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decomposition of m! may be found by the formula

B2

where [a] is the integer part of ¢. Taking it into account, one sces thatb
for the numerator this number is (p°—1)/(p ~1) and for the denominator
it s (P 1—1)[(p —L)-+(p* 1 1) (p ~1)/(p —1). The difference of thege
two numbers being equal to 1 proves that (f) = (pfjl) i not divigible

by p?. Now (9) shows that for some 7 also p2ts,. Therefore, in case (i), &,_,
satisties the identity not holding in @, if and only if B containg some
element of the additive exponent p.

{li) Secondly, assume that d =¢/2 i divisible by two different

primes p and ¢. In this case the greatest common divisor of numbers
g, ..., 0 18 trivial. Indeed, n, = d is divisible by both p and ¢, and (f)

for suitable choices of # is not divisible by either (this can be proved exactly
as in (i)). Hence to obtain the conclusion on the greatest common divigor
of %gy ..., 7z 1t Temains to make use of (9). Applying formula (8), one
sees that pu’ + 0 for any o = 0 and therefore gu = 0 i not a law in Gy
for any 0 % o e R.

This ecompletes the proof of the main theorem.
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As its name would seem to indicate, the modal logie of programs is, or
can be viewed asg, a generalization of clagsical modal logie. In spite of this
fact there has been little interaction so far between the two fields. One
wonders whether this is accidental, or whether there is a deeper explanation.
Tor it may bo that modal logicians and computer scientists are interested
in rather different guestions, or that already from the outset the modal
logie of programs is headed for goals that lie beyond the limited territories
of classical modallogic — the increased complexity of the former allows,
even invites, such development, and application will probably demand if.
However this may be, it seems to the author that, at least in its
present formative state, the modal logic of programs ig truly a general-
ization of classical modal logic, and that the methods of the old discipline
can he brought to bear on at leagt some of the basic problems in the emerg-
ing ome. To give gome substance to this claim we shall prove in this
paper a completeness theorem of the kind of which there have been so
many in modal logic. Tho theorem is interesting in its own right, but the
main peint is perhapy that the proof is achieved by 2 method that has
been standard in modal logic for many years — the canonical models/
filtrations technique, due originally to Dana Scott and others.
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In view of how diverse the andience of this paper is likely to be, an
effort has been made to malke the paper self-contained. For readers who
would nevertheless like more background, the following comments are
in order. The hest reference for classical modal logie is presumably Lem-
mon [4]. Other references are Gabbay [1], Hughes d& Cresswell [3] and
Segerberg [11]. The originator of the modal logic of programs was evidently
Vaughan Pratt (who nowadays prefers the more tractable term “dynamic
logie?). His paper [6] contains some historical remarks and further biblio-
graphieal references. An idea of how dynamic logic might develop is given
by his more recent paper [8]. The “extended abstract” Fischer & Ladner
[2] is also & useful reference and was a source of inspiration for the present
paper. Some further remarks on the writing of this paper will be found
in Section 8 at the end of the paper.

1. Program modal languages

A (propositional) program modal language iy determined by four sebs
which are supposed to be pairwise disjoint, viz.,
(i) a set @, of propositional letters,

(i) & set IT, of program letters,

(iil) a set of propositional operators,

(iv) a set of program operators.

A given program modal language determines 2 set of program expressions
and a set of formulas as follows. The set iI of program expressions is the
smallest set X that satisfies the following conditions:

O I, € &

(i) if ¢ is an wm-ary program operater and ay,...,q,_; €2 then
@Ay «vy Uy} €2

The set X of formulas is the smallest set T that satisties the following
conditions:

i) &, = 2,

(i) if o is any m-ary propositional operator and Ay eniy A, €2 then
of{dy, ..., 4,_,) € Z,

(iil) if acil and A4 eZ, then [a]d e X.

Thus, for every program expression «, there is a unary propositional
operator [a].

