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Abstract— The generalized Gaussian distribution (GGD) provides a

flexible and suitable tool for data modeling and simulation, however the

characterization of the complex-valued GGD, in particular generation of

samples from a complex GGD have not been well defined in the literature.

In this study, we provide a thorough presentation of the complex-valued

GGD by i) constructing the probability density function (pdf), ii) defining

a procedure for generating random numbers from the complex-valued

GGD, and iii) implementing a maximum likelihood estimation (MLE)

procedure for the shape and covariance parameters in the complex

domain. We quantify the performance of the MLE with simulations and

actual radar data.

Index Terms— MLE, complex-valued signal processing, generalized

Gaussian distribution

I. INTRODUCTION

The generalized Gaussian distribution (GGD) has found wide use

in modeling various physical phenomena in the signal processing

community. For example, the GGD has been used to model synthetic

aperture radar [1] and echocardiogram [2] images; features for face

recognition [3]; load demand in power systems [4]; and subband

signals in images [5]. The use of the GGD has also found utility in

independent component analysis (ICA) where it is used as a flexible

class of source density models (see e.g., [6], [7], [8]).

The GGD family of densities [9] is obtained by generalizing the

Gaussian density to provide a variable rate of decay and is given by

pX(x;σ, c) =
c

2σΓ(1/c)
e
−

“

|x|
σ

”c

where Γ(·) is the Gamma function, σ is the scale parameter, and

c is the shape parameter. What makes the GGD appropriate in so

many applications is its flexible parametric form which adapts to

a large family of symmetric distributions, from super-Gaussian to

sub-Gaussian including specific densities such as Laplacian (c = 1)

and Gaussian (c = 2). Although the GGD has found wide use,

most applications employ the univariate version. A bivariate GGD

is introduced in [10] and used in modeling a video coding scheme in

[11] along with a maximum likelihood estimate (MLE) for the shape

parameter based on a chi-square test, however, the covariance matrix

estimate presented is not an MLE. Complex-valued GGD models

have been described much less frequently and assume that the signal

is circular, i.e., invariant to rotation, as in [1], [6]—both papers use

an MLE for estimating the shape parameter.

In this paper, we extend the results for the complex normal distribu-

tion defined in [12], [13] to the GGD, by providing a fully-complex

distribution denoted as CGGD, given in (7). As in the univariate

case, the CGGD adapts to a large family of bivariate symmetric

distributions, from super-Gaussian to sub-Gaussian including specific

densities such as Laplacian and Gaussian distributions. Since the

CGGD is also a member of the elliptically symmetric distributions,

the normalized kurtosis values of the real and imaginary parts of

a complex random variable are a scaled version of the complex
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kurtosis where the scale factor is nonnegative and is a function of

noncircularity as shown in [14]. Since the kurtosis of the complex

Gaussian is zero, as in the real-valued case, positive normalized

kurtosis values imply a super-Gaussian distribution, i.e., a sharper

peak with heavier tails, and negative normalized kurtosis values imply

sub-Gaussian distributions.

Recently, use of the full second-order statistics of complex random

variables, namely the information in the commonly used covariance

as well as the pseudocovariance matrices [12], [15], have proven

useful in signal processing. The second-order statistics are used to

classify the variable as second-order circular or second-order noncir-

cular, i.e., a complex-valued random variable is second-order circular

if the pseudocovariance matrix is zero. Due to the recent interest in

incorporating the circular/noncircular properties of complex-valued

signals, the CGGD is not restricted to the circular case but is

also parameterized by the second moment thus providing a means

of varying the noncircularity of the distribution. To enhance the

usefulness of the CGGD, we also provide a method for generating

samples from a CGGD as well as an MLE for its shape and

covariance parameters. We provide simulations to quantify the MLE’s

performance and then test on actual radar data.

II. COMPLEX PRELIMINARIES

A complex variable z is defined in terms of two real variables

zR and zI as z = zR + jzR where j =
√
−1 and alternately as the

bivariate vector zb = [zR, zI ]
T . It is also convenient to work with

the augmented vector defined in [13], [16] as za = [z, z∗]T where

za =

»

1 j
1 −j

–

zb.

