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Abstract
We show that the Plebanski based approach to transformation optics overlooks some subtleties
in the electrodynamics of moving dielectrics that restricts its applicability to a certain class of
transformations. An alternative, completely covariant, approach is developed that is more
generally applicable and provides a clearer picture of transformation optics.
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1. Introduction

The concept of transformation optics enables coordinate
transformations on electromagnetic fields to be physically
realized as complex materials. This idea, applied to
electromagnetic fields, originated with Pendry [1], who pointed
out the specific relationship between spatial transformations
and material properties, and demonstrated how it could be
used to create novel devices. Earlier, closely related work by
Greenleaf et al [2] developed a similar concept for electric
current flow and applied it to impedance tomography. The
original descriptions of transformation optics were formulated
for purely spatial transformations [3, 4]. Based on a theoretical
foundation developed by Plebanski [5] and De Felice [6],
Leonhardt and Philbin [7] described transformation optics in
terms of differential geometry and provided a recipe for the
material constitutive relations for transformations that involve
both space and time.

However, the Plebanski/De Felice based formulation is
non-covariant, and part of the interpretation of Leonhardt
and Philbin overlooks some subtleties of electrodynamics in
moving dielectrics, restricting its validity to a certain class of
transformations. These arise from a non-covariant matching
of the constitutive relations in a curved, vacuum space–
time with the constitutive relations for an isotropic moving
dielectric. We show that such a matching cannot be made for
a more general, anisotropic moving dielectric. It is possible

to make such an identification with a stationary (i.e. at rest
with respect to the frame in which the fields are defined)
dielectric with non-vanishing magneto-electric coupling, but
this can only be identified with a velocity if the material is
isotropic. Moreover, the applicability of these non-covariant
formulations to complex initial materials is limited. Although
special cases have been addressed in the literature [8], a
completely general formulation is lacking.

Here we present a completely covariant approach that is
valid for all transformations, materials and material motion.
Based on a modern, completely covariant, description of
classical electrodynamics, it allows for a more rigorous and
clear explanation of the concept behind, and interpretation of,
transformation optics. This approach attempts to provide a
systematic framework for the study of transformation optics
and could be especially useful for applications involving
moving objects and general relativistic corrections.

The paper is organized as follows: in section 2 we
review the completely covariant theory of electrodynamics
in modern language. Section 3 discusses electrodynamics
in moving dielectrics and the differences between isotropic
and anisotropic moving dielectrics; in particular how the
non-covariant equations differ for isotropic and anisotropic
materials. Section 4 outlines the Plebanski based approach,
and explains the subtleties involved when taking into account
the discussion of section 3. Section 5 describes the concept
behind transformation optics and presents an interpretation
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consistent with the development of section 2. The main results
for applications in transformation optics are equations (29)
and (30). A variety of examples are given in section 6 in order
to both illustrate the details of the procedure and to demonstrate
agreement with known results obtained through other means.
We conclude with section 7 and discuss possible extensions of
this work to more general materials.

2. Modern electrodynamics

In modern parlance, classical electrodynamics is formulated
in very geometric terms. In fact the homogeneous Maxwell
equations are simply constraints on the fields imposed by the
space–time geometry, and are a purely geometric condition.
The inhomogeneous vacuum equations arise quite naturally
from an action principle and a dual operation possessed by a
manifold equipped with a metric. We follow the development
and sign convention of [9], and make use of the Einstein
summation convention where repeated indices are summed
over. The metric gαβ (or its inverse gαβ ) lowers (raises) indices,
and for the speed of light we use c = 1. For more details on
the geometric foundations of electrodynamics the reader may
consult a myriad of excellent sources such as [10–12].

To make this more concrete, we begin with the connection
covector A = Aμ (the covariant version of the contravariant
four-vector potential Aμ), the field strength F = Fμν is
an antisymmetric tensor defined as the exterior derivative (a
generalization of the differential of a function) of A:

F = dA, Fμν = Aν,μ − Aμ,ν (1)

where the comma indicates a derivative. The components of F
can be represented as a matrix, and for Minkowski space–time
in Cartesian coordinates have the values

Fμν =
⎛
⎜⎝

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎞
⎟⎠ . (2)

The field strength tensor F encodes some information
about the fields, namely the electric field strength and the
magnetic flux. On the other side of this coin, the magnetic field
strength and the electric flux are encoded in another tensor G,
called the excitation tensor. The components of G can also
be represented as a matrix, and for Minkowski space–time in
Cartesian coordinates these have the values

