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Abstract: Radiomics is rapidly advancing in precision diagnostics and cancer treatment. However,
there are several challenges that need to be addressed before translation to clinical use. This study
presents an ad-hoc weighted statistical framework to explore radiomic biomarkers for a better
characterization of the radiogenomic phenotypes in breast cancer. Thirty-six female patients with
breast cancer were enrolled in this study. Radiomic features were extracted from MRI and PET
imaging techniques for malignant and healthy lesions in each patient. To reduce within-subject bias,
the ratio of radiomic features extracted from both lesions was calculated for each patient. Radiomic
features were further normalized, comparing the z-score, quantile, and whitening normalization
methods to reduce between-subjects bias. After feature reduction by Spearman’s correlation, a
methodological approach based on a principal component analysis (PCA) was applied. The results
were compared and validated on twenty-seven patients to investigate the tumor grade, Ki-67 index,
and molecular cancer subtypes using classification methods (LogitBoost, random forest, and linear
discriminant analysis). The classification techniques achieved high area-under-the-curve values with
one PC that was calculated by normalizing the radiomic features via the quantile method. This
pilot study helped us to establish a robust framework of analysis to generate a combined radiomic
signature, which may lead to more precise breast cancer prognosis.

Keywords: breast cancer; radiomic features; molecular biomarkers; normalization; PCA; machine learning

1. Introduction

Recently, radiomics has been widely used in tumor research. The enormous advan-
tage of radiomics is the automatic extraction of high-dimensional features from digitally
encrypted medical images that hold information related to tumor pathophysiology, which
can later be mined and analyzed for decision support [1–4].

Radiomics can support the characterization of tumor heterogeneity from macroscopic
images and may also provide insights in precision medicine related to tumor detection and
subtype classification along with molecular analyses [4–7].

Breast cancer is the most common malignant tumor in females [8]. Breast cancer can be
classified into molecular subtypes: (1) luminal-like, (2) Erb-B2+ (human epidermal growth
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factor receptor 2 [HER2]-enriched), and (3) basal-like, according to Perou et al. [9]. Luminal-
like tumors are the most common type of breast cancer, and they can be subclassified into
two subgroups, Luminal A and B, based also on the level of Ki-67 expression. Ki-67 has
been identified as a molecular marker for the effective assessment of the cell proliferation
index [10]. In the same way, the histologic grade (grades 1, 2, and 3) is used to determine the
aggressiveness of a tumor. It provides prognostic information in many tumors, including
breast cancer [11].

In this study, we focused our attention on the luminal A and luminal B subtypes
of breast cancer. Several studies have also explored the use of radiomics to investigate
Luminal A and B breast cancer patients [12–14].

In fact, radiomics is a non-invasive method that could provide characterization of
tumors. On the other hand, the radiomic analysis workflow still needs to be improved in
order to overcome several problems for the construction of robust and reliable radiomic
signatures and models to be transferred into clinical practice for the purposes of prognosis,
disease tracking, and the evaluation of disease response to treatment [15]. For instance, the
radiomic signature is sensitive to variation in the medical images used in radiomic analysis
in regard to image quantification and post-extraction feature normalization.

An important and often undervalued aspect in the radiomic framework of analysis
is, in fact, post-extraction feature normalization. Normalization standards are needed
for quantitative radiomic features to reduce the within-subject bias effect that affects the
comparison of different radiomic features in a single patient (differences because of the
conditions of interest) and the between-bias effect that alters the comparison of the radiomic
features among patients (namely technical effects, due to their basic differences of scale,
range, and statistical distributions). Untransformed features may have high levels of
skewness, which can result in artificially low p-values in statistical analyses and eventually
introduce bias into developed models [16]. Errors in normalization can have a significant
impact on downstream analysis, such as inflated false positives.

In the existing literature, guidelines and precise criteria designed to be used consis-
tently to normalize quantitative radiomic features seem to be missing [17]. On the other
side, several efforts have been shown to improve the normalization procedures for image
quality as a crucial pre-processing step to correct the imaging-related batch effects before ex-
tracting quantitative radiomic features [15,18–21]. The most common image pre-processing
for the texture analysis approaches are the limitation of dynamics to µ ± 3σ (where µ is
the mean gray-level value and σ is the standard deviation) and gray level compression
based on the range between δ and 2δ (where δ is the number of bits per pixel), among
others [22,23]. Although image pre-processing normalization is decisive to reduce the
technical variability across images, additional feature normalization steps are still needed
during post-processing to reduce the within-subject bias and between-subjects bias effects
and, in the case of quantitative features coming from a multicenter study, to identify a
batch-specific transformation to express all the data in a common space. Therefore, it is
crucial to understand how normalization methods can impact on downstream analysis,
such as feature reduction, statistical analysis, and classification problems.

In radiomics, there are different methods of dimensionality reduction and feature
selection [24]. Principal component analysis (PCA) is a well-known approach and one of the
most-used methods for feature reduction [25,26], although other methods for supervised
feature selection, such as LASSO, have been widely used in radiomic studies. PCA aims
to create a smaller set of maximally uncorrelated variables from a large set of correlated
variables and to explain as much of the total variation in the data set as possible with
the fewest possible principal components (PCs) [27,28].The PCs are linear combinations
of features that are ordered by the amount of total variance they explain. The first PCs
represent the predominant pattern in the data [28,29]. Normalization methods can help
features arrive in a more digestible form for these algorithms by making every feature in
proportion with each other, otherwise they will tend to perform poorly [30]. In this study,
PCA was firstly chosen as an explorative tool to visualize how the data normalization
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methods are able to disclose different aspects of the data in the scores and the accompanying
loadings. Furthermore, it allows the identification of the most important radiomic features
for the characterization of breast cancer by analyzing the loadings in order to generate a
combined radiomic signature [31].