Although we have not done so here, it might be reasonable to add
various conditions to the definition of program modal language. Instead,
for the sake of concreteness, we shall assume, throughout most of the
Paper, as given a fixed program modal language that satisties the following

icm®
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conditions:
(i) there are infinitely many propositional letters,

(i) there are program letters, finitely or infinitely many,

(iii) the only propositional operators are the unary ~Jand the binary -,

(iv) the only program operators- are the binary + and - and
the unary *.

We use boldface Roman upper case letters 4, B, C for formnulag,
and Greek lower case letters e, § for program expressions. Yeb another
typographical convention is to use italic lower case letters 1, j, & ) Moy Ty P
for natural numbers, which we take to inleude 0. Furthermore, we employ
without explanation various simplifying conventions that are common.
Thus we often drop parentheses, and we write A — B where protocol
would demand — (A, B). Non-primitive notation, such as A, v, «,
will sometimes be used and may be thought of as abbreviational devices.
Tor +(a, B) we write a+§, for -(a, §) we write, simply, of, and for *(a)
wo write a*. We define

[c]?4 = A,
[a]""A = [a]{[a]"4).

In othér words, [a]* ib a formuld denotes a string of n [a]’s. We speak of
& program expression a in a formmla or in a set of formulas if ¢ occurs
in the formula or in & formula in the set, respectively. :

2. Semantics

By a model (suitable for the given language) we understand a trlple < U, R;
¥> such that the following conrditions hold:

(iy U is a set, .

(i) B = {B(a)}er is a family of binary relations on U; that is,
if a is any program expression, then R(a) = Ux U,

(iii) Vis a functlon from @, to U; that is, if P is any proposmwnal
letter, then V(P) =

Here U is called the domain and ¥V the valuation of the model, while,
for any a, R(a) is called the accessibility relation corresponding to a. Notice
that the concept of model explicitly depends on the language (w'z. on
what program expressions there are).

We say that a model M = (U, R, V> 18 & progmm model if, for all @
and §, it satisties the following condltlons

(i) Bla-+p) = R{a)VE(f),

3 — Banaclh Center Publ. t. 9


GUEST


e ©
34 K. SEGERBERG Im

(ii) B(af) = R(a)lE(B),

(iit) R(a*) = (R(a))*.
Here we nse the symbol | for relative product; that is, if & and T are
any binary relations, then

BIT = {{@, y>: Fele, &) e S & {2, 9) € X))o

In (i) we indulge in what is actually abuse of notation: while the first
agberigk belongs to the object langnage, the second is a metalinguistic
symbol representing the ancestral operation; that is, it § is any binary
relation, then
8* = {§" n< o),
‘where of course
80 = {{w, #>: @ is in the field of 8},

S+ = 18,

Also the typographical shape +- does double duty, in the object language
as a program operator, in the metalangnage as representing addition
between natural numbers. These ambiguities should cause no confusion.

Let MM = (U, R, V> be any given model. The important concept
of truth at & point in M i3 recursively defined as follows (for Mk, A, read
“4 is true at w in M” or “A helds at « in $M”). Suppose « € U. Then:

() Mk, P iff w e V(P), it P is a propositional letter,

(i) M, 14 iff not Mk, A,

(iii) Mk, 4 —~ B iff Me, A only if Wk B,

(iv) Mk, [a] 4 iff, for all v, if 4R (a)v then Mk, 4.

We say that A is true in M if, for all w € U, ME A, Tf 4 ig true in
all models or in all program models, we say that A is logieally irue, respect-
ively, program logically true.

Our analysis has led up to two obvious characterization problems:
how to characterize the set of logically true formulas (not very interesting)
and the get of program logically true formulas (interesting). XIs the latter
set axiomatizable? If so, is there a simple way of axiomatizing it? It is
known from Fischer & Ladner [2] that the answer to the first guegtion
is affirmative. We shall show that also the (vaguely formulated) second
question has an affirmative answer.