Similarly, a complex random variable is defined as Z = ZR +jZI

along with the bivariate Zb = [ZR, ZI ]
T and augmented Za =

[Z,Z∗]T vector forms. Assuming that E{Z} = 0, the bivariate

covariance matrix is thus

Cb = E{ZbZ
T
b } =

»

σ2
R ρ
ρ σ2

I

–

and the augmented covariance matrix is

Ca = E{ZaZ
H
a } =

»

σ2
R + σ2

I (σ2
R − σ2

I ) + j2ρ
(σ2

R − σ2
I ) − j2ρ σ2

R + σ2
I

–

where σ2 is the variance and ρ is the correlation E{ZRZI}. It is

clear that the augmented covariance matrix will have real-valued

diagonal elements Ca(0,0) = Ca(1,1) and complex-valued off-

diagonal elements Ca(1,0) = C
∗
a(0,1). For Z to be second-order

circular, Ca(1,0) = C
∗
a(0,1) = 0, i.e., the variance of ZR and ZI

are the same and ZR and ZI are uncorrelated. A measure of second-

order noncircularity [17], [18] is
˛

˛E{Z2}
˛

˛ /E{ZZ∗} with bounds

0 ≤
˛

˛E{Z2}
˛

˛ /E{ZZ∗} ≤ 1 and
˛

˛E{Z2}
˛

˛ = 0 indicates circular

data. A stronger definition of circularity, strict circularity, is based

on the probability density function of the complex random variable

such that for any α, the pdf of Z and ejαZ are the same [15].
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We note the following identities from [13], [19] between the

bivariate and augmented forms:

2 z
T
b zb = z

H
a za

2
p

|Cb| =
p

|Ca| (1)

2 eigenvals(Cb) = eigenvals(Ca)

where | · | is the determinant and eigenvals(·) are the eigenvalues.

III. CGGD CONSTRUCTION

A. Pdf derivation

In this section, we derive the CGGD by first constructing the

bivariate pdf and then extending this distribution to the complex case

with a general augmented covariance matrix, i.e., for noncircular

data. We note that the bivariate GGD is defined in [11], however

the construction shown here provides insight into how the random

variables are generated in Section III-B.

We begin by defining a complex random variable Z = RejΘ that

is a function of two random variables R and Θ. The magnitude

R, is a modified Gamma variate defined as R = G1/q where

G ∼ Gamma(2/q, 1) is a gamma-distributed random variable with

shape parameter 2/q and unit scale and Θ ∼ U(0, 2π) has a uniform

distribution.

Before finding the pdf of Z, we first find the pdf of R starting

with the univariate gamma distribution defined as

pG(x, 2/q) =
x(2/q−1)

Γ(2/q)
e−x

where Γ is the gamma function. The Gamma random variable is then

raised to the (1/q)th power resulting in the pdf of R given by

pR(r) =
qr

Γ(2/q)
e−rq

(2)

where we used the transform of a random variable to a power, i.e.,

if R = X1/q then pR(r) = qrq−1pX(rq).

The complex variable Z = RejΘ can be rewritten in the bivariate

case as zR = r cos(θ) and zI = r sin(θ) with inverses r = |z| =
p

z2
R + z2

I and θ = atan(zI/zR). The joint distribution of Zb =
[ZR, ZI ]

T is found through the density transform as

pZb(zb) =
1

|J |p(R,Θ)

„

q

z2
R + z2

I , atan(zI/zR)

«

where p(R,Θ) is the joint distribution of R and Θ and the determinant

of the Jacobian is

|J | =

˛

˛

˛

˛

»

cos(θ) −r sin(θ)
sin(θ) r cos(θ)

–

˛

˛

˛

˛

= r.

