction hypothesis, since I = J on Σ(x′ = θ)∪
Σ(ψ) = Σ(x′ = θ &ψ) and ϕ(ζ ) = ϕ̃(ζ ) on FV(x′ = θ)∪FV(ψ) = FV(x′ = θ &ψ)∪{x′}.
Here, ϕ(ζ ) = ϕ̃(ζ ) agree on {x,x′} by construction of ϕ̃ . Agreement of ϕ(ζ ) and ϕ̃(ζ )
for the other free variables follows from the assumption that ν = ν̃ on FV(x′ = θ &ψ) since

ν = ϕ(ζ ) on {x,x′}∁ by Def. 6 and since ν̃ = ϕ̃(ζ ) on {x,x′}∁ by construction.

5. (ν ,ω) ∈ I[[α ∪β ]] = I[[α]]∪ I[[β ]] implies (ν ,ω) ∈ I[[α]] or (ν ,ω) ∈ I[[β ]], which since V ⊇
FV(α ∪ β ) ⊇ FV(α) and V ⊇ FV(α ∪ β ) ⊇ FV(β ) implies, by induction hypothesis, that

there is an ω̃ such that (ν̃ , ω̃) ∈ J[[α]] and ω = ω̃ on V ∪MBV(α) or that there is an ω̃ such

that (ν̃ , ω̃) ∈ J[[β ]] and ω = ω̃ on V ∪MBV(β ), respectively. In either case, there is a ω̃
such that (ν̃ , ω̃) ∈ J[[α ∪β ]] and ω = ω̃ on V ∪MBV(α ∪β ), because J[[α]]⊆ J[[α ∪β ]] and

J[[β ]]⊆ J[[α ∪β ]] and MBV(α ∪β ) = MBV(α)∩MBV(β ).

ν ω

ν̃ ω̃

on V ⊇

FV(α ∪β )
⊇ FV(α)

α

α

on V∪

MBV(α)

on BV(α)∁

on BV(α)∁

ν ω

ν̃ ω̃

on V ⊇

FV(α ∪β )
⊇ FV(β )

β

β

on V∪

MBV(β )

on BV(β )∁

on BV(β )∁
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6. (ν ,ω) ∈ I[[α;β ]] = I[[α]]◦ I[[β ]], i.e. there is a state µ such that (ν ,µ) ∈ I[[α]] and (µ,ω) ∈ I[[β ]].
Since V ⊇ FV(α;β )⊇ FV(α), by induction hypothesis, there is a µ̃ such that (ν̃ , µ̃) ∈ J[[α]]
and µ = µ̃ on V ∪MBV(α). Since V ⊇ FV(α;β ), so V ∪MBV(α)⊇ FV(α;β )∪MBV(α)=
FV(α)∪(FV(β )\MBV(α))∪MBV(α) = FV(α)∪FV(β )∪MBV(α)⊇ FV(β ) by Def. 10,

and since (µ,ω) ∈ I[[β ]], the induction hypothesis implies that there is an ω̃ such that (µ̃, ω̃) ∈ J[[β ]]
and ω = ω̃ on (V ∪MBV(α))∪MBV(β ) =V ∪MBV(α;β ).

ν µ ω

ν̃ µ̃ ω̃

αon V ⊇

FV(α;β )
⊇ FV(α)

α

β
on V∪

MBV(α)

on V ∪MBV(α)
∪MBV(β )

β

on BV(α)∁

on BV(α)∁

on BV(β )∁

on BV(β )∁

7. (ν ,ω) ∈ I[[α∗]] =
⋃

n∈N

I[[αn]] iff there is an n ∈ N such that (ν ,ω) ∈ I[[αn]]. The case n = 0

follows from the assumption ν = ν̃ on V ⊇ FV(α), since ω = ν holds in that case and

MBV(α∗) = /0. The case n > 0 proceeds as follows. Since FV(αn) = FV(α∗) = FV(α),
the induction hypothesis applied to the structurally simpler HP αn ≡ αn−1;α with less loops

(so using Case 6) implies that there is an ω̃ such that (ν̃ , ω̃) ∈ J[[αn]] and ω = ω̃ on V ∪
MBV(αn)⊇V =V ∪MBV(α∗), since MBV(α∗) = /0. Since J[[αn]]⊆ J[[α∗]] by Def. 6, this

concludes the proof.

In particular, the final states ω and ω̃ agree on V(α) if the initial states ν and ν̃ agree on V(α) and

even if the initial states only agree on V(α)\MBV(α).
This concludes the static semantics of dL, which computes syntactically what kind of state

change formulas φ and HPs α may cause (captured in BV(φ),BV(α)) and what part of the state

their values and behavior depends on (FV(φ),FV(α)). Lemma 5 will be used implicitly in the

sequel when referring to Lemmas 1–4.

3 Uniform Substitutions

The uniform substitution rule US1 from first-order logic [2, §35,40] substitutes all occurrences

of predicate p(·) by a formula ψ(·), i.e. it replaces all occurrences of p(θ), for any (vectorial)

argument term θ , by the corresponding ψ(θ) simultaneously:

(US1)
φ

φ
ψ(·)
p(·)

(US)
φ

σ(φ)

Soundness of rule US1 [17] requires all relevant substitutions of ψ(θ) for p(θ) to be admissible,

i.e. that no p(θ) occurs in the scope of a quantifier or modality binding a variable of ψ(θ) other

than the occurrences in θ ; see [2, §35,40]. A precise definition of admissibility is the key ingredient

and will be developed from the static semantics.
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This section develops rule US as a more general and constructive definition with a precise

substitution algorithm and precise admissibility conditions that allow symbols from more syntactic

categories to be substituted. The dL calculus uses uniform substitutions that affect terms, formulas,

and programs. A uniform substitution σ is a mapping from expressions of the form f (·) to terms

σ f (·), from p(·) to formulas σ p(·), from C( ) to formulas σC( ), and from program constants a to

HPs σa. Vectorial extensions are accordingly for uniform substitutions of other arities k≥ 0. Here

· is a reserved function symbol of arity zero and a reserved quantifier symbol of arity zero, which

mark the positions where the respective argument, e.g., argument θ to p(·) in the formula p(θ),
will end up in the replacement σ p(·) used for p(θ).

Example 3 (Uniform substitutions with or without clashes). The uniform substitution σ = { f 7→
x+ 1, p(·) 7→ (· 6= x)} substitutes all occurrences of function symbol f (of arity 0) by x+ 1 and

simultaneously substitutes all occurrences of p(θ) with predicate symbol p of any argument θ by

the corresponding (θ 6= x). Whether that uniform substitution is sound depends on admissibility

of σ for the formula φ in US as will be defined in Def. 11. It will turn out to be admissible (and

thus sound) for

US
[y := f ]p(2y)↔ [y := f ]p(2 f )

[y :=x+1]2y 6= x↔ [y :=x+1]2(x+1) 6= x
σ = { f 7→ x+1, p(·) 7→ (· 6= x)}

but will turn out to be in-admissible (and, in fact, would be unsound) for:

clash 
[x := f ]p(x)↔ p( f )

[x :=x+1]x 6= x↔ x+1 6= x
σ = { f 7→ x+1, p(·) 7→ (· 6= x)}

Here, σ is not admissible, because σ has a free variable x in its replacement for p(·) that it intro-

duces into a context where x is bound by the modality [x := . . .], so the x in replacement · 6= x for

p(·) would refer to different values in the occurrences of p.

Figure 1 defines the result σ(φ) of applying to a dL formula φ the uniform substitution σ that

uniformly replaces all occurrences of a function f by a term (instantiated with its respective argu-

ment of f ) and all occurrences of a predicate p or a quantifier C symbol by a formula (instantiated

with its argument) as well as of a program constant a by a program. A uniform substitution can

replace any number of such function, predicate, and quantifier symbols or program constants si-

multaneously. The notation σ f (·) denotes the replacement for f (·) according to σ , i.e. the value

σ f (·) of function σ at f (·). By contrast, σ(φ) denotes the result of applying σ to φ accord-

ing to Fig. 1 (likewise for σ(θ) and σ(α)). The notation f ∈ σ signifies that σ replaces f , i.e.

σ f (·) 6= f (·). Finally, σ is a total function when augmented with σg(·) = g(·) for all g 6∈ σ , so that

the case g 6∈ σ in Fig. 1 is subsumed by case f ∈ σ . Corresponding notation is used for predicate

symbols, quantifier symbols, and program constants. The cases g 6∈ σ , p 6∈ σ , C 6∈ σ , b 6∈ σ follow

from the other cases but are listed explicitly for clarity. Arguments are put in for the placeholder

· recursively by uniform substitution {· 7→ σ(θ)} in Fig. 1, which is defined since it replaces the

function symbol · of arity 0 by σ(θ), or accordingly for quantifier symbol of arity 0.

Definition 11 (Admissible uniform substitution). A uniform substitution σ is U-admissible for φ
(or θ or α , respectively) with respect to the variables U ⊆ V iff FV(σ |Σ(φ))∩U = /0, where σ |Σ(φ)
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σ(x) = x for variable x ∈ V

σ( f (θ)) = (σ( f ))(σ(θ))
def
= {· 7→ σ(θ)}(σ f (·)) for function symbol f ∈ σ

σ(g(θ)) = g(σ(θ)) for function symbol g 6∈ σ
σ(θ +η) = σ(θ)+σ(η)
σ(θ ·η) = σ(θ) ·σ(η)
σ((θ)′) = (σ(θ))′ if σ is V -admissible for θ

σ(θ ≥ η) ≡ σ(θ)≥ σ(η)

σ(p(θ)) ≡ (σ(p))(σ(θ))
def
≡ {· 7→ σ(θ)}(σ p(·)) for predicate symbol p ∈ σ

σ(q(θ)) ≡ q(σ(θ)) for predicate symbol q 6∈ σ

σ(C(φ )) ≡ σ(C)(σ(φ))
def
≡ { 7→ σ(φ)}(σC( )) if σ is V -admissible for φ , C ∈ σ

σ(C(φ )) ≡ C(σ(φ)) if σ is V -admissible for φ , C 6∈ σ
σ(¬φ) ≡ ¬σ(φ)

σ(φ ∧ψ) ≡ σ(φ)∧σ(ψ)
σ(∀xφ) = ∀xσ(φ) if σ is {x}-admissible for φ
σ(∃xφ) = ∃xσ(φ) if σ is {x}-admissible for φ
σ([α]φ) = [σ(α)]σ(φ) if σ is BV(σ(α))-admissible for φ
σ(〈α〉φ) = 〈σ(α)〉σ(φ) if σ is BV(σ(α))-admissible for φ

σ(a) ≡ σa for program constant a ∈ σ
σ(b) ≡ b for program constant b 6∈ σ

σ(x :=θ) ≡ x :=σ(θ)
σ(x′ = θ &ψ) ≡ x′ = σ(θ)&σ(ψ) if σ is {x,x′}-admissible for θ ,ψ

σ(?ψ) ≡ ?σ(ψ)
σ(α ∪β ) ≡ σ(α)∪σ(β )

σ(α;β ) ≡ σ(α);σ(β ) if σ is BV(σ(α))-admissible for β
σ(α∗) ≡ (σ(α))∗ if σ is BV(σ(α))-admissible for α

Figure 1: Recursive application of uniform substitution σ

is the restriction of σ that only replaces symbols that occur in φ , and FV(σ) =
⋃

f∈σ FV(σ f (·))∪
⋃

p∈σ FV(σ p(·)) are the free variables that σ introduces. A uniform substitution σ is admissible

for φ (or θ or α , respectively) iff the bound variables U of each operator of φ are not free in

the substitution on its arguments, i.e. σ is U-admissible. These admissibility conditions are listed

explicitly in Fig. 1, which defines the result σ(φ) of applying σ to φ .

The substitution σ is said to clash and its result σ(φ) (or σ(θ) or σ(α)) is not defined if σ
is not admissible, in which case rule US is not applicable either. All subsequent applications of

uniform substitutions are required to be defined (no clash). If a uniform substitution is admissible

using the syntactic FV(φ) and BV(α) from Section 2.4, then it is also admissible using the static

semantics FV(φ) and BV(α) from Section 2.3 by Lemma 5, so that the syntactic computations can

be used soundly.

19



A. Platzer A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Example 4 (Admissibility). The first use of US in Example 3 is admissible, because no free variable

of the substitution is introduced into a context in which that variable is bound. The second, unsound

attempt in Example 3 clashes, because it is not admissible, since x ∈ FV(σ) but also x ∈ BV(x :=
x+ 1). Occurrences of such bound variables that result from the arguments of the predicates or

functions are exempt:

US
[x := f ]p(x)↔ p( f )

[x :=x+1]x 6= y↔ x+1 6= y
σ = { f 7→ x+1, p(·) 7→ (· 6= y)}

3.1 Uniform Substitution Lemmas

Soundness of rule US requires proving that validity is preserved when replacing symbols with their

uniform substitutes. The key to its soundness proof is to relate this syntactic change to a semantic

change of the interpretations such that validity of its premise in all interpretations implies validity

of the premise in the semantically modified interpretation, which is then equivalent to validity of

its syntactical substitute in the conclusion. The semantic substitution corresponding to (or adjoint

to) σ modifies the interpretation of function, predicate and quantifier symbols as well as program

constants semantically in the same way that σ replaces them syntactically. When σ is admissible,

the value of an expression in the adjoint interpretation agrees with the value of its uniform substitute

in the original interpretation. This link to the static semantics proves the following correspondence

of syntactic and semantic substitution.

Let Id
· denote the interpretation that agrees with interpretation I except for the interpretation of

function symbol · which is changed to d ∈ R. Correspondingly IR denotes the interpretation that

agrees with I except that quantifier symbol is R⊆S.

Definition 12 (Substitution adjoints). The adjoint to substitution σ is the operation that maps I,ν to

the adjoint interpretation σ∗ν I in which the interpretation of each function symbol f ∈ σ , predicate

symbol p ∈ σ , quantifier symbol C ∈ σ , and program constant a ∈ σ is modified according to σ :

σ∗ν I( f ) : R→ R; d 7→ Id
· ν [[σ f (·)]]

σ∗ν I(p) = {d ∈ R : ν ∈ Id
· [[σ p(·)]]}

σ∗ν I(C) :℘(S)→℘(S); R 7→ IR[[σC( )]]

σ∗ν I(a) = I[[σa]]

Corollary 6 (Admissible adjoints). If ν = ω on FV(σ), then σ∗ν I = σ∗ω I. If σ is U-admissible for

θ (or φ or α , respectively) and ν = ω on U∁, then

σ∗ν I[[θ ]] = σ∗ω I[[θ ]] i.e. σ∗ν Iµ[[θ ]] = σ∗ω Iµ[[θ ]] for all states µ

σ∗ν I[[φ ]] = σ∗ω I[[φ ]]

σ∗ν I[[α]] = σ∗ω I[[α]]

Proof. σ∗ν I is well-defined, as σ∗ν I( f ) is a smooth function since its substitute term σ f (·) has

smooth values. First, σ∗ν I(a) = I[[σa]] = σ∗ω I(a) holds because the adjoint to σ for I,ν in the case
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of programs is independent of ν (programs have access to their initial state at runtime). Likewise

σ∗ν I(C) = σ∗ω I(C) for quantifier symbols, because the adjoint is independent of ν for quantifier

symbols. By Lemma 2, Id
· ν [[σ f (·)]] = Id

·ω[[σ f (·)]] when ν = ω on FV(σ f (·)) ⊆ FV(σ). Also

ν ∈ Id
· [[σ p(·)]] iff ω ∈ Id

· [[σ p(·)]] by Lemma 3 when ν = ω on FV(σ p(·)) ⊆ FV(σ). Thus, σ∗ν I =
σ∗ω I when ν = ω on FV(σ).