The main aim of this study was to investigate the effect of within-subject and between-
subjects normalization methods on the PCA and downstream analysis. In order to address
this aim, we designed an ad hoc weighted statistical framework to investigate how different
normalization techniques could impact on the PCA and data analysis to explore radiomic
signature in breast cancer.

Thus, the main goal of this study is to provide a multivariate statistical framework
via PCA to generate a complex quantitative radiomic signature, which may lead to
more precise breast cancer prognosis and help clinicians in decision-making towards
personalized medicine.

2. Materials and Methods
2.1. Patient Selection

The study was approved by the institutional ethics committee in accordance with the
ethical guidelines of the 1975 Declaration of Helsinki and approved by the ethical committee
of the institution “IRCCS Synlab SDN” (Protocol no.2-11). All subjects included in the study
provided informed consent. The recruitment of the patients took place at IRCCS Synlab
SDN. During the period of 2011 to 2014, consecutive patients were enrolled in the study.
The inclusion criteria were (a) a diagnosis of breast cancer confirmed by an immunohisto-
chemistry (IHC) report, (b) the absence of any prior surgical or pharmacological treatment
for breast cancer (naïve), (c) a negative previous personal oncological history, (d) >18 years
of age, and (e) lesions of at least 0.2 cm for a comprehensive imaging characterization.

Exclusion criteria were patients with (a) pregnancy; (b) blood glucose levels greater
than 140 mg/dL (7.77 mmol/L); (c) inadequate PET images, MR images, or both, due
to artifacts, system malfunction, or poor patient cooperation; (d) contraindication to MR
imaging; and (e) inability to tolerate being in the PET or MR imaging apparatus. After all
these exclusion criteria, 36 patients were included in the study.

2.2. Clinical Parameters

Among the 36 enrolled patients, clinical parameters were available for 27 female
patients. All clinical characteristics, such as age, tumor size, tumor locations, number
of lesions, and tumor subtype, were recorded for each patient. The tumor size in each
enrolled patient was calculated on maximum intensity projection (MIP) of subtraction
post-contrast images [32]. One senior radiologist that was experienced in breast imaging
(more than 15 years of experience) and one nuclear medicine specialist (more than 20 years
of experience) reviewed the local tumor size, tumor locations, number of lesions, and tumor
staging in consensus.

Estrogen, progesterone, and HER2 receptor status were reported, along with the
tumor molecular subtype classification, cellular differentiation status, and proliferation
index (Ki-67) of the tumor lesions using the immunohistochemical (IHC) information of
the enrolled BC patients, if present.

2.3. Circulating miRNA Signatures

Quantification of miRNAs expression values using the miScript miRNA PCR Array
and validation by real-time PCR (qRT-PCR) were performed according to the protocol
proposed by M. Incoronato, et al. [33]. The relative expression for each miRNA was calcu-
lated as 2−∆CT and from a differential expression analysis to discriminate the breast cancer
condition with respect to healthy status [33]. In total, 5 (miR-125b-5p, miR-143-3p, miR-
145-5p, miR-100-5p, and miR-23a-3p) out of the 84 miRNAs processed were differentially
expressed and upregulated in the plasma samples of the breast cancer patients with a fold
change ≥1.5 and a p-value < 0.05. Therefore, only those five miRNAs were considered in
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the following analysis to evaluate, if present, possible associations with radiomic signatures
combined with clinical parameters.

2.4. Image Acquisition and Pre-Processing

PET/MR was performed on a 3T Biograph mMR (Siemens Healthcare, Erlangen, Ger-
many). Bed position was established in order to obtain a full coverage of the breast region
using a dedicated breast coil. Each patient was positioned prone and feet first, paying atten-
tion to correctly position the breast inside the dedicated coil cavities. Through a venous ac-
cess, the patient was connected to an automatic injector useful for the administration of the
contrast gadolinium diethylene triamine pentaacetate agent (Gd-DTPA; Magnevist, Bayer
Inc., Mississauga, ON, Canada) at 0.1 mmol/kg body weight and a flow rate of 3.5 mL/s.
For PET, all patients fasted for at least 6 h before the procedure. They then received
400 ± 32 MBq (mean ± standard deviation) of 2-Deoxy-2-[18F] fluoroglucose(18F-FDG)
intravenously. After a biodistribution period of 60 min and before breast PET/MR, all
the patients underwent total body PET/CT. Subsequently, a simultaneous PET/MR scan
was acquired. The PET/MRI sequences taken into account for this study were: a PET
acquisition of 8 min; an axial T2-weighted half Fourier single-shot turbo spin echo (HASTE)
(TR 1400 ms, TE 89 ms, slice thickness 6 mm, FOV 399 × 399 mm, acquisition matrix 384);
an axial diffusion-weighted imaging (DWI) with b values of 50, 400 and 800 s/mm2 (TR
7000 ms, TE 83 ms, slice thickness 4 mm, FOV 223 × 400 mm, acquisition matrix 190),
with automatic apparent diffusion coefficient (ADC) map reconstruction; an axial high-
resolution T1-weighted VIBE sequence with fat suppression was acquired after contrast
agent injection (TR 8.69 ms, TE 4.33 ms, slice thickness 0.9, FOV 337 × 360 mm, acquisition
matrix 192). The PET data were reconstructed with an AW OSEM 3D iterative reconstruc-
tion algorithm applied with 3 iterations and 21 subsets and Gaussian smoothing of 4 mm in
full width at half maximum. MR attenuation correction was performed via a segmentation
approach based on 2-point Dixon MRI sequences.

