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Abstract—The complexity of modern systems of systems (SoS)
requires the ability to quickly and effectively evaluate robustness
in architecture alternatives. This article presents a framework for
rapid, quantitative comparisons of robustness in SoS architectures
that leverages complex network methods for assessing robustness
and design of experiments (DoE) techniques for validating their
use in the scenario of interest. We consider both single-layer and
multilayer network representations of SoS and focus on algebraic
connectivity, inverse average path length, and largest connected
component size as measures of robustness. Two case studies are used
to illustrate our framework and assess its utility: a command, con-
trol, communications, computer, intelligence, surveillance, and re-
connaissance (C4ISR) simulation and a multilayer message-passing
network simulation. We find that most of the considered network
metrics capture expected robustness trends, though their ability to
capture these trends is often affected by the scenario of interest.
These results demonstrate the potential value of complex network
methods for lightweight analysis of robustness in SoS architecture
alternatives, when appropriately supported by DoE methods for
understanding their limitations.

Index Terms—Complex networks, design of experiments,
robustness, systems of systems, systems of systems architecture.

I. INTRODUCTION

M
ODERN systems are becoming increasingly networked

to form systems of systems (SoS), providing novel ca-

pabilities across many domains. More specifically, an SoS is

“a system-of-interest whose system elements are themselves

systems; typically these entail large scale inter-disciplinary

problems with multiple, heterogeneous, distributed systems”

[1]. For example, consider a team of low-cost, heterogeneous

autonomous systems with various sensors and data links working

together to perform a surveillance mission. Other examples in-

clude intelligent transportation systems and smart cities utilizing

data from a network of distributed sensors to improve operations.

These networked systems have the potential to improve perfor-

mance and efficiency relative to complex, monolithic systems of
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the past. However, reliance on this connectivity also introduces

new vulnerabilities that must be considered. We must, therefore,

understand how to engineer SoS that can provide desired capa-

bilities in the presence of system or communication failures.

Here, we specifically aim to engineer robustness into SoS,

where robustness is defined as “the property of a system that

allows it to satisfy a fixed set of requirements, despite changes

in the environment or within the system” [2], [3]. While similar,

Robustness differs from other fail-safe properties like resilience,

which is more focused on adaptation following a degradation

in capability [3]–[7], and flexibility, which is more focused on

handling changing requirements than environmental or system

changes [2]. We focus on robustness because having inherent

resistance to environmental or system changes is needed for

safety-critical SoS that cannot allow even temporary capability

loss, due to potentially severe impacts on those served by the

SoS. Considering robustness within SoS engineering (SoSE)

is challenging, particularly during early-concept studies of ar-

chitecture alternatives which require analyses that capture SoS

complexities while maintaining tractability for tradespace ex-

ploration. Tractability is required given the combinatorial nature

of architecture design, which results in an immense number of

architecture alternatives when considering possible structural

and behavioral configurations. We aim to address this chal-

lenge of developing lightweight, yet informative techniques for

representing SoS architecture alternatives and analyzing their

robustness to potential failures.

Given the connectivity of modern SoS, complex network

methods offer a potential approach for assessing robustness in

architecture alternatives. This approach is particularly attractive

because many calculations can be derived from an adjacency

matrix, offering computationally lightweight metrics suitable

for large, early-concept tradespace analyses. However, recent

efforts have identified potential limitations of complex network

methods when applied to real engineered systems [8], [9]. Thus,

an additional challenge we aim to address is the development of

techniques for validating the use of complex network methods

for assessing SoS robustness in a domain of interest.

This article presents a framework for 1) quickly analyzing

the robustness of SoS architecture alternatives using complex

network methods and 2) efficiently validating the use of those

methods for a domain of interest using design of experiments

(DoE) techniques. We apply this framework to two case studies.

Though we focus on robustness, our complex network approach

provides a general mathematical framework that can be used to
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assess other common measures of merit, such as survivability,

vulnerability, and reliability. The outcome of our framework is

an understanding of which complex network metrics are most

suitable for assessing the robustness of SoS alternatives in a

given domain, and can subsequently be used for tractable archi-

tecture tradespace exploration and alternative down selection.

The remainder of the article is organized as follows. Section II

provides a summary of related work. Section III describes our

proposed framework. Section IV presents a case study based on

a command, control, communications, computer, intelligence,

surveillance, and reconnaissance (C4ISR) simulation. Section

V presents a second case study that considers multilayer net-

works rather than single-layer ones through the use of a generic

message-passing network simulation. Section VI provides con-

cluding thoughts and future research directions.