If σ is U-admissible for φ (or θ or α), then FV(σ f (·))∩U = /0, i.e. FV(σ f (·))⊆U∁ for every

function symbol f ∈ Σ(φ) (or θ or α) and likewise for predicate symbols p ∈ Σ(φ). Since ν = ω

on U∁ was assumed, σ∗ω I = σ∗ν I on the function and predicate symbols in Σ(φ) (or θ or α). Finally

σ∗ω I = σ∗ν I on Σ(φ) (or Σ(θ) or Σ(α), respectively) implies that σ∗ω I[[φ ]] = σ∗ν I[[φ ]] by Lemma 3

(since µ ∈ σ∗ω I[[φ ]] iff µ ∈ σ∗ν I[[φ ]] holds for all µ) and that σ∗ν I[[θ ]] = σ∗ω I[[θ ]] by Lemma 2 and that

σ∗ω I[[α]] = σ∗ν I[[α]] by Lemma 4, respectively.

Substituting equals for equals is sound by the compositional semantics of dL. The more general

uniform substitutions are still sound, because the semantics of uniform substitutes of expressions

agrees with the semantics of the expressions themselves in the adjoint interpretations. The semantic

modification of adjoint interpretations has the same effect as the syntactic uniform substitution.

Lemma 7 (Uniform substitution for terms). The uniform substitution σ and its adjoint interpreta-

tion σ∗ν I,ν for I,ν have the same semantics for all terms θ :

Iν [[σ(θ)]] = σ∗ν Iν [[θ ]]

Proof. The proof is by structural induction on θ and the structure of σ .

1. Iν [[σ(x)]] = Iν [[x]] = ν(x) = σ∗ν Iν [[x]] since x 6∈ σ for variable x ∈ V

2. Let f ∈ σ . Iν [[σ( f (θ))]] = Iν [[(σ( f ))
(

σ(θ)
)

]] = Iν [[{· 7→ σ(θ)}(σ f (·))]]
IH
= Id
· ν [[σ f (·)]]

= (σ∗ν I( f ))(d)

= (σ∗ν I( f ))(σ∗ν Iν [[θ ]]) = σ∗ν Iν [[ f (θ)]] with d
def
= Iν [[σ(θ)]]

IH
= σ∗ν Iν [[θ ]] by using the induction

hypothesis twice, once for σ(θ) on the smaller θ and once for {· 7→ σ(θ)}(σ f (·)) on the

possibly bigger term σ f (·) but the structurally simpler uniform substitution {· 7→σ(θ)}(. . .)
that is a substitution on the symbol · of arity zero, not a substitution of functions with argu-

ments. For well-foundedness of the induction note that the · substitution only happens for

function symbols f with at least one argument θ so not for · itself.

3. Iν [[σ(g(θ))]] = Iν [[g(σ(θ))]] = I(g)
(

Iν [[σ(θ)]]
) IH
= I(g)

(

σ∗ν Iν [[θ ]]
)

= σ∗ν I(g)
(

σ∗ν Iν [[θ ]]
)

=
σ∗ν Iν [[g(θ)]] by induction hypothesis and since I(g) = σ∗ν I(g) as the interpretation of g does

not change in σ∗ν I when g 6∈ σ .

4. Iν [[σ(θ +η)]] = Iν [[σ(θ)+σ(η)]] = Iν [[σ(θ)]]+Iν [[σ(η)]]
IH
=σ∗ν Iν [[θ ]]+σ∗ν Iν [[η ]] =σ∗ν Iν [[θ +η ]]

by induction hypothesis.

5. Iν [[σ(θ ·η)]] = Iν [[σ(θ) ·σ(η)]] = Iν [[σ(θ)]]·Iν [[σ(η)]]
IH
=σ∗ν Iν [[θ ]] ·σ∗ν Iν [[η ]] =σ∗ν Iν [[θ ·η ]]

by induction hypothesis.

6. Iν [[σ((θ)′)]] = Iν [[(σ(θ))′]] = ∑x ν(x′)∂ Iν [[σ(θ)]]
∂x

IH
= ∑x ν(x′)

∂σ∗ν Iν [[θ ]]
∂x

= σ∗ν Iν [[(θ)′]] by induc-

tion hypothesis, provided σ is V -admissible for θ , i.e. does not introduce any variables

or differential symbols, so that Corollary 6 implies σ∗ν I = σ∗ω I for all ν ,ω (that agree on
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V ∁ = /0, which imposes no condition on ν ,ω). In particular, the adjoint interpretation σ∗ν I is

the same for all ways of changing the value of variable x in state ν when forming the partial

derivative.

The uniform substitute of a formula is true at ν in an interpretation iff the formula itself is true at

ν in its adjoint interpretation. Uniform substitution lemmas are proved by simultaneous induction

for formulas and programs, as they are mutually recursive.

Lemma 8 (Uniform substitution for formulas). The uniform substitution σ and its adjoint inter-

pretation σ∗ν I,ν for I,ν have the same semantics for all formulas φ :

ν ∈ I[[σ(φ)]] iff ν ∈ σ∗ν I[[φ ]]

Proof. The proof is by structural induction on φ and the structure on σ , simultaneously with

Lemma 9.

1. ν ∈ I[[σ(θ ≥ η)]] iff ν ∈ I[[σ(θ)≥ σ(η)]] iff Iν [[σ(θ)]]≥ Iν [[σ(η)]], by Lemma 7, iff σ∗ν Iν [[θ ]]≥
σ∗ν Iν [[η ]] iff σ∗ν Iν [[θ ≥ η ]].

2. Let p ∈ σ . Then ν ∈ I[[σ(p(θ))]] iff ν ∈ I[[(σ(p))
(

σ(θ)
)

]] iff ν ∈ I[[{· 7→ σ(θ)}(σ p(·))]]

iff, by IH, ν ∈ Id
· [[σ p(·)]] iff d ∈ σ∗ν I(p) iff (σ∗ν Iν [[θ ]]) ∈ σ∗ν I(p) iff ν ∈ σ∗ν I[[p(θ)]] with

d
def
= Iν [[σ(θ)]] =σ∗ν Iν [[θ ]] by using Lemma 7 for σ(θ) and by using the induction hypothesis

for {· 7→ σ(θ)}(σ p(·)) on the possibly bigger formula σ p(·) but the structurally simpler

uniform substitution {· 7→ σ(θ)}(. . .) that is a mere substitution on function symbol · of

arity zero, not a substitution of predicates.

3. Let q 6∈ σ . Then ν ∈ I[[σ(q(θ))]] iff ν ∈ I[[q(σ(θ))]] iff
(

Iν [[σ(θ)]]
)

∈ I(q) so, by Lemma 7,

that holds iff
(

σ∗ν Iν [[θ ]]
)

∈ I(q) iff
(

σ∗ν Iν [[θ ]]
)

∈ σ∗ν I(q) iff ν ∈ σ∗ν I[[q(θ)]] since I(q) =
σ∗ν I(q) as the interpretation of q does not change in σ∗ν I when q 6∈ σ .

4. For the case σ(C(φ )), first show I[[σ(φ)]] = σ∗ν I[[φ ]]. By induction hypothesis for the smaller

φ : ω ∈ I[[σ(φ)]] iff ω ∈ σ∗ω I[[φ ]], where σ∗ω I[[φ ]] = σ∗ν I[[φ ]] by Corollary 6 for all ν ,ω (that

agree on V ∁ = /0, which imposes no condition on ν ,ω) since σ is V -admissible for φ . The

proof proceeds:

ν ∈ I[[σ(C(φ ))]] = I[[σ(C)(σ(φ))]] = I[[{ 7→ σ(φ)}(σC( ))]], so, by induction hypothesis

for the structurally simpler uniform substitution { 7→ σ(φ)} that is a mere substitution on

quantifier symbol of arity zero, iff ν ∈ IR[[σC( )]] since the adjoint to { 7→ σ(φ)} is IR with

R
def
= I[[σ(φ)]] by definition.

Also ν ∈ σ∗ν I[[C(φ )]] = σ∗ν I(C)
(

σ∗ν I[[φ ]]
)

= IR[[σC( )]] for R = σ∗ν I[[φ ]] = I[[σ(φ)]] by induc-

tion hypothesis. Both sides are, thus, equivalent.

5. The case σ(C(φ )) for C 6∈ σ again first shows I[[σ(φ)]] = σ∗ν I[[φ ]] for all ν using that σ is

V -admissible for φ . Then ν ∈ I[[σ(C(φ ))]] = I[[C(σ(φ))]] = I(C)
(

I[[σ(φ)]]
)

= I(C)
(

σ∗ν I[[φ ]]
)

= σ∗ν I(C)
(

σ∗ν I[[φ ]]
)

= σ∗ν I[[C(φ )]] iff ν ∈ σ∗ν I[[C(φ )]]
6. ν ∈ I[[σ(¬φ)]] iff ν ∈ I[[¬σ(φ)]] iff ν 6∈ I[[σ(φ)]], so by IH, iff ν 6∈ σ∗ν I[[φ ]] iff ν ∈ σ∗ν I[[¬φ ]]
7. ν ∈ I[[σ(φ ∧ψ)]] iff ν ∈ I[[σ(φ)∧σ(ψ)]] iff ν ∈ I[[σ(φ)]] and ν ∈ I[[σ(ψ)]], by induction hy-

pothesis, iff ν ∈ σ∗ν I[[φ ]] and ν ∈ σ∗ν I[[ψ]] iff ν ∈ σ∗ν I[[φ ∧ψ]]
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8. ν ∈ I[[σ(∃xφ)]] iff ν ∈ I[[∃xσ(φ)]] (provided that σ is {x}-admissible for φ ) iff νd
x ∈ I[[σ(φ)]]

for some d, so, by induction hypothesis, iff νd
x ∈ σ∗

νd
x
I[[φ ]] for some d, which is equivalent to

νd
x ∈ σ∗ν I[[φ ]] by Corollary 6 as σ is {x}-admissible for φ and ν = νd

x on {x}∁. Thus, this is

equivalent to ν ∈ σ∗ν I[[∃xφ ]].
9. The case ν ∈ I[[σ(∀xφ)]] follows by duality ∀xφ ≡¬∃x¬φ , which is respected in the defini-

tion of uniform substitutions.

10. ν ∈ I[[σ(〈α〉φ)]] iff ν ∈ I[[〈σ(α)〉σ(φ)]] (provided σ is BV(σ(α))-admissible for φ ) iff there

is a ω such that (ν ,ω) ∈ I[[σ(α)]] and ω ∈ I[[σ(φ)]], which, by Lemma 9 and induction hy-

pothesis, respectively, is equivalent to: there is a ω such that (ν ,ω) ∈ σ∗ν I[[α]] and ω ∈ σ∗ω I[[φ ]],
which is equivalent to ν ∈ σ∗ν I[[〈α〉φ ]], because ω ∈ σ∗ω I[[φ ]] is equivalent to ω ∈ σ∗ν I[[φ ]] by

Corollary 6 as σ is BV(σ(α))-admissible for φ and ν = ω on BV(σ(α))∁ by Lemma 1 since

(ν ,ω) ∈ I[[σ(α)]].
11. The case ν ∈ I[[σ([α]φ)]] follows by duality [α]φ ≡¬〈α〉¬φ , which is respected in the defi-

nition of uniform substitutions.

The uniform substitute of a program has a run from ν to ω in an interpretation iff the program

itself has a run from ν to ω in its adjoint interpretation.

Lemma 9 (Uniform substitution for programs). The uniform substitution σ and its adjoint inter-

pretation σ∗ν I,ν for I,ν have the same semantics for all programs α:

(ν ,ω) ∈ I[[σ(α)]] iff (ν ,ω) ∈ σ∗ν I[[α]]

Proof. The proof is by structural induction on α , simultaneously with Lemma 8.

1. (ν ,ω) ∈ I[[σ(a)]] = I[[σa]] = σ∗ν I(a) = σ∗ν I[[a]] for program constant a ∈ σ (the proof is ac-

cordingly for a 6∈ σ ).

2. (ν ,ω) ∈ I[[σ(x :=θ)]] = I[[x :=σ(θ)]] iff ω = ν
Iν [[σ(θ)]]
x = ν

σ∗ν Iν [[θ ]]
x by Lemma 8, which is,

thus, equivalent to (ν ,ω) ∈ σ∗ν I[[x :=θ ]].
3. (ν ,ω) ∈ I[[σ(?ψ)]] = I[[?σ(ψ)]] iff ω = ν and ν ∈ I[[σ(ψ)]], iff, by Lemma 8, ω = ν and

ν ∈ σ∗ν I[[ψ]], which is equivalent to (ν ,ω) ∈ σ∗ν I[[?ψ]].
4. (ν ,ω) ∈ I[[σ(x′ = θ &ψ)]] = I[[x′ = σ(θ)&σ(ψ)]] (provided that σ is {x,x′}-admissible for

θ ,ψ) iff ∃∃ϕ : [0,T ]→S with ϕ(0) = ν on {x′}∁, ϕ(T ) = ω and for all t ≥ 0: ϕ ′(t) =
Iϕ(t)[[σ(θ)]] = σ∗ϕ(t)Iϕ(t)[[θ ]] by Lemma 7 and ϕ(t) ∈ I[[σ(ψ)]], which, by Lemma 8, holds

iff ϕ(t) ∈ σ∗ϕ(t)I[[ψ]].

Also (ν ,ω) ∈ σ∗ν I[[x′ = θ &ψ]] iff ∃∃ϕ : [0,T ]→S with ϕ(0) = ν on {x′}∁ and ϕ(T ) = ω
and for all t ≥ 0: ϕ ′(t) = σ∗ν Iϕ(t)[[θ ]] and ϕ(t) ∈ σ∗ν I[[ψ]]. Finally, σ∗ν I[[θ ]] = σ∗ϕ(t)I[[θ ]] and

σ∗ϕ(t)I[[ψ]] = σ∗ν I[[ψ]] by Corollary 6 since σ is {x,x′}-admissible for θ and ψ and ν = ϕ(t)

on BV(x′ = θ &ψ)∁ ⊇ {x,x′}∁ by Lemma 1.