2.5. Radiomic Features

Radiomic features were extracted from 36 patients with PMOD, an automated quan-
titative software of images in biomedical research (version 3.8, PMOD Technologies Ltd.,
Zürich, Switzerland). Quantitative imaging was performed by the PMOD tool PBAS,
performing a semi-automatic segmentation of breast lesions using a VOI isocontour. The
semi-automatic segmentation of breast lesions was carefully supervised by an expert
radiologist with more than 10 years of experience.

For this study, PET images and the MR sequences T2w HASTE, ADC, and T1w were
analyzed post-contrast-injection after a 3D rigid registration with a normalized mutual
information on PMOD. Firstly, the isocontour VOI was placed on the tumor lesion on
PET acquisition by an experienced nuclear medicine physician, considering a metabolic
tumor volume (MTV) with a threshold of 40% of the maximum signal intensity (MTV40)
for a volumetric characterization of lesion burden [34]. Then, the VOI was entirely copied
on the morphological T2w, ADC, and T1w sequences, verifying its coverage on the axial,
sagittal, and coronal planes. Furthermore, for each patient and sequence, contralateral
healthy gland tissue information was obtained by translating the same VOI isocontour
produced previously in the same contralateral breast quadrant. For each VOI, the texture-
analysis parameters were extrapolated using an integrated PMOD software. An example
of an 18F-FDG-PET/MRI scan image is presented in Figure S1. Imaging normalization
and resampling were applied during pre-processing using the default parameters of the
PMOD software.

A total of 74 radiomic features were extracted from the PET/MR imaging with the 3D
extraction. In total, 24 radiomic features were extracted from PET, including 5 first-order
features from the intensity histogram computed on 256 bins (with a bin size of 32), namely,
mean, variance, skewness, kurtosis, and energy, and 16 features from the SUV analysis.
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From the MRI images, 5 first-order features were extracted from the intensity his-
togram computed on 256 bins for each of the ADC, T2w, and T1w post-contrast sequences
(mean, variance, skewness, kurtosis, and energy). In addition, 19 second-order features
were also computed for the both the T2w and T1w post-contrast images [26,27], including
energy, contrast, entropy, homogeneity, correlation, sum average, variance, dissimilarity,
and autocorrelation.

A summary of the extracted radiomics features is presented in Table S1.

2.6. Statistical Analysis

A statistical analysis was performed using R software (version 3.6.1, Vienna, Austria) [31].
Continuous variables were expressed as means, standard deviations (SD), medians and
ranges. The data were tested for normality through the Shapiro–Wilk test. Radiomics
data were tested for normality before and after applying the normalization methods. The
Wilcoxon rank-sum test or t-test were used, as required, for comparisons between groups.
Categorical variables were expressed as percentages and were compared using the chi-
square test or Fisher’s exact test. A p-value less than 0.05 was considered significant.
Holm’s correction was used for multiple hypothesis correction, if necessary. Spearman’s
rank correlation was carried out for continuous variables. A Spearman’s ρ value greater
than 0.8 and a significant p-value (p-value < 0.05) were set as the threshold to identify a
strong agreement between variables. As a rule of thumb, a Spearman’s correlation ρ value
that lies between 0.80 and 1.00 is considered to identify a strong correlation among the
variables, as also reported in [35].

2.6.1. Radiomic Statistical Analysis

Within-subject normalization was achieved as the ratio between the radiomic features
extracted from the malignant and healthy breasts for each of the 36 patients enrolled in
this study. Successively, three different normalization techniques were, used to normalize
the radiomic features to also reduce between-subjects bias. The features were normalized
using z-score normalization, where each feature was normalized as z = (x − x)/s, where x,
x, and s are the feature, the mean, and the standard deviation, respectively [36]. Quantile
normalization, which transforms the original data to remove unwanted technical variation
by forcing the observed distributions to be the same, and the average distribution, obtained
by taking the average of each quantile across samples, is used as the reference [37,38].
Lastly, whitening normalization was used. This methos is based on a linear transformation
that converts a vector of random variables with a known covariance matrix into a set of new
variables whose covariance is the identity matrix, meaning that they are uncorrelated and
each have a variance equal to one [39]. The radiomic features were normalized separately
for each MRI sequence and PET [40].

After the normalization step, normalized radiomic features, extracted from differ-
ent imaging techniques, were reduced separately by excluding highly correlated fea-
tures via Spearman’s correlation with a ρ value greater than 0.8 and significant p-values
(p-value < 0.05). The absolute values of the pair-wise correlations were considered. If two
variables had a high correlation, we looked at the mean absolute correlation of each variable
and removed the variable with the largest mean absolute correlation [41]. Normalized and
reduced radiomic features, extracted from different imaging techniques, were then merged
into one dataset. A principal component analysis was applied to a merged, normalized,
and uncorrelated dataset [42]. The analysis pipeline is shown in Figure 1.
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2.6.2. PCA on Radiomic Features

A PCA was applied to radiomic features in four datasets:

1. Radiomic features normalized as the ratio of malignant and healthy radiomic features.
2. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and z-scores.
3. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and quantiles.
4. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and whitening.