II. BACKGROUND

Most SoS definitions stem from Maier’s seminal work de-

scribing an SoS as a set of components, which may be indi-

vidually regarded as systems, such that those components are

independently operated and managed [10]. SoS are typically

studied within the field of SoSE, which deals with “planning,

analyzing, organizing, and integrating the capabilities of a mix

of existing and new systems into an SoS capability greater

than the sum of the capabilities of the constituent parts” [11].

A common way to view SoSE is through the wave model,

which depicts major steps in a time-sequenced process [12]; a

central theme in the wave model is the iterative and evolutionary

development of SoS architectures. This need for iterative and

evolutionary development has motivated many studies on SoS

tradespace analysis. For example, tradespace analysis methods

have been proposed that can handle different levels of model

fidelity where architecture alternatives are evaluated in terms of

their utility, cost, participation risk, and other value-sustaining

“-ilities” [13], [14]. Others have investigated techniques for gen-

erating feasible SoS alternative architectures [15], optimizing

architectures [16], [17], approximating SoS performance with

surrogate models [18], and identifying important “-ilities” based

on subjective input from decision-makers [19]. While these

efforts support tradespace analysis, they do not provide direct

means for assessing SoS robustness within those trade studies.

Regarding efforts to assess SoS robustness, one approach

is to calculate performance with and without constituent sys-

tems [20], [21]; however, it is difficult to attain accurate per-

formance measurements for an SoS in all configurations of

interest. Network theory has instead been proposed as a more

computationally feasible approach, building from recent studies

of robustness in the complex networks community [22]–[26].

This approach has been used to study system resilience [27],

SoS complexity and its relationship to fragility [28], robust-

ness in complex engineered systems [29], [30], and robustness

in combat networks [31], [32]. However, these studies either

provide limited validation of their proposed metrics or do not

provide a detailed approach for performing this validation. Such

validation is important, given that recent studies have identified

possible limitations of using network metrics to understand

behaviors in real engineered systems [8], [9]. Furthermore, most

systems engineering applications of complex network methods

have focused on single-layer networks, with no consideration of

multilayer representations. Many real-world SoS may be better

modeled as having multiple layers that, for example, perform

different functions or communicate using different types of data

links. Single-layer models would only be able to analyze the im-

pacts of disruptions within individual layers, potentially leading

to misleading results that do not fully account for complexities

related to multiple network layers.

Building on these efforts, we propose a cohesive framework

for assessing the robustness of SoS architecture alternatives,

which leverages single-layer and multilayer complex network

methods, while also including the validation of those methods

for the domain of interest. Our main contributions are as fol-

lows: 1) the consideration of single-layer and multilayer SoS

architectures; 2) the inclusion of a process for validating the

proposed complex network methods; and 3) the application of

our framework to two SoS case studies. We hope to help bridge

the gap between theoretical studies and real-world practitioners

by improving our understanding of how well complex network

methods translate to engineered systems, particularly large-scale

SoS with multiple connectivity layers.

III. METHODS

Our framework is composed of following three steps: 1)

we model the SoS of interest as a single-layer or multilayer

network. 2) we implement a set of complex network metrics

for lightweight measurements of robustness in alternative archi-

tectures for this SoS. 3) we use DoE techniques to efficiently

validate and assess the utility of these metrics for the domain of

interest. The remainder of this section describes these steps in

detail.

A. Complex Network Models

We model SoS architectures as single-layer or multilayer net-

works with undirected and unweighted edges. Beginning with

the single-layer case, we model SoS such that nodes represent

constituent systems and edges represent relationships among

those systems (e.g., communications, contractual agreements).

An example architecture network is shown in the Department of

Defense Architecture Framework (DoDAF) operational view 1

(OV-1) of the Naval Integrated Fire Control-Counter Air (NIFC-

CA) architecture [11]. This multidomain SoS is composed of a

variety of assets, including sea-based destroyers, ground-based

operational centers, and air-based platforms, many of which are

connected by various data links.

We represent these networks using their adjacency, degree,

and Laplacian matrices, as the proposed robustness metrics

can be calculated from these matrices. For an undirected, un-

weighted network, the adjacency matrix A is a symmetric

matrix with elements of zero or one that specify the network’s

connectivity, defined as

Aij =

{

1 ∀(i, j) ∈ E

0 otherwise
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Fig. 1. Notional multilayer network with two layers, five nodes, eight in-
tralayer edges, and three interlayer edges (one of which is a coupling edge).

where (i, j) is the edge connecting nodes i and j and E is the set

of all edges in the network. The degree matrix D is a diagonal

matrix containing the degrees of all nodes, defined as

Dij =

{

di i = j

0 otherwise

where di is the degree (i.e., number of incident edges) of node i.