Noting that p(R,Θ)(r, θ) = pR(|z|) 1
2π

due to the independence of R
and Θ and pΘ(θ) = 1

2π
, our joint distribution becomes

pZb(zb) =
q

2πΓ(2/q)
e−(z2

R+z2

I )q/2

=
c

πΓ(1/c)
e−(z2

R+z2

I )c

(3)

where we substituted c = q/2 in the last line so the pdf is Gaussian

when c = 1. The expression in (3) is a GGD that is circular due

to the invariance to θ with the variance a function of c. For the

variable to have unit variance (normalized), we first solve for the

second moment, E{Z2
R} = E{Z2

I }, with the integral

E{Z2
R} =

Z ∞

−∞

Z ∞

−∞

z2
R

c

πΓ(1/c)
e−(z2

R+Z2

I )c

dxdy

=

Z ∞

0

Z 2π

0

r2cos2(θ)
c

πΓ(1/c)
e−(r2)c

r dθdr

=
c

Γ(1/c)

»

Γ(2/c)

2c

–

=
Γ(2/c)

2Γ(1/c)
(4)

which results in a normalizing term η(c) = Γ(2/c)
2Γ(1/c)

and the second

line follows from a rectangular to polar coordinate substitution—

we can similarly show E{ZRZI} = 0 which is expected since the

random variable Z is circular. We use this result to normalize the

variance of Z to unity through the linear transform Wb = NZb

where N =
q

1
2η(c)

I, i.e., dividing by the square root of two times

the standard deviation such that E{ZZ∗} = 1 and E{Z2
R} =

E{Z2
I } = 0.5. Applying this transform to (3), we obtain

pWb(wb) =
1

|N|pZb(N
−1

wb)

= β(c)e−[2η(c)(wT
b wb)]c (5)

where β(c) = cΓ(2/c)

πΓ(1/c)2
and E{WbW

T
b } = 0.5I for c > 0. The

identities in (1) allow us to rewrite (5) in the complex-augmented

form as

pWa(wa) = β(c)e−[η(c)(wH
a wa)]c (6)

where pWa(wa) = pWb(wb). Equation (6) is primarily notational

since pdfs are defined with respect to real variables, however, this

form allows us to work with probabilistic descriptions directly in

the complex domain as described in [20]. Our goal, however, is

to have a form with a general augmented covariance matrix. We

tailor the covariance matrix by applying a linear transform Ta to the

normalized data through Va = TaWa. The covariance matrix is

now given by

Ca = E{VaV
H
a } = TaE{WaW

H
a }TH

a = TaIaT
H
a = TaT

H
a .

Due to the unique form of the augmented covariance matrix, the diag-

onal terms are real valued and the off-diagonal terms are conjugates,

T
H
a = Ta. Now given any arbitrary augmented covariance, we find

the transform Ta using the matrix square root, i.e., Ta =
√

Ca. The

matrix square root can be found using the eigenvalue decomposition

of Ca, such that Ca = V
H
ΛV, where V is the matrix of

eigenvectors and Λ is the diagonal matrix of real-valued eigenvalues

due to the Hermitian symmetric properties of the covariance matrix.

It is easy to show that
√

Ca = V
H
√

ΛV and also |Ta| =
p

|Ca|.
Applying the transform Ta to the pdf (6), we obtain

pVa(va) =
1

|Ta|
pWa(T−1

a va)

=
1

|Ta|
β(c)e−[η(c)(vH

a T
−H
a T

−1

a va)]c

=
1

p

|Ca|
β(c)e−[η(c)(vH

a C
−1

a va)]c (7)

which defines the general CGGD distribution parameterized by the

shape c and augmented covariance matrix Ca.

B. CGGD generation

To generate CGG distributed samples with pdf (7) using Matlab

(www.mathworks.com), we use the same procedure for constructing

the pdf as outlined in Section III-A, i.e., first generate the bivariate

normalized random variable, then substitute the augmented form,

and lastly apply a transform to yield the desired covariance. Given

the shape parameter c, where c = 1 is Gaussian, and augmented

covariance Ca, the following procedure generates N independent

complex variables:

1) Generate n = 1, . . . , N complex samples:

z(n) = gamrnd(1/c, 1)1/(2c)e(j2π rand);

2) Normalize the complex variance:

w = z/
p

ηc(c) where ηc(c) = Γ(2/c)
Γ(1/c)

;

3) Form augmented vector:

wa = [w, conj(w)]T ;
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4) Calculate transform from Ca using matrix square root:

Ta = sqrtm(Ca);

5) Apply transform:

va = Tawa

where gamrnd, sqrtm, conj, and rand are Matlab functions.