Gμν =
⎛
⎜⎝

0 Hx Hy Hz

−Hx 0 Dz −Dy

−Hy −Dz 0 Dx

−Hz Dy −Dx 0

⎞
⎟⎠ . (3)

In much of the existing literature the matrix expression
given for G is not equation (3) but rather has Ha and Da

interchanged. However, this obscures the physical nature of the
fields, where, for example, the electric flux must be the purely
spatial part of G. The origin of the difference in definitions of
G and further implications of this difference will be discussed
elsewhere [13]. It is sufficient to know that, as the proper dual

of F, G exists on an equal tensor footing and transforms as a
tensor rather than as a ‘tensor density’, which is an unnecessary
complication.

The completely covariant forms of Maxwell’s equations
are

dF = 0. (4)

and

dG = J (5)

where J = Jαβγ is the covariant charge-current three-index
tensor.

There remains one piece of the electrodynamics puzzle: an
equation describing how F and G are related. The most natural
way to define such a constitutive relation uses an operation �,
called the Hodge dual, that on a four-dimensional manifold
with a metric g = gμν takes a covariant tensor and returns
another covariant tensor such that

(�F)μν = 1
2

√|g|εμναβ gαγ gβδ Fγ δ, (6)

where εμναβ is the totally antisymmetric Levi–Civita symbol.
This means that � can be represented as a tensor with
components

�αβ
μν = 1

2

√|g|εαβσρ gσμgρν, (7)

and contains information about the space–time. The
components of �F can also be represented as a matrix, and
for Minkowski space–time in Cartesian coordinates have the
values

(�F)μν =
⎛
⎜⎝

0 Bx By Bz

−Bx 0 Ez −Ey

−By −Ez 0 Ex

−Bz Ey −Ex 0

⎞
⎟⎠ . (8)

The constitutive equation is

G = χ(�F), (9)

which in component form reads

Gμν = χμν
αβ(�F)αβ . (10)

The tensor χ contains information on the properties of
the dielectric material including permittivity, permeability
and magneto-electric couplings, and can be thought of as
representing an averaging over all the material contributions
to an action that describes a more fundamental quantum field
theory. To retain the desired properties and usual notions of G
and F, χ must be independently antisymmetric on its first two
and last two indices, and in a vacuum χ(�F) = �F. Additional
symmetry conditions are frequently imposed [14, 15] for
various reasons not considered here because we would like to
be able to describe very general materials [16, 17], but the last
condition is sufficientto uniquely specify all components of χ

2
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for the vacuum; they are

χvac = (χvac)γ δ
σρ = 1

2

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

Equation (11) expresses χ as a matrix of matrices, the first
two indices of χαβ

μν give the αβ component of the large
matrix, which is itself a matrix described by the second set
of indices. The component values of χ for the vacuum are
unique and independent of the coordinate system. For a
more general material, the component values can easily be
determined by simply matching the results of the constitutive
equation G = χ(�F) with the usual flat-space constitutive
relations in a particular coordinate system. The components
of the constitutive equation provide a set of six independent
equations that can locally be collected in the form

�H = μ̌−1 �B + γ̌1
∗ �E, �D = ε̌∗ �E + γ̌2

∗ �B (12)

where we use the notation ǎ to denote a 3 × 3 matrix.
Rearranging these to

�B = μ̌ �H + γ̌1 �E, �D = ε̌ �E + γ̌2 �H (13)

gives the more familiar representation for the constitutive
relations. These three-dimensional representations of the
completely covariant equation (9) are essentially equivalent,
and it is a simple matter to switch between them using the
relations

μ̌ = (
μ̌−1

)−1
, ε̌ = ε̌∗ − γ̌2

∗
μ̌γ̌1

∗
,

γ̌1 = −μ̌γ̌1
∗
, γ̌2 = γ̌2

∗
μ̌.