Cumulative variance was set to 60% to select the minimum number of PCs. In order to
only select the normalization methods that were able to better explain the variance in the
data via PCA, the median value was computed among the number of PCs that explained
60% of the variance across datasets (1 to 4). The normalization methods that had more PCs
compared to the median value were excluded from further analysis (Figure 2). The number
of PCs across all datasets was set equal to the median value.

The loading and variable contributions for all datasets were explored. For each dataset,
the third quantile of the distribution values of the loadings was chosen as the threshold
to identify a strong effect on the principal components. Positive loadings indicate that a
variable and a principal component are positively correlated (e.g., an increase in one leads
to an increase in the other). Negative loadings indicate a negative correlation.
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2.6.3. Clinical Investigation and Patient Stratification

Statistical analyses were performed to explore the normalization impacts on the PCs
and radiomic features to investigate the grade, the Ki-67 index characterizing the aggres-
siveness of the tumor, and the tumor subtype. Due to missing data, clinical investigations
were carried out in 27 female patients.

Firstly, patients that presented with grade 2 tumors were divided from the patients
that presented with grade 3 tumors. Therefore, patients were stratified by tumor grade in
two classes: G2 and G3. None of the included patients presented with G1 tumors.

Secondly, the population was stratified into two classes to compare tumor conditions
based on the nuclear protein Ki-67, which is considered a good indicator of cellular prolifer-
ation. The threshold value was fixed to 30% [43,44]. Therefore, patients presenting values
of Ki-67 greater than 30% were included in Class 1 (i.e., high values of Ki-67), whereas
patients presenting values of Ki-67 less than 30% were included in Class 2 (i.e., low values
of Ki-67).

Thirdly, patients that presented with the luminal A tumor type were divided from the
patients that presented with the luminal B tumor type. Therefore, patients were stratified
by tumor subtype into two classes: Luminal A, Luminal B. HER2 (+) tumor cases were
excluded at this stage due to the very low number of patients.

2.6.4. Classification Methods

The classification approaches were considered to automatically classify the tumor
grade, the tumor condition stratified via Ki-67, and the tumor subtype, based on statisti-
cally significant PCs and the radiomic features that contributed the most to the statically
significant PCs and clinical characteristics. The classification approaches were investigated
to empirically understand the impact of the data normalizations and PCA. R software
(version 3.6.1, Vienna, Austria) [31] was used to develop the classifiers.

Three traditional classification methods were investigated: additive logistic regression
(LogitBoost), which is a boosting algorithm as an approximation to additive modelling
on the logistic scale using the maximum Bernoulli likelihood as a criterion [45]; random
forest decision trees (RF), an ensemble learning method for classification that operates
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by constructing a multitude of decision trees during training and outputting the class
that is the mode of the classes (classification) [46,47]; and linear discriminant analysis
(LDA), which consists of finding the projection hyperplane that minimizes the interclass
variance and maximizes the distance between the projected means of the classes [48]. These
classification methods were chosen because of the nature of the datasets (i.e., small dataset)
and according to the existing literature. In fact, LogitBoost, decision trees, and LDA have
been widely used in breast cancer detection [24,49].

For LogistBoost and RF, we employed the default configuration provided in RStu-
dio [41]. For LogistBoost, the number of boosting iterations was set to 100. In the random
forest analysis, the number of available variables for splitting at each tree node was calcu-
lated as the square root of the number of predictor variables (rounded down). The repeated
3-fold stratified cross-validation approach was used to validate the models [50,51]. Due
to the unbalanced nature of the dataset, the SMOTE technique was used to attenuate the
bias towards the classification in the majority class in each training fold [52]. Repeated
cross-validation was performed to guarantee the robustness of the results and to reduce
overfitting [53]. Cross-validation was repeated 100 times. Binary classification performance
measures were adopted according to standard formulae [54].

Due to the low number of patients included in the study, no more than 1 feature
for every 10 “observation/subject” presenting the outcome of interest was employed to
develop the models, as described in [55]. The models were trained and validated by using
relevant statistical features (p-value less than 0.05) for the outcome of interest [17]. That
means that predictors were evaluated independently before the data were applied to the
classification methods, as described in [24]. In fact, Zerouaoui et al. reported that the
majority (47%) of the studies in the field of radiomic in breast cancer have used a priori
feature selection via filter methods.

Among the three different methods (LogitBoost, RF, and LDA) used to train and
validate the classifiers, the best performing method was chosen as the one achieving the
highest value of sensitivity + specificity [56]. In fact, as a rule of thumb, this criterion
can help interpret the evidence on test performance. For a diagnostic or clinical test to be
useful, sensitivity + specificity should be around 1.5 (halfway between 1, which is useless,
and 2, which is perfect) [56]. In the case of an equal value of sensitivity + specificity, the
model with the highest area under the curve (AUC), which is a reliable estimator of both
sensitivity and specificity rates, was considered.

Comparison analyses among the classification methods were also carried out via a
Wilcoxon sum-rank test over 100 repetitions. The values of sensitivity + specificity, Cohen’s
Kappa, and AUC were also graphically investigated via boxplots.

