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ABSTRACT.   A nonrecursive r.e. degree d is constructed that has the prop-
erty that every r.e. set of degree d is mitotic.   The degree d has several other
interesting properties including the property that any two r.e. sets of degree d
are weak truth table equivalent.

The purpose of this paper is to prove the following:

Theorem.  There exists a nonrecursive r.e. degree A such that every r.e. set
of degree A is mitotic.

The notion of mitotic was defined by the author in [2].  A r.e. set is mitotic
if it is the disjoint union of two r.e. sets both of the same degree.   It was shown
[2, Theorems 3 and 4] that there is a nonmitotic r.e. set of degree 0   and that for
each nonrecursive r.e. set A there is a nonmitotic r.e. set recursive in A.  From
these facts one might suspect that every nonrecursive r.e. degree contains a non-
mitotic r.e. set.   However, as we shall show, such is not the case.   The degree A
that we construct has several other interesting properties.  A r.e. set is strongly
mitotic if it is the disjoint union of two recursively separable r.e. sets of the same
degree.   In [2, Theorem 5] it is shown that maximal sets can be mitotic yet it is
quite easy to show that no maximal set can be strongly mitotic.   Hence the notion
of mitotic is truly weaker than the notion of strongly mitotic.   The construction of
the degree d actually yields the stronger result.

Corollary 1. Every r.e. set of degree A is strongly mitotic.

The following corollary is a consequence of the fact that every r.e. set which
is mitotic is also autoreducible [2, Theorem l].

Corollary 2. Every r.e. set of degree A is autoreducible.

The notion of weak truth table reducibility is defined in Rogers [3, p. 158],
As a by-product of the construction we obtain:
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480 R. E. LADNER

Corollary 3. Any two r.e. sets of degree d are weak truth table equivalent.

Finally the degree d will have the property that d  = 0 .   This property and
Corollaries 1 and 3 are strictly speaking not corollaries of the theorem but are
corollaries of the construction.   Hence we shall give their proofs after the proof
of the theorem.

We now proceed with the proof.

L The central ideas of the proof. Let W0, Wx,--- be a standard effective
enumeration of the r.e. sets and let $0, <I>j, • • • be a standard effective enumera-
tion of the partial recursive functionals.   Define c(i, X, n, s) to be the least
number c greater than n such that if "m € X?" is a question asked in the compu-
tation of $>? (X; n) then m < c.  Let à be a recursive function from N onto N .  We
define the triple (0., "P., Y.) to be the triple ($. ,<t>. , W. ) where h(i) =iii 0        1       *2
(i'0, i',, i A). We will construct a r.e. set D in stages.  The degree of D will be
the d satisfying the theorem.   If D ?= W. then we say that the nonrecursive condi-

tion of order i is satisfied.  If 6.(D) = Y. and ï* .(Y.) = D implies that there exist
r.e. sets Y.>0 and Y., such that Y.n O Y{1 = 0,' Y.>0 U Y{1 = Y., D <T Y.n,
and D <_ Y. .  then we say that the mitotic condition of order i is satisfied.

Satisfying the nonrecursive condition of order i has priority 2i, while satisfying
the mitotic condition of order i has priority 2i + 1.

We define the following auxiliary functions.   Let h(i) = (in, z., iA.
1. L(i, s) = pm[ds.(Ds; m) A Ys{(m) or V*(Ys.; m) /L Ds(m)],

2. f(i, n, s) = max|c(z'n, Ds , m, s ): m<n, s  < s\,
i ~

3. k(i, n, s) = max!c(z'j, Ys.  , m, s ): m<n, s < s\,
4. l(i, n, s) = the greatest / < L(i, s) such that ;'(i, l,s)<n if there is such

a number /.   If there is no such / set l(i, n, s) = - 1.
Remarks, (i) l(i, n, s)<n< k(i, n, s). (ii) U m<n then j(i, m, s)< f(i, n, s),

k(i, m, s) < k(i, 72, s), and /(/, m, s) < l(i, n, s).
The proof is based on the following lemma.

Lemma. Let i, x,y, s, s , s  be given such that x < y, s <s < s .   If
(i) L(i, s) > k(i, y, s),

(ii) L(i, s')> k(i, y, s) and Ds (m) = Ds(m) for all m < j(i, k(i, y, s), s),
(iii) xeDs"-Ds', L(i,s'')>x, Ds\m)=Ds(m) for all m<x,

then there exists z £ Ys.   - Ys.  such that l(i, x, s)< z < k(i, y, s).

Proof. Since Ds\m) = Ds(m) for all m < x then 0f "(Ds"; m) = ds{(Ds; m) for

for m < l(i, x, s).   If there exists z € Ys{   - Yf   such that z < l(i, x, s) then cer-
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tainly V* (z) ¿ 6s.  (Ds ; z).  Hence L(i,s'')<x contrary to the hypothesis.  On

the other hand suppose there exists no z < k(i, y, s) such that z e Ys.   — Ys. .

Since Ds '(m) = Ds(m) fot all m < j(i, k(i, y, s), s) then 6s. '(Ds'; m) = Of (Ds; m)

for all m < k(i, y, s).  Since L(i, s')> k(i, y, s) then we must have  Yf (772) =
Ys.(zzz) for all zzz < k(i, y, s).   Hence we have that there is no z < k(i, y, s) such
that z e Ys."- Ys. which implies that ^"(Y*"; m) = f'fl^; zzz) for all m<y.

Since x e Ds"- Ds ' then Ds"(x) £ V**(rf; x).  Hence L(i, s") < x contrary to
the hypothesis.

Figure 1 illustrates the lemma.

D

L(i, s)
;'0', Ki, y, s), s)

'      /(i, x, s) k(i, y, s) I

Figure 1

Notice that lims L(z, s) = 00 iff 6.(D) = Y. and ^¡(Y.) = D.   The basic lemma tells
us how to indirectly control Y. by controlling D.   If 6.(D) = y¿ and ^¿(Y^ = D
then by the lemma we can force a number into Y. in a specific interval if we put
a number into D.

One mitotic condition. It is helpful to explain how to satisfy one mitotic
condition, say the first mitotic condition, while satisfying all the nonrecursive
conditions.  For this purpose we shall only need a special case of the lemma, the
case when x = y.   In order to make D nonrecursive we may want to put relatively
small numbers into D.  Each time we do so we would like to force two numbers
into Vq one for each of the two sets  Y0 0 and YQ ..   Of course, we need only do
this if it looks like L(0, s) is becoming large, that is, if it looks like it may be
the case that Q0(D) = Yq and ^(Yg) = D.  Assume  L(0, s) is large and we want

to put n into D to satisfy some nonrecursive condition.   By the lemma we can put
n into D and force some number into  YQ in a specific interval.   Waiting in the
wings is another number m which we will put into D to force another number into
an interval disjoint from the first.   Figure 2 helps illustrate this procedure.
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L(0, s)
7(0, ¿(0, n. s), s)-~7

/

KO, zzz, s) ze(0, zzz, s)   1(0, n, s)

Figure 2

k(0, 72, s)

Choose zzz and n such that L(0, s) > k(0, n, s) and k(0, m, s) < 1(0, n, s).

Suppose n is ready to satisfy a nonrecursive condition at stage s0 + I > s.   We

assume that no number < ;(0, k(0, zzz, s), s) was put into D after stage s and
before stage sQ + 1.   We put n into D at stage sQ + 1 and wait for a stage Sj >

Sq + 1 such that L(0, s.)> n.  At stage sl + 1 we put zzz into D.   Let s2 be the

least stage > s, + 1 such that L(0, s2) > zzz.   By the lemma we can conclude that

there are two numbers y0 and yx such that y0, yl e Y0   - Vq, ¡(0, m, s) < y0<

k(0, m, s) and 1(0, n, s) < yl < k(0, n, s).  We may now put y0 into V0 Q and yl
into Y0 j.   This procedure depends on the existence of stages Sj and s2<   How-
ever if one of s, and s, does not exist then the mitotic condition is satisfied
vacuously since  lim^ L(i, s) /= °°.   The preceding explains how to get two differ-

ent numbers into  Vg but only locally.