An aside: Students of modal logic will notice that the usual notions
of frame and validity in & frame or in % clags of frames would be as readily
generalized as those of model and truth, Tt is not clear to the anthor
how interesting such generalizations would be in the present context.
Tt may be noticed, though, that the semantics of operators representing
test programs (see, for example, Fischer & Ladner [2] or Pratt [7))
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cannot he rendered in frame semantics: Mk, [ A8 holds if and only if
either not MF, A or else ME, B. This “difficulty” can of course be cirenm-
vented by introducing [ 4?]B as an abbreviation of the formuls A — B.
But the theoretical observation remains.

-

3. Syntax
By a logic (over the given language) we understand any set I of formulas
that satisfies the following conditions:

() L containy every tautology (in the senge of oxrdinary two-valued
propositional ealeulus),

(i) L is closed under modus ponens; that is, if 4, 4 -~ Be T then
BelL,

(itl) I is closed under substitution; that is, if A’ is the result of substi-
tuting a formula B for some propositional letter P in 4, then A el
implies A’ e L.

By a normal logic we understand a logie that also satisfies the following
two conditions:

(iv) L contains every formula of the form
(40 [al{Ad—>B)~>([a]d—[«]B),

(v) L is closed under a-necessitation, for every a; that is, if A e L
then also [a]A el.

Finally, by a program logic we understand a normal logic that contains
2ll formulas of the following form:

(#13) [a+p]14—[a]A,

(#1b) [e+pld—[plA,

(4 1c) [a]A > ([f]4 —~[a+p14),

(# 22)  [eflA —~ [a}[B] A,

(#2b) [«][f]A —[af] 4,

(#3a) [a*]A— 4,

(4 3b) [a*]A—>[e]A,

(43c) [a]1d->[a*][a*]4,

(#30) A->({[a*](4~>[a]d) ~>[a*] 4).

This way of defining program logies seems quite perspieuous. For
example, it makes it at once clear that [a*] is (at least) an S4-modality.
However, it is not the shoxtest definition possible, particularly if non-primi-
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tive notation is used. Thus (4 # 1a~c) can be replaced by the single schema,
(#1) [e+p1A ~[a]AA[p]A, o

{# ¥ 2a,b) by the single schema :
(#2) [af]A--[a][f] 4,

and { 4 3a —e) by the single schema
(#3) [¢*]4 > AATa][e*] A.

The most remarkable of the preceding schematd s ‘( 4 3d), a kind of

induetion schema (cf. the counterparts in fenge logic due to Dana Seott

and B. J. Lemmon that are discussed in Prior [9], pp. G6££.).

Any modal logie, normal or not, induces a dedueibility relation as
follows. Let us say that a formula A is deduvible in a logio 1 from a set 3
of formulas, in symbols T+, A, it there is a finite number of formulas By, ...
veey B,y € X such that IR :

ByA ... AB, ;> AEL. _
12 we write +z 4 for @k, A, it follows that by 4 if and only if A e L, that is,
the theses of I are exactly the formulas that are deducible in T from the
empty set. Notiee that L is closed under deducibility. Hence A4 el if
and only if 4 is a thesis of I. Co

We say that & set X of formulas is L-consistent if not every formula
is dedueible in T from X. An L-inconsistent get is of course ome that ig
not L-consistent. It is readily seen that a set X iy L-consistent if and only
if every finite subset of I is I-consistent. b

Let P be the smallest program logic (P for Pratt). The following
claim iz the main result to be established in thig paper:

THEOREM 3.1. P coincides with the set of program logically true for-
mulas. . ‘ o

As usual in modal logic, the soundness part of this claim is easy to
establish: that every formula in P (thesis of P) has the property of being
true in every program model is shown by the fact that all tautiplogics and
all instances of {4 0-3) have this pr_olierty, and that modus ponens

and a-necessitation preserve it. It is the converse that it 15 difficult to
prove.

4. Canonical models

Suppese that T is o normal logic. By the canonical model of I, W mean
the triple M, = (U, Ry, V;> where ‘
(i) Uy is the set of all maximal I}-eonsistenﬁ‘ sets of formulas,
{ii) for every program e?xpre‘ss_ion @ and for all w,ve Uy,

uRg(a)o it for all 4, if (a]4cu then. dcv,,

icm®
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(ili) for every propositional letter P,
Vi (P) ={uec Uy Peu}.
The following theorem generalizes Scott’s well known result in modal
logic:
Tew TrUTE LuMMA 4.1. If L is any normal logie, then, for all ue U,
and for all formulas A, ‘

Mk, 4 if and only if Aeu.

