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1. Introduction
The matter-antimatter asymmetry in our Universe requires the violation of the CP symmetry.

Although it has been observed in B, D and K systems, the amount of CP violation in the Standard
Model (SM) is too low to reproduce the observed asymmetry, hence new sources of CP violation
are needed to explain this large imbalance. The CP-violating ratio ε ′/ε represents a fundamen-
tal test for our understanding of this phenomena. In the SM, this observable is proportional to
those Cabibbo-Kobayashi-Maskawa (CKM) matrix elements that account for the violation of this
symmetry, therefore any new source of CP violation should have a direct impact on this ratio.

The different sources of CP violation in K decays are parametrized by ε ′ and ε , which are
related with the branching ratios of the KL and KS decays into two pions,

η+− ≡
A(KL→ π+π−)

A(KS→ π+π−)
= ε + ε

′ , η00 ≡
A(KL→ π0π0)

A(KS→ π0π0)
= ε−2ε

′ . (1.1)

The dominant effect from CP violation in K mixing is contained in ε , and its experimental value is
a per-mill effect |ε| = (2.228±0.011) ·10−3 [3]. In the case of ε ′, which depends on the difference
between η+− and η00, the effect is tinier. Its experimental average [4, 5]

Re(ε ′/ε)exp = (16.6±2.3) ·10−4 , (1.2)

clearly demonstrates the existence of direct CP violation in K decays. In addition, its small size
makes it particularly sensitive to new sources of CP violation, providing a formidable way to search
for physics beyond the SM.

2. The fingerprints of K→ ππ decays
In this section, we explore the dynamical features of K→ ππ decays, taking into account the

experimental data. This goal requires to adopt the usual isospin decomposition of the physical
amplitudes [6]

A[K0→ π
+

π
−] = A0 ei χ0 +

1√
2

A2 ei χ2 = A1/2 +
1√
2
(A3/2 +A5/2) ,

A[K0→ π
0
π

0] = A0 ei χ0 −
√

2A2 ei χ2 = A1/2 −
√

2(A3/2 +A5/2) , (2.1)

A[K+→ π
+

π
0] =

3
2

A+
2 ei χ

+
2 =

3
2

(
A3/2 −

2
3

A5/2

)
,

where A1/2 ≡ A0eiχ0 , A3/2 +A5/2 ≡ A2eiχ2 and A3/2− (2/3)A5/2 ≡ A+
2 eiχ+

2 . In the isospin limit,
A0 and A2 = A+

2 are the decay amplitudes into (ππ)0,2 states, and χI can be identified with the
S-wave ππ scattering phase shifts δI . In the CP-conserving limit, the amplitudes AI are real and
positive. Using Eqs. (2.1) and the measured K→ ππ branching ratio, one obtains [7]

A0 = (2.704±0.001) ·10−7 GeV, A2 = (1.210±0.002) ·10−8 GeV, (2.2)

χ0−χ2 = (47.5±0.9)◦. (2.3)

When CP violation is turned on, the amplitudes A0,2 and A+
2 acquire imaginary parts, and ε ′ can be

written to first order in CP violation as

ε
′ =− i√

2
ei(χ2−χ0) ω

[
ImA0

ReA0
− ImA2

ReA2

]
= − i√

2
ei(χ2−χ0) ω

ImA0

ReA0

(
1− 1

ω

ImA2

ImA0

)
. (2.4)
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Taking into account Eqs. (2.2) and (2.3) together with Eq. (2.4), we can easily study the impact of
the K→ ππ dynamical properties on ε ′:

• Eqs. (2.2) exhibit the well-known “∆I = 1/2 rule”, i.e., a large enhancement of the isoscalar
isospin amplitude with respect the isotensor one,

ω
−1 ≡ ReA0

ReA2
≈ 22 , (2.5)

which directly implies a strong suppression of ε ′. In addition, any small isospin-breaking
correction to the ratio ImA2/ImA0 is enhanced by the factor ω−1 in Eq. (2.4).

• Furthermore, Eq. (2.3) shows that the S-wave ππ re-scattering generates a large phase-shift
difference between the I = 0 and I = 2 partial waves, which implies [8]

Abs(A1/2/A3/2)≈ Dis(A1/2/A3/2) . (2.6)

Thus, the absorptive contribution to this ratio is of the same size as the dispersive one. A good
theoretical control of both contributions is then mandatory to obtain a reliable prediction for
Re(ε ′/ε).

• The presence of absorptive contributions is a direct consequence of unitarity, which becomes
specially relevant for the isoscalar amplitude A1/2 ≡ A0 eiδ0 = Dis(A1/2) + iAbs(A1/2).
Using the known value of the I = 0 phase shift, δ0 = (39.2± 1.5)◦ [9], one immediately
obtains

A0 ≡ |A1/2| = Dis(A1/2)
√

1+ tan2 δ0 ≈ 1.3×Dis(A1/2) . (2.7)

Therefore, the absorptive contribution increases the numerical size of A0 by 30%.