We now give a global picture of how to construct D just satisfying one mi-

totic condition.   Candidates ate chosen to follow nonrecursive conditions.   The
candidate of order i follows D £ W..   Candidates are of two types, members of

N (type 0) and members of N x N (type 1).   Actually only the second coordinate
of a member of N x N is used to satisfy a nonrecursive condition but it is easier

to think of the pair as the candidate.   In general an unsatisfied nonrecursive
condition starts off with a type 0 candidate and then tries to attain a type 1
candidate.   As D is constructed so are sets E, A, Rß, and R ,, and functions d
and r.  We shall always have As Ç Es Ç N x N, RSQ n R\ = 0 and r(s) =
max(Rj U I- 1|).   Figure 3 illustrates a stage s in the construction.

D
d(s)

\
r(s)

Figure 3
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The point n. is the candidate of order z at stage s and As = Es = [n., n  , n A.

Notice that the first nonrecursive condition has only a type 0 candidate and will

never attain a type 1 candidate.   This is because the first nonrecursive condition
is of higher priority than the first mitotic condition.   If and when nQ is put into

D then the entire picture is "erased", that is, we set A   =E   = 0, RQ = Rx =
0, d(s) = — 1, and cancel all candidates.  Several things can happen at stage
s + 1.

1. A candidate is chosen. No candidate for D /=W6 exists, so one of type 0

is chosen at stage s + 1 which is larger than d(s) and larger than any candidate
of higher priority.

2. A candidate is improved. The condition D /= W    has a candidate of type

0 and can gain a candidate of type 1.   There exists p, q e D   such that r(s)<
1(0, p, s), k(0, p, s) < 1(0, a, s), and L(0, s) > k(0, a, s).   The new candidate of
order 4 becomes n. = (p, q) and candidates of higher order are cancelled.  We

then have AS*X = ES + 1 = {»j, »2, «3» »4I, R*+1 = RSQ u [1(0, p, s), k(0, p, s)],
R] + l = R\ U [1(0, q, s), k(0, q, s)] and d(s + 1) = /(0, k(0, a, s), s).   Figure 4
illustrates the situtation at stage s + 1.

d(s+l)

r(s + 1)

Figure 4

3. A candidate is implemented. We look at three cases.   First suppose na e
s + 1WQ     .   As was mentioned earlier we put 72Q into D at stage s + 1 and "erase"

everything.   The second case is when a type 0 candidate other than nQ is im-
plemented, for instance suppose n. e W*+  .   Just put n. into D and relax for we

have satisfied a nonrecursive condition without any need to worry about mitoti-
city.   The third case is when we implement a type 1 candidate.   Let «2 = (p, a)
and suppose q e Ws2 +  .   Put a into D.   We now set up a potential condition of

order 2 which consists of the point (p, a).   The potential condition will be
satisfied &t stage s'if L(0, s')> a.  We have Es+.1 = Es but As*x = [nj.

Further d(s + 1) = d(s), RSQ + X = RSQ, and Kj + 1 = R\.   Notice that the point n}
is no longer any good because a number less than it has entered D.   The set As
is the set of points that are still good.  Cancel all candidates and potential
conditions of order > 2.   Figure 5 illustrates the situation at stage s + I.
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s+1ÍA
p~Ï€Ds+l     ,-LA-s d(s + \)

V r(s + 1)

Figure 5

4. A potential condition is satisfied. Let us consider a stage s  > s + 1

(stage s + 1 as pictured in Figure 5).   At stage s+1 the potential condition
(p, q) was instituted.   Suppose L(0, s )> q, that is, the potential condition
(p, q) is satisfied at stage s .  At stage s ' + 1 put p into D.  (There is no need
now to set up another potential condition because we do not need to put a smaller
than p into D.)  Cancel all candidates of order > 2.

The four situations we have just described are organized as follows.  At
stage s + 1 find the least i such that one of the following holds:

A. The potential condition of order i is satisfied at stage s.
B. The candidate of order i can be implemented at stage s and Ds H Ws. = 0.
C. The candidate of order i can be improved at stage s.
D. A candidate of order i can be chosen at stage s and Ds D Ws. = 0.
Now at stage s + 1 do the appropriate task described above in 1—4.
It should be clear that all the nonrecursive conditions are satisfied.   Now

suppose 6(D) = Vg and î,(yg)= D.  Since lim   L(0, s)= «° then we must have
constructed infinitely many type 1 points.   Hence we must have lim  d(s) = e».
Notice there is at most one stage i such that E* <t E<+    (»Q enters D at stage
/ + 1).   Let r0 be the least stage such that Es C Es *l fot all s > iQ.   Define

SS( 0

y0.0= Un.0    a"d    y0.1=   U   y'o,V
s s

Now, R is recursive since its intervals are enumerated in increasing order.

Hence yoo and YQl are r.e.  Clearly  YQ = y^ U YQl and YQf0 n YQfl -0.
We show now how to reduce D to YQ q.  A similar argument will show D <T Y0 j.

Let x be a fixed argument.   We can assume inductively that we know D(y)
for all y < x.   Let i, + 1  be the least stage > iQ such that d(t^ + 1) > x.   Let i2
be the least stage > ij + 1 such that
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(i) D(y) = D 2(y) for all y < x,

(") y0,o(y) = y'o2,o(y)for a11 y $ r^i +x)>
(iii) L(Ô, t2)>r(t\ + 1),
(iv) no potential condition exists at stage ty.

'?Now, x e D iff x e D \
'2

To argue this suppose x e D — D   .   First of all x must be the first coordi-
nate of a type 1 point created at stage t. + 1.   If * were the second coordinate

then at some time after x was put into D a number smaller than x would be put
into D, otherwise, a potential condition would be in existence forever.  At stage
Zj + 1 we have the situation described in Figure 6.

D

L(0, t)
j(0,k(0,x,tx),tx) I      d(-tl + 1)

1(0, x, zt) k(0,x,tx) r(tx + 1)

Figure 6

We certainly have  L(0, Zj) > k(0, x, Zj).  At stage Z2 we must have L(0, Z2) >

¿(0, x, t. ) and D *(y) = D 2(y) for all y < /(0, /e(0, x, t. ), t. ).   There must be a

stage t} > Z2 such that x e D D and L(0, Z3) > x.   By the basic lemma there exists

a z e Yp3 - Y02 such that 1(0, x, Zj) < z < ¿(0, x, Zj).   Hence z e Yno - Y0'20
and z< r(Zj + 1) which is impossible.

There is an important fact about the construction which should be noted.
The mitotic condition is never satisfied once and for all at any finite stage.  We

must continually work on satisfying the mitotic condition.   This kind of thing

happens in the standard maximal set construction.   If one considers a maximal

condition as satisfied if M (1 W¿ or Al n 1V¡. is finite then these conditions are
not satisfied at any finite stage but must continually be worked on.   A useful
tool in such constructions is the concept of "e-state" introduced by Yates [5].
Although we shall not mention "e-state" explicitly in our construction the idea
is implicit in our notion of "type".   The difficulties that arise in the construction
may be best illustrated by indicating how to construct D satisfying just two of
the mitotic conditions, say the first two.

Tazo mitotic conditions. In satisfying two mitotic conditions there are four

types of points to be considered.   Figure 7 illustrates these types of points.
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type 11
,-■£* s type 10 type 01 type 00

a       b

Myi
Figure 7

Notice that type 11 points are built up from type 10 points.   The basic strategy
in constructing D can be summarized as follows:

Satisfy D £ W. with an a point (a= 11, 10, 01, 00) where ais greatest lexi-
cographically.

We have already seen how 10, 01, and 00 points work.   Type 11 points are
constructed to enable us to satisfy the two mitotic conditions simultaneously.
Let us examine the point ((a, b), (c, d)) of Figure 7.  Suppose d is ready to satisfy

a nonrecursive condition at stage sQ.   Put d into D and wait for a stage s,
s. + l

when L(0, Sj) > d.  Now put c into D and wait for a stage s, when
L(0, sA> c.  At this point housekeeping on the first mitotic condition is in order.

Now wait further until L(l, s A > c.   Now put b into D 3       and wait until a stage
SA+l

s4 when L(0, s4) > b.   Now put a into D 4       and we are finished.  A more
sophisticated potential condition is used to keep track of how the point is pro-

gressing.   It is important to notice that the second mitotic condition does not
hold up the satisfaction of the first.  While we are waiting for stage s, which
concerns the second mitotic condition we are not in the middle of a point trying
to satisfy the first mitotic condition.   On the other hand we do allow the first
mitotic condition to hold up satisfaction of the second.   If the first mitotic condi-
tion holds up satisfaction of the second it does so only on a 11 point.   We may
now fall back on 01 points in order to satisfy the second mitotic condition.