The Laplacian L is defined as the difference between the degree

and adjacency matrices of a network, such that L = D −A.

We model multilayer SoS architectures as multilayer net-

works, an approach that has provided notable insights into the

robustness of many real-world networks [33]–[35]. Based on the

notation described in [36], we define a multilayer network as a

four-element tuple M = (VM , EM , V, L). We define V as the

set of all nodes in the network, such that a given node i ∈ V

can exist in multiple network layers. We define L = {αk}
b
k=1

as the set of layers considered, where αk is the kth layer and

b = |L| is the number of layers. Note that we use L rather than

the sequence {La}
d
a=1

because we choose to consider only one

aspect (or network dimension) such that d = 1, with the aspect

being the type of edges contained by a layer. Thus, we use L

to represent the first set L1 in the sequence {L1}. Including

other aspects (i.e., having d > 1) could allow higher dimen-

sional analyses, for example, by including temporal changes to

a network, in which the second aspect could define the time

at which edges are present, with the first aspect defining the

type of edges present. We define VM ⊆ V × L as the set of

node-layer tuples, where a node-layer tuple (i, α1) indicates that

node i exists within layerα1. We defineEM ⊆ VM × VM as the

set of all edges in the network, including intralayer edges and

inter-layer edges. The set of all intralayer edges EA is defined

as EA = {((i, αk), (j, αl))) ∈ EM |k = l}; i.e., EA is the set of

all edges connecting two nodes within the same layer. The set of

all interlayer edges EC is defined as EC = EM \ EA; i.e., EC

is the set of all edges connecting two nodes in different layers.

The set of all coupling edges EC̃ ⊆ EC is defined as EC̃ =
{((i, αk), (j, αl))) ∈ EC |i = j and k �= l}; i.e., EC̃ is the set

of all intralayer edges connecting the same nodes in different

layers. We then define an intralayer graph GA = (VM , EA),
an interlayer graph GC = (VM , EC), a coupling graph GC̃ =
(VM , EC̃), and the overall graph GM = (VM , EM ) yielded by

the multilayer network. See Fig. 1 for a notional view of a

multilayer network.

We analyze a multilayer network using its supra-adjacency

matrix AM , where AM is the adjacency matrix of GM . That

is, a supra-adjacency matrix is an adjacency matrix represent-

ing a flattened version of a multilayer network. Analogous

to the single-layer network case, we can also analyze the

supra-Laplacian LM as LM = DM −AM , where DM is the

diagonal supra-matrix. Single-layer network metrics, such as

those described in Section III-B, can then be applied to their

counterpart supra matrices in the case of multilayer networks.

B. Network Metrics

We focus on three network metrics for assessing the ro-

bustness of an SoS architecture: algebraic connectivity, inverse

average path length, and largest connected component size. We

choose this set of metrics because it spans a variety of approaches

to assessing robustness; more specifically, it considers a spectral

approach (i.e., algebraic connectivity), an approach based on

path lengths (i.e., inverse average path length), and an approach

based on cluster size (i.e., largest connected component size).

Furthermore, these metrics have provided valuable insights into

the robustness of complex networks [22], [37]; we hypothesize

that they also offer useful and scalable assessments of robustness

in SoS architectures. The metrics are calculated from adjacency

and Laplacian matrices for single-layer networks. We extend

them for use with multilayer networks by calculating them from

corresponding supra-adjacency and supra-Laplacian matrices,

such that they preserve their single-layer meaning.

We use algebraic connectivity to measure the robustness

of a network based on its spectral properties [38]. Algebraic

connectivity is calculated as the second smallest eigenvalue

of the Laplacian matrix and represents the average difficulty

of isolating a node within a connected network. A network is

connected if there exists a path between every pair of nodes in

the network. A disconnected network has an algebraic connec-

tivity of zero, while a connected one has a positive algebraic

connectivity. Thus, a network with high algebraic connectivity

indicates it is robust, since it is unlikely to lose connectivity with

a node following node or edge removals. Algebraic connectivity

inherently measures the robustness of a network through spectral

analysis of its Laplacian matrix, without the need for node or

edge removals; the other network metrics considered in this

article require modeling of node or edge removals to measure

robustness.