(14)

However, one should be aware that these 3×3 matrices are not
tensors but simply components of χ that have been collected
into matrices. To recover the usual component relations of
equation (12) the constitutive equation G = χ(�F) allows us
to make the identification

χ
σρ

γ δ = 1
2

⎛
⎜⎝

A ∗ ∗ ∗
B A ∗ ∗
C D A ∗
E F G A

⎞
⎟⎠ . (15)

where

A =
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠

B =

⎛
⎜⎜⎝

0 −μ−1
xx −μ−1

xy −μ−1
xz

μ−1
xx 0 −γ1xz γ1xy

μ−1
xy γ1xz 0 −γ1xx

μ−1
xz −γ1xy γ1xx 0

⎞
⎟⎟⎠

C =

⎛
⎜⎜⎝

0 −μ−1
yx −μ−1

yy −μ−1
yz

μ−1
yx 0 −γ1yz γ1yy

μ−1
yy γ1yz 0 −γ1yx

μ−1
yz −γ1yy γ1yx 0

⎞
⎟⎟⎠

D =
⎛
⎜⎝

0 −γ2zx −γ2zy −γ2zz

γ2zx 0 −εzz εzy

γ2zy εzz 0 −εzx

γ2zz −εzy εzx 0

⎞
⎟⎠

E =

⎛
⎜⎜⎝

0 −μ−1
zx −μ−1

zy −μ−1
zz

μ−1
zx 0 −γ1zz γ1zy

μ−1
zy γ1zz 0 −γ1zx

μ−1
zz −γ1zy γ1zx 0

⎞
⎟⎟⎠

F =
⎛
⎜⎝

0 γ2yx γ2yy γ2yz

−γ2yx 0 εyz −εyy

−γ2yy −εyz 0 εyx

−γ2yz εyy −εyx 0

⎞
⎟⎠

G =
⎛
⎜⎝

0 −γ2xx −γ2xy −γ2xz

γ2xx 0 −εxz εxy

γ2xy εxz 0 −εxx

γ2xz −εxy εxx 0

⎞
⎟⎠

where the ∗ indicates entries that are antisymmetric on either
the first or second set of indices on χγδ

σρ .

3. Electrodynamics of moving dielectrics

Consider a dielectric material moving with uniform velocity
with respect to the lab frame. The material properties of
the dielectric are known in the material frame—the frame at
rest with the material—and are described by permittivity ε̌,
permeability μ̌ and magneto-electric couplings γ̌1 and γ̌2. For
a field tensor F measured in the lab frame, the components of
F relative to the material frame are found by changing to the
material frame with a Lorentz transformation, L [9, 18]

F′ = L(F) ⇒ Fα′β ′ = Lα
α′ Lβ

β ′ Fαβ. (16)

Inside the material, G′ = L(G) is now related to F′ by the
usual constitutive equation G′ = χ(�F′), or

L(G) = χ(L(�F)), (17)

resulting in expressions involving combinations of �D and �H
in terms of combinations of �E and �B. On the other hand, the
inverse transformation of G′,

G = L−1[χ(L(�F))], (18)

gives direct expressions for the components forming �D and
�H . Furthermore, since the constitutive map G = χ(�F) is

3
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totally covariant, a third representation can be obtained by
transforming χ from the material frame back to the lab frame

G = (L−1(χ))(�F). (19)

Equations (17)–(19) provide equivalent representations
for the constitutive relations in a moving dielectric, are the
most convenient notation for dealing with electrodynamics in
a four-dimensional, covariant way and are valid for arbitrary
space–times and transformations. If one insists on expressing
these four-dimensional relations in terms of three-vectors, then
for the special case of a dielectric material moving through the
Minkowski vacuum with uniform velocity,

�H +( �D× �β) = μ̌−1[ �B +( �E × �β)]+γ̌1
∗[ �E −( �B × �β)], (20a)

�D − ( �H × �β) = ε̌∗[ �E − ( �B × �β)]+ γ̌2
∗[ �B + ( �E × �β)]. (20b)

These equations are typically shown in the literature only
for the restricted case where the material is isotropic, ε̌ = ε,
μ̌ = μ, and has no magneto-electric coupling, γ̌1 = γ̌2 = 0
(see, e.g., [14]). For this restricted case, the low velocity limit
is

�D = ε �E + (εμ − 1)( �β × �H), (21a)

�B = μ �H − (εμ − 1)( �β × �E). (21b)

While these isotropic, low velocity results may be the
most familiar, they are not correct when ε̌ and μ̌−1 are matrix
valued. Indeed, following the same procedure leading from
equations (20) to (21) with matrix-valued ε̌ and μ̌−1 and with
γ̌1 = γ̌2 = 0, leads instead to

�D = ε̌ �E + ε̌( �β × μ̌ �H) − ( �β × �H), (22a)

�B = μ̌ �H + μ̌(ε̌ �E × �β) − ( �E × �β). (22b)

Matrix multiplication is not commutative with the cross
product. The difference in going from an isotropic material
to an anisotropic material may seem trivial at first—and this
is true when one maintains covariance, as in equation (20)—
but by giving up covariance in passing to the low velocity
limit the results change significantly. Even diagonality of ε̌

and μ̌−1 is not sufficient, one may readily show that recovering
equations (21) requires pure isotropy.