Rather than describe a construction of D satisfying two mitotic conditions
we shall just mention the difficulties that arise in satisfying two conditions and
how we overcome them.   It may be helpful to refer back to these explanations

when reading the construction and proof.
(1) The order of candidates. In general our strategy is to try to satisfy a

nonrecursive condition with the highest possible type point.   To implement this
we must always make sure that if i < j, p is the candidate of order i and q is

the candidate of order ;' then p lies to the left of q.  So if q is implemented then

p is still good and can be implemented later.
(2) The order of types of points. Also to implement our strategy we must

make sure that the lowest order candidates have the highest type points.   How-
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ever, 11 points are built up from 10 points hence we cannot say that 11 points
must lie to the left of 10 points.   These two types are compatible.   On the other
hand 10 points and 01 points are incompatible and 01 points must always lie to
the right of 10 points.   Let Figure 8 illustrate a situation at stage s.

A A    A A
yi

Figure 8

At stage s + 1 we may improve the candidate of order 3 to be a type 10 point.
What do we do with the present candidate? Completely erase the point to get the
situation illustrated in Figure 9.

w3

AA       AA       TI
Yi

Figure 9

Although we may have forsaken the second mitotic condition it is only temporarily.
If this situation keeps repeating we shall eventually be able to create 11 points

which are better than 01 points.
(3) An unbounded store of good points. In order to create 11 points from 10

points we must be sure that we maintain an ever increasing store of good 10 points
to build from.   To do this we use the fact that there are infinitely many i such
that W. = 0  (candidates of these orders are never implemented).   We never use
the first i good 10 points in constructing a type 11 candidate of order i.

(4) A conflict between implementation and improvement. Consider the situa-
tion at stage s illustrated in Figure 10.

«0
n2 „3

AA    A A   AA
yi

Figure 10
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The number b is presently in D and we are waiting for L(0, s) to exceed b in

order to put a into D.   However at stage s + 1 we could construct a type 11
candidate using n2 and n,.   Properly speaking this new candidate should be the
candidate of order 2 replacing n2.   This leaves the condition D ¡¿ W, without a
candidate.  However the condition D a= W. would still have a candidate.   The4
order of candidates is ruined.   To resolve this problem we do not form the type 11
candidate at this time.  While we are waiting for L(0, s) to exceed b we can
think of the mitotic condition as temporarily satisfied for if L(0, s) never exceeds
b then it is satisfied.   Hence there is no need at the moment for type 11 points
to be constructed.   While we are waiting for L(0, s) to exceed b we shall say 10
and 11 are frozen.

(5) A conflict between frozen types and improvement. This conflict is best

illustrated using three mitotic conditions.  Suppose we have the following situa-
tion at stage s illustrated in Figure 11.

A A A A A A

Figure 11

At stage s both a and b have been put into D and we are waiting.   Now type 101
is frozen but zzoi type 100.  Suppose at stage s + 1 we could improve the
candidate of order 6 to be a 110 point using «, and «8 as subpoints.  We go
ahead and do just that to get the situation illustrated in Figure 12.

D...

Ï ry    • •  ■

Figure 12

The candidate of order 5 goes out of existence.   You may ask how can improving
the candidate of order 6 have priority over continuing to implement the candidate
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of order 5?  When we put b into D we satisfied the condition D ¿W, once and
for all.  The rest of the implementation of the candidate of order 5 is concerned
with satisfying mitotic conditions.   Thus we have not really violated the priori-
ties at all but have adhered to them in constructing a 110 point over a 101 point.

The list (l)-(5) is not an exhaustive list of all the difficulties in the con-
struction but only contains what we deem to be the most important.  We now pro-
ceed with the formal proof.

IL Notation and definitions. Define N^l = N anfj s^k* ^ = N^ x zV^l  We
let P = \J[N^: ke N\ and call the members of P points.  Upe Nxk* then we
write Ihp = k.  Let 2 be the set of all finite sequences of 0's and l's.  We denote
the empty sequence by A, the length of a sequence a by lha, and the concatena-
tion of two sequences a and r by a *r.   For n < lha the (n + l)st member of the
sequence a is denoted by o .  If lho~= Ihr then o~< r just in case ají t and if
n = pm (a   >= r  ) then a  =0.  If p e P then (p)0 and (p)j are the first and second
coordinates of p respectively.   If lha < Ihp then we define (p)a inductively on
the length of a.  We let (p)\ = p and (p)(r^i =((p)a)i where i is 0 or 1.  For
example, if p = ((1, 2) (3, 4)) then (p)0 = (1, 2), (p\ = (3, 4), (p)00 = 1, (p)01 =2,
(p),0 = 3, and (p)j j = 4.  We define (p) - = (p)a where a is the constant zero

sequence of length equal to Ihp.  Likewise (p)- is defined.   If p, a e P then we

write p< q just in case (p)- < (a)-.

Let T be the set of all eventually zero infinite sequences of 0's and l's.
Members of T are used to classify points into types.  When we were examining
just two mitotic conditions a type was a sequence of length two but now that we
are dealing with infinitely many mitotic conditions our types are infinite.   If
a. € T then c%n denotes the (n + l)st member of the sequence a.  We denote the
constant zero sequence by the symbol o, omicron.  We consider two partial orders
on r.

1. The lexicographic order: a< ß if a = ß or [a^ ß and if n = pn' (a ,/= ß ,)
„T 71 71then an = 0].

2. The tree order: aC ¿3 if there exists n such that, for all m < n, a   = ß■**r m     "m
and, for all tzz > », a   = 0.

We define (level of a) leva. = pn (Wm>n,am = 0). Thus levo = 0.  Further,
we define a * n to be the sequence ß where ßm = a-m'^-m^n and ß   = 1.
Notice that if n > leva then leva *n = « + 1 and aC ß if and only if a  = ß

— — ' J n     ' n
for all n < leva.  We define (extent of a) exta= Cardire: a  = lj.

71

For each a e T we will construct sets Ea, Aa, RQ aand Rx a.   These sets
will be constructed in stages.  We will always have A* Ç E* C P.   The order on
P always induces an order on E* isomorphic to an initial segment of the
natural numbers.
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!the (/' + l)st member of A*    if Card Asa > j + 1,
the last member of A*     if 0 < Card Asa < j,
0    ifAsa=0,

m(j, a, s) = taax{(nij, ß, s'))_: ß Ç a and  s' < si,

ría, s) = max(R* a u<- Ü).

We shall also construct a function Xasd(a, s) with the property that if
a¿ o then d(a, s) > max E* .  We define

dis) = max 14a., s): a e Tj.

At various stages s we may appoint a point p to be the candidate of order i

fot some i.  The point p will initially be a member of Aa for some a where
leva< i.   II p is appointed at stage s to be the candidate of order i and p e A*

then we say p has type a.   If the candidate of order i in existence at stage s is
such that (p)~ e Ds then the candidate is said to be implemented and a potential
condition oí order i must also be in existence.  A potential condition associated
with a candidate p oí type a is of the form (p, a, a, /') where a e 2 and ; e N.
We say that the potential condition, (p, a, ff, ;'), is satisfied at stage s if L(j, s) >
(p)a.  For each i and s there is at most one candidate of order i and at most one
potential condition of order i in existence at stage s.  Once a candidate or poten-
tial condition is appointed it remains in existence until cancelled or changed.
If an implemented candidate is cancelled at stage s then so also is the potential
condition associated with it.   It is important to notice that if a candidate p oí
type a is in existence at stage s that does not by definition imply that p e Ea.
The type of a candidate refers to its initial status when appointed.   However,
we shall show in Claim 1 that if a candidate in existence at stage s has type a
then it is indeed a member of Ea-

We say that a is frozen at stage s if there exists a potential condition of the
form (p, ß, a, i) such that if y is the greatest member of Y such that y Ç ß and
y Ç a and ff = a *a where Iba = ext y then a has a nonzero member.   The notion
of being frozen is explained in our list of difficulties (4) and (5).  We should
note that if a is frozen at stage s and aÇS then 8 is also frozen at stage s.
Further if a potential condition of the form (p, ß, a, i) exists at stage s and if
ß Ç ct. then a is frozen at stage s.   Basically a is frozen at stage s if we are

presently implementing a candidate such that unless the potential condition
associated with that candidate is satisfied at some time then only finitely many
points of type a could ever be constructed because lims L(j, s)p <» for some ;
such that a = 1.
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The candidate of order i can be improved at stage s + 1 if all the following
hold:

(1) an unimplemented candidate r of order i already exists at stage s,
(2) r has type a. and there exists /', ß, p, a such that

(a) p € Aß and a £ Asß,
0>) P < a,
(c) lev/S </<z,
(d) /3 Ça and ß */>a,
(e) 77z(l, ß, s)< p,

(i) ß * j is not frozen at stage s,
(g) p > any unimplemented candidate of order < i in existence at stage s,
(h) L(j,s)>k(f,(q)-,s),
(i) r(y, s) < l(j, (p)-, s) fot all y > ß * j,

(i)Kf,(p)T,s)<l(j,(q)-,s).
If indeed we do improve the candidate of order i to be the point (p, a) at

stage s + 1 then we may explain the reasons for (a)—(j) by (a )—(j ) below.
(a') (p, a) will be a "good" point of type ß */.
(b ) If implemented the coordinates of (p, a) will enter D in descending order.
(c ) This insures that the candidate of order i can have only one of 2   types.
(d ) j8 Ç a. insures that there must have been a candidate of order i and

type ß before one of type ß * j was chosen while ß * /' > a insures that (p, a) is

of higher type than r.
(e ) This will insure that, for each 8Cß, A| will become unbounded if

E| becomes unbounded (see difficulty (3)).