5. (ν ,ω) ∈ I[[σ(α ∪β )]] = I[[σ(α)∪σ(β )]] = I[[σ(α)]]∪ I[[σ(β )]], which, by induction hypoth-

esis, is equivalent to (ν ,ω) ∈ σ∗ν I[[α]] or (ν ,ω) ∈ σ∗ν I[[β ]], which is (ν ,ω) ∈ σ∗ν I[[α]]∪σ∗ν I[[β ]] =
σ∗ν I[[α ∪β ]].
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6. (ν ,ω) ∈ I[[σ(α;β )]] = I[[σ(α);σ(β )]] = I[[σ(α)]]◦I[[σ(β )]] (provided σ is BV(σ(α))-admissible

for β ) iff there is a µ such that (ν ,µ) ∈ I[[σ(α)]] and (µ,ω) ∈ I[[σ(β )]], which, by induction

hypothesis, is equivalent to (ν ,µ) ∈ σ∗ν I[[α]] and (µ,ω) ∈ σ∗µ I[[β ]]. Yet, σ∗µ I[[β ]] = σ∗ν I[[β ]] by

Corollary 6, because σ is BV(σ(α))-admissible for β and ν = ω on BV(σ(α))∁ by Lemma 1

since (ν ,µ) ∈ I[[σ(α)]]. Finally, (ν ,µ) ∈ σ∗ν I[[α]] and (µ,ω) ∈ σ∗ν I[[β ]] for some µ is equiv-

alent to (ν ,ω) ∈ σ∗ν I[[α;β ]].
7. (ν ,ω) ∈ I[[σ(α∗)]] = I[[(σ(α))∗]] =

(

I[[σ(α)]]
)∗

=
⋃

n∈N(I[[σ(α)]])n (provided that σ is BV(σ(α))-
admissible for α) iff there are n∈N and ν0 = ν ,ν1, . . . ,νn =ω such that (νi,νi+1) ∈ I[[σ(α)]]
for all i < n. By n uses of the induction hypothesis, this is equivalent to (νi,νi+1) ∈ σ∗νi

I[[α]]
for all i < n, which is equivalent to (νi,νi+1) ∈ σ∗ν I[[α]] by Corollary 6 since σ is BV(σ(α))-

admissible for α and νi+1 = νi on BV(σ(α))∁ by Lemma 1 as (νi,νi+1) ∈ I[[σ(α)]] for all

i < n. Thus, this is equivalent to (ν ,ω) ∈ σ∗ν I[[α∗]] =
(

σ∗ν I[[α]]
)∗

.

3.2 Soundness

The uniform substitution lemmas are the key insights for the soundness of proof rule US, which

is only applicable if its uniform substitution is defined. A proof rule is sound iff validity of all its

premises implies validity of its conclusion.

Theorem 10 (Soundness of uniform substitution). The proof rule US is sound.

(US)
φ

σ(φ)

Proof. Let the premise φ of US be valid, i.e. ν ∈ I[[φ ]] for all interpretations and states I,ν . To

show that the conclusion is valid, consider any interpretation and state I,ν and show ν ∈ I[[σ(φ)]].
By Lemma 8, ν ∈ I[[σ(φ)]] iff ν ∈ σ∗ν I[[φ ]]. Now ν ∈ σ∗ν I[[φ ]] holds, because ν ∈ I[[φ ]] for all I,ν ,

including for σ∗ν I,ν , by premise. The rule US1 is the special case of US where σ only substitutes

predicate symbol p.

Uniform substitutions can also be used to soundly instantiate locally sound proof rules or whole

proofs just like proof rule US soundly instantiates axioms or other valid formulas (Theorem 10).

An inference or proof rule is locally sound iff its conclusion is valid in any interpretation I in which

all its premises are valid. All locally sound proof rules are sound. The use of Theorem 11 in a proof

is marked USR.

Theorem 11 (Soundness of uniform substitution of rules). All uniform substitution instances (with

FV(σ) = /0) of locally sound inferences are locally sound:

φ1 . . . φn

ψ
locally sound implies

σ(φ1) . . . σ(φn)

σ(ψ)
locally sound

24



A. Platzer A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Proof. Let D be the inference on the left and let σ(D) be the substituted inference on the right.

Assume D to be locally sound. To show that σ(D) is locally sound, consider any I in which all

premises of σ(D) are valid, i.e. I |= σ(φ j) for all j. That is, ν ∈ I[[σ(φ j)]] for all ν and all j. By

Lemma 8, ν ∈ I[[σ(φ j)]] is equivalent to ν ∈ σ∗ν I[[φ j]], which, thus, also holds for all ν and all j.

By Corollary 6, σ∗ν I[[φ j]] = σ∗ω I[[φ j]] for any ω , since FV(σ) = /0. Fix an arbitrary state ω . Then

ν ∈ σ∗ω I[[σ(φ j)]] holds for all ν and all j for the same (arbitrary) ω that determines σ∗ω I.

Consequently, all premises of D are valid in the same σ∗ω I, i.e. σ∗ω I |= φ j for all j. Thus,

σ∗ω I |= ψ by local soundness of D . That is, ν ∈ σ∗ν I[[ψ]] = σ∗ω I[[ψ]] by Corollary 6 for all ν . By

Lemma 8, ν ∈ σ∗ν I[[ψ]] is equivalent to ν ∈ I[[σ(ψ)]], which continues to hold for all ν . Thus,

I |= σ(ψ), i.e. the conclusion of σ(D) is valid in I, hence σ(D) is locally sound. Consequently,

all uniform substitution instances σ(D) of locally sound inferences D with FV(σ) = /0 are locally

sound.

If ψ has a proof (i.e. n = 0), USR preserves local soundness even if FV(σ) 6= /0, because US

proves σ(ψ) from the provable ψ , which makes this inference locally sound, since local soundness

is equivalent to soundness for n = 0 premises. If ψ has a proof, uniform substitution of rules USR

for n = 0 premises is identical to rule US.

Example 5 (Uniform substitutions are only globally sound). Rule US itself is only sound but not

locally sound, so it cannot have been used on any unproved premises at any point during a proof

that is to be instantiated by proof rule USR from Theorem 11. The following sound proof on the

left with a modus ponens (marked MP) has an unproved premise on which US has been used at

some point during the proof:

∗
1 = 0→[x′ = 2]x < 5

f (x) = 0
US 1 = 0

MP [x′ = 2]x < 5

USR not applicable
clash 

0 = 0

[x′ = 2]x < 5

This use of US, which substitutes 1 for f (·), makes the left proof sound but not locally sound. That

prevents rule USR of Theorem 11 from (unsoundly) concluding the uniform substitution instance

on the right with σ = { f (·) 7→ 0}. Rule US assumes that its premise is valid (in all interpreta-

tions I), but the (clashing) substitution instance on the right only proves one choice for f to satisfy

premise f (x) = 0. Rule US can still be used in the proof of a premise that proves without endan-

gering local soundness, because proved premises are valid in all interpretations by soundness.

4 Differential Dynamic Logic Axioms

Proof rules and axioms for a Hilbert-type axiomatization of dL from prior work [15] are shown in

Fig. 2, except that, thanks to proof rule US, axioms and proof rules now reduce to the finite list

of concrete dL formulas in Fig. 2 as opposed to an infinite collection of axioms from a finite list

of axiom schemata along with schema variables, side conditions, and implicit instantiation rules.

Soundness of the axioms follows from soundness of corresponding axiom schemata [8, 15], but is

easier to prove standalone, because it is a finite list of formulas without the need to prove soundness

for all their instances. Soundness of axioms, thus, reduces to validity of one formula as opposed to

validity of all formulas that can be generated by the instantiation mechanism complying with the
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〈·〉 〈a〉p(x̄)↔¬[a]¬p(x̄)

[:=] [x := f ]p(x)↔ p( f )

[?] [?q]p↔ (q→ p)

[∪] [a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)

[;] [a;b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄)∧ [a][a∗]p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗](p(x̄)→ [a]p(x̄))→ (p(x̄)→ [a∗]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀
p(x)

∀x p(x)

MP
p→ q p

q

CQ
f (x̄) = g(x̄)

p( f (x̄))↔ p(g(x̄))

CE
p(x̄)↔ q(x̄)

C(p(x̄))↔C(q(x̄))

Figure 2: Differential dynamic logic axioms and proof rules

respective side conditions for that axiom schema. The proof rules in Fig. 2 are axiomatic rules, i.e.

pairs of concrete dL formulas to be instantiated by USR. Soundness of axiomatic rules reduces to

proving that their concrete conclusion formula is a consequence of their premise formula. Further,

x̄ is the vector of all relevant variables, which is finite-dimensional, or considered as a built-in

vectorial term. Proofs in the uniform substitution dL calculus use US (and variable renaming such

as ∀x p(x) to ∀y p(y)) to instantiate the axioms from Fig. 2 to the required form.

Diamond axiom 〈·〉 expresses the duality of the [·] and 〈·〉 modalities. Assignment axiom [:=]
expresses that p(x) holds after the assignment x := f iff p( f ) holds initially. Test axiom [?] ex-

presses that p holds after the test ?q iff p is implied by q, because test ?q only runs when q holds.

Choice axiom [∪] expresses that p(x̄) holds after all runs of a∪ b iff p(x̄) holds after all runs of

a and after all runs of b. Sequential composition axiom [;] expresses that p(x̄) holds after all runs

of a;b iff, after all runs of a, it is the case that p(x̄) holds after all runs of b. Iteration axiom [∗]
expresses that p(x̄) holds after all repetitions of a iff it holds initially and, after all runs of a, it is

the case that p(x̄) holds after all repetitions of a. Axiom K is the modal modus ponens from modal

logic [10]. Induction axiom I expresses that if, no matter how often a repeats, p(x̄) holds after all

runs of a if it was true before, then, if p(x̄) holds initially, it holds after all repetitions of a. Vacuous

axiom V expresses that arity 0 predicate symbol p continues to hold after all runs of a if it was true

before.

Gödel’s generalization rule G expresses that p(x̄) holds after all runs of a if p(x̄) is valid.

Accordingly ∀ is the ∀-generalization rule. MP is modus ponens. Congruence rules CQ, CE are

not needed but included to efficiently use axioms in any context. Congruence rule CT derives from

CQ using p(·)
def
≡
(

c(·) = c(g(x̄))
)

and reflexivity:

(CT)
f (x̄) = g(x̄)

c( f (x̄)) = c(g(x̄))
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Remark 1. The use of variable vector x̄ is not essential but simplifies concepts. An equivalent

axiomatization is obtained when considering p(x̄) to be a quantifier symbol of arity 0 in the ax-

iomatization, or as C(true) with a quantifier symbol of arity 1. Neither replacements of quantifier

symbols nor (vectorial) placeholders · for the substitutions {p(·) 7→ ψ} that are used for p(x̄)
cause any free variables in the substitution. The mnemonic notation σ = {p(x̄) 7→ φ} adopted for

such uniform substitutions reminds that the variables x̄ are not free in σ even if they occur in the

replacement φ .

Sound axioms are just valid formulas, so true in all states. For example, in any state where

[a][b]p(x̄) is true, [a;b]p(x̄) is true, too, by equivalence axiom [;]. Using axiom [;] to replace one

by the other is a truth-preserving transformation, i.e. in any state in which one is true, the other is

true, too. Sound rules are validity-preserving, i.e. the conclusion is valid if the premises are valid,

which is weaker than truth-preserving transformation. For proof search, the dL axioms are meant

to be used to reduce the axiom key (marked blue) to the structurally simpler remaining conditions

(right-hand sides of equivalences and the conditions assumed in implications).

Real Quantifiers. Besides (decidable) real arithmetic (whose use is denoted R), complete axioms

for first-order logic can be adopted to express universal instantiation ∀i (if p is true of all x, it is also

true of constant function symbol f ), distributivity ∀→, and vacuous quantification V∀ (predicate p

of arity zero does not depend on x).

(∀i) (∀x p(x))→ p( f )

(∀→) ∀x(p(x)→ q(x))→ (∀x p(x)→∀xq(x))

(V∀) p→∀x p

The Significance of Clashes. This section illustrates how uniform substitutions tell sound in-

stantiations apart from unsound proof attempts. Rule US clashes exactly when the substitution in-

troduces a free variable into a bound context, which would be unsound. Example 3 on p. 18 already

showed that even an occurrence of p(x) in a context where x is bound does not permit mentioning x

in the replacement except in the · places. US can directly handle even nontrivial binding structures,

though, e.g. from [:=] with the substitution σ = { f 7→ x2, p(·) 7→ [(z := ·+ z)∗;z := ·+ yz]y≥ ·}:

US
[x := f ]p(x)↔ p( f )

[x := x2][(z := x+z)∗;z := x+yz]y≥x↔ [(z := x2+z)
∗
;z := x2+yz]y≥x2

It is soundness-critical that US clashes when trying to instantiate p in V∀ with a formula that

mentions the bound variable x:

clash 
p→∀x p

x≥ 0→∀x(x≥ 0)
{p 7→ x≥ 0}

It is soundness-critical that US clashes when substituting p in vacuous program axiom V with a

formula with a free occurrence of a variable bound by the replacement of a:

clash 
p→ [a]p

x≥ 0→ [x′ =−1]x≥ 0
{a 7→ x′ =−1, p 7→ x≥ 0}
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Additional free variables are acceptable, though, e.g. in replacements for p as long as they are not

bound in the particular context into which they will be substituted:

US
p→ [a]p

y≥ 0→ [x′ =−1]y≥ 0
{a 7→ x′ =−1, p 7→ y≥ 0}

Complex formulas are acceptable as replacements for p if their free variables are not bound in the

context, e.g., using σ = {a 7→ x′ :=5x, p 7→ [x′ = x2−2x+2]x≥ 1}:

US
p→ [a]p

[x′ = x2−2x+2]x≥ 1→ [x′ :=5x][x′ = x2−2x+2]x≥ 1

But it is soundness-critical that US clashes when substituting a formula with a free dependence on

x′ for p into a context where x′ will be bound after the substitution:

clash 
p→ [a]p

(x−1)′ ≥ 0→ [x′ :=5x](x−1)′ ≥ 0
{a 7→ x′ :=5x, p 7→ (x−1)′ ≥ 0}

Gödel’s generalization rule G uses p(x̄) instead of the p that V uses, so its USR instance allows all

variables x̄ to occur in the replacement without causing a clash:

G,USR
(−x)2 ≥ 0

[x′ =−1](−x)2 ≥ 0
{a 7→ x′ =−1, p(x̄) 7→ (−x)2 ≥ 0}

Intuitively, the argument x̄ in this uniform substitution instance of G was not introduced as part

of the substitution but merely put in for the placeholder · instead. Let x̄ = (x,y), US {a 7→ x :=
x+1,b 7→ x := 0;y′ =−2, p(x̄) 7→ x≥ y} derives from [∪]:

US
[a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄)

[x := x+1∪ (x := 0;y′ =−2)]x≥ y↔ [x := x+1]x≥ 0∧ [x := 0;y′ =−2]x≥ y

With x̄ = (x,y) and {a 7→ x := x+1∪ y := 0,b 7→ y′ =−1, p(x̄) 7→ x≥ y}, US yields:

US
[a;b]p(x̄)↔ [a][b]p(x̄)

[(x := x+1∪ y := 0);y′ =−1]x≥ y↔ [x := x+1∪ y := 0][y′ =−1]x≥ y

Not all axioms fit to the uniform substitution framework, though. The Barcan schema was used

in a completeness proof for the Hilbert-type calculus for differential dynamic logic [15] (but not in

the completeness proof for its sequent calculus [13]):

(B) ∀x [α]p(x)→ [α]∀x p(x) (x 6∈ α)

Axiom schema B is unsound without the restriction x 6∈ α , though, so that the following formula,

which cannot enforce x 6∈ a, would be an unsound axiom

∀x [a]p(x)→ [a]∀x p(x) (2)

28



A. Platzer A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Indeed, the effect of program constant a might depend on the value of x or it might write to x. In

(2), x cannot be written by a without violating soundness:

 
∀x [a]p(x)→ [a]∀x p(x)

∀x [x := 0]x≥ 0→ [x := 0]∀x(x≥ 0)
{a 7→ x := 0, p(·) 7→ · ≥ 0}

nor can x be read by a in (2) without violating soundness:

 
∀x [a]p(x)→ [a]∀x p(x)

∀x [?(y = x2)]y = x2→ [?(y = x2)]∀xy = x2
{a 7→?(y = x2), p(·) 7→ y = ·2}

Thus, the completeness proof for differential dynamic logic from prior work [15] does not carry

over. A more general completeness result for differential game logic [17] implies, however, that

Barcan schema B is unnecessary for completeness.