We use inverse average path length to measure the robustness

of a network based on its ability to sustain short path lengths

within itself following node removals [23]. The average path

length of a network is calculated as the average of the geodesic

distances between all node pairs, where the geodesic distance

di,j is the length of the shortest path between nodes i and j. We

use the inverse of the average path length to handle infinite path

lengths associated with disconnected node pairs. More formally,

we calculate the inverse average path length, 〈d〉′G , of a given

graph G as

〈d〉′G =
1

N(N − 1)

∑

i,j∈V,i�=j

1

di,j
(1)
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where N = |G| is the number of nodes in G and V is the set of

nodes inG. We then use inverse average path length as a measure

of robustness by calculating the delta of a network’s inverse

average path length following node removals or the mean of

inverse average path length values over multiple node removal

events, similar to [37]. We calculate the delta inverse average

path length, ∆〈d〉′, as

∆〈d〉′ = 〈d〉′G0
− 〈d〉′G1

(2)

where 〈d〉′G0
is the inverse average path length of a network

G0 with no nodes removed and 〈d〉′G1
is the inverse average

path length of the same network with nodes removed, G1. We

calculate the mean of inverse average path lengths, 〈d〉′, as

〈d〉′ =
1

NR

NR
∑

i=1

〈d〉′Gi
(3)

where NR is the number of node removal events and 〈d〉′Gi
is

the inverse average path length of the network Gi remaining

after node removal event i. More robustness is associated with

lower values of ∆〈d〉′ but higher values of 〈d〉′, as these values

indicate that a network is better able to sustain short path

lengths following node removals. We use ∆〈d〉′ as a measure of

robustness for case study 1 and 〈d〉′ as a measure of robustness

for case study 2.

We use the size of the largest connected component to measure

the robustness of a network based on its ability to sustain

connectivity following node removals [22]. We define SG as

the size of the largest connected component of network G; we

refer to SG as a network’s component size for simplicity. We use

component size as a measure of robustness in a similar manner

to that for inverse average path length; that is, we calculate the

delta of a network’s component size following node removals or

the mean of component size values over multiple node removal

events. We calculate the delta component size, ∆S, as

∆S = SG0
− SG1

(4)

where SG0
is the component size of a network G0 with no nodes

removed and SG1
is the component size of the same network

with nodes removed, G1. We calculate the mean of component

sizes, S, as

S =
1

NR

NR
∑

i=1

SGi
(5)

where NR is again the number of node removal events and SGi

is the component size of the network Gi remaining after node

removal event i. Similar to inverse average path length, more

robustness is associated with lower values of ∆S but higher

values of S, as these values indicate a network is better able to

sustain overall connectivity following node removals. We use

∆S as a measure of robustness for case study 1 and S as a

measure of robustness for case study 2.

We consider two node removal methods for use with the

inverse average path length and component size metrics. The first

is a random removal where random nodes are selected for each

node removal event [22]. Two examples of random removals are

random failures in information technology support systems or

power systems that result in the inability of an SoS to operate as

intended. We also consider targeted node removals, where nodes

are removed sequentially in order of their initial degree (i.e.,

number of neighbors) [22]. An example of targeted removals is

an intentional attack on an SoS, as might occur in a warfighting

scenario. We focus on these removal methods because they span

a range of potential threat types, though our proposed methods

can be used with any desired threat models. Table I summarizes

our proposed network metrics.

C. Validation Through Design of Experiments

For the network metrics proposed in Section III-B to be useful

for comparing SoS robustness, ranking of architecture alterna-

tives using those metrics must be similar to rankings based on

some presumed truth values for robustness. For this article, we

use simulated measures of robustness to determine our presumed

truth rankings. We calculate Spearman’s rank correlation coef-

ficients between each network metric and simulated robustness

values associated with a set of architecture alternatives to assess

the strength and direction of the relationship between these

metrics. An ideal value of +1 would be achieved when the ranks

of the architectures match perfectly for a network metric and

simulated robustness, a value of 0 would indicate no monotonic

relationship between the ranks, and a value of−1would indicate

an opposite ranking.

We then apply DoE techniques, specifically implementing a

factorial design and analyzing main effects and interactions,

to understand how the observed correlations between a given

network metric and simulated robustness change as simulation

parameters are varied [39]. Understanding the sensitivity of

network metric correlations to these parameters is necessary

because complex SoS simulations typically require specifica-

tion of various input parameters defining the modeled scenario.

We use DoE techniques because they allow us to efficiently

determine the utility of network metrics by running a much

smaller set of simulations than one would if fully evaluating the

set of alternatives or using more complex sensitivity analysis

methods [40]. We use a 23 factorial design for both case studies

presented in this article, though more sophisticated experimental

designs can be utilized as needed (e.g., Latin hypercubes [41]

or sequential bifurcation [40], [42] in studies with a larger set

of simulation parameters of interest). We treat the simulation

parameters of interest as experiment factors and correlations for

considered network metrics as responses. Due to the stochastic

nature of many SoS simulations, we also include experiment

replicates as needed.