(f•') (See difficulties (A) and (5) and the definition of frozen.)
(g') This is to insure the ordering of the candidates is correct.  We only

require that p > any unimplemented candidates of order < í not > all candidates
of order < i for the following reason.  An implemented candidate may be of type
< ß *j and will be cancelled as soon as (p, a) is created.  After all, the nonre-
cursive condition associated with this low type candidate is already satisfied so

there is no need to keep low type candidates around that will hold up the creation
of high type candidates (difficulty (5) goes into this problem somewhat).

(h )—(j ) We have gone into this extensively when we considered one mitotic
condition.

The condition of order i requires attention at stage s + 1 if one of the

following holds :
A. The potential condition of order i is satisfied at stage s.
B. Ds n Wf =0 and the candidate p of order i is such that (p)- e Ws. + l,

C. The candidate of order i can be improved at stage s + 1.
D. D   C\ Ws. = 0 and there is no candidate of order i in existence at stage s.
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III. The construction.
Stage 0.

D° = 0,      diy, 0) = - 1,       A° =- E° = ,V,

A°=E°=0    if y,**,       R°o<y = Roly = 0.

Stage s + 1. Choose the condition of least order that requires attention at
stage s + 1.   If none go to the next stage.  We adopt the case that corresponds to
the first of the four possibilities that holds.

A. Let (p, a, a, j) be the potential condition of order i satisfied at stage s.

Let n = 1 + the number of zeros at the end of ff.
Case 1. ; < the zzth k such that a, = 1.   In this case make no changes except

that the potential condition of order i becomes (p, a, a, k) where k is the least

number > ; such that afe = 1.
Case 2. j = the zzth k such that a, = 1. Cancel all candidates and potential

conditions of order > i. Let ff be the immediate predecessor of ff in the < order-

ing of 2.

. „-.     , „     \d(ß, s)    if ß>a or j8 C a,
D^x=Dsu\ip)aA,      diß,s + l)=\    H' H~

1-1 otherwise,

(Eß   if ß > - or ß Ça, ÍR;
3     =   i >• ? =  1 oc

\0     otherwise, {P

ß   if ß > a or ß Ç a,

otherwise,

ÍireA£:r<p¡UÍz-eDs + 1:r>¿(s + l)l    if /3 = o,
jz-eA^r<p|    if ß / o and iß Ç a or ß > a),

0   otherwise.

If ff' is not a constant zero sequence then the potential condition of order i
becomes (p, a, a , k) where k is the least number such that a, = 1.   If ff is a

constant zero sequence then cancel the candidate of order I.   Hence the potential

condition of order / is also cancelled.
Case 3. Neither Case 1 nor 2 applies.   Go to the next stage.   (We shall

show in Claim 2 that Case 1 or Case 2 must always apply so that Case 3 exists

only for the completeness of the construction.)
B. Let p be the candidate of order i and suppose p has type a.  Cancel all
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candidates and potential conditions of order > z.

d(ß, s)   if iß > a or ß Ç a) and lev/8 < »,

otherwise,

Esß   if iß > a or ß Ç a) and lev ß < i,

D* + 1=D*ul(p)_l,      4/3,s + l)
I- 1

c o      =
0     otherwise,

¿i+I

,      (Rf .    if (/3 > a of /3 C a) and lev ß < i,

( 0        otherwise,

[reAsß: r<pluiz-e/5s+1: r > dis + 1)\    if ß = o,

[r eAsß:r<p\     if ß ¿ o, lev < i and iß > a ot ß Ç a),

0   otherwise.

If a= o do nothing more.   If a A o then appoint (p, a, a, k) to be the potential
condition of order i where k is the least number such that a, = 1 and a is the
constant one sequence of length Ihp.

C. Let r be the candidate of order i that can be improved at stage s + 1.
Cancel all candidates and potential conditions of order > z.   Choose the least
/, ß, p, and q in that order satisfying the definition of improvement.

Ds+X =DS,

diy, s)       ií y > ß * j or y C ß * j,
diy, s + 1) = { jii, kii, (a)_, s), s)       if y = ß * j,

— 1    otherwise,

if y > ß * j or y C ß * /',
ps +1

Esc7

DS + 1
Kfc.r

As+\
7

E^uKp. a)|        if y = ß*j,
\0   otherwise,

Rk y      ii y> ß * j ot yCß* j,

isk¡ y U [/(;', (p)_, s), k(j, (p)_, s)]      if y = ß * j and Ai = 0,

?f v U [/(/, (a)_, s), ¿(;, (a)_, s)]       if y = ß * j and A = 1,k, r 0 j

10       otherwise,

|a e A*: a<pju \aeDSJtX: a > dis + 1)\      if y = o,

[a e As : a < p\       if y > ß * j ot (yC ß * j and y ,¿ o),

A^uKp, a)|       iiy = ß*j,
0      otherwise.
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If there exists a potential condition of order i  oí the form (a, y, a, k) where

i < i and y<ß*j then cancel the candidate of order i ' and hence the potential
condition as well.   (Note: we cannot have yCß*j otherwise ß * j would be
frozen.)  Appoint the point (p, q) to be the candidate of order i.

D. Let p be the least number of As such that p > d(s), p > any candidate

of order < i and p > zzz(z, o,s).   Appoint p to be the candidate of order f, cancel
all candidates of order > i and make no other changes at stage s + 1 except to
increase the arguments of functions to s + 1.

This ends the construction.   The set D is r.e. since all the functions and
predicates used in the construction are recursive.

We say that stage s + 1 is an A-stage, B-stage, C-stage or D-stage per-

taining to i corresponding to the case that applies at stage s + 1.   We sometimes
say that the candidate of order i is the point considered at stage s + 1.

Remarks on the construction.

1. If Skythen Ef HE* =0.
2. If x e Ess then extS = Ihx.
3. If x < y, x e E|, and y e Es then 8 > y or 8 C y.
4. If x ¿ y, x e A|, and y e As then x < y or y < x.

5. If x e A| then (x)a e Ds fot all ff such that Ihx = lha.
6. If x e Eg and lha = Ihr = Ihp then ff < r if and only if (x)a.< (x)f.
7. r(8, s) < d(8, s), and d(8, s) = - 1 iff r(8, s) = - 1.
8. If x e Eg and 8 /= 0 then (x)- < r(8, s).

9- «o,8 n^,8 = 0-
10. If there exists a candidate of order / and type <5 in existence at stage s

then for each y C o there must have been a candidate of order i and type y in

existence at an earlier stage.
The proof of 1 through 10 is by induction on s.   The remarks are clearly

true for s = 0.  Assume the remarks are true for s.   It is not difficult to check
that the remarks are true if stage s + 1 is an A-stage, a B-stage, or a D-stage.
Let stage s + 1 be a C-stage.  Suppose stage s + 1 pertains to i and /', ß, p,
and q ate chosen.   In most cases we need only consider the point (p, q).

1. LetS^y.   li 8£ ß */'and y£ ß * j then Ef O Esy =0 by the induction
hypothesis.   Let 8 £ ß * j.  If (p, q) e Ef +x then 8 > ß * ;' or 8 C j8 * / and
(p, q) e Ef.   By the induction hypothesis lh(p, q) = ext 8.   Thus 8 <t ß *j.   If
8 > ß * / then (p, q) < r(8, s) < /(/, (p)-, s) < p by part (i) of the definition of
improvement.   This is impossible.