5 Differential Equations and Differential Axioms

Section 4 leverages uniform substitutions to obtain a finite list of axioms without side-conditions.

They lack axioms for differential equations, though. Classical calculi for dL have axiom schema

[′] from p. 2 for replacing differential equations with time quantifiers and discrete assignments for

their solutions. In addition to being limited to simple solvable differential equations, such axiom

schemata have quite nontrivial soundness-critical side conditions.

This section leverages US and the new differential forms in dL to obtain a logically internalized

version of differential invariants and related proof rules for differential equations [14, 16] as axioms

(without schema variables or side-conditions). These axioms can prove properties of more general

“unsolvable” differential equations. They can also prove all properties of differential equations

that can be proved with solutions [16] while guaranteeing correctness of the solution as part of the

proof.

5.1 Differentials: Invariants, Cuts, Effects, and Ghosts

Figure 3 shows axioms for proving properties of differential equations (DW–DS), and differential

axioms for differentials (+′,·′,◦′) which are equations of differentials. Axiom x′ identifying (x)′ =
x′ for variables x∈ V and axiom c′ for functions f and number literals of arity 0 are used implicitly

to save space. Some axioms use reverse implication notation φ ← ψ instead of the equivalent

ψ → φ for emphasis.

Differential weakening axiom DW internalizes that differential equations never leave their evo-

lution domain q(x). The evolution domain q(x) holds after all evolutions of x′ = f (x)&q(x), be-

cause differential equations cannot leave their evolution domains. DW derives3 [x′ = f (x)&q(x)]p(x)↔
[x′ = f (x)&q(x)](q(x)→ p(x)), which allows to export the evolution domain to the postcondition

3The implication [x′ = f (x)&q(x)](q(x) → p(x)) → [x′ = f (x)&q(x)]p(x) derives by K from DW. The

converse implication [x′ = f (x)&q(x)]p(x) → [x′ = f (x)&q(x)](q(x) → p(x)) derives by K since G derives

[x′ = f (x)&q(x)]
(

p(x)→ (q(x)→ p(x))
)

from the tautology p(x)→ (q(x)→ p(x)).
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DW [x′ = f (x)&q(x)]q(x)

DC
(

[x′ = f (x)&q(x)]p(x)↔ [x′ = f (x)&q(x)∧ r(x)]p(x)
)

← [x′ = f (x)&q(x)]r(x)

DE [x′ = f (x)&q(x)]p(x,x′)↔ [x′ = f (x)&q(x)][x′ := f (x)]p(x,x′)

DI
(

[x′ = f (x)&q(x)]p(x)↔ [?q(x)]p(x)
)

←
(

q(x)→ [x′ = f (x)&q(x)](p(x))′
)

DG [x′ = f (x)&q(x)]p(x)↔∃y [x′ = f (x),y′ = a(x)y+b(x)&q(x)]p(x)

DS [x′ = f &q(x)]p(x)↔∀t≥0
(

(∀0≤s≤t q(x+ f s))→ [x :=x+ f t]p(x)
)

c′ ( f )′ = 0

x′ (x)′ = x′

+′ ( f (x̄)+g(x̄))′ = ( f (x̄))′+(g(x̄))′

·′ ( f (x̄) ·g(x̄))′ = ( f (x̄))′ ·g(x̄)+ f (x̄) · (g(x̄))′

◦′ [y :=g(x)][y′ :=1]
(

( f (g(x)))′ = ( f (y))′ · (g(x))′
)

Figure 3: Differential equation axioms and differential axioms

and is also called DW. Its (right) assumption is best proved by G yielding premise q(x)→ p(x).
The differential cut axiom DC is a cut for differential equations. It internalizes that differential

equations always staying in r(x) also always stay in p(x) iff p(x) always holds after the differential

equation that is restricted to the smaller evolution domain &q(x)∧r(x). DC is a differential variant

of modal modus ponens axiom K.

Differential effect axiom DE internalizes that the effect on differential symbols along a differ-

ential equation is a differential assignment assigning the right-hand side f (x) to the left-hand side

x′. The differential assignment x′ := f (x) in DE instantaneously mimics the (continuous) effect that

the differential equation x′ = f (x)&q(x) has on x′, thereby selecting the appropriate vector field

for subsequent differentials. Axiom DI internalizes differential invariants [14], i.e. that p(x) holds

always after a differential equation x′ = f (x)&q(x) iff it holds after ?q(x), provided its differen-

tial (p(x))′ always holds after the differential equation x′ = f (x)&q(x). This axiom reduces future

truth to present truth when the truth of p(x) does not change along the differential equation because

(p(x))′ holds all along. The differential equation also vacuously stays in p(x) if it starts outside

q(x), since it is stuck then. The assumption of DI is best proved by DE to select the appropriate vec-

tor field x′= f (x) for the differential (p(x))′ and a subsequent DW,G to make the evolution domain

constraint q(x) available as an assumption when showing (p(x))′. The condition [?q(x)]p(x) in DI

is equivalent to q(x)→ p(x) by axiom [?]. While a general account of (p(x))′ is possible [18], this

article focuses on atomic postconditions with the equivalences (θ ≥ η)′ ≡ (θ > η)′ ≡ (θ)′ ≥ (η)′

and (θ = η)′ ≡ (θ 6= η)′ ≡ (θ)′ = (η)′, etc. for DI axioms. Note (θ 6= η)′ cannot be (θ)′ 6= (η)′,
because different rates of change from different initial values do not imply the values would remain

different. Conjunctions can be handled separately by [α](p(x̄)∧q(x̄))↔ [α]p(x̄)∧ [α]q(x̄) which

derives from K. Disjunctions split into separate disjuncts, which is equivalent to classical differ-
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ential invariants [14] but easier. Axiom DG internalizes differential ghosts [16], i.e. that additional

differential equations can be added whose solutions exist long enough, which can enable new in-

variants that are not otherwise provable [16]. Axiom DS solves constant differential equations,

and, as Section 5.2 will demonstrate, more complex solvable differential equations with the help

of DG,DC,DI. Vectorial generalizations to systems of differential equations are possible for the

axioms in Fig. 3.

The differential axioms for differentials (+′,·′,◦′,c′,x′) axiomatize differentials of polynomials.

They are related to corresponding rules for time-derivatives, except that those would be ill-defined

in a local state, so it is crucial to work with differentials that have a local semantics in individual

states. Uniform substitutions correctly maintain that y does not occur in replacements for a(x),b(x)
for DG and that x does not occur in replacements for f in DS, which are both soundness-critical.

Occurrences of x in replacements for f are acceptable when using axiom [:=] on [x′ := f ]p(x′)↔
p( f ).

Most axioms in Fig. 2 and 3 are independent, because there is exactly one axiom per operator.

Exceptions in Fig. 2 are K,I,V, but there is a complete calculus without [∗],V [15] and one without

G,K,I,V that uses two extra rules instead [17]. The congruence rules CQ,CE are redundant and can

be proved on a per-instance basis as well. Axiom DW is the only one that can use the evolution

domain, axiom DC the only one that can change the evolution domain, and axiom DG the only one

that can change differential equations. Axiom DE is the only one that can use the right-hand side

of the differential equation. Axiom DI is the only axiom that relates truth of a postcondition after a

differential equation to truth at the initial state. Finally, axiom DS is needed for proving diamond

properties of differential equations, because it is the only one (besides the limited DW) that does

not reduce a property of a differential equation to another property of a differential equation and,

thus, the only axiom that ultimately proves them without the help of G,V,K, which are not sound

for 〈α〉.

5.2 Example Proofs

This section illustrates how the uniform substitution calculus for dL can be used to realize a num-

ber of different reasoning techniques from the same proof primitives. While the same flexibility

enables these different techniques also for proofs of hybrid systems, the following examples focus

on differential equations to additionally illustrate how the differential equation axioms in Fig. 3 are

meant to be combined.

Example 6 (Contextual equivalence proof). The following proof proves a property of a differential

equation using differential invariants without having to solve that differential equation. One use

of rule US is shown explicitly, other uses of US are similar to obtain and use the other axiom
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instances. CE is used together with MP.

∗
R

x3·x+ x·x3 ≥ 0
[:=] [x′ :=x3]x′·x+ x·x′ ≥ 0
G [x′ = x3][x′ :=x3]x′·x+ x·x′ ≥ 0

∗
·′ ( f (x̄)·g(x̄))′ = ( f (x̄))′·g(x̄)+ f (x̄)·(g(x̄))′

US (x·x)′ = (x)′·x+ x·(x)′

x′ (x·x)′ = x′·x+ x·x′
CQ (x·x)′ ≥ 0↔ x′·x+ x·x′ ≥ 0
c′ (x·x≥ 1)′↔ x′·x+ x·x′ ≥ 0

CE [x′ = x3][x′ :=x3](x·x≥ 1)′
DE [x′ = x3](x·x≥ 1)′
DI

x·x≥ 1→[x′ = x3]x·x≥ 1

Previous calculi [14, 16] collapse this proof into a single proof step with complicated built-in

operator implementations that silently perform the same reasoning in a non-transparent way. The

approach presented here combines separate axioms to achieve the same effect in a modular way,

with axioms of individual responsibilities internalizing separate logical reasoning principles in

differential-form dL. Tactics combining the axioms as indicated make the axiomatic way equally

convenient. Clever proof structuring, cuts or MP uses enable proofs in which the main argument

remains as fast [14, 16] while the additional premises subsequently check soundness. Inferences

in context such as those portrayed in CE,CQ are impossible in sequent calculus [13].

Example 7 (Flat proof). Rules CQ,CE simplify the proof in Example 6 substantially but are not

needed because a proof without contextual equivalence is possible:

MP

∗

. . .→ ((x·x)′≥0↔ x′·x+x·x′≥0)
x′

US

·′
∗

( f (x̄) ·g(x̄))′ = ( f (x̄))′ ·g(x̄)+ f (x̄) · (g(x̄))′

(x · x)′ = (x)′ · x+ x · (x)′

(x · x)′ = x′ · x+ x · x′

G
(x · x)′ ≥ 0↔ x′ · x+ x · x′ ≥ 0

K,K
[x′ :=x3]((x · x)′ ≥ 0↔ x′ · x+ x · x′ ≥ 0)

[x′ :=x3](x · x)′ ≥ 0↔ [x′ :=x3]x′ · x+ x · x′ ≥ 0

see above

∗
R

x3 · x+ x · x3 ≥ 0
[:=] [x′ :=x3]x′ · x+ x · x′ ≥ 0

MP [x′ :=x3](x · x)′ ≥ 0
G [x′ = x3][x′ :=x3](x · x)′ ≥ 0

DE [x′ = x3](x · x)′ ≥ 0
DI

x · x≥ 1→[x′ = x3]x · x≥ 1

Example 8 (Parametric proof). The proofs in Example 6 and 7 use (implicit) cuts with equivalences

that predict the outcome of the right premise, which is conceptually simple but inconvenient for

proof search. More constructively, a direct proof can use a free function symbol j(x,x′) to obtain a
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straightforward parametric proof, instead:

j(x,x3)≥ 0
[:=] [x′ :=x3] j(x,x′)≥ 0
G [x′ = x3][x′ :=x3] j(x,x′)≥ 0

(x · x)′ = j(x,x′)
CQ(x · x)′ ≥ 0↔ j(x,x′)≥ 0

(x · x≥ 1)′↔ j(x,x′)≥ 0
CE [x′ = x3][x′ :=x3](x · x≥ 1)′
DE [x′ = x3](x · x≥ 1)′
DI

x · x≥ 1→[x′ = x3]x · x≥ 1

After conducting this proof with two open premises, the free function symbol j(x,x′) can be in-

stantiated as needed by a uniform substitution (USR from Theorem 11). The above proof justifies

the locally sound inference on the left whose two open premises and conclusions are instantiated

by USR leading to the new sound proof on the right:

j(x,x3)≥ 0 (x · x)′ = j(x,x′)

x · x≥ 1→[x′ = x3]x · x≥ 1
implies USR

x3 · x+ x · x3 ≥ 0 (x · x)′ = x′ · x+ x · x′

x · x≥ 1→[x′ = x3]x · x≥ 1

After the instantiation of j(x,x′) by USR, the right proof completes as follows:

∗
R

x3 · x+ x · x3 ≥ 0

∗
·′ ( f (x̄) ·g(x̄))′ = ( f (x̄))′ ·g(x̄)+ f (x̄) · (g(x̄))′

US (x · x)′ = (x)′ · x+ x · (x)′

x′ (x · x)′ = x′ · x+ x · x′
USR

x · x≥ 1→[x′ = x3]x · x≥ 1

This technique helps invariant search, where a free predicate symbol p(x̄) is instantiated lazily by

USR once all conditions become clear. This reduction saves considerable proof effort compared to

eager invariant instantiation in sequent calculi [13].

Example 9 (Forward computation proof). The proof in Example 8 involves less search than the

proofs of the same formula in Example 6 and 7. But it still ultimately requires foresight to identify

the appropriate instantiation of j(x,x′) for which the proof closes. For invariant search, such proof

search is essentially unavoidable [15] even if the technique in Example 8 maximally postpones the

search.

When used from left to right, the differential axioms c′,x′,+′,·′,◦′ compute deterministically and

always simplify terms by pushing differential operators inside. For example, all backwards proof

search in the right branch of the last proof of Example 8 can be replaced by a deterministic forward

computation proof starting from reflexivity (x · x)′ = (x · x)′ and drawing on axiom instances (used

in a term context via CT) as needed in a forward proof, until the desired output shape is identified:















y

∗
R(x · x)′ = (x · x)′

·′(x · x)′ = (x)′ · x+ x · (x)′

x′(x · x)′ = x′ · x+ x · x′
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Efficient proof search combines this forward computation proof technique with the backward proof

search from Example 8 with advantages similar to other combinations of computation and ax-

iomatic reasoning [5]. Even the remaining positions where axioms still match can be precomputed

as a simple function of the axiom that has been applied, e.g., from its fixed pattern of occurrences

of differential operators.