4. Plebanski based transformation optics

Plebanski [5] previously studied the propagation of elec-
tromagnetic waves in gravitational fields, and much of the
current analysis in transformation optics is based on his
results. Consider the propagation of electromagnetic waves
in a vacuum space–time described by an arbitrary metric gαβ .
Using gαβ and χ = χvac in equation (9), the constitutive
relations for this vacuum space–time can be written

Da = −
√|g|
g00

gab Eb + εabc
g0b

g00
Hc, (23a)

Ba = −
√|g|
g00

gab Hb − εabc
g0b

g00
Ec. (23b)

Written this way these equations are not, as cautioned by
Plebanski, covariant. Notice that while they still sum over
repeated indices they do not conserve index type. Comparing
with the results for a moving dielectric in the low velocity
limit, equations (21), it would appear that a dielectric moving
with low velocity through vacuum Minkowski space–time with
permeability and permittivity

ε̌ = μ̌ = −
√|g|
g00

gab, (24)

and (scaled) velocity

vb = g0b

g00
, (25)

will reproduce the same field relations as the arbitrary vacuum
space–time.

However, as we have seen in section 3, equations (21) are
only valid when the material is isotropic and therefore this
approach is not valid in general. The problem stems from
attempting to match the covariant expressions (23) with the
non-covariant equations (21). It is clear that such a matching
cannot be made with the more general equations (22). This
method, therefore, only works when the material is isotropic
(in which case equations (22) reduce to equations (21)), or
when g0b = 0 for all b (in which case the velocity must be
assumed zero).

Despite these restrictions, this approach frequently gives,
or appears to give, correct results. This is because there is a
case where the covariant equations (23) can be matched with a
covariant expression in dielectrics. Remember that the general
constitutive relations for a stationary (at rest with respect to
the frame in which the fields are defined) dielectric can be
written in the form of either equations (12) or (13), which
are related by equations (14). Matching equation (13) with
equations (23), one could identify ε̌ and μ̌ as in equation (24)
but with magneto-electric coupling

γ̌2
T = γ̌1 = −εabc

g0b

g00
. (26)

It is important to realize that when trying to match
equations (23) with equation (13), that the �E , �B , etc found
in equation (13) are not actually vectors but components of
either 1-forms or 2-forms, and that interchanging a 1-form with
a vector is only trivial in Minkowski space–time. It is also
important to realize that this magneto-electric coupling cannot
always be simply interpreted as a velocity. Indeed, returning to
the more general equations (20) one can find the low velocity
limits (again in Minkowski space–time)

�D = ε̌ �E + γ̌2 �H − ε̌(μ̌ �H × �β) + ( �H × �β) − ε̌(γ̌1 �E × �β)

+ γ̌2(ε̌ �E × �β) + γ̌2(γ̌2 �H × �β), (27a)

�B = μ̌ �H + γ̌1 �E + μ̌(ε̌ �E × �β) − ( �E × �β) + μ̌(γ̌2 �H × �β)

− γ̌1(μ̌ �H × �β) − γ̌1(γ̌1 �E × �β), (27b)

from which it should be clear that the only way to identify
a magneto-electric coupling with a velocity is to replace a
stationary magneto-electric material with an isotropic moving
dielectric with no magneto-electric coupling. Instead, it is
better to employ a fully covariant procedure based on the

4
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theory as developed thus far, which is not only valid for a very
general class of materials and arbitrary dielectric motions [8],
but more clearly distinguishes between the material and space–
time contributions, and is also valid for arbitrary background
space–times, such as the weakly curved space–time around
Earth.

5. Transformation optics

Due to the apparent limitations and non-covariance of the
Plebanski/De Felice based approach to transformation optics,
we ask whether there is a more general approach. By
following the covariant development of electrodynamics in the
previous sections we find that there is. In an attempt to more
clearly tie the concept to the method, consider the following
interpretation of transformation optics.