The proof —a straightforward indnetion on the complexity of A —
is omitted.

COROLLARY 4.2. If L is amy normal logio, then A is a thesis of L
if and only if A is true in My .

Proof. If F A, then A is an element of every maximal I-consistent
set and hence, by the Truth Lemma, true in M, . On the other hand, if
not Fpd, then {714} if an L-inconsistent set which, by Lindenbaum’s
Lemma, possesses some maximal I-consistent extension, say z. With
2e Uy and A4 ew, the Truth Lemma entails the falsity of Mk, 4. m

The canonical model exists and the Truth Lemma holds for every
normal logic, hence in partienlar for P, the smallest program logie. It is
clear from the corollary, then, that if M, happened to be a program model,
‘the completeness problem for P, which is our concern here, would be solved.
Ags the next few lemmata show, Mp is almost a program model — almost
but not quite. (Actually, for the eompleteness proof we only need the
<-parts of Lemmata 4.3A and 4.3B.)

Levmma 4.3A. If L is a program logic, then, for all a and B,
Ep(e+f) = By(a)VEL(8).

Proof. Assume that 4Ry {a)v. Suppose that [a+ ] A e u. By {4 1a),
[a] A e u. Hence, a8 uRy (a)v, 4 e v. This shows that B (a+p) = Ryla).
An analogous argument, invoking (4 1b), shows that Er(a-+p) 2 B.(8).

For the converge, assume that neither wRy(a)v nor w R (f)v. Then
there exist A and B such that

[a] A e,
[81B eu,

Adw,
Béw.
Consequently, [a](4v B) € %, and [8](Av B) ¢ % and so, by (# Le), [a+ 8}

(A v B) € u. On the other hand, 4 ¢» and B ¢ v implies that Av B ¢w.
Therefore, not wR,{a -+ f)v. This shows that B, (a+ ) € Br(a)W B, (). m
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Lmvva 4.3B. If L is a program logic, then, for all ¢ and B,
By (af) = By (a)|Br(f).

Proof. The easy halt of this proof —the 2-part—is similar to the
corresponding part of the proof of the preceding lemma; here one uses
the fact that L containg all instances of (¥ 2a).

For the other half — the =-part — assume that

k) wRy(af)v.

Let Gy, Cy, ..., C,, ... be an exhaustive enumeration of all formulas in ».
We define a new sequence of formulas as follows:

B, =0,
B7L+l = BnA C’m.+1'

Note that
(2) for all », B,eco,
(3) for all » and p, B, ,t.B,.

Congider the seb
4 = {A: [a] A cu}U{TI[BIT1B,: 7 < w}.

‘We claim that 4 iy L-consigtent. Suppose not! Then there are formulas
Ay, ..., A,y and natural numbers 4, ..., 4, , such that

4 el dy, ...y [a] Ap_se 0,
() {4os vy A1, I[E1 7By, .., TIIBT 1B, ) is an}Z-ineonsistent set.

Suppose that k = max{iy,...,%,_,}. Then (3) and (8) iroply that the
seb {A, ..., 4,1, T1[F171B;} is L-inconsistent. From this it follows thatb

FzdoA oo A, ~[B171B,.

Using the fact that L is normal, we conclude (applying a-necesgitation,
(4? 0) and truth-functional reasoning) that

Frla]l Ao oo alaldy, ) — [a][B]71B,.

This, in conjunction with (4), yields [al[f171B, e u. Hence, by (4 2b),
[¢8]1 1B, cu. By (1), then, "1B, cv. Therefore, since v is L-consiatent,
B, ¢ v which contradicts (2).