3. Results
3.1. Study Population

For this study, we enrolled a total of 36 female patients who underwent MRI and PET.
For 27 of them we reported the available clinical and molecular characteristics in Table 1.
The breast cancer tumor molecular subtypes were classified according to the 2013 St. Gallen
guidelines [57].

3.2. Radiomic Statistical Framework: Normalization and PCA

The majority of the radiomic features (≥86%) before and after normalization (z-score
and quantile methods), extracted from 36 female patients, were non-normally distributed
via the Shapiro–Wilk test. For the radiomic features normalized via whitening methods,
60% were non-normally distributed.

The radiomic features were first normalized as the ratio between the malignant features
and healthy features. Successively, the radiomic features for each MRI sequence and PET
were normalized separately using the z-score, quantile, and whitening normalization
methods. The goal of normalizing the feature separately for each dataset is to remove the
feature variability between the datasets [40].
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Table 1. Patient characteristics.

Variables [N] Number of
Missing Patients Median Range

[max–min] Mean SD

Age (years) [N = 27] 0 57 82–35 55.259 13.75

circulating miR-125b-5p [N = 22] 5 0.017 0.102–0.006 0.026 0.024

circulating miR-143-3p [N = 22] 5 0.009 0.061–0.002 0.018 0.018

circulating miR-145-5p [N = 22] 5 0.006 0.045–0.002 0.012 0.012

circulating miR_100_5p [N = 19] 8 0.010 0.051–0.004 0.017 0.014

circulating miR_23a_3p [N = 19] 8 0.155 0.438–0.039 0.19 0.13

ESTROGEN RECEPTOR STATUS (%) [N = 23] 4 90 99–0.5 75.87 32.289

PROGESTERONE RECEPTOR STATUS (%) [N = 24] 3 55 99–0.5 52.979 38.606

HER2 STATUS (%) [N = 10] 17 90 99–60 84.2 15.747

Ki-67 (%) [N = 24] 3 40 80–5 41.25 26.996

Number of Patients Percentage (%)

Molecular subtype classification ER/PR/HER [N = 24]

3
+/−/+ 1 4.17

+/+/− 13 54.17

+/+/+ 10 41.67

Grading [N = 19]

8G2 11 57.89

G3 8 42.11

Spearman’s rank correlation was used to exclude highly correlated features with a
threshold of 0.8 separately for each of the MRI and PET sequences. A smaller subset of
features was identified and PCA was applied to four datasets:

1. Radiomic features only normalized as the ratio of malignant and healthy radiomic features.
2. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and z-scores.
3. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and quantiles.
4. Radiomic features normalized as the ratio of malignant and healthy radiomic features

and whitening.

The results showed that 6 PCs explained 60% of the total variance in the case of within-
subject normalization and z-score (Figure 3a,b), 7 PCs explained 60% of the total variance
using quantile methods (Figure 3c) and 13 PCs explained 60% of the total variance in the
whitening methods (Figure 3d). The median among these PCs was seven. As shown in
Figure 3, in the WHT normalization method, more than 7 PCs explained 60% of the total
variance. This was a reason to exclude this normalization method from the other analyses.
Therefore, to harmonize the number of PCs across the datasets, seven PCs were considered.
The loadings of the three datasets were explored, as shown in Figure S2.
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3.3. Clinical Investigation and Classification Approaches
3.3.1. Grade

Among the 19 patients that reported tumor grading, 11 were grade 2 and 8 patients
were classified as grade 3. None of the patients included in the study presented with
grade 1 tumors. From the statistical analysis, the circulating miRNA 125b_5p and PC3 from
the quantile normalization dataset showed to be significantly different between the patients
with grade 2 and grade 3 tumors (Figure 4).
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The classification algorithms were trained and validated using PC3 to automatically
classify tumor grade (grade 2 and grade 3). The performance measures are reported in
Figure 5a. The best classifier, with a value of 1.5 for Sensitivity+ Specificity and an AUC
of 74%, was LogitBoost, as shown in Figure 5b.
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LogitBoost was shown to outperform the other models, as shown in Figure S3. In
particular, the Sensitivity + Specificty and Kappa values were statistically (p-value less
than 0.05) higher in LogistBoost (LB) than in LDA.

Moreover, we investigated the variables that contributed the most to PC3 (via QNT nor-
malization), as shown in Figure S4. The LogitBoost algorithm was also trained and validated
using the first two variables (toa.bw and glcm_information_correlation_1_with_contrast_agent)
to investigate tumor grade. LB achieved a sensitivity, specificity, accuracy, and AUC of
53%, 68%, 61%, and 63%, respectively. However, the performance was lower than the
performance achieved using PC3.

3.3.2. Ki-67

Among the 24 patients that reported Ki-67 values, 11 had a value of Ki-67 greater
than 30% (Class 1) and 13 had a value less than 30% (Class 2). From the statistical analysis,
age, progesterone receptor status, and PC3 from the quantile normalization dataset were
significantly different between the patients with high and low values of Ki-67 (Figure 6).
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The classification algorithms were trained and validated using PC3 to automatically
classify high and low values of Ki-67. The performance measures are reported in Figure 7a.
The best classifier, with a value of 1.43 for Sensitivity + Specificity and an AUC of 81%, was
LDA, as shown in Figure 7b.
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LDA outperformed the other models, as shown in Figure S5. In particular, the area
under the ROC curve was significantly higher (p-value less than 0.001) in LDA than in LB.