Start with an initial space–time manifold (M, g, �), field
configuration (F, G, J) and material distribution χ , where
dF = 0, dG = J and G = χ(�F). Imagine now a map
T : M → M̃ ⊆ M that maps M to some image M̃ and
transforms the electromagnetic fields in some smooth way to
a new configuration (F̃, G̃, J̃). Because the underlying space–
time is physically unaltered the manifold is still described by
(M, g, �). But for the new field configuration to be physically
supported there must exist a new material distribution χ̃ . Thus
on the image M̃ we must have dF̃ = 0, dG̃ = J̃ and G̃ =
χ̃(�F̃). Such a transformation could, for example, map M to
an image M̃ that contains a hole, i.e. a region from which the
fields will be excluded, as in the case of an electromagnetic
cloak [1, 19].

Using the inverse T of the map T (but see the remarks
below), we can relate the initial F and G to the final F̃ and G̃
by an operation called the pullback of T , which we denote as
T ∗. Schematically, this means that we have the relation

G̃ = T ∗(G) = T ∗(χ(�F)) = χ̃(�T ∗(F)). (28)

This can be solved for χ̃ as a function of x ∈ M̃ to find [13]

χ̃λκ
τη(x)

= −�α
λ�

β
κχαβ

μν
∣∣
T (x)

�μν
σρ
∣∣
T (x)

(�−1)πσ (�−1)θ ρ �πθ
τη.

(29)

In equation (29) Λ is the Jacobian matrix of T , Λ−1 is the
matrix inverse of Λ, both Λ and Λ−1 are evaluated at x , and
in solving for χ̃ we have made use of the fact that on a four-
dimensional Lorentzian manifold, acting twice with � returns
the negative, � � F = −F.

Note that the initial material parameters must be evaluated
at T (x), but if the initial space–time is a vacuum, then since
χvac� = �,

χ̃λκ
τη(x) = −�α

λ�
β

κ �αβ
σρ
∣∣
T (x)

(�−1)πσ (�−1)θ ρ �πθ
τη,

(30)
where one � is evaluated at T (x) and everything else is
evaluated at x . The prescriptions of equations (29) or (30) are
meaningful only for points x ∈ M̃ . So for transformations
such as the electromagnetic cloak, where there is a hole in
M̃ , the material parameters inside the hole are unspecified and

completely arbitrary. In this way, any uncharged material may
be hidden inside the cloak without affecting the behaviour of
the fields outside.

Equation (29) is the core of transformation optics. Start
with a given space–time with metric g and associated dual �,
and with given dielectric material properties described by the
tensor χ . The initial space–time may be Minkowski and the
initial dielectric may be the vacuum, but this is not necessary.
We imagine a transformation that changes the fields in some
way. We ask what χ̃ is required to physically achieve such a
transformation. The answer is given by equation (29).

Two final remarks are in order. One is to note that the
crucial map is not T but rather T . So one could just as well start
with some map that here we label T , and completely ignore T .
This is important because a given T may not have an inverse, so
we must assume that the given T is well defined on its domain,
M̃ . But for practical purposes T can be thought of as the
inverse of T . Secondly, while equations (29) and (30) would be
quite difficult to evaluate by hand, a modern computer algebra
package makes the calculations almost trivial.

6. Examples

The completely covariant approach to transformation optics
developed above provides a concrete and powerful framework
for analysing any desired configuration of fields and linear
dielectric materials in any space–time and with any relative
velocities. This section presents some examples to illustrate
the usefulness of the covariant approach described above and
shows that it recovers previous results obtained through other
means. In these examples we use a notation whereby the
point (t ′, x ′, y ′, z′) is a point in the original, vacuum, space–
time, while a point (t, x, y, z) is a point in the space–time
plus material. We seek to describe the material properties as
a function of the unprimed coordinates, χ(t, x, y, z).

6.1. Spatial inversion

For a simple inversion of one spatial coordinate, the
transformation

T (t ′, x ′, y ′, z′) = (t, x, y, z) = (t ′,−ax ′, y ′, z′) (31)

forms the basis for a ‘superlens’ [20, 21] and has the inverse
map

T (t, x, y, z) = (t ′, x ′, y ′, z′) =
(

t,− x

a
, y, z

)
. (32)

The Jacobian matrix of T is �α
β = diag(1,−1/a, 1, 1). Using

this in equation (30) results in a χ̃ , that, upon comparison with
equation (15), leads to