2. Since / > lev ß then ext ß * j = ext ß + 1.   Now, p and q are of type ß
thus Ihp = Ihq = extß.   Hence ext/3 */' = lh(p, q).

3. First let (p, q)< r and let r be of type y.   If ß * j < y then by part (i) of
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the definition of improvement r < (p, a) which is impossible.   Thus y < ß * j.
On the other hand, let r<(p,q) and let r be of type 8.   If 8 < ß * / and 8 4. ß * j
then E|+1=0.

4. Let r A (p, a) and let r £ A|+ l.   If S = o then r < (p, a)  or

r > ¿(/S * /, s + 1 ) > ((p, a))-.   If S /=o and S ¡= /3 * ; then by the construction
r e A | and r < (p, q).   U 8 = ß * j then by part (i) of the definition of improvement
r < iP, a).

5. Both p and a are members of Asß and (p, a) £ Aß*..   By the induction

hypothesis ((p, a))^ e Ds for all ff such that lh(p, a) = /iff.
6. By part (b) of the definition of improvement p < q, hence the conclusion

holds for (p, a).
7. We must have r(ß * j, s + 1) = £(/', (a)-, s) < j(i, k(j, (q)-, s), s) =

d(ß*j, s + 1).
8. We have (q)-<k(j, (q)-, s) = r(ß * j, s + 1).

9. This is quite clear from (i) and (j) in the definition of improvement.

10. All we need show is that if yCß*j then there existed a candidate of
order i and type y at an earlier stage.  At stage s the candidate of order i is of
type a and ß C a by part (d) of the definition of improvement.   Hence y Ç a and

by the induction hypothesis there was a candidate of type y at an earlier stage.

IV. Candidates and potential conditions. In this section we prove three
technical claims.

Claim 1.  (i) // i < ;' and p and q are candidates of orders i and j respectively
both in existence at stage s then p < a.   (ii) // p is the candidate of order i and
type a. in existence at stage s then p e Esa.   If p is unimplemented then p £ As

and if p is implemented then there exists a potential condition of the form
(p, ex, a, k) in existence at stage s.

The proof is by induction on s.  Since no candidates are in existence at
stage 0 then the claim holds for s = 0.  Assume the claim is true for s.   We first
prove part (i) of the claim for s + 1.  Since no new candidates are appointed in
an A-stage or B-stage then we need only consider s + 1 to be a C-stage or D-
stage.   Let i, j, p, and a be given and let stage s + 1 pertain to k.  First suppose
s + 1 is a C-stage.  We need only consider the case when a is the new candidate
of order k.   By the induction hypothesis p e E* for some a and since a was just
chosen we have q e Eß+   for some ß.   If p is unimplemented then by part (g)
of the definition of improvement p < q.   If p is implemented then by the induction
hypothesis there exists a potential condition of the form (p, a, r, /) in existence
at stage s.   Now, p is still the candidate of order i at stage s + 1 hence a> ß.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



496 R. E. LADNER

For if a< ß then by the construction p would have been cancelled as the candi-
date of order i at stage s + 1.   By part (i) of the definition of improvement p < q.
Now, suppose s + 1 is a D-stage.  We need only consider the case when k = i
and p is appointed as the candidate of order i at stage s + 1.  Stage s + 1 cannot
be the first stage when a candidate or order i is appointed since a candidate of
order /' exists at stage s.   Let a + 1 < s + 1 be the last stage when a candidate
of order i was cancelled.  Any candidate of order /' was also cancelled at stage
u + 1 so that q must have been appointed as a candidate after stage u + 1 and
before stage s + 1.   This is impossible.

We now proceed to prove part (ii) of the claim.  Let p be the candidate of
order i and type a in existence at stage s + 1.   Assume stage s + 1 pertains to /.
There are four cases to consider corresponding to the four types of stages possible.

Case A. If stage s + 1 is in Case 1 or Case 3 there is nothing more to show.
If stage s + 1 is in Case 2 then i < j otherwise p is cancelled at stage s + 1.   By
part (i) of the claim p<° where q is the candidate of order ; in existence at
stage s.   By the induction hypothesis p e Esa and by Remark 3 and the construc-
tion Esa = E*+ *,   Further, if p is unimplemented then p e Asa*1 since p < q.  Up
is implemented then the potential condition associated with p is either slightly
changed at stage s + 1 or persists unchanged since p is not cancelled at stage
s + 1.

Case B. Again i < j otherwise p is cancelled.  We have p < q where q is

the candidate of order /' and type ß.  Now Esa*   = E* if a C ß or a > ß and
lev a < j.   It is not difficult to see that lev a < i since p is of type a and the
level of the type of any point of order i must be < i.  Again by Remark 3, E*+   =
E*.  We now argue as in Case A.

Case C. If z = / then the new candidate of order i is a member of A*+    by
definition.  If i < j then we argue as in Cases A and B.

Case D. Trivial.

Claim 2. // (p, a, a, j) is the potential condition of order i in existence at
stage s then

(i) p is the candidate of order i in existence at stage s and is of type a,
(ii) Ihp = lha = ext a,

(iii) p is implemented, in fact, (p)T e Ds for all r > a such that Ihr = lha,

(iv) a. = 1,
(v) /<¿,

(vi) ff z's not a constant zero sequence,
(vii) if n = 1 + the number of zeros at the end of a then j < nth k such that

aá«í.

The proof is quite straightforward by induction on s.  Claim 2 verifies the
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parenthetical note that Case 3 of an A-stage never occurs.

Claim 3.  Let r and r  be unimplemented candidates of orders i and j and
types a and ß respectively in existence at stage s.   If i < j and a C ß then a, =
ß, for all k < i.   In particular, if lev/3 < i then a = ß.

The proof is by induction on s.   The claim is vacuously true for s = 0.
Assume it is true for s.   We need only consider a C-stage s + 1 pertaining to ;'.
Let (p, a) be the new candidate of order / and type y * I.   Let r be the unimple-

mented candidate of order i and type a.   Assume aC y * /.
If a= y * I then we are finished.  So we can assume that aC y.  We now show

that a. = y, for all k < i.   If y = o then there is nothing more to show.   On the
other hand if y ^ o let s  + 1 < s + 1 be the stage when p came into existence.

The point r was already in existence at stage s+1 since r < p.   Stage s+1
pertains to some i  > i otherwise r would be cancelled as the candidate of order i
at stage s  +1.   Thus the candidate of order i  is p of type y.   By the induction
hypothesis, a, = y, for all k < i.

If / > z then a   = (y * /)   for all k < i.   On the other hand suppose / < i.  We

now show that the quadruple /, y, pf a also satisfied the definition of improvement
of the candidate of order i at stage s + 1.   The conditions (a), (b), (f), (h), (i),
and (j) hold since they are independent of z.   We check the other conditions,   (c)
lev y < / < i since lev y * I < i.  Since y = a then certainly y Ç a and y * I > a.
(e) m(i, y, s) < m(f, y, s) < p.   (g) Since p < any unimplemented candidate of
order < /' then p > any unimplemented candidate of order < i.  Thus the condition
of order i requires attention at stage s + 1 contrary to the hypothesis.

V. D is nonrecursive. We begin by making the following claim.

Claim 4.  For each i only finitely many stages pertain to i.

Assume the claim is true for all i' < i.   Let t be the least stage after which

no condition of order < i requires attention.   If there exists a potential condition

of order i at some stage s then for all s  >s,Ds   C\WS.   /= 0.   No candidate of

order i is chosen or improved after stage s.   Once a potential condition of order
i is instituted no more than i • 21 stages can pertain to i.   Let us assume then
that no potential condition of order i ever comes into existence.   If there exists

no candidate of order i in existence at stage Z + 1 then we must have D   n
W. / 0.   In this case the condition of order i never requires attention after stage
Z.  We can assume that there exists a candidate of order i at stage t + 1.  At all
stages > Z + 1  a candidate of order i is in existence.   Let abe the lexicograph-

ically greatest member of T such that there exists a stage s > t and a candidate

of order i and type a in existence at stage s.   There exists such an a since any
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candidate of order i must have the level of its type < i and there are only finitely
many members of Y with level < z.

Let s g + 1 > i be the least stage pertaining to i such that a candidate of
order i and type a is appointed at stage sQ + 1.  We now show that for all s > sQ

stage s + 1 does not pertain to i.  Suppose   the  contrary.    Let s, + 1 be the
least stage > sQ + 1 pertaining to i.  The unimplemented candidate of order i in
existence at stage sQ + 1 is still in existence at stage s. + 1 since it cannot
be cancelled by conditions of order > i.   Stage s. + 1 must be a C-stage since
no potential condition of order i ever exists.   The new candidate of order i
created at stage s, + 1 must have type > a.   This is impossible.