The LDA algorithm was also trained and validated using the first three variables
(toa.bw and glcm_information_correlation_1_with_contrast_agent) to investigate values
of Ki-67. LDA achieved a sensitivity, specificity, accuracy, and AUC of 61%, 56%, 58%,
and 60%, respectively. However, the performance was significantly lower than the perfor-
mance achieved using PC3.

3.3.3. Luminal A and B

Among the 23 patients that presented with molecular subtypes, 18 were Luminal B
and 5 were Luminal A.

From the statistical analysis, Ki-67, PC6 from the non-normalization and z-score
datasets and PC3 and PC4 from the quantile normalization dataset were statistically signifi-
cant different between patients presenting with Luminal A- and B-type tumors (Figure 8).
The classification algorithms were trained and validated using each principal component
that was significantly different between Luminal A and B.

The performance achieved by LDA, RF, and LogitBoost using PC6 from the non-
normalized and z-score datasets and PC3 and PC4 from the quantile normalization dataset,
are shown separately in Table S2. In terms of the values of sensitivity + specificity, the
best classification was considered to be LDA in all cases because both RF and LogitBoost
presented very low specificity, although they achieved a high AUC. The LDA method via
PC3 from the quantile dataset achieved the highest performance compared to the LDA
models developed via PC6 and PC4. Therefore, LDA was able to automatically classify
the tumor subtype (Luminal A and B) with a sensitivity + specificity value of 1.33 and
an AUC of 73% by only using PC3 normalized via the quantile method (Figure 9b). The
performance measures are reported in Figure 9a. RF was not considered to be the best
classification even though it presented higher AUC than LDA because it performed very
poorly on the detection of Luminal A patients (24% specificity).

LDA outperformed the other models, as shown in Figure S6. In particular, the area
under the ROC curve was significantly higher (p-value less than 0.001) in LDA than in
LogistBoost (LB).

The LDA algorithm was also trained and validated using the first two variables (toa.bw
and glcm_information_correlation_1_with_contrast_agent) due to the small number of
patients included in the analysis. The LDA achieved a sensitivity, specificity, accuracy,
and AUC of about 50%. LDA via PC3 showed significantly higher performance than the
performances achieved by LDA via radiomic features.
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4. Discussion

This pilot study established a robust framework of analysis to evaluate quantitative
imaging biomarkers and to generate a combined radiomic signature for a more precise
breast cancer prognosis, also investigating the effect of within-subject and between-subjects
normalization methods on PCA and downstream analysis.

Several other applications of radiomics in breast cancer imaging have been investi-
gated to differentiate between malignant and benign breast lesions; to predict the axillary
lymph node status, molecular subtypes of breast cancer, tumor response to chemother-
apy, and survival outcomes; and to discriminate between breast cancers and background
parenchymal enhancement [58,59]. However, there are still challenges to be addressed.
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Feature normalization is often an undervalued aspect in the radiomic framework. Data
normalization methods are essential for radiomic features, due to their basic differences of
scale, range, statistical distributions, and condition of interest. Moreover, the normalization
process should produce radiomic features that are replicable, have similar distributions
for the same tissues of interest within and across patients, are not influenced by biological
abnormality or population heterogeneity, are minimally sensitive to noise and artifacts, and
do not result in the loss of information associated with pathology or other phenomena [60].

In this study, in order to reduce the within-subject bias effect that marks the assessment
of different radiomic features in a single patient, we normalized the features extracted from
the malignant breast with the features extracted from the healthy breast by the calculation
a ratio. This is a novel aspect of our study, as several studies have normalized images with
respect to healthy tissue, which has also proven to be optimal for other organs, such as the
prostate [61], but none of the studies in the existing literature have tried this process on
quantitative radiomic features.

However, it is worth noting that this will not always be possible, since patients often
have tumors in both breasts. Nevertheless, if the tumors are not in the same regions, our
method is still suitable, as long as the counterpart of the healthy tissue is not affected by
the tumor and quantitative radiomic features can be extracted.

To reduce the between-subjects bias effect that alters the comparison of the radiomic
features in different patients (namely technical effects, due to their basic differences of scale,
range, and statistical distributions), we applied three common normalization methods, also
proved to be reliable in [17], z-score, quantile, and whitening normalization methods. Only
a few studies have tried to investigate the impact of normalization methods on radiomic
features during post-processing [17,62].These studies investigated the effects of different
normalization methods on extracted radiomic features to reduce between-subjects bias.
Haga et al. [62] investigated CT radiomic features extracted from non-small-cell lung cancer
patients. The radiomic features were normalized using the min-max normalization, the
z-score normalization, and the whitening methods to improve the accuracy for the histology
prediction. The radiomic features that were normalized by z-score achieved the highest
AUC value. Castaldo et al. [17] evaluated the effect of several normalization techniques
to predict four clinical phenotypes in breast cancer via radiomic features extracted from
MRI. This study suggested that the quantitative radiomic analysis is influenced by the
normalization method choice. However, in our previous study we did not investigate the
effect of within-subject bias along with between-subjects bias on feature reduction methods,
such as PCA.

Therefore, we investigated the effect of within-subject and between-subjects normal-
ization methods on the most common feature reduction method, PCA, and evaluated this
integrated approach to investigate the molecular cancer subtypes, tumor grade, and Ki-67
proliferation index in breast cancer. After a filtering step, based on a correlation analysis,
to remove redundance in the radiomic data, we applied a PCA to generate a complex
radiomic signature and investigate the value of performing normalization on extracted
radiomic features.