ε̌ = μ̌ =
⎛
⎝

−a 0 0
0 − 1

a 0
0 0 − 1

a

⎞
⎠ , γ̌1 = γ̌2 = 0. (33)

6.2. Temporal inversion

On the other hand, inverting the time coordinate with the
transformation

T (t ′, x ′, y ′, z′) = (t, x, y, z) = (−at ′, x ′, y ′, z′) (34)
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leads to

ε̌ = μ̌ =
(−a 0 0

0 −a 0
0 0 −a

)
. (35)

Of course, replacing a → −a in the previous example
corresponds to a simple stretching of the time coordinate, and
the result is the same as equation (35) with a → −a. Both
this example and the previous highlight the ease with which the
completely covariant method handles coordinate inversions—a
concern raised in [21].

6.3. Spatial dependent time transformation

Next consider a transformation that has also been analysed in
more detail from the perspective of creating frequency-altering
linear materials, using other methods [22], namely

T (t ′, x ′, y ′, z′) = (t, x, y, z) = ((ax ′ + b)t ′, x ′, y ′, z′). (36)

In this case the inverse map is

T (t, x, y, z) = (t ′, x ′, y ′, z′) =
(

t

ax + b
, x, y, z

)
, (37)

and the Jacobian matrix of T is

�μ
ν =

⎛
⎜⎝

1
ax+b − at

(ax+b)2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ . (38)

The next step is to calculate χ̃ using equations (30). The results
can be extracted from identifications with equation (15), and
written in the representation of equation (12) as

ε̌∗ =
⎛
⎝

ax + b 0 0
0 ((ax+b)2+at)((ax+b)2−at)

(ax+b)3 0

0 0 ((ax+b)2+at)((ax+b)2−at)
(ax+b)3

⎞
⎠ ,

μ̌−1 = 1

ax + b

( 1 0 0
0 1 0
0 0 1

)
,

γ̌1
∗ = −γ̌2

∗T = at

(ax + b)2

( 0 0 0
0 0 −1
0 1 0

)
.

(39)

When rewritten in the more common representation of
equation (13) they become

ε̌ = μ̌ = (ax + b)

( 1 0 0
0 1 0
0 0 1

)
,

γ̌1 = γ̌2
T = at

ax + b

( 0 0 0
0 0 −1
0 1 0

)
.

(40)

This example highlights the slight difference in the meaning of
what we are calling ε̌∗, μ̌−1, γ̌1

∗ and γ̌2
∗ and the interpretation

of these quantities based on the representation of equation (13).
This difference arises only when non-zero magneto-electric
coupling terms are present, and it is easy to switch between
the two representations using equation (14). While the
computation and manipulation of large matrices like χ may see
rather daunting, the use of a modern computer algebra package
makes the calculations almost trivial.

6.4. Time dependent spatial transformation

Having looked at the behaviour exhibited by a spatially
dependent time transformation, it is natural to next enquire
about a time dependent spatial transformation. Let the
transformation be

T (t ′, x ′, y ′, z′) = (t, x, y, z) = (t ′, (at ′ + b)x ′, y ′, z′). (41)

The associated map T is

T (t, x, y, z) = (t ′, x ′, y ′, z′) =
(

t,
x

at + b
, y, z

)
, (42)

and the Jacobian matrix of T is

�μ
ν =

⎛
⎜⎝

1 0 0 0
− ax

(at+b)2
1

at+b 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ . (43)

Proceeding as before and expressing the results in the
representation of equation (13),

ε̌ = μ̌ = (at + b)3

(at + b)4 − a2x2

⎛
⎝

(at+b)4−a2x2

(at+b)2 0 0
0 1 0
0 0 1

⎞
⎠ ,

γ̌1 = γ̌2
T = ax(at + b)

(at + b)4 − a2x2

( 0 0 0
0 0 −1
0 1 0

)
.

(44)

It is interesting to compare the last few examples. In the
cases of a simple scaling of t versus a spatially dependent
transformation of t , the resultant materials have similar
characteristics in that ε̌ is isotropic and scales like t , while
the mixing of space and time introduces a magneto-electric
coupling. According to the discussion in section 4, because the
resulting material is isotropic, this magneto-electric coupling,
if small enough, could arise from a small material velocity. So
the resulting material could be considered as being either at rest
and possessing a magneto-electric coupling, in motion with no
magneto-electric coupling, or some combination of the two.