We then analyze completed experiments by first examining

distributions of metric correlations across all design points. Con-

sistently high and tightly distributed correlation values provide

an initial indication that the network metric in question is a good

proxy for simulated robustness. We calculate main effects of

factors on correlations as indicated by regression coefficients

and useN -way ANOVA values to show the significance of those

effects. We also examine interaction effects of factor pairs on

correlations. These steps allow us to determine which, if any, of

the proposed network metrics are useful proxies for simulated
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TABLE I
SUMMARY OF NETWORK METRICS

Fig. 2. (a) Network representation of the baseline architecture, with radars shown in blue, air operation centers shown in green, and fighters shown in red. Node are
positioned such that their x- and y-coordinates match their latitude and longitude values. (b) Screenshot of the C4ISR simulation showing various threat trajectories
in red with radar detections along those trajectories shown in blue.

robustness in a given study, and at what parameter values their

utility holds or breaks down.

IV. CASE STUDY 1: C4ISR SIMULATION

Our first case study builds on previous work in [43] and applies

the proposed methods to single-layer architectures modeled

using a C4ISR simulation. The C4ISR simulation offers an end-

to-end analysis framework for mission assessments, including

applications such as Integrated Air and Missile Defense. The

simulation enables users to model aircraft, ballistic missile, and

cruise missile threats against various defensive architectures

and evaluate respective interceptor (e.g., aircraft or launcher)

platform performance. Architectures are defined through the

placement and constitution of a defensive laydown. For this

case study, we consider architectures composed of three types

of defensive systems: radars, air operations centers, and fighters.

Radars are used to detect incoming threats, air operations centers

are used to decide how to respond to detected threats, and fighters

are used to engage threats. We simulate aircraft threat scenarios

against a given architecture through the following steps. First,

the probability of detection along the length of a threat trajectory

by a radar system is calculated using embedded radar modeling

tools, and used to simulate whether or not an individual threat is

detected. Detections are then communicated to an air operations

center, which in turn communicates engagement instructions to

a fighter. The probability of kill for each threat trajectory versus

a single defense platform is then calculated individually. Cal-

culated probability of kill values are then statistically combined

over all defense platforms to obtain an overall probability of en-

gagement success (PES), assuming engagement independence.

Each scenario is simulated with 80 different threat trajectories,

where each threat trajectory can come from the north, east,

south, or west quadrants of the target location. The detailed asset

models and Monte–Carlo sampling used by this simulation result

in high computational costs that prevent its use in early-concept

tradespace analyses of architecture robustness, motivating the

use of complex network methods instead.

A. Experimental Design

We apply our proposed framework to this case study as fol-

lows. We model C4ISR architectures as single-layer networks,

where nodes represent defensive systems and edges represent

communication links among those systems. We define a baseline

architecture composed of 28 systems connected by 28 edges

with the laydown shown in Fig. 2; this baseline is selected in a

manner that provides dispersed coverage of the area of interest.

We then generate architecture alternatives that are expected to

have differing levels of robustness to the defined threat scenario,
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TABLE II
C4ISR EXPERIMENTAL DESIGN

to understand how well our proposed network metrics capture

simulated robustness trends. We generate these alternatives by

adding edges to the baseline architecture. Each edge is added

such that the head of the edge is the node that currently has the

lowest degree and the tail is the node that is geographically clos-

est to the head. We consider architecture alternatives generated

with 0, 10, . . ., 90 percent of the baseline number of edges added

to the baseline. This architecture generation model is stochastic

in that ties between possible edges added are randomly broken.

We then calculate algebraic connectivity, delta inverse average

path length, and delta component size metrics for each generated

architecture and compare these values to a simulated measure

of robustness. We measure the simulated robustness of an archi-

tecture by assessing its ability to sustain a high PES following

node removals. We refer to the simulated robustness metric as

delta PES, calculated as

∆PES = PESG0
− PESG1

(6)

where PESG0
is the simulated PES of an architecture G0 with

no nodes removed and PESG1
is the simulated PES of the same

architecture with nodes removed, G1. We use the random and

targeted removal methods described in Section III-B to remove

nodes for all metric calculations. Removals are modeled as a

single removal event that removes 25% of the nodes in the

original architecture (i.e., seven nodes), with two of those nodes

being air operations centers and the remaining five being radar

systems. We specify this distribution of removed systems in an

effort to produce impactful removals.