PCA was applied to different datasets based on the four normalization approaches
(i.e., radiomic features only normalized as the ratio of malignant and healthy radiomic
features; radiomic features normalized as the ratio of malignant and healthy radiomic
features and z-scores; radiomic features normalized as the ratio of malignant and healthy
radiomic features and quantiles; and radiomic features normalized as the ratio of malignant
and healthy radiomic features and whitening) to investigate the differences among them.
By investigating the cumulative variance, we could observe that the case of within-subject
normalization provided comparable results with the z-score, and this is reasonable, due
to the simplicity of the z-score approach. Slightly different results were achieved for the
quantile methods, which needed one more PC compared to the within-subject normal-
ization and z-score. The whitening method was excluded, as it needed 13 PCs to explain
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60% of total variance. This was expected, as the whitening method is highly sensitive to
outliers [63].

The same radiomic features contributed to the seven PCs for the within-subject nor-
malization and z-score methods, whereas different radiomic features contributed to the
PCs for the quantile method. This emphasizes that by applying different normalization
methods we could achieve different results, and, therefore, great attention needs to be paid
when working with quantitative radiomic features.

To further investigate the role that normalization methods have on the PCA-based
framework, we investigated whether quantitative radiomic features were able to differenti-
ate among the tumor grades, aggressiveness of tumor, and luminal types in females with
breast cancer via statistical analysis and classification approaches.

Tumor grading, together with tumor size and lymph node stage, is often used to
stratify individual patients for appropriate therapy. In particular, patients with grade
2 and 3 tumors are referred to as high-risk patients [64]. In this study, we investigated
patients presenting with grade 2 and 3 tumors. Regarding the statistical analysis, circulat-
ingmiRNA_125b_5p and the third component (PC3) of the quantile normalization were
significantly different among the patients presenting with grade 2 and 3 tumors. LogitBoost
achieved an AUC of 74% to automatically identify high-risk patients (tumor grade 3) by
using only one PC.

We also investigated the Ki-67 index, which has recently attracted significant interest
from clinical oncologists. In fact, the mitotic index (MI) and the Ki-67 index value are the
two most commonly used indices to measure proliferation [65]. Moreover, certain studies
reported that the Ki-67 index value is a significant prognostic factor in terms of disease-free
and overall survival after initial treatment [66]. In general, high levels of Ki-67 expression
in breast cancer correlate strongly with a more tenacious proliferation and a poor prognosis.
In this study the cut-off point for Ki-67 was set at 30% as recommended in [43,44]. Therefore,
the data were split into low and high values of Ki-67 to assess the aggressiveness of the
tumors. Age and progesterone receptor status were significantly higher in patients with
high values of Ki-67, wheatears PC3 from the quantile dataset was significantly lower in
patients with high values of Ki-67. The best classifier was LDA, which achieved an AUC of
81% to automatically detect patients with a high value of Ki-67 via only PC3.

Lastly, Luminal A and B were evaluated, as they are the most common tumor sub-
types among the worldwide population. Luminal A tumors are more endocrine sensitive,
indolent, and have a better prognosis; whereas luminal B are less endocrine sensitive, more
aggressive, and have worse prognosis. In fact, it has been demonstrated that luminal B
cancers are more progressive, as tumors usually exhibited more nodal metastasis than
in luminal A subtype [67,68]. Moreover, the main reason for attempting to distinguish
between luminal A and luminal B tumors is because they respond differently to treat-
ment [69]. Regarding the statistical analysis, Ki-67 and the third component (PC3) of the
quantile normalization were statically different among subtypes A and B. Ki-67 level was
expected to be statistically different, as it is recognized to be a surrogate of “Luminal A-like”
disease [68]. The linear discriminant analysis method was also able to differentiate Luminal
B with 75% AUC by using only one principial component via the quantile method. This was
in line with the recent literature, which states that radiomic assessment of breast imaging
can provide an option in determining breast cancer molecular subtypes [14].

The main aim of using the classification methods was to investigate the impacts
of normalization methods and the use of PCA on classification performances. A recent
study [70] also investigated the impact of 14 data normalization methods as pre-processing
steps on classification performance. They observed from the results that no single method
outperformed the others on 21 publicly available real and synthetic datasets. According to
Singh et al. [70], z-score performed better than non-normalized methods. However, they
did not investigate the quantile or whitening methods.
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Overall, the classification methods achieved good results in detecting tumor subtypes,
grade, and aggressiveness by using only the third principial component of the radiomic
features normalized by the quantile methods.

The first 10 radiomic features that contributed to PC3 came from the first-order grey-
level statistics features (such as energy and skewness) and SUV parameters (the sum of
all VOI pixel values) from the PET technique, two features (skewness and variance) came
from ADC-MRI, and the majority came from the grey-level co-occurrence matrix-based
features from the T1w-MRI. Lastly, only one feature quantifying the complexity of the
tumor texture was from the T2-wMRI. This demonstrated that a linear combination of
MRI-based and PET-based radiomic features are able to characterize molecular prognostic
indicators in females affected by breast cancer. These results are also supported by the
recent literature data that indicate that features obtained from PET and MRI correlate with
tumor histological characteristics and molecular subtypes [71–75]. Moreover, by using only
the first two radiomic features that contributed to PC3, no improvements in the results
were shown. In particular, both the accuracy and AUC were significantly (p-value < 0.05)
higher in the models developed by using only one principal component. This result is
worth noting, as, by applying PCA, a combination of features allows a better classification
of tumor subtype, grade, and aggressiveness. One of the drawbacks of PCA is that PCs are
not as readable and interpretable as the original radiomic features. Conversely, the main
advantages of using PCA is to maintain accuracy and make datasets easier to understand.
Moreover, using PCA in small dataset can help to generate a quantitative radiomic signature
in a composite indicator, where principal components are the linear combination of your
radiomic features.