C. MLE estimator for the covariance Cb and shape parameter c

Our approach for estimating the shape parameter and covariance

matrix is to use a maximum likelihood approach. Since our parame-

ters are both real valued and complex valued, we choose to work in

the real domain for our MLE, i.e., the bivariate vector form. Our

starting point is the log of the pdf (7) with N independent and

identically distributed samples which results in the likelihood function

L(vb; φ) = N ln(β(c)) − N

2
ln(|Cb|) −

ηc(c)

N
X

t=1

“

v
T
b (t)C−1

b vb(t)
”c

. (8)

where our parameter vector is φ = [σ2
R, σ

2
I , ρ, c]

T and the bivari-

ate vectors are substituted for the augmented vectors. Setting the

derivative of (8) to zero does not yield a closed form solution to the

parameter vector, and hence a numerical solution is warranted. Our

method is the three step procedure:

1) The initial covariance matrix is estimated using the sample

covariance Ĉ
0
b = 1

N

P

t vb(t)v
T
b (t);

2) The initial shape parameter ĉ0 is estimated using a moment

estimator as suggested in [5], [21];

3) A Newton-Raphson iteration is used to find the final estimated

values φ̂.

We show in the simulations section that this three step procedure

provides fast convergence, typically in five steps with an accuracy of

10−5, over a wide range of parameter values.

In step two, we implement a method of moments estimator prior

to the Newton-Raphson iteration to aid in convergence. The moment

used in the estimator is the scale-invariant fourth moment term

defined as

κ(v) =
E{Z4

R}
E {Z2

R}
2 +

E{Z4
I }

E {Z2
I }

2 .

Using a procedure similar to the one given in (4), we find

κ(v) =
3Γ(1/c)Γ(3/c)

[Γ(2/c)]2
. (9)

Our moment estimator then solves for the root of

f(c) =
E{Z4

R}
E {Z2

R}
2 +

E{Z4
I }

E {Z2
I }

2 − 3Γ(1/c)Γ(3/c)

Γ (2/c)2

resulting in the estimator

ĉ = arg min
c

|f(c)| (10)

over the domain c ∈ [0.1, 4] for the simulations.

The moment estimator given in equation (10) and the sample

covariance are not MLEs, however they provide an accurate initial

value to the Newton-Raphson iteration defined as

φ
n = φ

n−1 − H
−1∇

where ∇ = ∂L
∂φ

is the gradient and H = ∂2L
∂φ∂φT is the

Hessian matrix evaluated at φn−1. Both ∇ and H are derived

in the appendix. The MLE coded in Matlab can be found at

http://mlsp.umbc.edu/resources.

IV. MLE PERFORMANCE

Simulations, using data generated with the procedure in Section III-

B, are used to quantify the performance of the MLE method outlined

in Section III-C; the results are the average of 500 runs. We then test

the MLE on actual sea clutter which is a good source of complex-

valued data with a nonstationary distribution.

The results of the shape parameter estimator are shown in Figures

1 and 2. In Figure 1, we plot the shape parameter estimate versus the

true shape parameter with sample sizes of 128, 256, and 512 with

circular and noncircular data—the noncircular data has |E{Z2}| =
0.9. The results show how well the MLE tracks the true value

with only a slight positive bias when c > 2 and N = 128. Also

note that the performance does not degrade with this high value of

noncircularity. Figure 2 depicts the standard deviation of the shape

parameter estimate with the same data as the previous figure. As

indicated, the standard deviation increases linearly with the shape

parameter and is the same for both circular and noncircular data.

Figure 3 depicts the performance of the Cb estimate by plotting

the mean square error (MSE) between the estimate and the true

covariance matrix using circular and noncircular data. What the figure

shows is that the MLEs performance increases with both sample

size and shape parameter with near identical performance using both

circular and noncircular data. Figure 4 compares the performance of

the MLE and the sample covariance estimator with N = 256 by

depicting the MSE of both estimators versus shape parameter. What

we glean from the figure is that the MLE shows better performance

then the sample covariance estimator as expected, however both

estimators perform the same when c = 1 since the sample covariance

is the MLE for the Gaussian case. Figure 5 depicts the number of

steps for the Newton-Raphson iteration to converge versus shape

parameter. As seen in the figure, the MLE converges in about five

iterations on average.