The L-eonsistency of 4, thus established, enables us to conclude,
by Lindenbaum’s Lemma, that there is some z e Uy, suckh that 4 < a.
It is easy to show — this is of course why 4 was defined the way it was! —
that wBy(a)o and ¢ R, (5)v. m
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Lovwma 4.3C. If L is a program logic, then
Bl 2 (RL(G))*-

Proof. Bagy, since I containg all instances of (44 3a-c). m

If the converse of Lemma 4.30 held, the canonical model of a program
logic would be a program model. But is does not! To see that it does not
hold for P, let P be any propositional letter and = any program letter.
Congider the set :

I' = {[a]"P: n< 0}V {7 [n*]P}.

For every n, let % ,= (N, R, V,> be some program model such that ¥
is the set of natural numbers, B(») is the relation of immediate sueccessor,
and

Vo (P) = {i: i<}

(Thus it is only the valuation that depends on ».) If I' is any finite subset
of I', then there will be some j such that [#)'P e I", while, for all k, [=}T*P
¢ I'". It is easy to see that %; is & model for I in the sense that, for all
Ael”, Wk,A. Hence I' is P-consistent. But if every finite subset of I'
iz P-consistent, then I itself is P-congistent. Hence, again by Lindenbaum’s
Lemma, I" can be extended to some 2 e Uy. By the Truth Lemma we
conclude, pro primo, that there is some y € Uz, such that B, (7*) ¥ and
P ¢y (since "I[a*1P ), and, pro secundo, that w(RL(n))*y does not
hold (since [#]"P cw implies that = ({Ry(x)"# only it P esz). Brgo, the
converse of Lemma 4.30 fails.

5. Filtrations

By the set of subformulas of a given formula A we understand the smallest
set X guch that the following conditions are satisfied:
i) Ael,

(i) it 1B e X, then Be X,

(iii) it B - € e X, then B,Ce X,

(iv) it [a]B e X, then BeX.
Let L be any normal logic. Any set ¥ of formulas induces an equivalence
relation on U, as follows:

% =9 if and only if uN¥ =on¥,

We write |u| for the equivalence clags of u. Note that = and hence [u| ex-
pressly depend on ¥, even though our symbolism does not reflect the
dependency.

Let ¥ be any seb closed under subformulas (that is, whenever A
is a subformula of B, then B e ¥ only if 4 e ¥). We say that & model
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M = (T, R, V) is a filtration of the canonical model My, for L through ¥
if the following conditions obtain:

W) T = {lu: we Uy,

(ii) for every program expression o in ¥, if u R, (a)v, then

lu} E(a) o],

(ili) for every program expression « in ¥, if |u| R(a) |v], then, for
all A4,
[e]Ad eun¥ only it Aew,

{iv} for every propositional letter P in ¥,
V(P) = {lul: weV,(P).

The following is a generalization of a well-known result in modal
logic:

TrE Frrrarron TeeoreM 3.1. For oll w € Uy, and all formulas 4 < P,
ﬁm,fl if and only if Aeu.

We omit the proof as it is a straightforward induction on the coni-
plexity of 4. Notice, however, that it is vital that ¥ is cloged under sub-
formulas. Tt may also be noticed that the theorem can be stated in a
slightly stronger form: it holds for any A that is & Boolean combination.
of formulas in ¥.

In the statement of the Filtration Theorem nothing has been assumed
about the cardinality of ¥. It is worth noting, though, that if ¥ is finite,

then so is U, In fact, if card ¥ = n, then card T 2%

6. The completeness proof

By the Fischer—Ladner closure of a set ¥ of formulas wo understand the
smallest get & that satisfies the following conditions:

i) ¥ cZ,

{ii} 2 ig closed under subformulas,

(iii) if [e4-p1A ¢Z, then [«] A, [f14 ek,

(iv) if [af]A <X, then [a][f]4 eZ,

(v) if [o*] A4 cZ, then [a][a*] A e 5.
(Oonditions (ili)~(v} may be eompared to (##1-3).) Wo say that a seb
is closed under the Fischer-Ladner conditions if it is its own Fischer—Ladner
clogure. The following result is proved in Figcher and Ladner [2]:
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Tem FOEER-LADNER LEMMA 6.1. The Fischer-Ladner elosure of
a finite set is finite.