• The absorptive amplitudes are generated by intermediate on-shell pions, through the Feynman-
diagram topology depicted in Figure 1. The dispersive and absorptive loop contributions are
related by analyticity. A large absorptive contribution implies a large dispersive loop correc-
tion.

Figure 1: One-loop contribution to K→ ππ with its absorptive cut in red.

3. Current estimate of ε ′/ε from lattice QCD
In 2015, the RBC-UKQCD collaboration published their first estimate of ε ′/ε [10, 11]:

Re(ε ′/ε)lattice = (1.4±6.9) ·10−4 . (3.1)

2
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This result is consistent with zero and shows a clear discrepancy of 2.1σ with the experimental
value given in Eq. (1.2). The disagreement has triggered many analyses of possible new physics
contributions in order to explain the apparent anomaly. However, one should realize the technical
limitations of this lattice estimate. For example, the phase shifts δ0,2 play a crucial role in the lattice
determination of ε ′/ε and provide a quantitative test of the obtained result. While the extracted
I = 2 phase shift is only 1σ away from its experimental value, the RBC-UKQCD collaboration
finds a I = 0 phase shift that disagrees with its experimental value by 2.9σ . This discrepancy is
much larger than the one exhibited by their ε ′/ε result.

Therefore, it is still premature to derive strong implications from the 2015 RBC-UKQCD
lattice data, since the important effects of ππ re-scattering are still not well reproduced in the I = 0
amplitude. Efforts towards a better lattice determination are under way [12, 13].

Notice that the recent claims of an ε ′/ε anomaly, from groups using analytical methods [14],
are based on simplified calculations which either use the RBC-UKQCD matrix elements (with
somewhat smaller uncertainties) or adopt model-dependent K → ππ amplitudes without any ab-
sorptive components, missing completely the important ππ re-scattering corrections.

4. Multi-scale framework
Due to the presence of widely separated mass scales (Mπ < MK � MW ), the theoretical de-

scription of the K → ππ decays requires the use of two different effective field theories (EFTs).
Above the electroweak scale MW , all flavour-changing processes are described in terms of quarks,
leptons and gauge bosons. We can apply the renormalization group equations and the operator
product expansion to go down to low-energy scales (∼1 GeV), integrating out all the heavy parti-
cles in the way. Finally, one obtains the effective ∆S = 1 short-distance Lagrangian [15]

L ∆S=1
eff = −GF√

2
Vud V ∗us

10

∑
i=1

Ci(µ)Qi(µ) , (4.1)

which is a sum of local four-fermion operators that are weighted by the Wilson coefficients,
Ci(µ) = zi(µ)+ τ yi(µ). The dependence on the CKM matrix elements is carried by the global
Vud V ∗us factor and the parameter τ ≡ −VtdV ∗ts/(VudV ∗us) that contains the CP-violating phase. The
information on the heavy masses has been absorbed into the Wilson coefficients Ci(µ), which are
known at next-to-leading-order (NLO) [16–19]. Some next-to-next-to-leading-order (NNLO) cor-
rections [20, 21] are already known and efforts towards a complete calculation at the NNLO are
currently under way [22].

Below the resonance region where the physics of study is defined in terms of Goldstone
bosons (π , K, η), one can use symmetry considerations in order to build an EFT valid in this
non-perturbative regime. Chiral Perturbation Theory (χPT) provides a formidable theoretical
framework to describe the pseudoscalar-octet dynamics as a perturbative expansion in powers of
momenta and quark masses over the chiral symmetry-breaking scale Λχ . Using the chiral sym-
metry, we can build all the allowed operators with exactly the same symmetry properties as the
short-distance Lagrangian (4.1). To lowest order, the chiral realization of L ∆S=1

eff contains three
operators

L ∆S=1
2 = G8 L8 + G27 L27 + G8 gewk Lewk , (4.2)

3
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with their respective low-energy couplings (LECs) G8, G27 and G8 gewk encoding all quantum
information from high-energy scales [23]. The determination of these LECs requires to perform
a matching between both Lagrangians (4.1) and (4.2) in a common region of validity. However,
performing consistently this matching is a very challenging task that still remains unsolved. The
large-NC limit provides a partial solution to this problem. In this limit, the T-product of two colour-
singlet currents factorizes and, since we have a well-known representation for these currents in
χPT, the matching can be done at leading order in the 1/NC expansion. It is important to remind
that the missing NLO contributions to the matching are not enhanced by any large logarithms.