Claim 5. D is nonrecursive.

Let i be any number.   If D f~> W. ¿ 0   then we are finished.   If D n W. = 0
then let i be a stage such that no stage > i pertains to a condition of order < i.
There must be a candidate p of order i in existence at stage Í.   Furthermore, for
all s >t, p remains in existence.   Now, (p)- i W. otherwise the condition of

order i would require attention at some stage > i.   By Remark 5, (/>)- e Ds fot

all s>t.  Thus (p)~ eDnW..  Hence D £ W..

VI. Every r.e. set Turing equivalent to D is mitotic. We make the following
definitions.

u n h*',   ^=un aí.
s *s

Claim 6. // Eaand E „ are both infinite then aC ß or ß C a.

Suppose a< ß. If a=o we are finished. If a/= o then for each s if a new

point is added to E» at stage s + 1 we have E* + = 0 unless a C ß. Since E a

in infinite then Esa = 0 for infinitely many s unless aC ß.
Claim 6 justifies the following definition. Let a. be the infinite sequence of

O's and l's such that a. = 1 if and only if there exists a e Y such that a. = 1
and Ea is infinite.   If a e Y then we can define aC a just as we did earlier.   It
is not difficult to see that a C a if and only if Ea is infinite.   If Ea is infinite
than a C a by Claim 6.   If a C a then a. C j8 where E a is infinite.   But the points
of En are built up from the points of Ea.   Thus Ea is infinite.

Claim 7. // E    z's infinite then A^is infinite.

Since E   = N we first prove the claim for a= o.  Let z be any natural num-

ber.   Let i + 1 be the greatest stage which pertains to a condition of order
< i + 1 where i + 1 is not an A-stage in Case 1.   Let p be the (i + l)st member
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of A'o+ *".  We show by induction on s that for all s > t + 1 any candidate of order
> i + 1 in existence at stage s is > p and, further, p is the (i + l)st member of
As.  Since stage t + 1 is not an A-stage in Case 1 then all candidates and poten-
tial conditions of order > i + 1 are cancelled at stage Z + 1.   Let s + 1 > t + 1.
If stage s+1 is an A-stage in Case 1 then A* = A*+ .   If stage s + 1  is an A-

stage in Case 2 or a B-stage then it must pertain to some condition of order
/ > i + 1.   By the induction hypothesis p < the candidate of order /'.   Hence p
remains the (i + l)st member of A*+  .   If stage s + 1 is a C-stage or a D-stage
then the new candidate of order > i + 1 and  is  specifically  chosen
> m(i + 1, o, s) > p.  The point p remains the (i + l)st member of A* + .  We con-
clude that A   contains at least i + 1 members.

Let a. A o with level m and let 72 be any number.  Assume Aa has at least n
members.  We show that Aa has at least n + 1 members.  Let t be a stage such
that for all s>t,Esa£0 and Asa contains the first n members of Aa.  Choose
i > max)772, w + ll such that W. = 0 and no stage < t pertains to 1.  Such an i
exists since there exists infinitely many 2 such that W. = 0 .  We now show that
there exists a stage s + 1 > t pertaining to 2' such that the candidate of order i
is improved to type a.  Since Ea is infinite there exists i > i and s + 1 > Z
such that the candidate of order i   is improved to type a at stage s  +1.   Let ß
be the type of the candidate of order 1 in existence at stage s' + 1.  Such a can-
didate exists because W. = 0.  By Claim 1 and Remark 3 /3 > a or /3 Ç a.   If
ß > a and a£ ß then E* = 0 for some s > t.  If aÇ ß then by Remark 10 at some
stage prior to stage s ' + 1 but after stage t there must have been a candidate of
order i and type a in existence.   If ß C a then ß = a by Claim 3 since leva< i.

Now, let s0 + 1 be the last stage such that the candidate of order i is
improved to type a.   No stage > sn + 1 pertains to a condition of order < i except
if the stage is an A-stage in Case 1.   If not then at some stage s, +1 > sQ + 1
there is no candidate of order i in existence at stage s. + 1.  We can argue as we
did in the last paragraph that at some stage > s, + 1 the candidate of order 1 is

improved to type a again.   This is impossible.   There are at least n + 1 members
Sq+1 sq

in Aa      .  There are the n members of Aa   plus the new candidate of order 1 in
«0+1 s„+I

Aa      .   Let p be the (» +l)st member of Aa      .
We show by induction onsifs>sQ + l and a is a candidate of order > i in

existence at stage s then q > p, and further p £ A*.  This is clear for s = sn + 1
since there are no candidates of order > 1 in existence at stage s» + 1.   If stage
s + 1 is an A-stage in Case 1 then A^ = A£+1.  If stage s + 1 is any other type
of stage then it pertains to some 7 > 2.   If stage s + 1 is an A-stage in Case 2 or
B-stage then 7 > i since W{ = 0.   By the induction hypothesis the candidate or
order 7 in existence at stage s is > p thus p e A*+1.  If stage s + 1 is a C-stage
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then let ß be the type of the new candidate of order /.   If ß < a then clearly the
new point of order / is > p and p e A*+1.   If a< ß then aC ß otherwise E* + 1 = 0
which is impossible.   If q is the new candidate of order j then 772(7, at s) < 9«
Now, /' > i > n + 1.   Hence q > the (n + l)st member of A^ if there are at least
« + 1 members in Asa, which there are by the induction hypothesis.   Thus q > p
and p e A*+  .   If stage s + 1 is a D-stage then A* = A*+    and the candidate
is chosen > p.  We conclude that Aacontains at least n + 1 members.

Claim 8. // 6.(D)= Y. and^.(Y.) - D then a.= 1.
'     t i 11 ;

Let ß be the greatest member of Y such that lev/3 < 7 + 1 and /3 C a.   If
ß. = 1 we are finished.  Assume for reductio ad absurdum that ß. = 0.   Clearly

Eo+, must be finite.
We begin by showing that there exist at most finitely many stages s such

that a candidate of type > ß * j is appointed at stage s.   Let i be a stage such
that for all s > i, E sß /= 0 .   If a candidate of type y>ß*j is appointed at a stage
s >t then y 3 jS otherwise Esß = 0.   If p is appointed at stage s as a candidate
of type y where y > ß * j and y 3 j8 then p is built up from members of Esßjf,

where lev/3 < k < 7.  We can say that all types y such that y> ß * j and y D/3

are built up from finitely many types of the form ß * k where lev/3 <*<;'.  So
it suffices to show that for all k such that lev/3 < k < j there exist at most
finitely many stages s such that a candidate of type ß * k is appointed at stage
s.  Suppose not.   Let k be the least number > lev/3 such that there exist

infinitely many stages s such that a candidate of type ß * k is appointed at
stage s.   Let i0 be a stage > / such that no candidate of type y is appointed at
any stage > iQ where y 2 ß * I and lev/3 < l< k.  Choose i} > tQ such that if
s + 1 > íj then at stage s + 1 no candidate of type y is considered where
y — ß * I a°A lev ß < I < k and further s + 1 does not pertain to a number < k + 1.

We now argue that if s > ij then E%^k C E^*fc.   Now, by the construction

EsßH =0 or Es^k Ç Esßlxk.  If E^¿ =0 and E^ ¿ 0  then either stage s + 1
considers a candidate of type y > ß * k (as in Parts A (Case 2), B, and C of the
construction) or some candidate of order < k + 1 is implemented in part B of the
construction.  Since the second of these two possibilities is impossible then
y 2 j8 or else ESA   =0.  Hence y 2ß and y>ß*k.  This implies there exists
an / such that lev ß <I< k such that y 2 ß * ' which is also impossible.   Hence
Eß*i í ^ß*k f°r a" s — 'l*   ^e conclude that E „¡|¡.   is infinite since infinitely

many candidates are appointed which are of type ß * k.  Now, lev/3 * k < j + 1
since & < 7.   This contradicts the assumption that ß is the greatest member of Y

such that lev/3 < 7 + 1 and E^ is infinite.
Let Sq be a stage such that, for all s > sQ, Esßr^0 and no candidate of
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type > ß * j is appointed at stage s.   Let i be the least number such that no
candidate of order i has been chosen by stage sQ, j < i and W. =0.   Let s} > sn
be a stage such that no stage > s,  pertains to a condition of order < i.   At stage
s,  there exists a candidate r of order i and type a for some a.  Clearly r is the
candidate of order i for all s > s,.   Since E» is infinite there exists i  > i such
that at some stage s > sx  a candidate of order i  and type j8 is appointed.   Since
E^0thena>/3oraC/3.