Turning to the cases of a simple scaling of x versus a
time dependent transformation of x , ε̌xx still scales like x ,
but ε̌yy = ε̌zz have totally different behaviours in each case.
Again the mixing of space and time introduces a magneto-
electric coupling, but this time, because the resulting material
is not isotropic, these magneto-electric couplings cannot be
interpreted as a material velocity.

To verify the material parameters obtained here, a
validation calculation must be performed. Such a calculation
should be based on a combined space–time transformation in a
complex initial material to demonstrate the full generality of
our approach. Such a calculation, however, requires an in-
depth analysis of both the initial medium and the transformed
medium that is beyond the scope of this paper, which is
intentionally a focused description and formulation of the new
idea. However, such work is in progress.
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6.5. Square cloak

To demonstrate agreement with previous results, consider now
the well known, but non-trivial, example of a square cloak,
studied by Rahm et al [19]. In this example the transformation
is a map T piecewise defined by

T (t ′, x ′, y ′, z′) = (t, x, y, z) =
(

t, x ′
(

s2 − s1

s2

)

+ s1, y ′
(

s2 − s1

s2
+ s1

x ′

)
, z′
)

, (45)

for (0 < x ′ � s2), (−s2 < y ′ � s2), |y ′| < |x ′|, and |z ′| < ∞,
and T (t ′, x ′, y ′, z′) = (t, x, y, z) elsewhere. Again, we are
really only interested in the inverse of this map, which we take
to be piecewise defined by

T (t, x, y, z) = (t ′, x ′, y ′, z′)

=
(

t,
s2

s2 − s1
(x − s1),

s2(x − s1)y

(s2 − s1)x
, z

)
, (46)

for (s1 � x � s2), (−s2 < y � s2) with |y| < |x | and
|z| < ∞, and T (t, x, y, z) = (t ′, x ′, y ′, z′) for x > s2. This
map is not defined for x < s1, so χ is undetermined and
therefore arbitrary in this region. The Jacobian matrix of T
is

�α
β =

⎛
⎜⎜⎝

1 0 0 0
0 s2

s2−s1
0 0

0 ys1s2

x2(s2−s1)

s2(x−s1)

x(s2−s1)
0

0 0 0 1

⎞
⎟⎟⎠ . (47)

Turning the crank on equation (30), and comparing with
equation (15), the components of ε̌ and μ̌ can be identified
and gathered in matrix form as

ε̌ = μ̌ =
⎛
⎜⎝

1 − s1
x −s1

y
x2 0

−s1
y

x2
x4+s2

1 y2

x3(x−s1)
0

0 0 s2
2 (x−s1)

x(s1−s2)2

⎞
⎟⎠ , (48)

and γ̌1 = γ̌2 = 0, which are exactly the results obtained in [19].
Note that the domain of T , (s1 � x � s2), (−s2 < y � s2)

with |y| < |x | and |z| < ∞, also dictates the domain of ε̌ = μ̌,
so the material distribution is defined piecewise, with this non-
vacuum piece being located exactly where it is desired.

7. Conclusions

Having shown that there may be important limitations to the
approach to transformation optics based on the constitutive
equations originally presented by Plebanski [5], we ask
whether it is possible to construct a completely covariant
and more general approach to transformation optics in linear
materials. The main results of this construction, equations (29)
and (30), represent the core of transformation optics.

While the Plebanski based approach remains useful and
valid for a wide class of transformations, the benefit of this
approach is that it is valid for arbitrary background space–
times, arbitrary initial material, arbitrary material motion and
for arbitrary transformations—including those that mix space
and time. At first sight the totally covariant approach seems
to have the drawback of being more difficult to work with
since it involves transforming a matrix with 256 components.

But with the aid of a computer algebra package these kinds
of computations become trivial, and the recipe given by
equations (29) or (30) is straightforward and applicable in all
situations.

Several examples have been discussed that illustrate the
material parameter features that might be expected from
various types of transformations. Particularly interesting are
the examples of transformations that mix space and time. It is
found that a generic feature of these types of transformations
is the appearance of magneto-electric coupling terms. For
transformations that have only a spatially dependent time
transformation, the resulting material is isotropic, and the
magneto-electric coupling could be reinterpreted as a velocity,
in accordance with the Plebanski based method. However, if
the transformation mixes a spatially dependent time function
with an additional spatial function of any type, or if the
transformation is of a time dependent spatial function type,
then the resulting material is not isotropic, and the magneto-
electric couplings cannot be reinterpreted as material motion.
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