We come now to the main observation of this paper. Let ¥ be a formula
set closed under subformulas. Let N* = <7, B, 7> be any program model
such that, for all program letters = in ¥,

lu| BY(m) (o] itf T, =udv, = v(u, By (w) v,).

Such models certainly exist. (There are usually more than one since there
are no conditions on RY(n) if # is a program letter not in ¥, and also no
conditions on V(P if P is a propositional letter not in . Actually, Mt
is a special case of a construction in [2]and a generalization of one in [10].)

THEOREM 6.2. Suppose that L iz program logic and that ¥ is a finite
set of formulas closed under the Tischer—Ladner conditions. Then Mmris a fil-
iration of My through 7.

The proof of the theorem redumces to proving two lemmata, viz.,
that R' satisties conditions (i) and (iii) in the definition of filtration.
In the statement of those lemmata we do not explicitly repeat the three
vital assumptions of the theorem: that I is a program logic, that ¥ is
closed under the Fischer-Ladner conditions, and that ¥ is finite. But they
are all needed!

Levus 6.3A. For all a in P, if u Ry (a) v, then |u] B (a) lo].

Proof. By induetion on a. The basic step follows from the definition
of B'. The inductive step consists of three parts.

(I) Suppose that the lemma holds for o and B, and that u Ry (a+8) .
By Lemma 4.3A, u By (a) v or @ Br(B) v, so, by the induetion hypothesis,
|u| BT(a) o] or |u| RT(B) [v]. Qince MT is a program model, in either
case |u| B (a+B) |v].

(IT) Suppose that the lemma holds for a and §, and that u Eplap)v.
By Lemma 4.3B, there exists some x e Uy, such that « By (a)  and # By (f)v.
Hence, by the induction hypothesis, [u| B'({a) |#| and || RT(8) |v|. Since
M’ is o program model, |u| B (af) v].

(III) Suppose that the lemma holds for a, and that

(1) U By (a*)v.

This is the diffienlt part of the proof; in fact, the difficuléy encountered
here is the heart of the whole matter. It is now that we shall finally make
use of the induction schema (4 3d), which has not been used so far.
One may say that the difficulty in construeting a completeness proof
congists in manosuvring oneself into a position in which one is able to tap
the power of this schema.
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Suppose, by way of contradiction, that
(2) it is not the case that |u| RT(a*) ju].

It is an important fact — see [11], pp. 31f. — that, since T iy finite, it is
possible to find a Boolean combination B of formmulas in ¥ such that

(8) for all we Uy, Bew it |u| BN (a" |w|.

Since M' is a program model, R'(a*) is reflexive. Hence, by (3),
(4) Beu.

Moreover, by (2) and (3), B ¢ v. Hence, by (1),

) [e*]B ¢ u.

Binee L is & program logic we may now appeal to (4 3d) to infer, from (4)
and (5), that

[e*](B — [a]B) ¢u.

Consequently there exist «, y € Uy, such that u By (o*) & and

(6) Beg,

(7) @ Ry (a) 4,

(8) Bé¢y.

By (3} and (6),

9 (u] B (a*) |2

By the induction hypothesis, (7) implies that

(10) le] B (a) ly].

Since M’ is & program model, (9) and (10) imply that
(11) e BY(a*) 1y].

But, aceording to (3) and (11), B e y, which i3 impossible in view of (8), m

Lzvwa 6.3B. For all ein ¥, if [u| RY(a) |v)], then, for all A, [a] A cun
NY only if Aew.

Proof. By induction on a. The basic step follows readily from the
definition of R'. The inductive step again congists of three parts.

(I) Suppose that the lemma holds for e« and B, and that |u| B (a-F
+8) [vl. Take any A such that [a+p]4 cun. Hence, by {4 1a,b)
on one hand and the fact that ¥ is closed under the Fischer—Ladner con-
ditions on the other, it follows that [a] 4, [8]14 € un W, Since M is a pro-
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gram model, either |uj B'(a) jv] or [u] R(8) jv. So, in either case, the
induetion. hypothesis gives us 4 gwv.

