
QUARTERLY OF APPLIED MATHEMATICS
VOLUME XLIX, NUMBER 3
SEPTEMBER 1991, PAGES 555-562

A COMPLEX VARIABLE INTEGRATION TECHNIQUE
FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS

By

K. B. RANGER

University of Toronto, Toronto, Ontario, Canada

Abstract. Starting from a complex variable formulation for the two-dimensional
steady flow equations describing the motion of a viscous incompressible liquid, a
method is developed which carries out three integrations of the fourth order system
in parametric form containing three arbitrary real functions.

Introduction. It is a feature of nonlinear differential equations that even when an
exact solution is available it is not always possible to express the dependent variables
as explicit functions of the independent variables. Clearly this can be a disadvan-
tage when the dependent variables represent unknown physical quantities and the
independent variables may be space and time. However, in some cases the solution
can be parametrized in terms of derivatives, as in the elementary example x = pep ,
p = dy/dx . Differentiation with respect to y , followed by integration with respect
to p, leads to a second equation y = {p2 - p + \)ep + c from which the net gain
is a parametrization of x and y in terms of the first derivative p containing an
arbitrary constant c. In this example it is possible to eliminate p to determine a
relation between x, y, and c, although this is not the case with the more general
equation x - f(p), which can be treated by the same technique. In general paramet-
ric representation represents a powerful method for displaying solutions of nonlinear
differential equations especially when the solutions bifurcate as in the case of the
Navier-Stokes equations.

The present paper attempts to extend this solution method to a certain class of par-
tial differential equations and in particular the two-dimensional steady flow Navier-
Stokes equations. Starting from a concise complex variable formulation for the flow
equations first given in [1], and subsequently rediscovered by others, an integration
technique is developed which exhibits solutions in implicit parametric form. The
dependent variables in the complex system are the stream function y and an aux-
iliary function 0 associated with the Bernoulli function, or total head of pressure.
One major advantage in connection with the present analysis is that the complex flow
equation is quasi-linear, autonomous, and contains only z = x - iy as independent
variable.
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A second feature of the method is to extend the solution space to complex valued
stream functions, which in turn leads to a complex integration of an equation of
Riccati type. From this it is shown there is a special form of the complex stream
function which is a solution of the original system. One further integration is possible
and three integrations of the fourth system are expressed in implicit parametric form
containing three arbitrary real functions.

The equations of motion. The equations of motion for the steady flow of an in-
compressible viscous liquid can be written in the form

-[q x curl£] = -VB + i/V'q, (1)

div q = 0, B=p/p + { |q|2 (2)

where q is the fluid velocity, p the pressure, p the density, v the kinematic viscos-
ity, and B the Bernoulli function, or total head of pressure. In this representation
part of the nonlinear convection term has been absorbed into the Bernoulli function.
For two-dimensional flow the fluid velocity can be prescribed in terms of a stream
function y/(x,y) and

q = u'i + v] = cur\{-y/k) = -y/J + y/J. (3)
The components of Eq. (1) are

-|»,vV= -Bx-u^V2V, (4)

-vrv2v= -By (5)
and

2 a2 a2V = —- + — . (6
dx' dy2

If z = x + iy, z = x - iy , then

t d =_^_  n)
d~z — dx 1 dy ' dz ~ dx 1 dy '

and Eqs. (4) and (5) can be combined in complex form to produce the single complex
equation

-AytYy/- = -BJ + 4viy/-, (8)

where vV = 4i//z-. From Eq. (3) the velocity components can be combined to
define a complex velocity given by

q = u + iv = 2 iy/~. (9)

If a real function <j>(x, y) is defined by B = -vV24> = then (8) can be
written as

^zz + 'Xzz + ^Wzz = 0, (10)
which implies

^_ + />_ + (2i/)~Vi = i4"(z). (11)
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The arbitrary analytic function A(z) plays no role in the present analysis since it
can be absorbed into the real function (f> by replacing </> by 0-^4(z) -A(z). In this
case the Navier-Stokes equations can be expressed in the form (see [1]) by

0JJ + 'VTJ + (Ivf'vj = 0. (12)
The complex conjugate equation is

<j>zz~ iVzz + {2v)~lV2z = 0. (13)

Elimination of (p by differentiation yields the usual vorticity equation

*W-^.
There are a few limiting cases worthy of note. First in the formal limit v —> 0, Eq.
(13) reduces to

vV = *!(«/), (15)
where is an arbitrary real function and lines of constant vorticity coincide with
the streamlines. The second case corresponds to the limit v —► oo, in which case Eq.
(12) becomes the creeping flow described by

<^z + '>zz = ° (16)

and the general solution is given by

<p+ iy/ = zDx{z) + El(z), (17)

where Dx(z) and Ex{z) are analytic in the fluid region. The only known general
solution of (14) is represented by the stream function

2 2 2y/ = d(x + y ) + n(x,y), V n = 0, d constant, (18)

which is viscosity independent.