Finally, we implement a 23 factorial experiment to understand

how the correlation between network and simulated robustness

metrics varies with changes to simulation factors. The three

factors in this experiment are removal type, radar type, and

threat distribution. Note that a 360◦ threat distribution includes

threats from the north, east, south, and west directions, while

a 180◦ range only includes threats from the south and west

directions. The responses in this experiment are the Spearman’s

rank correlations between simulated robustness (i.e., delta PES)

and algebraic connectivity, delta inverse average path length,

and delta component size. Each experimental design point is

evaluated by generating ten architecture alternatives (using the

generative algorithm described above with 0, 10, . . ., 90 percent

of the baseline number of edges added to the baseline) and

calculating Spearman’s rank correlation between each network

robustness metric and the simulated robustness metric. The

experimental design is summarized in Table II. We replicate

the experiment 20 times to account for its stochastic nature.

B. Results

Fig. 3(a) shows distributions for Spearman’s rank correlation

between each of our proposed network metrics and simulated

robustness, over all experimental design points and replicates

(i.e., over 160 data points). The results show delta component

size having the strongest correlation with simulated robustness

with respect to the median and interquartile ranges; correlations

for algebraic connectivity and delta inverse average path length

are similar to each other and lower than those for component size.

Correlations for delta component size are likely higher than those

for algebraic connectivity because algebraic connectivity does

not model robustness to a specific set of node removals; rather,

it models the difficulty of disconnecting a network regardless

of the removal method. Correlations for delta component size

are likely higher than those for delta inverse average path length

because the C4ISR simulation does not include high-fidelity

modeling of communication systems; for example, the simula-

tion does not explicitly model communication delays or failure

rates and instead focuses more on modeling radar systems. The

simplicity of the modeled communications thus makes the ex-

istence of connectivity among constituent systems sufficient for

successful engagements, with no significant benefits provided

by, for example, short communication paths. These characteris-

tics likely lead to delta component size more closely capturing

simulated robustness than delta inverse average path length, as

component sizes measure path existence with no consideration

of path lengths. We also see higher variability in correlations

for algebraic connectivity relative to delta inverse average path

length and delta component size; this trend is again explained by

the lack of explicitly specifying node removals when evaluating

robustness via algebraic connectivity, which may lead to more

variance in how well the metric captures simulated robustness

trends given the inclusion of removal type as a factor in the

experimental design. These distributions suggest that spectral,

path length, and cluster-based network metrics all have value

toward measuring the robustness of sensor focused architectures,

though there exist slight differences in correlation trends. We

also explore the main effects of our three experiment factors

on these correlation trends. Fig. 3(b) shows the main effect of

each factor with respect to each network metric’s correlation

with simulated robustness. Removal type shows the largest and

most statistically significant effect on correlations for all three

network metrics, with targeted removals providing stronger cor-

relations than random ones. Threat distribution shows the second

largest effect, with widely distributed threats providing stronger

correlations than focused ones. Radar type shows the smallest

effect, with more powerful radar systems providing stronger

correlations than weaker ones. One explanation for removal type

having the largest effect is that targeted removals may have

similar impacts among all metrics but random removals may

introduce too much stochasticity for meaningful trends to be cap-

tured, thus leading to poor correlations. We also see that while

algebraic connectivity generally shows lower correlations than

delta component size [as shown in Fig. 3(a)], those correlations

show lower sensitivity to the radar type and threat distribution

factors. Given that radar type and threat distribution are specific
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Fig. 3. (a) Box plots of Spearman’s rank correlation between simulated robustness and algebraic connectivity (AlgConn), delta inverse average path length
(IAPL), and delta component size (LCC) over all experimental design points and replicates from case study 1. Red lines denote the median, while the boxes denote
the interquartile range (i.e., the 25th and 75th percentiles). The whiskers extend to either the most extreme observation or to a distance of 1.5 times the interquartile
range. The + markers denote data outside of this range. (b) Main effects of factors on Spearman’s rank correlation between each of the network metrics and
simulated robustness, shown as the magnitude of linear regression coefficients. Corresponding p-values for those regression coefficients are shown with each bar.

Fig. 4. Interaction plots for Spearman’s rank correlation between simulated robustness and (a) algebraic connectivity, (b) delta inverse average path length, and
(c) delta component size for the experiment factors in case study 1.

to the simulation, this result suggests algebraic connectivity may

provide more consistent correlations with respect to changes

in simulation specific factors. These results demonstrate the

importance of understanding which simulation factors have the

strongest impact on the utility of robustness metrics, as that util-

ity is highly sensitive to some factors and relatively insensitive to

others. That is, practitioners should be aware of which conditions

their scenario of interest satisfies before applying these metrics

in tradespace analyses.