Example 10 (Axiomatic differential equation solver). Axiomatic equivalence proofs for solving

differential equations involve DG for introducing a time variable t, DC to cut the solutions in, DW

to export the solution to the postcondition, inverse DC to remove the evolution domain constraints

again, inverse DG (or the universal strengthening of DG with ∀y instead of ∃y from Theorem 15)

to remove the original differential equations, and finally DS to solve the differential equation for

time:

∗
R φ →∀s≥0(x0 +

a
2
s2 + v0s≥ 0)

[:=]φ →∀s≥0 [t :=0+1s]x0 +
a
2
t2 + v0t ≥ 0

DS φ →[t ′ = 1]x0 +
a
2
t2 + v0t ≥ 0

DGφ →[v′ = a, t ′ = 1]x0 +
a
2
t2 + v0t ≥ 0

DGφ →[x′ = v,v′ = a, t ′ = 1]x0 +
a
2
t2 + v0t ≥ 0 ⊲

DC φ →[x′ = v,v′ = a, t ′ = 1&v = v0 +at]x0 +
a
2
t2 + v0t ≥ 0 ⊲

DC φ →[x′ = v,v′ = a, t ′ = 1&v = v0 +at ∧ x = x0 +
a
2
t2 + v0t]x0 +

a
2
t2 + v0t ≥ 0

G,Kφ →[x′ = v,v′ = a, t ′ = 1&v = v0+at ∧ x = x0+
a
2
t2+v0t](x=x0+

a
2
t2+v0t→ x≥0)

DWφ →[x′ = v,v′ = a, t ′ = 1&v = v0 +at ∧ x = x0 +
a
2
t2 + v0t]x≥ 0 ⊲

DC φ →[x′ = v,v′ = a, t ′ = 1&v = v0 +at]x≥ 0 ⊲
DC φ →[x′ = v,v′ = a, t ′ = 1]x≥ 0

φ →∃t [x′ = v,v′ = a, t ′ = 1]x≥ 0
DGφ →[x′ = v,v′ = a]x≥ 0

where φ is a≥ 0∧ v = v0 ≥ 0∧ x = x0 ≥ 0. The existential quantifier for t is instantiated by 0

(suppressed in the proof for readability reasons). The 4 uses of DC lead to 2 additional premises

(marked by ⊲) proving that v = v0+at and then x = x0+
a
2
t2+v0t are differential invariants (using

DI,DE,DW). Shortcuts using only DW instead are possible. But the elaborate proof above gener-

alizes to 〈〉 because it is an equivalence proof. The additional premises for DC with v = v0 + at
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prove as follows:

∗
R

a = 0+a ·1
[:=] [v′ :=a][t ′ :=1]v′ = 0+at ′

∗
+′ ( f (x̄)+g(x̄))′ = ( f (x̄))′+(g(x̄))′
US (v0 +at)′ = (v0)

′+(at)′

·′ (v0 +at)′ = 0+a(t ′)
CQ

v′ = (v0 +at)′↔ v′ = 0+at ′

(v = v0 +at)′↔ v′ = 0+at ′

CE [v′ :=a][t ′ :=1](v = v0 +at)′
G [x′ = v,v′ = a, t ′ = 1][v′ :=a][t ′ :=1](v = v0 +at)′

DE [x′ = v,v′ = a, t ′ = 1](v = v0 +at)′
DI φ →[x′ = v,v′ = a, t ′ = 1]v = v0 +at

After that, the additional premises for DC with x = x0 +
a
2
t2 + v0t prove as follows:

∗
R

v = v0 +at→ v = at ·1+ v0 ·1
[:=]

v = v0 +at→ [x′ :=v][t ′ :=1]x′ = att ′+ v0t ′

∗
R 2 a

2
tt ′+ v0t ′ = att ′+ v0t ′

+′,·′ (x0 +
a
2
t2 + v0t)′ = att ′+ v0t ′

CQ
x′ = (x0 +

a
2
t2 + v0t)′↔ x′ = att ′+ v0t ′

(x = x0 +
a
2
t2 + v0t)′↔ x′ = att ′+ v0t ′

CE
v = v0 +at→ [x′ :=v][t ′ :=1](x = x0 +

a
2
t2 + v0t)′

G [x′ = v,v′ = a, t ′ = 1&v = v0 +at](v = v0 +at→ [x′ :=v][t ′ :=1](x = x0 +
a
2
t2 + v0t)′)

DW [x′ = v,v′ = a, t ′ = 1&v = v0 +at][x′ :=v][t ′ :=1](x = x0 +
a
2
t2 + v0t)′

DE [x′ = v,v′ = a, t ′ = 1&v = v0 +at](x = x0 +
a
2
t2 + v0t)′

DI φ →[x′ = v,v′ = a, t ′ = 1&v = v0 +at]x = x0 +
a
2
t2 + v0t

This axiomatic differential equation solving technique is not limited to differential equation sys-

tems that can be solved in full, but also works when only part of the differential equations have

definable solutions. Contrast this constructive formal proof with the unverified use of a differential

equation solver in axiom schema [′] from p. 2.

5.3 Differential Substitution Lemmas

In similar ways how the uniform substitution lemmas are the key ingredients that relate syntactic

and semantic substitution for the soundness of proof rule US, this section proves the key ingre-

dients relating syntax and semantics of differentials that will be used for the soundness proofs of

the differential axioms. Differentials (η)′ have a local semantics in isolated states, which is cru-

cial for well-definedness. The DI axiom relates truth along a differential equation to initial truth

with truth of differentials along a differential equation. The key insight for its soundness is that

the analytic time-derivative of the value of a term η along any differential equation x′ = θ &ψ
agrees with the values of its differential (η)′ along that differential equation. Recall from Def. 6

that I,ϕ |= x′ = θ ∧ψ indicates that the function ϕ solves the differential equation x′ = θ &ψ in

interpretation I, of which the only important part for the next lemma is that it gives x′ the value of

the time-derivative of x along the solution ϕ .
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Lemma 12 (Differential). If I,ϕ |= x′ = θ ∧ψ holds for some solution ϕ : [0,r]→S of any dura-

tion r > 0, then for all times 0≤ ζ ≤ r and all terms η with FV(η)⊆ {x}:

Iϕ(ζ )[[(η)′]] =
dIϕ(t)[[η ]]

dt
(ζ )

Proof. By Def. 4 the left side is:

Iϕ(ζ )[[(η)′]] = ∑
x∈V

ϕ(ζ )(x′)
∂ I[[η ]]

∂x
(ϕ(ζ ))

By chain rule (Lemma 19 in the beginning of the appendix) the right side is:

dIϕ(t)[[η ]]

dt
(ζ ) = (I[[η ]]◦ϕ)′(ζ ) = (∇I[[η ]])

(

ϕ(ζ )
)

·ϕ ′(ζ ) = ∑
x∈V

∂ I[[η ]]

∂x

(

ϕ(ζ )
)

ϕ ′(ζ )(x)

where (∇I[[η ]])
(

ϕ(ζ )
)

, the gradient ∇I[[η ]] of I[[η ]] at ϕ(ζ ), is the vector of
∂ I[[η ]]

∂x

(

ϕ(ζ )
)

, which

has finite support by Lemma 2 so is 0 for all but finitely many variables. Both sides, thus, agree

since ϕ(ζ )(x′) = dϕ(t)(x)
dt

(ζ ) = ϕ ′(ζ )(x) by Def. 6 for all x ∈ FV(η). The same proof works for

vectorial differential equations as long as all free variables of η have some differential equation so

that their differential symbols agree with their time-derivatives.

The differential effect axiom DE axiomatizes the effect of differential equations on the differen-

tial symbols. The key insight for its soundness is that differential symbol x′ already has the value

θ along the differential equation x′ = θ such that the subsequent differential assignment x′ := θ
that assigns the value of θ to x′ has no effect on the truth of the postcondition. The differential

substitution resulting from a subsequent use of axiom [:=] is crucial to relay the values of the

time-derivatives of the state variables x along a differential equation by way of their corresponding

differential symbol x′, though. In combination, this makes it possible to soundly substitute the

right-hand side of a differential equation for its left-hand side in a proof.

Lemma 13 (Differential assignment). If I,ϕ |= x′ = θ ∧ψ where ϕ : [0,r]→S is a solution of

any duration r ≥ 0, then

I,ϕ |= φ ↔ [x′ :=θ ]φ

Proof. I,ϕ |= x′ = θ ∧ψ implies ϕ(ζ ) ∈ I[[x′ = θ ∧ψ]], i.e. ϕ(ζ )(x′)= Iϕ(ζ )[[θ ]] and also ϕ(ζ ) ∈ I[[ψ]]
for all 0 ≤ ζ ≤ r. Thus, since x′ already has the value Iϕ(ζ )[[θ ]] in state ϕ(ζ ), the differential

assignment x′ :=θ has no effect, thus, (ϕ(ζ ),ϕ(ζ )) ∈ I[[x′ :=θ ]] so that φ and [x′ :=θ ]φ are equiv-

alent along ϕ . Hence, I,ϕ |= (φ ↔ [x′ :=θ ]φ).

The final insights for differential invariant reasoning for differential equations are syntactic

ways of computing differentials, which can be internalized as axioms (c′,x′,+′,·′,◦′), since differ-

entials are represented syntactically in differential-form dL. It is the local semantics as differential

forms that makes it possible to soundly capture the interaction of differentials with arithmetic op-

erators by local equations.
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Lemma 14 (Derivations). The following equations of differentials are valid:

( f )′ = 0 for arity 0 functions or numbers f (3)

(x)′ = x′ for variables x ∈ V (4)

(θ +η)′ = (θ)′+(η)′ (5)

(θ ·η)′ = (θ)′ ·η +θ · (η)′ (6)

[y :=θ ][y′ :=1]
(

( f (θ))′ = ( f (y))′ · (θ)′
)

for y,y′ 6∈ FV(θ) (7)

Proof. The proof shows each equation separately. The first part considers any constant function

(i.e. arity 0) or number literal f for (3) and then aligns the differential (x)′ of a term that happens

to be a variable x ∈ V with its corresponding differential symbol x′ ∈ V ′ for (4). The other cases

exploit linearity for (5) and Leibniz properties of partial derivatives for (6). Case (7) exploits

the chain rule and assignments and differential assignments for the fresh y,y′ to mimic partial

derivatives. Equation (7) generalizes to functions f of arity n > 1, in which case · is the (definable)

Euclidean scalar product.

Iν [[( f )′]] = ∑
x

ν(x′)
∂ I[[ f ]]

∂x
(ν) = ∑

x

ν(x′)
∂ I( f )

∂x
(ν) = 0 (3)

Iν [[(x)′]] = ∑
y

ν(y′)
∂ I[[x]]

∂y
(ν) = ν(x′) = Iν [[x′]] (4)

Iν [[(θ +η)′]] = ∑
x

ν(x′)
∂ I[[θ +η ]]

∂x
(ν) = ∑

x

ν(x′)
∂ (I[[θ ]]+ I[[η ]])

∂x
(ν)

= ∑
x

ν(x′)
(∂ I[[θ ]]

∂x
(ν)+

∂ I[[η ]]

∂x
(ν)
)

= ∑
x

ν(x′)
∂ I[[θ ]]

∂x
(ν)+∑

x

ν(x′)
∂ I[[η ]]

∂x
(ν)

= Iν [[(θ)′]]+ Iν [[(η)′]] = Iν [[(θ)′+(η)′]] (5)

Iν [[(θ ·η)′]] = ∑
x

ν(x′)
∂ I[[θ ·η ]]

∂x
(ν) = ∑

x

ν(x′)
∂ (I[[θ ]] · I[[η ]])

∂x
(ν)

= ∑
x

ν(x′)
(

Iν [[η ]]
∂ I[[θ ]]

∂x
(ν)+ Iν [[θ ]]

∂ I[[η ]]

∂x
(ν)
)

= Iν [[η ]]∑
x

ν(x′)
∂ I[[θ ]]

∂x
(ν)+ Iν [[θ ]]∑

x

ν(x′)
∂ I[[η ]]

∂x
(ν)

= Iν [[(θ)′]] · Iν [[η ]]+ Iν [[θ ]] · Iν [[(η)′]] = Iν [[(θ)′ ·η +θ · (η)′]] (6)

37



A. Platzer A Complete Uniform Substitution Calculus for Differential Dynamic Logic

Proving that ν ∈ I[[[y :=θ ][y′ :=1]
(

( f (θ))′ = ( f (y))′ · (θ)′
)

]] requires ω ∈ I[[( f (θ))′ = ( f (y))′ · (θ)′]],
i.e. that Iω[[( f (θ))′]] = Iω[[( f (y))′ · (θ)′]], where ω agrees with state ν except that ω(y) = Iν [[θ ]]
and ω(y′) = 1. This is equivalent to Iν [[( f (θ))′]] = Iω[[( f (y))′]] · Iν [[(θ)′]] by Lemma 2 since ν = ω

on {y,y′}∁ and y,y′ 6∈ FV(θ) by assumption, so y,y′ 6∈ FV(( f (θ))′) and y,y′ 6∈ FV((θ)′). The latter

equation proves using the chain rule (Lemma 19) and a fresh variable z when denoting I[[ f ]]
def
= I( f )

using Lemma 2:

Iν [[( f (θ))′]] = ∑
x

ν(x′)
∂ I[[ f (θ)]]

∂x
(ν) = ∑

x

ν(x′)
∂ (I[[ f ]]◦ I[[θ ]])

∂x
(ν)

chain
= ∑

x

ν(x′)
∂ I[[ f ]]

∂y

(

Iν [[θ ]]
)

·
∂ I[[θ ]]

∂x
(ν)

=
∂ I[[ f ]]

∂y

(

Iν [[θ ]]
)

·∑
x

ν(x′)
∂ I[[θ ]]

∂x
(ν) =

∂ I[[ f ]]

∂y

(

Iν [[θ ]]
)

· Iν [[(θ)′]]

=
∂ I( f )

∂y

(

Iν [[θ ]]
)

· Iν [[(θ)′]] =
∂ I( f )

∂ z

(

Iω[[y]]
)∂ I[[y]]

∂y
(ω) · Iν [[(θ)′]]

chain
=

∂ (I( f )◦ I[[y]])

∂y
(ω) · Iν [[(θ)′]] =

(

∂ I[[ f (y)]]

∂y
(ω)

)

· Iν [[(θ)′]]

=

(

ω(y′)
∂ I[[ f (y)]]

∂y
(ω)

)

· Iν [[(θ)′]] =

(

∑
x∈{y}

ω(x′)
∂ I[[ f (y)]]

∂x
(ω)

)

· Iν [[(θ)′]]

= Iω[[( f (y))′]] · Iν [[(θ)′]] (7)

5.4 Soundness

The uniform substitution calculus for differential-form dL is sound, i.e. all formulas that it proves

from valid premises are valid. The soundness argument is entirely modular. The concrete dL

axioms in Fig. 2 and 3 are valid formulas and the axiomatic proof rules (i.e. pairs of formulas) in

Fig. 2 are locally sound, which implies soundness. The uniform substitution rule is sound so only

concludes valid formulas from valid premises (Theorem 10), which implies that dL axioms (and

other provable dL formulas) can only be instantiated soundly by rule US. Uniform substitution

instances of locally sound axiomatic proof rules (and other locally sound inferences) are locally

sound (Theorem 11), which implies that dL axiomatic proof rules in Fig. 2 can only be instantiated

soundly by uniform substitutions (USR).