Method of solution. Define the operators by

L = (/>- +iy/-+ {2i/)"Vi, (19)
L\=<t>Y-z + iF- + {2v)-XF±, (20)

where (f), y/ are real functions of x , y , and F is a complex function of z ,~z . The
equation

L, - L = iexp(—(F + y/)/2ui)-^={exp((F + y/)/2i>i){F~- y/j)} = 0, (21)

is of Riccati type and implies

exp{{F + yj)/2vi)(F- - y/-) = f(z), (22)
where f(z) is an arbitrary analytic function of z in the fluid region. Since L, is
invariant under the transformation F -> F + g(z), with g(z) arbitrary, the arbitrary
function f(z) may be absorbed into F and Eq. (22) replaced by

exp((F + y/)/2vi)(Fj - y/-) = exp((F + y/)/2vi){Ftj>(t>J +{F^ - \)yt-} = 1, (23)
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where F is now regarded as a function of <t>, y/.
Consider the equation

AL + BL, = |-(C^ + Ztyy) + (tf^+G^ + A/)(C^ + Zty7- 1)dJ ' " (2.4)

+ (E(j)J + Gy/Y+ J){exv((F + y/)/2vi)[F4>(t)J + (F^ - 1)^]- 1},
where A, B, C,D,E,G, J, K,M,Q are functions of 4>, V ■ Written explicitly
in terms of the derivatives of <t>, yj with respect to ~z Eq. (24) is of the form

A^- + A2yj- + A^\ + A^l + A^-y/- + A^- + Anyf- + A% = 0
and is an identity provided that A- = 0, j = 1, ... , 8 . This yields the following set
of eight equations:

C = A + B{\ + iF4>), (25)

D = iA + iBFv, (26)
C# + EF, exp((JF + y/)/2vi) + CK = B(iFH + [2v)~XF2^), (27)

cv + ^ ^ exP((^ + v)/2"1) + Ge\p{{F + y/)/2vi)F(j) + KD + CQ
= 2B[iF^ + (2V)~lF^F¥], (28)

Dv + Gexp((F + v)/2vi){Fv - 1) + QD = A/2v + + {2v)~l F$\ , (29)

-£■ + J exp ((F + yr)/2in)F^ + MC -K = 0, (30)
-G + Jexp((F + y)/2vi)(Fw-l) + MD-Q = 0, (31)

J + M = 0. (32)
If the derivatives of C, D are eliminated from Eqs. (25), (26), (27), (28), (29) the
resulting subset of equations reduces to the system

A,, + 5,(1 + iF^) + E e\p((F + ys)/2ui)F^ + CK = BF]/2v , (33)

Av + iA<t, + ^0 + iF$) + iB4,Fv + Eexv((F + y/)/2ui){Fv - 1)
+ Gexp((F + ¥)/2vi)F^ + KD + CQ = BF^FJv , (34)

iAv + iBvFv + Gexp((f + yt)/2ui){Fv - 1) + QD = A/2v + BF2J2v . (35)
Also elimination of M from (30), (31), (32) gives the equations

E = /[exp((F + y/)j2vi)F^ - C]- K, (36)
G = J[exv{{F + y/)l2vi){Fv-\)-D]-Q. (37)

Now addition of equations (33), (34), (35) results in one complex equation repre-
sented by

(1 + 0(^ + V + + ̂ )[1 + '■(/> + ̂ )]
+ (£ + G) exp((JF + y/)/2ui){Fij> + Fv - 1) + (C + Z))(tf + 0)

= A/2v + B{F+ + Fv)2/2v . (38)
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There is a solution of Eq. (38) of the form

-(G + *) = r, + rr, ^ + ̂ -1=0, (39)
where T is an arbitrary function of <f>, y/ and the latter equation implies