If a > ß then a D ß otherwise Eß = 0 , where s ' > sQ is the stage when r
was chosen as the candidate of order i.   If aC ß then a= ß by Claim 3.   In any
case ß Ç a.  Since Sj > sQ then/3 */> a.

Since Eß is infinite so is A „.  Choose points p and a as follows,

(i) p e A^g and a eA^,

Oi) P < <z,
(iii) p > any candidate ever appointed of order < i,
(iv) p > max|772(2, ß, s): s e N\,

(v) lim„/(/, (p)-, s)> maxir(y, s): y > ß * j and s e N\,s 0

(vi) limsk(j, (p)-, s)< lims /(/', (a)0, s).

Such p and a exist because 0.(D) = Y. and 1* .(Y.) = D and there exist only finitely
many stages when a candidate of type > ß .*; is appointed.

Let s2 > Sj be a stage such that
(1) p and a are in existence at all stages > s2,

(2) ß is not frozen at stage s2>
(3) L(j, s) > lim   k(j, (q)-, s) for all s > ss J ¿
(4) no stage > s    considers a candidate of type > ß * j,

(5) no candidate of type > ß * j is cancelled at any stage > Sj.
Since p and a are in Asß fot all s >s2 it must be the case that /(/, (p)-, s?)=

lims /(/, (p)-, s), /(/, (a)-, s2) = lims /(/, (a)-, s) and *(/, (p)-, s2) =

lim   ¿(7, (p)-, s).   Clearly the candidate of order i can be improved at stage s+1

if we can show that ß * 7 itself is not frozen at stage s .   If ß *j is frozen at
stage s. then there exists at stage sa potential condition of the form (a, y,

ff, A) where if 8 is the greatest member of T such that o Ç y and 8 C ß * j, and
er = er' * ff where /iff = extô then ff   has a nonzero member.   Now, 8 <t ß since

otherwise ß is frozen at stage s2.  We conclude that 8 = ß *j.   Thus y Z) ß * j
and so y > ß *f.   This potential condition is never cancelled for if it were then

(5) above fails.  If k < j then the potential condition is eventually satisfied
since ß, = 1 implies As L(k, s) is unbounded.   Thus k > j otherwise (A) fails.

Further k /= j since \sL(j, s) is unbounded by the hypothesis of the claim.   Hence
k > 7.   Let n = 1 + the number of zeros at the end of ff.   By Claim 2, k < nth I
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such that y¡=l-  Now, a = a * a  where lha = ext/3 */' and ff contains a non-
zero member.  Hence n < ext/3 * /.  Since A < rzth / such that y. = 1 then k must
be < /.  We cannot have both k> j and k < j so we cannot have j8 * 7 frozen at

stage s,.
We have shown that the condition of order i requires attention at stage

s- + 1 > sQ which is impossible.   Our assumption that ß. = 0 is false.

Claim 9. // 6.(D)= Y. and^l.(Y.)= D then there exists r.e. sets Y. „ and
Y. , such that Y. n ny. / = 0, Y.. uY. , = Y., D <_ Y. ., and D<'y. ,.7.1 1,0 j,l     ^ j,0 7,1 7 -T     7,0 -T     7,1

Let aC a be such that leva.= 7 + 1.  Such an a exists by Claim 8.   Let tn

be the last stage such that E° = 0.   For all s > tQ, E* C E* + ', RSQ aÇ Rs+¿,

Rí.a ^ Aï,+a  and ¿(<Z' S) ̂  **' S + *>•   Let R = Uf«Ô,a: * > 'o{*   ^ Set « is
recursive since th.e intervals that make up R ate enumerated in increasing order.
Define Yj0 = Y*, n R and Yj^ = Yf n R.  Now define Yy>0 = (Js Vy.o a«d ^,1 =
U, Y;,,.  Clearly Y.g n yj = 0 and Y/ffl U Y,, = Y.. '

We now show that D <T Y. j.   The proof that D <T Y. Q is analogous.   Let
M = tnax{d(ß, s): ß> a, ß fia and s e Ni. M exists otherwise Ea= 0.  We now
show how to compute £>(x) for x > M inductively from Y. ,.

Let x > M.  Compute the least number ij > iQ such that ¿(a., f j + 1) > x.
The stage ij exists because Ea is infinite.   Let t    be the least stage > ij + 1
such that

(i) D(y) = o'2(y) for all y < x,
(ii) yif .(y) = Y[2.(y) for all y < r(a, ^ + 1),

(iii) L(j, t2)>r(à, ij + 1),
(iv) a. is not frozen at stage i,.

We will show that x e D iff x e D 2.
<2

For reductio ad absurdum let us suppose that x e D - D   . Suppose
s, + l       s

x e D ¿     - D ¿.  Let p be the member of Ea created at stage ij + 1.
Let p be the constant zero sequence of length extct- 1.  We begin by mak-

ing the following.

Subclaim. There exists a candidate q of type ßDain existence at stage s,
such that x = (p)0 +   and p = (q)a for some a of length ext/3 - exta.

Assume that the subclaim has been proved and let ß, q, and ff be as in the
subclaim.   Let r be the constant one sequence of length exta.- 1.   The number
(p)       must enter D at some stage s   + 1 < s   + 1.  At stage sQ + 1 a potential
condition of the form (q, ß,a*l *r, /) comes into existence.   Furthermore at
every stage s such that sQ + 1 < s < s    a potential condition of the form
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(a, ß, ff* 1 *«*, 0 where lhv= exta- 1 is in existence otherwise x = (p)0*p

would never enter D at stage s   + 1.   Hence a is frozen at each stage s such
that sn + 1 < s < s .  Since Z   < s   then Z, < sn otherwise a would be frozen ato        -     -   2 2-2 2-    u j
stage Z2«   Let s+1 be the stage such that (p)^« £ D - D    .  Now, sQ <
s, < s .   At stage s   + 1 a potential condition of the form (a, ß, a * 1 *p, /)
where / = the least number such that ß[ ■ 1 comes into existence.   There are
exactly ext a - 1 zeros at the end of ff * 1 * p.  Hence the number n referred to
in Case 1 of part A of the construction is actually equal to exta.   Eventually a
potential condition of the form (a, ß, a * 1 *p, f) must come into existence
since / = the(exta)th k such that a, = 1.   Let t, be the stage when this poten-
tial condition is satisfied and (p)0*r actually enters D at stage t   + 1.   We show

now that /, (p),*,,, (p)1Hcf, t., t2, t, satisfy the basic lemma.  We certainly have

(P\*p S (P\*r anc* 'l - *2 *" "V   ^ow' tne P°int ((p)o> (p)i) was constructed at
stage Zj + 1.  Hence   L(j,  tx)  >   k(j, (p)^r,  tx)  and  d(a, Zj + 1) =
Hi, *(/, (P)1*r» <i)i 'i)-  Since (p)1¡(!7. enters D at stage sQ + 1 and sQ > Z2 then
no number < d(a, Zj + 1) may enter D at a stage s such that Z, < s < t2.   Further-
more, no number < (p)i*„ may enter D at a stage s such that Zj < s < t, otherwise
(P)n*r W0U1<1 never enter D at stage Z, + 1.   Now, L(j, tA > r(a, Z, + 1) =
*0'i (p)i*r' 'i^ ^y tlie definition of Z2 and L(j, t ) > (p)1+p since the potential
condition (a, /3, ff * 1 *p, /) is satisfied at stage Z,.  All the hypotheses of the

i,        z,
basic lemma are satisfied.   Hence there exists a z e Y ? — Y.   such   that

Kj, W^p* tl)<z<k(j, (p)1+r, tx).  Now, [/(/, (p)ltp, Zj), k(j, (p)^T, Zj)]Ç R.
Hence z e Y.\ - Y. \ and z < r(at 11 + 1) .   This contradicts part (ii) of the

definition of Z2.  We conclude that our supposition that x e D - D 2 is false.