The soundness proof follows a high-level strategy that is similar to earlier proofs [15, 14, 16],

but ends up in stronger results since all axioms for differential equations are equivalences now. The

availability of differentials and differential assignments as syntactic elements in differential-form

dL as well as the instantiation support from uniform substitutions makes those soundness proofs

significantly more modular, too. For example, what used to be a single proof rule for differential

invariants [14] can now be decomposed into separate modular axioms.
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Theorem 15 (Soundness). The uniform substitution calculus for dL is sound, that is, every formula

that is provable by the dL axioms and proof rules is valid, i.e. true in all states of all interpretations.

The axioms in Fig. 2 and 3 are valid formulas and the axiomatic proof rules in Fig. 2 are locally

sound.

Proof. The axioms (and most proof rules) in Fig. 2 are special instances of corresponding axiom

schemata and proof rules for differential dynamic logic [15] and, thus, sound.4 All proof rules in

Fig. 2 (but not US itself) are even locally sound, which implies soundness, i.e. that their conclusions

are valid (in all I) if their premises are. In preparation for a completeness argument, note that rules

∀,MP can be augmented soundly to use p(x̄) instead of p(x) or p, respectively, such that the

FV(σ) = /0 requirement of Theorem 11 will be met during USR instances of all axiomatic proof

rules. The axioms in Fig. 3 are new and need new soundness arguments.

DW Soundness of DW uses that differential equations never leave their evolution domain by

Def. 6. To show ν ∈ I[[[x′ = f (x)&q(x)]q(x)]], consider any ϕ : [0,r]→S of any duration

r ≥ 0 solving I,ϕ |= x′ = f (x)∧q(x). Then I,ϕ |= q(x) especially ϕ(r) ∈ I[[q(x)]].
DC Soundness of DC is a stronger version of soundness for the differential cut rule [14]. DC is a

differential version of the modal modus ponens K. Only the direction “←” of the equivalence

in DC needs the outer assumption [x′ = f (x)&q(x)]r(x), but the proof of the conditional

equivalence in DC is simpler:

[x′ = f (x)&q(x)]r(x)→
(

[x′ = f (x)&q(x)]p(x)↔ [x′ = f (x)&q(x)∧ r(x)]p(x)
)

The core is that if [x′ = f (x)&q(x)]r(x), so r(x) holds after that differential equation, and if

p(x) holds after the differential equation x′ = f (x)&q(x)∧r(x) that is additionally restricted

to r(x), then p(x) holds after the differential equation x′ = f (x)&q(x) with no additional re-

striction. Let ν ∈ I[[[x′ = f (x)&q(x)]r(x)]]. Since all restrictions of solutions are solutions,

this is equivalent to I,ϕ |= r(x) for all ϕ of any duration solving I,ϕ |= x′ = f (x)∧q(x) and

starting in ϕ(0)= ν on {x′}∁. So, for all ϕ starting in ϕ(0)= ν on {x′}∁: I,ϕ |= x′ = f (x)∧q(x)
is equivalent to I,ϕ |= x′ = f (x)∧q(x)∧ r(x). Hence, ν ∈ I[[[x′ = f (x)&q(x)∧ r(x)]p(x)]] is

equivalent to ν ∈ I[[[x′ = f (x)&q(x)]p(x)]].
DE Axiom DE is new to differential-form dL. Its soundness proof exploits Lemma 13. Con-

sider any state ν . Then ν ∈ I[[[x′ = f (x)&q(x)]p(x,x′)]] iff ϕ(r) ∈ I[[p(x,x′)]] for all solu-

tions ϕ : [0,r]→S of I,ϕ |= x′ = f (x)∧q(x) of any duration r starting in ϕ(0) = ν on {x′}∁.

That is equivalent to: for all ϕ , if I,ϕ |= x′ = f (x)∧q(x) then I,ϕ |= p(x,x′). By Lemma 13,

I,ϕ |= p(x,x′) iff I,ϕ |= [x′ := f (x)]p(x,x′), so that is equivalent to ϕ(r) ∈ I[[[x′ := f (x)]p(x,x′)]]
for all solutions ϕ : [0,r]→S of I,ϕ |= x′ = f (x)∧q(x) of any duration r starting in ϕ(0) =

ν on {x′}∁, which is, consequently, equivalent to ν ∈ I[[[x′ = f (x)&q(x)][x′ := f (x)]p(x,x′)]].
DI Soundness of DI has some relation to the soundness proof for differential invariants [14], yet

proves an equivalence and is generalized to leverage differentials. If ν ∈ I[[[x′ = f (x)&q(x)]p(x)]]
then the solution ϕ of duration 0 implies that ν ∈ I[[p(x)]] since x′ 6∈ FV(p(x)) by Lemma 3,

4The uniform substitution proof calculus improves modularity and gives stronger equivalence formulations of

axioms, though.
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provided that ϕ(0) ∈ I[[q(x)]], i.e. ν ∈ I[[q(x)]] since x′ 6∈ FV(q(x)), such that there is a so-

lution at all. Thus, [x′ = f (x)&q(x)]p(x)→ [?q(x)]p(x) is valid even without the assump-

tion. Converse
(

q(x)→ [x′ = f (x)&q(x)](p(x))′
)

→ [?q(x)]p(x)→ [x′ = f (x)&q(x)]p(x)

is only shown for p(x)
def
≡ g(x)≥ 0, where (p(x))′ ≡ ((g(x))′ ≥ 0), because the variations

for other formulas are the same as the variations in previous work [14]. Consider a state ν
in which ν ∈ I[[q(x)→ [x′ = f (x)&q(x)](p(x))′]]. If ν 6∈ I[[q(x)]], there is nothing to show,

because there is no solution of x′ = f (x)&q(x) for any duration since x′ 6∈ FV(q(x)), so

ν ∈ I[[[x′ = f (x)&q(x)]p(x)]] holds vacuously. Otherwise, ν ∈ I[[q(x)]], which implies

ν ∈ I[[[x′ = f (x)&q(x)](p(x))′]] by assumption. Assume ν ∈ I[[[?q(x)]p(x)]], so ν ∈ I[[p(x)]]
since ν ∈ I[[q(x)]]. To show that ν ∈ I[[[x′ = f (x)&q(x)]p(x)]] consider any solution ϕ of any

duration r ≥ 0. The case r = 0 follows from ν ∈ I[[p(x)]] by Lemma 3 since FV(p(x)) = {x}
is disjoint from {x′}, which, unlike x, is changed by evolutions of any duration, including 0.

That leaves the case r > 0.

Let ϕ be a solution of x′ = f (x)&q(x) according to Def. 6, so ν = ϕ(0) on {x′}∁ and

I,ϕ |= x′ = f (x)&q(x). Now ν ∈ I[[[x′ = f (x)&q(x)](p(x))′]] implies I,ϕ |= (p(x))′. As

r > 0, Lemma 12 implies 0≤ Iϕ(ζ )[[(g(x))′]] = dIϕ(t)[[g(x)]]
dt

(ζ ) for all ζ since FV(g(x))= {x}.
Together with ϕ(0) ∈ I[[p(x)]] (by Lemma 3 and FV(p(x))∩ {x′} = /0 from ν ∈ I[[p(x)]]),
which is ϕ(0) ∈ I[[g(x)≥ 0]], this implies ϕ(ζ ) ∈ I[[g(x)≥ 0]] for all ζ , including r, by the

mean-value theorem, since Iϕ(r)[[g(x)]]− Iϕ(0)[[g(x)]] = (r−0)dIϕ(t)[[g(x)]]
dt

(ζ )≥ 0 for some

ζ ∈ (0,r). The mean-value theorem (Lemma 18 in appendix) is applicable since the value

Iϕ(t)[[g(x)]] of term g(x) along ϕ is continuous in t on [0,r] and differentiable on (0,r) as

compositions of the, by Def. 4 smooth, evaluation function and the differentiable solution

ϕ(t) of a differential equation.

DG Soundness of DG is a constructive variation of the soundness proof for differential auxiliaries

[16]. Let ν ∈ I[[∃y [x′ = f (x),y′ = a(x)y+b(x)&q(x)]p(x)]], that is,

νd
y ∈ I[[[x′ = f (x),y′ = a(x)y+b(x)&q(x)]p(x)]] for some value d ∈R. In order to show that

ν ∈ I[[[x′ = f (x)&q(x)]p(x)]], consider any ϕ : [0,r]→S such that I,ϕ |= x′ = f (x)∧q(x)

and ϕ(0) = ν on {x′}∁. By modifying the values of y,y′ along ϕ , this function can be

augmented to a solution ϕ̃ : [0,r]→S such that I, ϕ̃ |= x′ = f (x)∧ y′ = a(x)y+b(x)∧q(x)
and ϕ̃(0)(y) = d as shown below. The assumption then implies ϕ̃(r) ∈ I[[p(x)]], which, by

Lemma 3, is equivalent to ϕ(r) ∈ I[[p(x)]] since y,y′ 6∈ FV(p(x)) and ϕ(r) = ϕ̃(r) on {y,y′}∁,

which implies ν ∈ I[[[x′ = f (x)&q(x)]p(x)]], since ϕ was arbitrary.

The construction of the modification ϕ̃ of ϕ on {y,y′} proceeds as follows. By Picard-

Lindelöf’s theorem (Theorem 20 in the appendix), there is a unique solution y : [0,r]→R of

the initial-value problem

y(0) = d

y′(t) = F(t,y(t))
def
= y(t)(Iϕ(t)[[a(x)]])+ Iϕ(t)[[b(x)]]

(8)

because F(t,y) is continuous on [0,r]×R (since Iϕ(t)[[a(x)]] and Iϕ(t)[[b(x)]] are continuous

in t as compositions of the, by Def. 4 smooth, evaluation function and the continuous solution
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ϕ(t) of a differential equation) and because F(t,y) satisfies the Lipschitz condition

‖F(t,y)−F(t,z)‖ = ‖(y− z)(Iϕ(t)[[a(x)]])‖ ≤ ‖y− z‖ max
t∈[0,r]

Iϕ(t)[[a(x)]]

where the maximum exists, because it is a maximum of a continuous function on the compact

set [0,r]. The modification ϕ̃ agrees with ϕ on {y,y′}∁. On {y,y′}, the modification ϕ̃
is defined as ϕ̃(t)(y) = y(t) and ϕ̃(t)(y′) = F(t,y(t)), respectively, for the solution y(t) of

(8). In particular ϕ̃(t)(y′) agrees with the time-derivative y′(t) of the value ϕ̃(t)(y) = y(t)
of y along ϕ̃ . By construction, ϕ̃(0)(y) = d and I, ϕ̃ |= x′ = f (x)∧ y′ = a(x)y+b(x)∧q(x),

because y′ = a(x)y+ b(x) holds along ϕ̃ by (8) and because ϕ(t) = ϕ̃(t) on {y,y′}∁ so that

x′ = f (x)∧q(x) continues to hold along ϕ̃ by Lemma 2 because y,y′ 6∈ FV(x′ = f (x)∧q(x)).
Conversely, let ν ∈ I[[[x′ = f (x)&q(x)]p(x)]]. This direction shows a stronger version of

ν ∈ I[[∃y [x′ = f (x),y′ = a(x)y+b(x)&q(x)]p(x)]] by showing for all terms η that

ν ∈ I[[∀y [x′ = f (x),y′ = η &q(x)]p(x)]]. Consider any d ∈ R and term η and show

νd
y ∈ I[[[x′ = f (x),y′ = η &q(x)]p(x)]]. Consider any ϕ : [0,r]→S such that

I,ϕ |= x′ = f (x)∧ y′ = η ∧q(x) with ϕ(0) = νd
y on {x′,y′}∁. Then the restriction ϕ|{y,y′}∁ of

ϕ to {y,y′}∁ with ϕ|{y,y′}∁(t)= νd
y on {y,y′} for all t ∈ [0,r] still solves I,ϕ|{y,y′}∁ |= x′ = f (x)∧q(x)

by Lemma 2 since ϕ|{y,y′}∁ = ϕ on {y,y′}∁ and y,y′ 6∈ FV(x′ = f (x)∧q(x)). It also satisfies

ϕ|{y,y′}∁(0) = νd
y on {x′}∁, because ϕ(0) = νd

y on {x′,y′}∁ yet ϕ|{y,y′}∁(t)(y
′) = νd

y (y
′). Thus,

by assumption, ϕ|{y,y′}∁(r) ∈ I[[p(x)]], which implies ϕ(r) ∈ I[[p(x)]] by Lemma 3, because

ϕ = ϕ|{y,y′}∁ on {y,y′}∁ and y,y′ 6∈ FV(p(x)).

In particular, axiom DG continues to be sound when replacing ∃y by ∀y.

DS Soundness of the solution axiom DS follows from existence and uniqueness of global so-

lutions of constant differential equations. Consider any state ν . By Theorem 20, there is a

unique global solution ϕ : [0,∞)→ S defined as ϕ(ζ )(x)
def
= Iν

ζ
t [[x+ f t]] and ϕ(ζ )(x′)

def
=

dϕ(t)(x)
dt

(ζ ) = I( f ) and ϕ(ζ ) = ν on {x,x′}∁. This solution satisfies ϕ(0) = ν(x) on {x′}∁

and I,ϕ |= x′ = f , i.e. ϕ(ζ ) ∈ I[[x′ = f ]] for all 0 ≤ ζ ≤ r. All solutions of x′ = f from

initial state ν are restrictions of ϕ to subintervals of [0,∞). The (unique) state ω that

satisfies (ν
ζ
t ,ω) ∈ I[[x :=x+ f t]] satisfies the agreement ω = ϕ(ζ ) on {x′}∁, so that, by

x′ 6∈ FV(p(x)), Lemma 3 implies that ω ∈ I[[p(x)]] iff ϕ(ζ ) ∈ I[[p(x)]].
First consider axiom [x′ = f ]p(x)↔ ∀t≥0 [x :=x+ f t]p(x) for the special case q(x) ≡ true.

If ν ∈ I[[[x′ = f ]p(x)]], then ϕ(ζ ) ∈ I[[p(x)]] for all ζ ≥ 0, because the restriction of ϕ to

[0,ζ ] solves x′ = f from ν , thus ω ∈ I[[p(x)]] since ω = ϕ(ζ ) on {x′}∁ and x′ 6∈ FV(p(x)) by

Lemma 3, which implies ν
ζ
t ∈ I[[[x :=x+ f t]p(x)]], so ν ∈ I[[∀t≥0 [x :=x+ f t]p(x)]] as ζ ≥ 0

was arbitrary.

Conversely, ν ∈ I[[∀t≥0 [x :=x+ f t]p(x)]] implies ν
ζ
t ∈ I[[[x :=x+ f t]p(x)]] for all ζ ≥ 0, i.e.

ω ∈ I[[p(x)]] when (ν
ζ
t ,ω) ∈ I[[x :=x+ f t]]. Lemma 3 again implies ϕ(ζ ) ∈ I[[p(x)]] for all

ζ ≥ 0 since x′ 6∈ FV(p(x)), so ν ∈ I[[[x′ = f ]p(x)]], since all solutions are restrictions of ϕ .

Soundness of DS follows using that all solutions ϕ : [0,r] → S of x′ = f (x)&q(x) sat-

isfy ϕ(ζ ) ∈ I[[q(x)]] for all 0 ≤ ζ ≤ r, which, using Lemma 3 as above, is equivalent to
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ν ∈ I[[∀0≤s≤t q(x+ f s)]] when ν(t) = r.