Next, we test the MLE on complex-valued sea-clutter data with a

small target collected with the McMaster University IPIX radar off

the coast of Canada, http://soma.crl.mcmaster.ca/ipix/, see [22] for

more details. The data that we are using is from file 19 with radar

parameters: X-band, 30 m range resolution, horizontal polarization,

and pulse repetition time of 10−3 seconds. The data is collected in

blocks of 256 time samples with adjacent blocks overlapping by 128
samples. Each block is then transformed to the frequency domain

which is then tested with the MLE. We test two range gates, one

with a small target in clutter and one with clutter only. Figure 6

depicts the shape parameter estimate for each block with and without

a target. What we glean from the figure is that when a target is

present the distribution becomes more super-Gaussian as seen by the

smaller shape parameter values. This is expected since a target in

the frequency domain is a line component causing a heavier tail.

The clutter-only data is closer to a Gaussian distribution but still

shows areas of low c values, around block 150 for example. This

demonstrates the non-stationary nature of sea clutter due to the wind

and wave interactions with the sea and the ability of our MLE to

follow these fluctuations. This demonstrates the utility of modeling

sea clutter with the CGGD.

V. CONCLUSION

We introduced a complex-valued generalized Gaussian probability

distribution along with a procedure to generate samples from the

CGGD. Also presented is a maximum likelihood estimator for the

shape parameter and covariance matrix using a a Newton-Raphson

iteration. We show empirically the performance of the MLE on

circular and noncircular simulated data and then on complex-valued

radar data.
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(a) Circular (b) Noncircular |E{Z2}| = 0.9

Fig. 1. Shape parameter estimate versus true shape parameter with circular
and noncircular data with sample sizes of 128, 256 and 512.

(a) Circular (b) Noncircular |E{Z2}| = 0.9

Fig. 2. Shape parameter estimator’s standard deviation versus shape param-
eter with circular and noncircular data.

APPENDIX

A. Derivation of gradient of likelihood function

We begin with the gradient of equation (8) with respect to the
parameter vector φ given by

∂L

∂σ2
R

=
−Nσ2

I

2|Cb|
− ηc(c)c

N
X

t=1

(m(t))c−1mx(t),

∂L

∂σ2
I

=
−Nσ2

R

2|Cb|
− ηc(c)c

N
X

t=1

(m(t))c−1my(t),

∂L

∂ρ
=

Nρ

|Cb|
− ηc(c)c

N
X

t=1

(m(t))c−1mρ(t), and

∂L

∂c
=

Nβ′(c)

β(c)
− ηc(c)ln(η(c))η′(c)

N
X

t=1

mc(t)

−ηc(c)

N
X

t=1

mc(t)ln(m(t))

where m(t) = v
T
b (t)C−1

b vb(t), mx(t) = ∂m(t)

∂σ2

R
=

y2−σ2

I m(t)

|Cb|
,

my(t) = ∂m(t)

∂σ2

I
=

x2−σ2

Rm(t)

|Cb|
, mρ(t) = ∂m(t)

∂ρ
= 2ρm(t)−2xy

|Cb|
,

β′(c) = ∂β(c)
∂c

= β(c)
c

+ 2β(c)

c2
(ψ(1/c) − ψ(2/c)), η′(c) = ∂η(c)

∂c
=

η(c)

c2
(Ψ(1/c) − 2Ψ(2/c)), and Ψ(·) is the digamma function.

B. Derivation of Hessian of likelihood function

The terms of the Hessian are the second and cross derivatives of
equation (8) with respect to the parameter vector φ resulting in

∂2L

∂(σ2
R)2

=
N(σ2

I )2

2|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2m2
x(t)

+ (m(t))c−1mxx(t)
˜

,

(a) Circular (b) Noncircular |E{Z2}| = 0.9

Fig. 3. Mean square error between Cb estimate and the true covariance
versus shape parameter with circular and noncircular data.

(a) Circular (b) Noncircular |E{Z2}| = 0.9

Fig. 4. Mean square error of Cb estimate using MLE and sample covariance
estimator versus shape parameter with N = 256.