(II) Suppose that the lemma holds for a and §, and that |u| RYaf) [v].
Take any A such that [2f]4 € un¥. Then, by ( 4#2a) and the fact that ¥ ig
closed under the Fischer-Ladner conditions, [a][f]4 e un¥. Since M’
is a program model, there existy some z Uy, such that || Rf(a) (2|
and [z| BY(B) |v|. Therefore, by the induction hypothesis, [814 € z. Hence,
by another appeal to the Fischer-Ladner conditions and the induction
hypothesis, 4 ev. -

(IXT) Suppose that the lemtna holds for «, and that |ul RB¥a*) jv].
This case is just slightly more involved than the ofhers. Take any A
such that [e*14 e wun¥. We claim that, for allww, y € Uy,

§)  for all 4, if || (B™(a)f lyl, then [0*]4 o only if [a*]d ey.

The claim is proved by induction on ¢. The case i — 0 is trivial. Suppose
that the claim holds for », and that

1) lo| (BT (a))** 1y].

Assume that [a*]4 e ». Recall that, in the presence of { ¥ 3D, ¢), F la*]d
— [a][a*]A. For this reason, and since ¥ is closed under the Fischer—
Ladner conditions,

(2) [a][e*]A cxn¥.
By (1) there is some z e U, such that

3 || B¥(a) j2l,

C) lel (B (a))* Iyl

From (2) and (3) it follows, by the induction hypothesis on a,that[a*] A e 2.
Henee, by (4) and the induction hypothesis on %, [o*] A ey. This ends
the proof of (§).

Now I! is a program model. Hence our assumption that |u| RYa*) o]
implies that, for some j, [u] (B'(a)flv]. Therefore, by (§), [a*]4 €.
Henes, by (J#3a), Acv. m

It should be clear that we have now reached our goal. For suppose
that 4 is any non-thesis of P. Then, by Corollary 4.2, there is some z e Us,
such that A ¢#. By Lemma 6.1, the Fischer—Ladner closure ¥ of the set
{4} is finite. Let M' be as described. By Theorem 6.2, M is a filtration,
and by the Filtration Theorem 5.1, then, 4 fails to he true at Jo| in. ST,
And ! is a program mode! by definition!
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7. The inverse operator

Tn this section we shall show that the preceding diseussion can easily be
modified t0 accommodate also another program operator of importance,
viz., the inverse operator.

Thus let ~* be added as a new unary program operator. In keeping
with our other conventions we shall write a~* rather than “Ya). In the
definition of program model we add the eondition that, for all a,

(iv) R(a™) = E(a),
where ¥ represents the converse; that iy, if § is any binary relation,
then

N = {5 &, a5 e8).

The notion of a program logic is extended by requiring inclusion of all
ingtances of the schemata

(#42)  T[e]7I[«7'] 4 - 4,
(¥ 4b)  TJle]7[a] 4 ~ A.

The detinition of canonical model is not affected by these changes, but
there is a new observation to add to Lemmata 4.3A-C (a8 Lemma 4.3D
ag it were):

Lemma 7.1. If L is a program logic, then for all a,
Er(oa7) = By (a).

Proof. Suppose that B, (a~")v. Take any A such that [a]d ew.
Then it is impossible that [a~']~{[a] 4 e %, 80 T1[a']7[a] 4 € . Hence,
by (4 4b), A eu. Therefore “Rz(a)u, and so w Ry (a)v.

Conversely, suppose that uléL(a)v. Then vBp(a)u. Take any A
such that [a™']A eu. Then evidently "[a]7[e"*] A ev. Hence, by
(# da), dev. 8o uB(a Yo, m

The proofs of the Truth Lemma 4.1 and the Filtration Theorem 5.1
go through as before. The definition of Fischer~Ladner closure is extended
by the new condition

i [¢'] A e X, then [a] [e ] A e X,

It now becomes Decessary to prove that the Fischer-Ladner Lemma 6.1
continues to hold in this more general setting. It does, but we omit the
proof (which offers no new difficulty).