This is particularly relevant when a small dataset is available, as, by rule of thumb, one
predictor for every 10 events should be used in classification tasks [17,55]. This result is in
line also with Mert et al. [76], who demonstrated that the use of feature reduction methods,
such as a pre-processing step to classification analysis, can be a high-performance solution.

Five circulating miRNAs were selected in this study (miR-125b-5p, miR-143-3p, miR-
145-5p, miR-100-5p, and miR-23a-3p) because they showed to be significantly upregulated
(p < 0.05) in breast cancer patients vs. healthy donors, as reported in [33]. Although they
are not all well-accepted biomarkers for breast cancer yet, Incoronato et al. found that the
expression levels of miR-125b-5p were variable and depended on the severity of the disease.
Additionally, the expression levels of miR-143-3p reached expression values close to those
of healthy donors in cancer stage IV. This result suggested that at stage IV, this molecule is
not required for the maintenance of the pathology. Regarding miR-145-5p, Tang et al. [77]
reported that miR-145-5p played a suppressive role in the proliferation of breast cancer cells
and that it is a putative biomarker for risk assessment in patients with breast cancer. Lastly,
in vitro functional experiments demonstrated that overexpression of miR-100 inhibited the
proliferation, migration, and invasion of breast cancer cells, which suggests that miR-100
may be used as a potential molecular marker and target for the diagnosis and treatment of
metastatic breast cancer, as suggested by [78].

The association between circulating miRNA and PCs was investigated via a correlation
analysis. None of the principal components for all three normalization methods (within-
normalization, z-score, and quantile) showed significant associations with the circulating
miRNA. This may be due to the low number of patients (40% of the included patients) that
reported the values for the circulating miRNA. However, circulating miRNA125b_5p was
significantly different between the patients with grade 2 and 3 tumors. In particular, it was
significantly lower in grade 3 breast cancer patients.

In conclusion, we provided a statistical framework that combines several approaches
to generate a quantitatively robust and replicable radiomic signature, which may lead
to more precise breast cancer prognosis and help clinicians in decision-making towards
personalized medicine.

However, this study presents some limitations. Intra-reader agreement was not
assessed for the segmentation of the lesions. This was mainly due to the fact that in
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this study we performed semi-automatic segmentation of breast lesions, which reduce
segmentation time and inter- and intra-reader variability [79]. In fact, variation due to
manual segmentation could be reduced or eliminated by semi-automated or completely
automated segmentation algorithms. Moreover, the semi-automatic segmentation of breast
lesions was carefully supervised by an expert radiologist with more than 10 years of
experience. Moreover, in this study we only investigated first order and second order MRI
radiomic features. In future studies, high-order radiomic features will be also considered in
the framework of analysis.

The main limitation of our study was that the patient sample that reported additional
clinal information was relatively small and unbalanced. We developed the framework
of analysis on 36 patients using their MRI and PET radiomic features. Then, we used a
smaller sample of 27 patients to validate our approach. In addition, our study lacks further
validation on a bigger cohort. As we are aware that the results generated on a small sample
size cannot lead to a generalized conclusion, future studies will validate the results from
this pilot study on a larger dataset. However, we applied several methodological steps to
overcome this issue: (1) We used traditional machine learning which has less computational
complexity than the more advanced ML algorithms and, therefore, less parameters to train
reducing overfitting [80]. (2) Due to the low number of patients included in the study,
no more than 1 feature for every 10 patients was employed to develop the models, as
described in [55]. (3) We balanced the dataset with synthetic samples (SMOTE) [81].
(4) Repeated cross-validation (N = 100) was performed to guarantee the robustness of the
results and to reduce overfitting [82]. Moreover, due to the limit of small sample, this
radiomic framework may not stand for all subtypes of breast cancer, as we have only
investigated specific subtypes (Luminal A and B).

After this pilot study, which helped us to establish a robust workflow of analysis,
upcoming work will include studies on a larger and more recent clinically annotated data
set to verify and validate the results from this study. We will further assess the role of
the MRI and PET phenotypes in combination with genomic and clinical information to
improve the prediction power of the machine-learning-based models. At the same time,
with this study we are notifying other researchers to implement a multivariate statistical
framework of radiomic analysis for post-acquisition extraction and data processing, in
order to ensure more robust findings.

5. Conclusions

This pilot study aimed to design a weighted statistical framework investigating the
stability of the radiomic features of robustness and repeatability applied to MRI and PET
analysis in general and evaluated the impact of normalization methods to generate a
complex radiomic signature in breast cancer imaging, specifically. To conclude, the results
from this study demonstrate that a combination of quantitative radiomic analysis via PCA
shows potential as a means for high-throughput image-based phenotyping to automatically
detect the grade, aggressiveness of the tumor, and breast cancer subtype.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12020499/s1, Table S1: Description of Radiomic Fea-
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classify tumor grade, Figure S4: PC3 quantile. Top 10 variable contribution, Figure S5: Comparison
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