Fig. 4 shows the corresponding interaction effects for each

factor with respect to each network metric’s correlation with

simulation robustness. We see little interaction effects for re-

moval type, suggesting that the effects of radar type and threat

distribution on metric correlations do not depend on the removal

type modeled. However, we do see interaction effects for radar

type and threat distribution, as the effect of each of these two

factors strongly depends on the level of the other. These re-

sults further demonstrate the importance of understanding how

factors of interest may influence the utility of various network

metrics.

V. CASE STUDY 2: MESSAGE-PASSING MULTILAYER

NETWORK SIMULATION

Our second case study applies the proposed methods to mul-

tilayer architectures modeled using a message-passing network

simulation. This simulation models general networked systems

relying on information exchange among nodes to perform de-

sired missions, expanding on [44] and [45] to consider multilayer

networks. Simulations begin with all nodes in a network being

active. At each time step t, each active node has a probability µ

of generating a new message; and the target node of that message

is randomly selected among the set of active nodes. Messages

travel through the network along the shortest path from source

to target, one hop at a time. Messages fail with a probability of

ρ at each time step. Shortest paths are recalculated at each time
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step to only include currently active nodes. The objective of the

network is to successfully pass messages from their source to

target node. We run each simulation for 500 time steps with

10 nodes simultaneously removed every 100 time steps for this

article.

A. Experimental Design

We apply our proposed framework to this case study as fol-

lows. We model message-passing architectures as two-layer net-

works, where nodes represent systems that generate and receive

messages. Each node within a given layer has a corresponding

node in the other layer; i.e., we model architectures as multiplex

networks [36]. Note that this case study could be extended to

general multilayer networks with little modification. We model

edges as communication links among systems, where intralayer

edges represent communication links of the same type within a

given layer and interlayer edges represent communication links

between layers. The existence of an interlayer edge represents an

interlayer connection between nodes that allows messages to be

encoded/decoded as needed to pass through layers. We consider

architectures with 100 nodes in each layer (i.e., 200 nodes in

total). We focus on synthetically generated random multilayer

architectures, having network topologies that range from be-

ing Erdős–Rényi to Barabási–Albert (BA) scale-free [22]. We

generate these architectures by first generating each network

layer independently using the single-layer network generation

algorithm proposed in [45]. We use the αtopology parameter of

that algorithm to define how intralayer edges are added, with

each edge being added in a random manner with a probability of

αtopology and added using preferential attachment with a probabil-

ity of 1− αtopology. We then add interlayer edges between nodes

with a probability of αintralayer based on the algorithm proposed

in [35]. We generate architecture alternatives for this case study

by using this multilayer generative algorithm and increasing

αtopology from 0, 0.1, . . . , 1. We set αintralayer = 0.25 to provide

enough interlayer connectivity to define functional architectures,

but not so much that node removals have no impact.

We then calculate algebraic connectivity, mean inverse av-

erage path length, and mean component size metrics for each

generated architecture and compare these values to a simulated

measure of robustness. We measure the simulated robustness

of an architecture by assessing how well it sustains the ability

to successfully pass messages from their source to target node

following node removals. That is, we calculated simulated ro-

bustness as the total number of messages successfully received

over all times steps of a simulation. We refer to the simulated

robustness as the area under the curve (AUC) of y(t), where y(t)
is the total number of messages received by target nodes at time

t, calculated as

y(t) =

Nt
∑

i=1

|Mi(t)| (7)

where Nt is the number of active nodes at time t and Mi(t) is

the set of messages received by target node i at time t. We use

TABLE III
MESSAGE-PASSING NETWORK EXPERIMENTAL DESIGN

y(t) to calculate the AUC as

AUC =
500
∑

t=1

y(t). (8)

As with case study 1, we then implement a 23 factorial exper-

iment to understand how the correlation between network and

simulated robustness metrics varies with changes to simulation

factors. The three factors in this experiment are removal type,

the message generation rate (µ), and the message failure rate

(ρ). The message generation rate defines the workload of the

architecture, while the message failure rate defines its reliability.

The responses in this experiment are the Spearman’s rank corre-

lations between simulated robustness (i.e., AUC) and algebraic

connectivity, mean inverse average path length, and mean com-

ponent size. Each experimental design point is then evaluated by

generating eleven architecture alternatives (using the generative

algorithm described above with αtopology = 0, 0.1, . . . , 1) and

calculating Spearman’s rank correlation between each network

robustness metric and the simulated robustness metric. The

experimental design is summarized in Table III. We replicate

the experiment 50 times to account for its stochastic nature.