‘ The definition of M ix taken over word for word, and Theorem 6.2
13 stated as before, but the terms “program logic”, “Fischer-Ladner
conditions™, ete., are of course now understood in the new, inclusive

(vi)
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sense. The proofs of Lemmata 6.3A, B need the following amendments
to their respeetive inductive steps:

Ad Lemma 6.3A: (IV) Suppose that the lemma holds for a, and
that u Ry(e™)v. By Lemma 7.1, v R.(a) . Hence, by the induction
hypothesis, o] B'(a) |«|. Since, by definition, M' is a program model,
e} B (a™?) [o]. m

Ad Lemma 6.3B: (IV) SBuppose that the lemma holds for e, and
that |u| B'(a™") [0]. Take any A such that [a']Acun¥. Note that
by the new Fischer-Ladner condition, [«] [a™*] 4 e ¥. Since D! is a pro-
gram model, s| BY(a) Ju]. Therefore, if [e]T[e'] 4 e v, it would follow
by the induction hypothesis that ~|[e™*] 4 eu, contradicting the congist-
ency of «. Consequently ~][a] 1[«™']4 e, and so, by (H4a), Aecv. m

With these modifications we have a new completeness result. Thusg,
like +- and -, ™ is a very well-behaved operator, from our point of view.

8. Remarks on the background of this paper

The completeness problem zolved in Section 6 was put by Richard Ladner
to the participants of a small workshop arranged at Simon Fraser Uni-
versity by 8. K. Thomason in early 1977. The author, who was present,
became intercsted when he realized that the main difficulty of the prob-
lem — now isolated as part (III) of the inductive step in the proof of
Lemma 6.3A — wag the same as a problem he had encountered and left
open in [12].

A solution along the present lines was developed during the summer
of 1977 while the author was a visitor in the philosophy department
at the University of Calgary. On the basis of that work an abstract [13]
was prepared. The solution itself was presented on July 25, 1977, in a sem-
inar given jointly by Brian F. Chellas and the author.

In early 1978, however, the author discovered a gap in the putative
proof. Tn the meanwhile other proofs had been found, independently,
by other researchers: Rohit Parikh, Vaughan Pratt, and perhaps others.
Thus, even though the claims made in [13] are correct, and the proof
in this paper is his, the author cannot claim to have produced the first
eorrect proof. This distinction would seem to belong to Parikh, whose
proof — which also covers the inverse operator discussed in Section 7 —
appears in {5]. Pratt’s proof is sketehed in [7].
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BROUWERIAN SEMILATTICES :
THE LATTICE OF TOTAL SUBALGEBRAS

PETER KOHLER

Institute of Mathematics, Jusius Liebig Universily, Giessen, F.R.Q.

Any Brouwerian semilattice § ecan be viewed as a (meet-) semilattice
acting on ifself, the action heing relative pseudo-complementation. This
may be formalized by considering § as a (universal) algebra with one
binary operation (meet) and for every ¢ ¢ § a unary operation. The sub-
algebra lattice of this algebra is the main topic of this paper: It is shown
that it is a maximal distributive sublattice of the subalgebra lattice of &
considered as an (ordinary) Brouwerian semilattice ; Brouwerian semilattices
are characterized for which this lattice is Boolean. The question which
distributive algebraic lattices can be represented this way is left as an
open. problem. '

1. Preliminaries

A Browwerian semilaitice is an algebra {8, A, %,1>, where ¢§, A, 1> ia
a meet-semilattice with the greatest element 1, and where the binary
operation #* is relative pseudocomplementation, i.e. z< x+*y holds for
¢lements @, y, z € S if and only if 24 # < y. Following the usual practice
we will mostly identify the Brouwerian semilattice <8, A, *, 1> with the
underlying set §.

For the basic arithmetic of Brouwerian semilattices we refer to [4], [T1.
Let us recall the following rules of computation:

TFor all »,9,2€8:
1) <Y ey =1,
(2) Iy =,
3 ey =Y,
(4) DADRY = DAY,
(5) (mAy)ke = ox(y*2),

[47]
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