+′,·′,◦′,c′,x′ Soundness of the derivation axioms +′,·′,◦′ as well as c′,x′ follows from Lemma 14,

since they are special instances of (5), (6) and (7) as well as (3) and (4), respectively. For

axiom ◦′ observe that y,y′ 6∈ FV(g(x)).
G Let the premise p(x̄) be valid in some I, i.e. I |= p(x̄), i.e. ω ∈ I[[p(x̄)]] for all ω . Then, the

conclusion [a]p(x̄) is valid in the same I, i.e. ν ∈ I[[[a]p(x̄)]] for all ν , because ω ∈ I[[p(x̄)]]
for all ω , so also for all ω with (ν ,ω) ∈ I[[a]]. Thus, G is locally sound.

∀ Let the premise p(x) be valid in some I, i.e. I |= p(x), i.e. ω ∈ I[[p(x)]] for all ω . Then, the

conclusion ∀x p(x) is valid in the same I, i.e. ν ∈ I[[∀x p(x)]] for all ν , i.e. νd
x ∈ I[[p(x)]] for

all d ∈ R, because ω ∈ I[[p(x)]] for all ω , so in particular for all ω = νd
x for any real d ∈ R.

Thus, ∀ is locally sound.

CQ Let the premise f (x̄)= g(x̄) be valid in some I, i.e. I |= f (x̄) = g(x̄), which is ν ∈ I[[ f (x̄) = g(x̄)]]
for all ν , i.e. Iν [[ f (x̄)]] = Iν [[g(x̄)]] for all ν . Consequently, Iν [[ f (x̄)]] ∈ I(p) iff Iν [[g(x̄)]] ∈
I(p). So, I |= p( f (x̄))↔ p(g(x̄)). Thus, CQ is locally sound.

CE Let the premise p(x̄)↔ q(x̄) be valid in some I, i.e. I |= p(x̄)↔ q(x̄), which is ν ∈ I[[p(x̄)↔ q(x̄)]]
for all ν . Consequently, I[[p(x̄)]] = I[[q(x̄)]]. Thus, I[[C(p(x̄))]] = I(C)

(

I[[p(x̄)]]
)

= I(C)
(

I[[q(x̄)]]
)

=
I[[C(q(x̄))]]. This implies I |= C(p(x̄))↔C(q(x̄)), hence the conclusion is valid in I. Thus,

CE is locally sound.

MP Modus ponens MP is locally sound with respect to interpretation I and state ν , which implies

local soundness. If ν ∈ I[[p→ q]] and ν ∈ I[[p]] then ν ∈ I[[q]].
US Rule USR preserves local soundness by Theorem 11 and rule US is sound by Theorem 10,

just not locally sound.

Observe that uniform substitutions are not limited to merely instantiating dL axioms and ax-

iomatic proof rules. Rule US can be used to instantiate any dL formula soundly (Theorem 10),

which, in particular, gives a simple mechanism for derived axioms and lemmas, which are just

dL formulas that have a proof. Uniform substitutions can instantiate any locally sound proof as

well (Theorem 11), which, in particular, gives a simple mechanism for derived axiomatic rules,

definitions, and invariant search with lazy instantiation of invariants. These are just proofs from

the dL rules and axioms in Fig. 2 and 3 whose premises and conclusions are uniformly substituted

to instantiate the requisite function or predicate symbols (recall Example 8).

5.5 Completeness

By Theorem 15, the dL calculus is sound, so every dL formula that is provable using the dL axioms

and proof rules is valid, i.e. true in all states of all interpretations. The more intriguing converse

whether the dL calculus is complete, i.e. can prove all dL formulas that are valid, has an answer,

too. Previous calculi for dL were proved to be complete relative to differential equations [13, 15]

and also proved complete relative to discrete dynamics [15]. A generalization of the Hilbert cal-

culus to hybrid games was even proved complete schematically [17]. The uniform substitution

calculus for differential-form dL is, to a large extent, a specialization of previous calculi tailored to

significantly simplify soundness arguments. Yet, completeness does not transfer when restricting
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proof calculi. In fact, one key question is whether the restrictions imposed upon proofs for sound-

ness purposes by the simple technique of uniform substitutions does also preserve completeness.

Indeed, completeness can be shown to carry over from a previous schematic completeness proof

for differential game logic [17] using expressiveness results from previous completeness proofs

[13, 15] by augmenting the schematic completeness proof with instantiability proofs.

The first challenge is to prove that uniform substitutions are flexible enough to prove all re-

quired instances of the dL axioms and axiomatic proof rules. For simplicity, consider p(x̄) to be

a quantifier symbol of arity 0. A dL formula ϕ is called surjective iff rule US can instantiate ϕ
to any of its axiom schema instances, which are those formulas that are obtained by uniformly

replacing program constants a by any hybrid programs and quantifier symbols C() by formulas.

An axiomatic rule is called surjective iff USR can instantiate it to any of its proof rule schema

instances.

Lemma 16 (Surjective axioms). If ϕ is a dL formula that is built only from quantifier symbols of

arity 0 and program constants but no function or predicate symbols, then ϕ is surjective. Axiomatic

rules consisting of surjective dL formulas are surjective.

Proof. Let ϕ̃ be the desired instance of the axiom schema belonging to ϕ , that is, let ϕ̃ be obtained

from ϕ by uniformly replacing each quantifier symbol C() by some formula, naı̈vely but consis-

tently (same replacement for C() in all places) and accordingly for program constants a. The proof

follows a structural induction on ϕ to show that there is a uniform substitution σ with FV(σ) = /0

such that σ(ϕ) = ϕ̃ . The proof for formulas is by a mostly straightforward simultaneous induction

with programs:

1. Consider quantifier symbol C() of arity 0 and let ϕ̃ be the desired instance. Define σ =
{C() 7→ ϕ̃}, which has FV(σ) = /0, because it only substitutes quantifier symbols. Then

σ(C())≡ σC()≡ ϕ̃ . The substitution is admissible for all arguments, since there are none.

2. Consider φ ∧ψ and let φ̃ ∧ ψ̃ be the desired instance (which has to have this shape to qualify

as a schema instance). By induction hypothesis, there are uniform substitutions σ ,τ with

FV(σ) = FV(τ) = /0 such that σ(φ) = φ̃ and σ(ψ) = ψ̃ . Then the union σ ∪ τ of uniform

substitutions σ and τ is defined, because for all symbols a of any syntactic category: if a∈ σ
and a ∈ τ , then σa = τa since all replacements are uniform, so the same replacement is used

everywhere in φ ∧ψ for the same symbol a. Consequently, (σ ∪τ)(φ) = σ(φ) = φ̃ and (σ ∪
τ)(ψ) = τ(ψ) = ψ̃ , because all symbols that are replaced are replaced uniformly everywhere

so either do not occur in φ or are already handled by σ in the same way (and likewise either

do not occur in ψ or are already handled by τ). Finally, FV(σ ∪ τ) = FV(σ)∪FV(τ) = /0.

3. Case 2 generalizes to a general uniform replacement argument: the induction hypothesis and

uniform replacement assumptions imply for each subexpression θ ◦η of ϕ with any operator

◦ that the corresponding desired instance has to have the same shape θ̃ ◦ η̃ and that there are

uniform substitutions σ ,τ with FV(σ) = FV(τ) = /0 such that their union σ ∪ τ is defined

and (σ ∪ τ)(θ ◦η) = σ(θ)◦ τ(η) = θ̃ ◦ η̃ and FV(σ ∪ τ) = FV(σ)∪FV(τ) = /0.

This shows the cases φ ∨ψ , φ → ψ , φ ↔ ψ and, after a moment’s thought, also ¬φ .
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4. Consider ∀xφ with desired instance ∀x φ̃ , which has to have this shape. By induction hy-

pothesis, there is a uniform substitution σ with FV(σ) = /0 such that σ(φ) = φ̃ . Thus,

σ(∀xφ) = ∀xσ(φ) = ∀x φ̃ , which is {x}-admissible because FV(σ) = /0.

5. The case ∃xφ is accordingly.

6. Consider [α]φ with desired instance [α̃]φ̃ . By induction hypothesis and the uniform replace-

ment argument, there are uniform substitutions σ ,τ such that (σ ∪τ)([α]φ) = [σ(α)]τ(φ) =
[α̃]φ̃ which is admissible, because σ∪τ is BV((σ∪τ)(α))-admissible for [α]φ since FV(σ∪
τ) = /0.

7. The case 〈α〉φ is accordingly.

The proof for hybrid programs is by simultaneous induction with formulas, where most cases are

in analogy to the previous cases, except:

1. Consider program constant a with desired instance ã. Then σ = {a 7→ ã} has FV(σ) = /0

and satisfies σ(a) = σa = ã.

2. Consider the case x′ = θ &ψ with desired instance x′ = θ̃ & ψ̃ , which has to have this shape.

By induction hypothesis and uniform replacement argument, there are uniform substitutions

σ ,τ such that (σ ∪τ)(x′ = θ &ψ)≡ x′ = σ(θ)&τ(ψ)≡ x′ = θ̃ & ψ̃ . Admissibility follows

from FV(σ ∪ τ) = /0.

3. Consider the case α∗ with desired instance (α̃)∗, which has to have this shape. By induction

hypothesis, there is a uniform substitution σ such that σ(α) ≡ α̃ and FV(σ) = /0. Then

σ(α∗)≡ (σ(α))∗ ≡ (α̃)∗, which is BV(σ(α))-admissible since FV(σ) = /0.

4. The case α;β is similar and case α ∪β follows directly from the uniform replacement argu-

ment.

The corresponding result for axiomatic rules built from surjective dL formulas follows since sur-

jective dL formulas can be instantiated by rule US to any instance, which, thus, continues to hold

for the premises and conclusions in rule USR.

Lemma 16 generalizes to quantifier symbols with arguments that have no function or predicate

symbols, since those are always V -admissible. Generalizations to function and predicate symbol

instances are possible with adequate care. The axiom [?] is surjective, because it does not have any

bound variables, so admissibility of its instances is obvious. Similarly rules MP and, with the twist

from the proof of Theorem 15, rule ∀ become surjective. Axioms ∀i,∀→,V∀ can be augmented

for surjectivity in similar ways, where V∀ is surjective when p is instantiated such that x does not

occur free, which is a soundness-critical restriction, and ∀i is instantiated respecting its shape.

A previous schematic completeness result [17] shows completeness relative to any differen-

tially expressive5 logic. Lemma 16 makes it easy to augment this proof to show that the schema

5A logic L closed under first-order connectives is differentially expressive (for dL) if every dL formula φ has an

equivalent φ ♭ in L and all equivalences of the form 〈x′ = θ〉G↔ (〈x′ = θ〉G)♭ for G in L are provable in its calculus.
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instantiations required for completeness are provable by US,USR from axioms or axiomatic rules.

Both the first-order logic of differential equations [13] and discrete dynamic logic [15] are differ-

entially expressive for dL.

Theorem 17 (Relative completeness). The dL calculus is a sound and complete axiomatization

of hybrid systems relative to any differentially expressive logic L, i.e. every valid dL formula is

provable in the dL calculus from L tautologies.

Proof. This proof refines the completeness proof for the axiom schemata of differential game

logic [17] with explicit proofs of instantiability by US and USR. Write ⊢L φ to indicate that dL

formula φ can be derived in the dL proof calculus from valid L formulas. Soundness follows from

Theorem 15, so it remains to prove completeness. For every valid dL formula φ it has to be proved

that φ can be derived from valid L tautologies within the dL calculus: from � φ prove ⊢L φ . The

proof proceeds as follows: By propositional recombination, inductively identify fragments of φ
that correspond to φ1→ 〈α〉φ2 or φ1→ [α]φ2 logically. Find structurally simpler formulas from

which these properties can be derived in the dL calculus by uniform substitution instantiations,

taking care that the resulting formulas are simpler than the original one in a well-founded order.

Finally, prove that the original dL formula can be re-derived from the subproofs in the dL calculus

by uniform substitution instantiations.

The first insight is that, with the rules MP and ∀ and (by Lemma 16, all) relevant instances of

∀i,∀→,V∀ and real arithmetic, the dL calculus contains a complete axiomatization of first-order

logic. Thus, all first-order logic tautologies can be used without further notice in the remainder of

the proof. Furthermore, by Lemma 16, all instances of 〈·〉,[∪],[;],[∗],K,I can be proved by rule US

in the dL calculus.

By appropriate propositional derivations, assume φ to be given in conjunctive normal form.

Assume that negations are pushed inside over modalities using the dualities ¬[α]φ ≡ 〈α〉¬φ and

¬〈α〉φ ≡ [α]¬φ that are provable by axiom 〈·〉, and that negations are pushed inside over quanti-

fiers using definitorial first-order equivalences ¬∀xφ ≡ ∃x¬φ and ¬∃xφ ≡ ∀x¬φ . The remainder

of the proof follows an induction on a well-founded partial order ≺ from previous work [17] in-

duced on dL formulas by the lexicographic ordering of the overall structural complexity of the

hybrid programs in the formula and the structural complexity of the formula itself, with the logic L

placed at the bottom of the partial order≺. The base logic L is considered of lowest complexity by

relativity, because � F immediately implies ⊢L F for all formulas F of L. The monotonicity rules

derive from G,K,〈·〉 by Lemma 16 with a classical argument:

(M)
p(x̄)→ q(x̄)

〈a〉p(x̄)→ 〈a〉q(x̄)
(M[·])

p(x̄)→ q(x̄)

[a]p(x̄)→ [a]q(x̄)

The proof follows the syntactic structure of dL formulas.

0. If φ has no hybrid programs, then φ is a first-order formula; hence provable by assumption

(even decidable if in first-order real arithmetic [23], i.e. no uninterpreted symbols occur).

1. φ is of the form ¬φ1; then φ1 is first-order and quantifier-free, as negations are assumed to

be pushed inside, so Case 0 applies.
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2. φ is of the form φ1∧φ2, then � φ1 and � φ2, so individually deduce simpler proofs for ⊢L φ1

and ⊢L φ2 by IH, which combine propositionally to a proof for ⊢L φ1∧φ2 using MP twice

with the propositional tautology φ1→ (φ2→ φ1∧φ2).

3. The case where φ is of the form ∃xφ2, ∀xφ2, 〈α〉φ2 or [α]φ2 is included in Case 4 with

φ1 ≡ false.

4. φ is a disjunction and—without loss of generality—has one of the following forms (other-

wise use provable associativity and commutativity to reorder):

φ1 ∨ 〈α〉φ2

φ1 ∨ [α]φ2

φ1 ∨ ∃xφ2

φ1 ∨ ∀xφ2.

Let φ1∨〈[α]〉φ2 be a unified notation for those cases. Then, φ2 ≺ φ , since φ2 has less modal-

ities or quantifiers. Likewise, φ1 ≺ φ because 〈[α]〉φ2 contributes one modality or quantifier

to φ that is not part of φ1. When abbreviating the simpler formulas ¬φ1 by F and φ2 by

G, the validity � φ yields � ¬F ∨〈[α]〉G, so � F → 〈[α]〉G, from which the remainder of the

proof inductively derives

⊢L F → 〈[α]〉G. (9)

The proof of (9) is by structural induction on 〈[α]〉. This proof focuses on the quantifier and

[] cases, because most 〈〉 cases derive by axiom 〈·〉 with Lemma 16 from the [] equivalences.