B. Results

Fig. 5(a) shows the distributions for Spearman’s Rank cor-

relation between each of our proposed network metrics and

simulated robustness, over all experimental design points and

replicates (i.e., over 400 data points). The results show that mean

inverse average path length has the strongest correlation with

simulated robustness with respect to the median, followed by

mean component size, and then algebraic connectivity. Mean

inverse average path length also shows the smallest interquartile

ranges, followed by algebraic connectivity, then mean compo-

nent size. Correlations for mean inverse average path length are

significantly higher than those for algebraic connectivity and

mean component size because of the inclusion of a message

failure rate in this simulation; a non-zero message failure rate

results in path lengths playing a critical role in the probability

of a message successfully reaching its target node, thus leading

to high correlations between mean inverse average path length

and simulated robustness. Conversely, algebraic connectivity

and mean component size do not account for path lengths.

Furthermore, algebraic connectivity does not model specific

node removals (as discussed in Section IV-B), explaining its low

correlations for this case study. These distributions suggest that

path length-based robustness metrics are best suited for measur-

ing the robustness of architectures highly dependent on timely
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Fig. 5. (a) Box plots of Spearman’s rank correlation between simulated robustness and algebraic connectivity (AlgConn), mean inverse average path length
(IAPL), and mean component size (LCC) over all experimental design points and replicates from case study 2. The red line within each box marks the median; the
bottom and top of the boxes mark the 25th and 75th percentiles, respectively. The whiskers extend to either the most extreme observation or to a distance of 1.5 times
the interquartile range; the red + markers beyond the whiskers fall outside of this range. (b) Main effects of factors on Spearman’s rank correlation between each
of the network metrics and simulated robustness, shown as the magnitude of linear regression coefficients. Corresponding p-values for those regression coefficients
are shown with each bar.

Fig. 6. Interaction plots for Spearman’s rank correlation between simulated robustness and (a) algebraic connectivity, (b) mean inverse average path length, and
(c) mean component size for the experiment factors in case study 2.

and reliable message passing, with cluster-based metrics also

providing some value. Spectral-based measures show limited

value for such scenarios.

We also explore the main effects of our three experiment fac-

tors on these correlation trends. Fig. 5(b) shows the main effect

of each factor with respect to each network metric’s correlation

with simulated robustness. Similar to case study 1, removal

type shows the largest and most statistically significant effect

on correlations for mean inverse average path length and mean

component size; however, its effect on algebraic connectivity is

not significant at a 0.05% level, likely due to the consistently low

correlations of algebraic connectivity regardless of factor levels.

Message generation rate and failure rate show smaller, but still

statistically significant, main effects on correlations for inverse

average path length. These factors show small effects on the

correlations of algebraic connectivity and mean component size

though. As with case study 1, these main effect results demon-

strate the importance of understanding the potential impacts of

simulation factors on the utility of robustness metrics.

Fig. 6 shows the corresponding interaction effects for each

factor. Here, we see notable interactions for each factor when

assessing correlations with algebraic connectivity. However,

interaction effects are smaller for correlations with mean inverse

average path length and mean component size. These results

suggest that further studies of mean inverse average path length

and mean component size may not need to consider interaction

effects among these factors.

VI. CONCLUSION

Analyzing the robustness of SoS architecture alternatives

is challenging due to the need for lightweight analysis meth-

ods that can support early-concept tradeoff studies while also
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capturing complexities of modern SoS. We present a framework

for analyzing SoS robustness that uses complex network meth-

ods able to capture single-layer and multilayer architectures,

supported by a DoE approach for validating the use of those

methods for a scenario of interest. We apply this framework

to two case studies: a single-layer C4ISR simulation and a

multilayer message-passing network simulation. Our results

from the C4ISR case study suggest that spectral, path length,

and cluster-based metrics can provide value toward assess-

ing the robustness of alternative defensive architectures that

are not limited by network speed or reliability, as all three

metrics show relatively high correlations within our experi-

mental design. In comparison, our results from the multilayer

message-passing network case study suggest that path length-

based metrics are best suited for scenarios requiring timely

and reliable message passing, as our path length metric shows

consistently high correlations. These results demonstrate that

complex network methods can be useful when comparing the

robustness of architecture alternatives, but they must be used

within a validative framework that quantitatively evaluates their

utility and how it may change as simulation parameters are

varied.

Future directions for this article include more formalized

integration with existing SoSE tools and processes, including

model-based engineering methods. Furthermore, the work pre-

sented in this article abstracts SoS architectures to be undirected,

unweighted networks. Extending the proposed framework to

consider directed and weighted networks may further extend its

utility toward evaluating SoS robustness to a malicious attack or

propagating failures.
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