We now proceed to prove the subclaim.   There certainly exists a candidate a
of some type ß in existence at stage s2 such that x = (q)v lot some v of length

s, + 1
equal to ext /3.  We must have ß < a. ot a C ß since otherwise Ea        = 0 .   Ii
ß < a then we can conclude that ß C a otherwise p < q which is impossible since

x < (p)-.  Assume /3 C a.  We shall show that ß = a.   Now, a is frozen from the

stage when (a)- enters D until at least stage s2.   Hence (a)- enters D after

stage Zj.   Now, a is the candidate of order z for some i.  We cannot have  í < / or

else E* + 1 = 0 where s + 1 > t2 (s + 1 is the stage when (a)- enters D).  Let

«j + 1 be the stage when a was chosen as the candidate of order i.   The point p
was chosen at stage tx + 1 to be the candidate of order i  fot some i'.  We must
have «j < Zj or else q > p which is impossible.  Hence at stage t. + 1 both p
and a are unimplemented candidates of orders i and i respectively.  Now i < i'
or else q > p.   Now, leva = ; + 1 < i < i' hence by Claim 3 j8 = a.

So far we have shown that a C ß.  Since x = (q)v then x = ((q)a)   fot some ff
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of lenth ext/3 - exta and p of length exta..  Since t. + 1 is the least stage such

that x < d(a, i. + 1) and p was created at stage t. + 1 then (f^must be p.   It

remains to show that p is the constant zero sequence of length exta.   At stage
s2 + 1 a potential condition of order i oí the form (q, ß, a * p, k) is appointed

where k is the least number such that ßt = l.   Suppose that p is not the constant

zero sequence of length exta-.   Then a is frozen at stage s, + 1.   Further a must
be frozen at every stage s > s. + 1 via a potential condition of order i oí the
form (q, ß, a * p, l) fot some /.   This is shown by induction on s.   There is no

problem if s + 1 is an A-stage in Case 1 or a D-stage.  There are three cases left to
consider.

(1) s + 1 is an A-stage in Case 2.  Let i' be the order of the potential con-
dition satisfied at stage s + 1.   If /'< i then some number < x must enter D at
stage s + 1 which is impossible.   If i < i   then the potential condition of order

i remains in force.

(2) s + 1 is a B-stage.   Let i  be the order of the candidate implemented at
stage s + 1.  Again we must have i < i   or else some number < x enters D at

stage s + 1.   On the other hand if i < i   then the potential condition remains in
force.

(3) s + 1  is a C-stage.   The new candidate r must be of order i  and of type
y where y < a or y 2 a since otherwise E*+   = 0.   Since a is frozen at stage s
then we cannot have y 2 a*   Since y <a and aC ß then y < ß .  We of course

cannot have i = i'.   If i < i' then (q, ß, a * p, I) could only be cancelled if
y > ß which is not the case.   Suppose i < i.   Let a be the candidate of order i
in existence at stage s just before r was chosen and suppose a has type 8.  Now,

since z ' < í then a < q and <5 > ß or 8 C ß.  Since y is to be an improvement over
8 and y < ß then 8 < ß.   Hence 8 C ß.   Let u be the stage when q was chosen

as the candidate of order i.   The point a must be the candidate of order :'   in

existence at stage u.   By Claim 3 ¿5^ = /8fe for all k < i .  Since y > 8 and
levy < i   then there exists k < i   such that y, = 8k for all k < k , y.» = 1 and

8,i= 0.   Hence we must have y > ß which is impossible.  We conclude that p

is the constant zero sequence of length equal to exta.
This concludes the proof of the subclaim.   The theorem is now proved where

d is the degree of D.

VII. Proofs of the corollaries. Recall that we need to prove Corollaries 1
and 3 and the fact that d"= 0".

Proof of Corollary 1.  The fact that every r.e. set of degree d is strongly
mitotic is proved simply by noticing in the proof of Claim 9 that R is recursive,
Y. nC R, and  Y. , C R.1,0 -     ' 7.1 -

Proof of Corollary 3. To show that every two r.e. sets of degree d are weak
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truth table equivalent we show that every r.e. set of degree d is weak truth table
equivalent to D.   Let 6.(£>) = Y. and T .(Y.) = D.   The reduction procedure used
in Claim 9 to reduce D to Y. .  is a weak truth table reduction procedure since1, t
the number d(t. + 1) can be found effectively from x. Hence D <w Y. x  ("<w"

means "weak truth table in").   Trivially, Yyl <w Y..   Therefore D <w Y..   To
show that Y. <   D let ZQ be as in Claim 9 and let y be any number.   Let at be
the least number > ZQ such that r(a, «j + 1)> y.   Let «2 be the least stage

> zij + 1 such that

(i) D(x) = d"2(x) fot all x < d(a, ux + 1),
(ii) d(a, a   + l)>a"(a, »A

«2
If we can show that y e Y. iff y e Y.    then we have exhibited a reduction

procedure that witnesses   Y. <WD.
Let p be the candidate of type a created at stage u2 + 1.  We first show that

no number < (p)- may enter D after stage u2.  Suppose not, let x < (p)    be the

least number that enters D after stage a .  We must have x > d(a, u. + 1) hence
x = (q)a tot some ff and a £ E .   Let « + 1 be the stage when a was created.
Clearly a2 + l>a+l>aj and d(a, a + 1) > d(<x, a).   Furthermore, we must have
D(z) = Du(z) fot all z < (a)- since x is the least number that enters D after stage

a2 and no number < (a)- may enter D between stage a + 1 and a2 (or else x never

would have been put into D).  Since a > d(a, ul + 1) then D(z) = Du(z) for all
z < d(a, a, + 1).  We conclude that a + 1 = a2 + 1 and p = q.

Since no number < (p)- may enter D after stage a, then using an argument
like that in the basic lemma no number < /(;', (p)-> uA) may enter Y. after stage

a2.   For if z e Y - y"2 and z < /(/, (p)-, a ) then Y(z)¿ 0"2(d"2; z).   The

computation on the right-hand side is protected since D(w) = D    (w) for all
w < (P)ñ*   Now we specifically chose r(a, u. + 1)< /(/, (p)   ,uA.   Hence  Y.(z) =

Y.  (z) for all z < r(a, aj + 1) and in particular Y.(y) = Y.  (y) which was to be
proved.

Proof that d"= 0"[due to Paul F. Cohen], First notice that if A is r.e. and
A <TD then A <wD.   For if A<T Dthen A 8 D =T D.   Hence, by Corollary 3,
A ® D <wD.   Trivially then A <wD.   From this we conclude that íe: Wg <T d¡ =
!e: -^e Sw^>«  Now {e: We <w£>! e 23 since the set is defined by the predicate

Sz'i/VxVsBs'

[s   > s, (ps (x) is defined,

$f(Ds', x) is defined and equal to W*'(x) and c(/, Ds', x.s') < tbfix)]

Now, ie: Wg <Td| e2, and further d < 0  since 0   contains a nonmitotic r.e.
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set.   By a theorem of Yales [6, Theorem 9] d"= 0".   This proof parallels a proof
of Jockusch [l, Corollary 8].

VIII. Conclusion and open questions. Let P(W) be a property of r.e. sets
satisfying the following conditions:

(1) if P(W) then W is nonrecursive,
(2) there exists a W such that P(W) and ff e 0',
(3) for all nonrecursive r.e. V there exists W <TV such that P(W),

(4) there exists a nonrecursive r.e. V such that for no W =_ V is P(W) true.
The properties "W is nonmitotic" and "W is nonautoreducible" satisfies

(1)—(4).   From Sasso [5, Theorem 4] and from Corollary 3 we see that the property
"there exists a r.e. V such that W =T V and W ?=w V" also satisfied (1)—(4).  Are

there any other interesting properties of r.e. sets that satisfy (1)—(4)?   In particu-
lar, can a lattice theoretic property (lattice of r.e. sets) satisfy (1)—(4)?

There are several questions concerning the restrictions on the degrees of

nonmitotic r.e. sets.
(a) Does the degree din the present construction have jump = 0 ?   If not

then can the construction be modified to produce such a degree?
(b) Does b r.e. and b =0  or b > 0   imply that b contains a nonmitotic

r.e. set?
(c) Are the degrees of the nonmitotic r.e. sets dense in the r.e. degrees?
The following list contains conjectures that we feel may be solvable using

modifications of the techniques of this paper.
(i) There exists a nonrecursive r.e. degree containing only one r.e. weak

truth table degree and also having a nonmitotic r.e. set.
(ii) There exists a completely mitotic nonrecursive r.e. degree containing

more than one r.e. weak truth table degree.
(iii) There exists a completely mitotic nonrecursive r.e. degree which is

not completely strongly mitotic.
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