∂2L

∂(σ2
I )2

=
N(σ2

R)2

2|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2m2
y(t)

+ (m(t))c−1myy(t)
˜

,

∂2L

∂ρ2
= N

|Cb| + 2ρ2

|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2m2
ρ(t)

+ (m(t))c−1mρρ(t)
˜

,

∂2L

∂σ2
R∂σ

2
I

= −N |Cb| − σ2
Rσ

2
I

2|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2 ×

mx(t)my(t) + (m(t))c−1mxy(t)
˜

,

∂2L

∂σ2
R∂ρ

=
−Nσ2

Iρ

|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2mx(t)mρ(t)

+ (m(t))c−1mxρ(t)
˜

,

∂2L

∂σ2
I∂ρ

=
−Nσ2

Rρ

|Cb|2
− ηc(c)c

N
X

t=1

ˆ

(c− 1) (m(t))c−2my(t)mρ(t)

+ (m(t))c−1myρ(t)
˜

,

∂2L

∂σ2
R∂c

= −ηc(c)

»

c

„

ln(η) +
cη′(c)

η

«

+ 1

– N
X

t=1

(m(t))c−1mx(t)

−ηc(c)c

N
X

t=1

(m(t))c−1
ln(m(t))mx(t),

∂2L

∂σ2
I∂c

= −ηc(c)

»

c

„

ln(η) +
cη′(c)

η

«

+ 1

– N
X

t=1

(m(t))c−1my(t)

−ηc(c)c

N
X

t=1

(m(t))c−1
ln(m(t))my(t),



5

(a) Circular (b) Noncircular |E{Z2}| = 0.9

Fig. 5. Number of steps for MLE to converge versus shape parameter with
circular and noncircular data.

Fig. 6. Shape parameter estimate using the frequency domain sea clutter
data with and without a target versus block number.

∂2L

∂ρ∂c
= −ηc(c)

»

c

„

ln(η) +
cη′(c)

η

«

+ 1

– N
X

t=1

(m(t))c−1mρ(t)

−ηc(c)c

N
X

t=1

(m(t))c−1
ln(m(t))mρ(t),

and

∂2L

∂c2
= N

»

−(β′(c))2

(β(c))2
+
β′′(c)

β(c)

–

−
ˆ

ηc(c)ln
2(η(c)) − η′(c)(η(c))c−1 − η′′(c)ηc(c)ln(η)

˜

×
N

X

t=1

mc(t) + ηc(c)ln(η)η′(c)

N
X

t=1

mc(t)ln(m(t)) −

ηc(c)

"

ln(η(c)

N
X

t=1

mc(t)ln(m(t)) +

N
X

t=1

mc(t)ln
2(m(t))

#

where mxx(t) = ∂mx(t)

∂σ2

R
=

−y2σ2

I−σ2

I mx(t)|Cb|+(σ2

I )2m(t)

|Cb|
2 ,

myy(t) =
∂my(t)

∂σ2

I
=

−x2σ2

R−σ2

Rmy(t)|Cb|+(σ2

R)2m(t)

|Cb|
2 ,

mρρ(t) =
∂mρ(t)

∂ρ
= 2

|Cb|
2

ˆ

|Cb|(m(t) + ρmρ(t)) + 2ρ2m(t) − 2xyρ
˜

,

mxy(t) = ∂mx(t)

∂σ2

I
=

−y2σ2

R−|Cb|(m(t)+σ2

I my(t))+σ2

Rσ2

I m(t)

|Cb|
2 ,

mxρ(t) = ∂mx(t)
∂ρ

=
2y2ρ−σ2

I (mρ(t)|Cb|+2ρm(t))

|Cb|
2 ,

myρ(t) =
∂my(t)

∂ρ
=

2x2ρ−σ2

R(mρ(t)|Cb|+2ρm(t))

|Cb|
2 ,

β′′(c) =
∂β′(c)

∂c
=
β′(c)c− β(c)

c2
+

2

c4
ˆ

Ψ(1/c)(β′(c)c2 − 2cβ(c)) − β(c)Ψ(1, 1/c)
˜

−
2

c4
ˆ

Ψ(2/c)(β′(c)c2 − 2cβ(c)) − 4β(c)Ψ(1, 2/c)
˜

,

and

η′′(c) =
1

c4
ˆ

(η′(c)c2 − 2cη(c))(Ψ(1/c) − 2Ψ(2/c))−
η(c)(Ψ(1, 1/c) − 2Ψ(1, 2/c))] .
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