(a) If 〈[α]〉 is the operator ∀x then � F →∀xG, where x can be assumed not to occur in F

by a bound variable renaming. Hence, � F → G. Since G ≺ ∀xG, because it has less

quantifiers, also (F → G) ≺ (F → ∀xG), hence ⊢L F → G is derivable by IH. Then,

⊢L F → ∀xG derives with Lemma 16 by generalization rule ∀, since x does not occur

in F :
F → G

∀ ∀x(F → G)
∀→ ∀xF →∀xG
V∀ F →∀xG

The instantiations succeed by the remark after Lemma 16 using for V∀ that x 6∈ V(F).
The formula F → ∀xG is even decidable if in first-order real arithmetic [23]. The

remainder of the proof concludes (F → ψ) ≺ (F → φ) from ψ ≺ φ without further

notice. The operator ∀y can be obtained correspondingly by uniform renaming.

(b) If 〈[α]〉 is the operator ∃x then � F →∃xG. If F and G are L formulas, then, since L is

closed under first-order connectives, so is the valid formula F →∃xG, which is, then,

provable by IH and even decidable if in first-order real arithmetic [23].

Otherwise, F,G correspond to L formulas by expressiveness of L, which implies the

existence of an L formula G♭ such that � G♭ ↔ G. Since L is closed under first-

order connectives [17], the valid formula F →∃x(G♭) is provable by IH, because (F→
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∃x(G♭))≺ (F →∃xG) since G♭ ∈ L while G 6∈ L. Now, � G♭↔ G implies � G♭→ G,

which is derivable by IH, because (G♭→ G) ≺ φ since G♭ is in L. From ⊢L G♭→ G,

the derivable dual of axiom ∀→, (∀x(p(x)→ q(x))→ (∃x p(x)→ ∃xq(x))), derives

⊢L ∃x(G
♭)→ ∃xG, which combines with ⊢L F → ∃x(G♭) essentially by rule MP to

⊢L F →∃xG.

F →∃x(G♭)

G♭→ G
∀ ∀x(G♭→ G)
∀→ ∃x(G♭)→∃xG

MP
F →∃xG

The instantiations succeed by Lemma 16 and its subsequent remark.

(c) � F → 〈x′ = θ〉G implies � F → (〈x′ = θ〉G♭)♭, which is derivable by IH, as (F →
(〈x′ = θ〉G♭)♭) ≺ φ since (〈x′ = θ〉G♭)♭ is in L. L is differentially expressive, so ⊢L

〈x′ = θ〉G♭↔ (〈x′ = θ〉G♭)♭ is provable. Hence ⊢L F → 〈x′ = θ〉G♭ derives by propo-

sitional congruence. Now G♭ → G is simpler (since G♭ is in L) so derivable by IH,

so 〈x′ = θ〉G♭ → 〈x′ = θ〉G derives by M. Together, both derive ⊢L F → 〈x′ = θ〉G
propositionally.

(d) � F → [x′ = θ ]G implies � F →¬〈x′ = θ〉¬G. Thus, � F →¬(〈x′ = θ〉¬G♭)♭, which

is derivable by IH, because (F → ¬(〈x′ = θ〉¬G♭)♭) ≺ φ as (〈x′ = θ〉¬G♭)♭ is in L.

Since L is differentially expressive, ⊢L 〈x
′ = θ〉¬G♭↔ (〈x′ = θ〉¬G♭)♭ is provable, so

⊢L F → ¬〈x′ = θ〉¬G♭ derives from ⊢L F → ¬(〈x′ = θ〉¬G♭)♭ by propositional con-

gruence. Axiom 〈·〉, thus, derives ⊢L F → [x′ = θ ]G♭ with Lemma 16. Now G♭→ G

is simpler (as G♭ is in L) so derivable by IH, so [x′ = θ ]G♭→ [x′ = θ ]G derives by M.

Together, both derive ⊢L F → [x′ = θ ]G propositionally.

(e) � F → [x′ = θ &ψ]G, then this formula has an equivalent [17, Lemma 3.4] without

evolution domains which can be used as a definitorial abbreviation to conclude this

case. Similarly for � F → 〈x′ = θ &ψ〉G.

(f) � F → [y :=θ ]G then this formula can be proved, using a fresh variable x 6∈ V(θ)∪
V(G), with the following derivation by bound variable renaming (rule BR), in which

G x
y

is the result of uniformly renaming y to x in G

F →∀x(x = θ → G x
y
)

[:=]=F →[x :=θ ]G x
y

BR
F →[y :=θ ]G

using the following equational form of the assignment axiom [:=]

([:=]=) [x := f ]p(x̄)↔∀x(x = f → p(x̄))

The above proof only used equivalence transformations, so its premise is valid iff its

conclusion is, which it is by assumption. The assumption, thus, implies � F→∀x(x =
θ → G x

y
). Since (F → ∀x(x = θ → G x

y
)) ≺ (F → [y :=θ ]G), because there are less
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hybrid programs, ⊢L F → ∀x(x = θ → G x
y
) by IH. The above proof, thus, derives

⊢L F → [y :=θ ]G.

The equational assignment axiom [:=]= above can either be adopted as an axiom in

place of [:=]. Or it can be derived from axiom [:=] with the uniform substitution

σ = {q(·) 7→ p(·,X)} when splitting the variables x̄ into the variable x and the other

variables X such that x 6∈ X :

∗
FOL

q( f )↔∀x(x = f → q(x))
[:=] [x := f ]q(x)↔∀x(x = f → q(x))
US [x := f ]p(x,X)↔∀x(x = f → p(x,X))

[x := f ]p(x̄)↔∀x(x = f → p(x̄))

It only remains to be shown that [:=]= can be instantiated as indicated in the above

proof. This follows from Lemma 16 with the additional observation that the required

uniform substitution { f 7→ θ} of function symbol f of arity 0 without argument x̄ will

not cause a clash during US, because the only bound variable x in [:=]= is not free in

the substitution since x 6∈ V(θ).

Other proofs involving stuttering and renaming are possible. Direct proofs of F → [y :=θ ]G
by axiom [:=] are possible if the substitution is admissible.

(g) � F → [?ψ]G implies � F → (ψ → G). Since (ψ → G) ≺ [?ψ]G, because it has less

modalities, ⊢L F→ (ψ→G) is derivable by IH. Hence, with the remark after Lemma 16,

axiom [?] instantiates to [?ψ]G↔ (ψ→G), so derives ⊢L F→ [?ψ]G by propositional

congruence, which is used without further notice subsequently.

(h) � F → [β ∪ γ]G implies � F → [β ]G∧ [γ]G. Since [β ]G∧ [γ]G ≺ [β ∪ γ]G, because,

even if the propositional and modal structure increased, the structural complexity of

both hybrid programs β and γ is smaller than that of β ∪ γ (formula G did not change),

⊢L F → [β ]G∧ [γ]G is derivable by IH. Hence, with Lemma 16, axiom [∪] instantiates

to [β ∪ γ]G↔ [β ]G∨ [γ]G, so derives ⊢L F → [β ∪ γ]G by propositional congruence.

(i) � F → [β ;γ]G, which implies � F → [β ][γ]G. Since [β ][γ]G≺ [β ;γ]G, because, even

if the number of modalities increased, the overall structural complexity of the hybrid

programs decreased because there are less sequential compositions, ⊢L F → [β ][γ]G
is derivable by IH. Hence, with Lemma 16, ⊢L F → [β ;γ]G derives by axiom [;] by

propositional congruence.

(j) � F → [β ∗]G can be derived by induction as follows. Formula [β ∗]G, which expresses

that all numbers of repetitions of β ∗ satisfy G, is an inductive invariant of β ∗, because

[β ∗]G→ [β ][β ∗]G is valid, even provable by [∗]. Thus, its equivalent L encoding is also

an inductive invariant:

ϕ ≡ ([β ∗]G)♭.

Then F → ϕ and ϕ → G are valid (zero repetitions are possible), so derivable by IH,

since (F → ϕ) ≺ φ and (ϕ → G) ≺ φ hold, because ϕ is in L. As above, ϕ → [β ]ϕ
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is valid, and thus derivable by IH, since β has less loops than β ∗. By M[·] as well

as rule ind (from p(x̄)→ [a]p(x̄) conclude p(x̄)→ [a∗]p(x̄)), which derives from I,G

by Lemma 16, the respective rules can be instantiated by Lemma 16 and the resulting

derivations combine by MP:

F →ϕ

ϕ →[β ]ϕ
indϕ →[β ∗]ϕ

ϕ →G
M[·][β ∗]ϕ →[β ∗]G

MP ϕ →[β ∗]G
MP

F →[β ∗]G

(k) � F → 〈β ∗〉G. Let x be the vector of free variables FV(〈β ∗〉G). Since 〈β ∗〉G is a least

pre-fixpoint [17], for all dL formulas ψ with FV(ψ)⊆ FV(〈β ∗〉G):

� ∀x(G∨〈β 〉ψ → ψ)→ (〈β ∗〉G→ ψ)

In particular, this holds for a fresh predicate symbol p with arguments x:

� ∀x(G∨〈β 〉p(x)→ p(x))→ (〈β ∗〉G→ p(x))

Using � F → 〈β ∗〉G, this implies

� ∀x(G∨〈β 〉p(x)→ p(x))→ (F → p(x))

As (∀x(G∨〈β 〉p(x)→ p(x))→ (F → p(x))) ≺ φ , because, even if the formula com-

plexity increased, the structural complexity of the hybrid programs decreased, since φ
has one more loop, this fact is derivable by IH:

⊢L ∀x(G∨〈β 〉p(x)→ p(x))→ (F → p(x))

The uniform substitution σ = {p(x) 7→ 〈β ∗〉G} is admissible since FV(σ)= /0 as 〈β ∗〉G
has free variables x. Since, furthermore, p 6∈ Σ(F)∪Σ(G)∪Σ(β ), US derives:

∀x(G∨〈β 〉p(x)→ p(x))→ (F → p(x))
US ∀x(G∨〈β 〉〈β ∗〉G→ 〈β ∗〉G)→ (F → 〈β ∗〉G)

The dual 〈a∗〉p(x̄)↔ p(x̄)∨ 〈a〉〈a∗〉p(x̄) resulting from axiom [∗] with axiom 〈·〉 by

Lemma 16 continues this derivation by Lemma 16:

∀x(G∨〈β 〉〈β ∗〉G→ 〈β ∗〉G)→ (F → 〈β ∗〉G)

∗
[∗],〈·〉

G∨〈β 〉〈β ∗〉G→ 〈β ∗〉G
∀ ∀x(G∨〈β 〉〈β ∗〉G→ 〈β ∗〉G)

MP
F →〈β ∗〉G

Observe that rule ∀ (and MP) instantiates as needed with USR by Lemma 16.

This concludes the derivation of (9), because all operators 〈[α]〉 for the form (9) have been

considered. From (9), which is ⊢L ¬φ1→ 〈[α]〉φ2, hence, ⊢L φ1∨〈[α]〉φ2 derives proposition-

ally.
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This completes the proof of completeness (Theorem 17), because all syntactical forms of dL for-

mulas have been covered.

With the expected exceptions of loops and differential equations, the proof of Theorem 17 con-

firms that successive unification with axiom keys gives a complete proof strategy. The search for

applicable positions is deterministic using recursive computations as in Example 9. Loops and dif-

ferential equations need corresponding (differential) invariant search using parametric predicates

j(x,x′) as in Example 8.

This result proves that a very simple mechanism, essentially the single proof rule of uniform

substitution, makes it possible to prove differential dynamic logic formulas from a parsimonious

soundness-critical core with a few concrete formulas as axioms and without losing the complete-

ness that axiom schema calculi enjoy.

6 Conclusions

Uniform substitutions lead to a simple and modular proof calculus that is entirely based on axioms

and axiomatic rules, instead of soundness-critical schema variables with side-conditions in axiom

schemata and proof rules. The US calculus is straightforward to implement, since axioms are just

formulas and axiomatic rules are just pairs of formulas and since the uniform substitutions them-

selves have a straightforward recursive definition. The key ingredient enabling such modularity

for differential equations are differential forms that have a local semantics and make it possible

to reduce reasoning about differential equations to local reasoning about (inequalities or) equa-

tions of differentials. The increased modularity also enables flexible reasoning by fast contextual

equivalence that uniform substitutions provide almost for free.

Overall, uniform substitutions lead to a simple and modular, sound and complete proof calculus

for differential dynamic logic that is entirely based on axioms and axiomatic rules. Prover imple-

mentations merely reduce to uniform substitutions using the static semantics, starting from one

copy of each axiom and axiomatic rule. This leads to significantly simpler and more parsimonious

implementations. The soundness-critical core of the uniform substitution prover KeYmaera X [7],

for example, is 2.5% of the size of the core of the sequent calculus prover KeYmaera [21], which,

even if implemented in a different programming language, has more complex implementations of

proof rules and schema variable matching or built-in operators.

A Proofs

The proofs use the following classical results, where ∇g denotes the gradient of the function g so

the vector of all partial derivatives (if it exists).

Lemma 18 (Mean-value theorem [24, §10.10]). If f : [a,b]→ R is continuous and differentiable

in (a,b), then there is a ξ ∈ (a,b) such that

f (b)− f (a) = f ′(ξ )(b−a)
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Lemma 19 (Chain rule [25, §3.10]). If f : U → R
m is differentiable at t ∈U ⊆ R and g : V → R,

with f (U) ⊆ V ⊆ R
m, is differentiable at f (t) ∈ V , then g ◦ f : U → R is differentiable at t with

derivative

(g◦ f )′(t) = (∇g)
(

f (t)
)

· f ′(t) =
m

∑
j=1

∂g

∂y j

(

f (t)
)

f ′j(t)

Theorem 20 (Global uniqueness theorem of Picard-Lindelöf [26, §10.VII]). Let f : [0,a]×R
n→

R
n be a continuous function that is Lipschitz continuous with respect to y and let y0 ∈ R

n. Then,

there is a unique solution of the following initial value problem on [0,a]

y′(t) = f (t,y) y(0) = y0

Acknowledgment

This material is based upon work supported by the National Science Foundation under NSF CA-

REER Award CNS-1054246.

The views and conclusions contained in this document are those of the author and should not

be interpreted as representing the official policies, either expressed or implied, of any sponsoring

institution or government. Any opinions, findings, and conclusions or recommendations expressed

in this publication are those of the author(s) and do not necessarily reflect the views of any spon-

soring institution or government.

References

[1] Alonzo Church. A formulation of the simple theory of types. J. Symb. Log., 5(2):56–68,

1940.

[2] Alonzo Church. Introduction to Mathematical Logic, Volume I. Princeton University Press,

Princeton, NJ, 1956.

[3] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. HRELTL: A temporal logic for

hybrid systems. Information and Computation, 245:54–71, 2015. doi:10.1016/j.ic.

2015.06.006.

[4] Jennifer M. Davoren and Anil Nerode. Logics for hybrid systems. IEEE, 88(7):985–1010,

July 2000.
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