5. Isospin-breaking corrections to ε ′/ε

Eqs. (2.4) and (2.5) exhibit the important role of isospin-breaking effects in ε ′/ε . Including
these corrections, Re(ε ′/ε) can be written as [6, 24]

Re
(

ε ′

ε

)
= − ω+√

2 |ε|

[
Im A(0)

0

Re A(0)
0

(1−Ωeff)−
Im Aemp

2

Re A(0)
2

]
, (5.1)

where the superscript (0) denotes the isospin limit, Im Aemp
2 contains the I = 2 contribution from

the electromagnetic penguin operators and ω+ ≡ Re A+
2 /Re A0. The parameter Ωeff contains the

isospin-breaking corrections. Implementing the current improvements on the inputs that enter in
this parameter, we have updated the Ωeff prediction with the result [1]

Ωeff = (11.0 +9.0
−8.8) ·10−2 , (5.2)

which agrees within errors with the previous determination [6, 24] but has a larger central value.

6. Strong cancellation in simplified analyses

The CP-odd amplitudes ImA0,2 are mainly dominated by (V −A)× (V +A) operators because
they have a chiral enhancement that can be easily estimated in the large-NC limit. Due to the
size of yi(µ), it is a good numerical approximation to consider only Q6 and Q8 and neglect the
contributions to ImA0,2 from other operators. With this rough estimation, one obtains [2]

Re(ε ′/ε) ≈ 2.2 ·10−3
{

B(1/2)
6 (1−Ωeff)−0.48B(3/2)

8

}
, (6.1)

where B(1/2)
6 and B(3/2)

8 parametrize the deviations of the true hadronic matrix elements from their
large-NC approximations B(1/2)

6 = B(3/2)
8 = 1, which do not include any absorptive contribution.

Taking Ωeff = 0.11 [1], Eq. (6.1) gives Re(ε ′/ε) ≈ 0.9 · 10−3 at NC → ∞; the same order of mag-
nitude as its experimental value in Eq. (1.2). In contrast, with the values adopted in Ref. [14],
B(1/2)

6 = 0.57, B(3/2)
8 = 0.76 and Ωeff = 0.15, one gets Re(ε ′/ε) ≈ 2.6 ·10−4, one order of magni-

tude smaller than (1.2). Clearly, with this choice of B6,8 parameters, the simplified approximation
in Eq. (6.1) suffers a strong cancellation between the different contributions.

We can go one step further and include naively the chiral loop corrections [6, 25–27] (Fig-
ure 1). These contributions are mainly dominated by ∆LA

(8)
1/2 and ∆LA

(g)
3/2 , which imply the follow-

ing shifts, B(1/2)
6 →|1+∆LA

(8)
1/2 |B

(1/2)
6 ≈ 1.35B(1/2)

6 and B(3/2)
8 →|1+∆LA

(g)
3/2 |B

(3/2)
8 ≈ 0.54B(3/2)

8 ,
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Set-up B(1/2)
6 B(3/2)

8 Re(ε ′/ε)

Large NC +FSII=0,2 1.35 0.54 2.1 ·10−3

Large NC|I=0 + LQCDI=2 +FSII=0 1.35 0.76 1.7 ·10−3

LQCD +FSII=0
∗ 0.77 0.76 0.6 ·10−3 †

Table 1: Naive estimates of Re(ε ′/ε), including some final-state interactions (FSI) in Eq. (6.1).

in Eq. (6.1). With this shifts in mind, we can again estimate Re(ε ′/ε) for different setups, see Ta-
ble 1. We can observe that the chiral loop corrections destroy the strong numerical cancellation in
Eq. (6.1), yielding results of the same order of magnitude as the experimental measurement.

7. Standard Model prediction for ε ′/ε in χPT
With the theoretical framework presented in Section 4, which includes all four-fermion opera-

tors (not only Q6 and Q8), the full 1-loop χPT contributions and the new updated isospin-breaking
corrections given by Eq. (5.2), our SM prediction for Re(ε ′/ε) [1],

Re
(
ε
′/ε
)
=
(
13.8±1.3γ5±2.5LECs±3.51/NC

)
·10−4 = (14 ± 5) ·10−4 , (7.1)

is in excellent agreement with the experimental world average in Eq. (1.2). Eq. (7.1) displays the
three different sources of uncertainty in Re(ε ′/ε). The first error reflects the choice of scheme
for γ5. The second error originates from the input values of the strong LECs L5,7,8. The last error
parametrizes our ignorance about 1/NC-suppressed contributions in the matching region which
have been estimated very conservatively through the variation of µSD and νχ in the intervals
[0.9,1.2]GeV and [0.6,1] GeV, respectively. Further details can be found in Ref. [1].
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