F = y/ + N((f> - y/), (40)
where N(<p - y/) is an arbitrary function of (j) - y/ . Equation (38) now simplifies to
the complex equation

(i + i){(A + b)4 + (a + b)v} = ^ + WA + + ' ^41)

for which the solution is

A + B = a{4> - y/)e\p{y//2u(l + i) + F), (42)

where a(4> - y/) ± 0 is an arbitrary complex function of <p — y/. Now from (25),
(26) it follows that if

C(j>- + Dy/j = A{(f>j + iy/j) + B(cj)- + iF-)
= a(<t>- y/) exp(^/2i/(l + i) + T)(0t + iy/-)

+ iBexp(-(F + y/)/2ui) = 1, (43)

then from (22), (24) we have
AL + BLX — 0, (44)

which in turn from (21), (22) implies that

L = LX = 0, (45)

since A + B ^ 0. It is now sufficient to consider Eqs. (33), (35) which are given by

ES + CK = BF]l2v - A<t> - 5,(1 + iFJ, (46)
-GS + QD = A/2u + BF2J2v - iA^ - iB^ , (47)

where 5 = exp((i7 + y/)/2vi)N' {<j>- y/). Elimination of E , G from (36), (37) results
in the equations

S(S - C)J + (C - S)K = BF]l2v -A^-B^ 1 + iFJ, (48)
S(S + D)J + {S + D)Q = A/2u + BF2/2v - iA¥ - iB^ . (49)

Again elimination of Q from (49) and using (39) produces the equation

JS(S + D)~ K(D + S) = A/2v + BF2J2v - iAf - iB^ + (D + S)(T, + r,). (50)

Further elimination of the function (SJ - K) from (48) and (50) gives the equation

(S + D){BF2/2v-A^-B^l + iF^)}

= (S- C){A/2v + BF2/2u - iAv - iB^ + (S + D)(T0 + r„)} . (51)
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This equation written explicitly in terms of A, B, N is expressed by

[exp((TV + 2y/)/2ui)N' + i(A + B- BN'))[BN'2/2u - A^-B^l + iN')]
= [exp((TV + 2y/)/2vi)N' - A-B- iBN')

x {A/2v + B( 1 - N')2/2u - iAv - iB^ 1 - N')
+ (r, + r^[exp((7V + 2y/)/2vi)N' + i(A + B- BN')]}. (52)

It follows from (22) and (40) that if

L' = exp((N(co) + 2i//)/2ui)N'((0)(0j - 1 = 0, co = (f> - y/ , (53)

then (f>, y/ satisfy L — 0 since A, B ,T are determined from Eqs. (42), (43), (52)
and do not place any restriction on F, (j>, y/. The function N(co) is an arbitrary
function of a>. It is evident from (42), (52) that the function a{<f> - y/) can be
absorbed into the function T, so without loss of generality a(4> - W) = 1 • Again
from (43), (53) it follows (j>~, y/- can be expressed as

(1 + i)4>- = exp(-r - y//2v{ \ + z'))[l - iB exp{-{N + 2y/)/2ui)]
i exp (~(N + 2y/)/2 ui)

+ N'(co)
= ^'(1 + 0, (54)

(1 + i)y/j = exp(-T- y//2v(l + /))[1 - iBexp(-(Ar + 2y/)/2vi)]
exp(-(Ar + 2y/)/2ui)

N'(ou)
= (1 + i)B', (55)

where A', B' are functions of 0, y/ defined by (54), (55). The integrability condi-
tions 4>z- = <f>-2, y/- = y/-zz require

A'.A' + A^B'^A' + iy, (56)

K1'+= KA'+KB' ■ (5y)
These equations together with (42), (52), (54), (55) define a self-consistent general
solution of the Navier-Stokes equations. It is also remarked by essentially setting
f(z) = 1 in (22) that Eqs. (54), (55), (56), (57) are independent of z, which would
otherwise lead to inconsistency.

To achieve further progress in the integration process it is appropriate to return
to (53) and eliminate y/ so that

4[h'(co)]2 co za>j — 1, 4[h'(co)]~ = exp((N(a>) - N(a>))/2i'i)N'(cd)N'(co), (58)

and it follows there exists a real function x defined by

h'{co)a>x = cos/, h'(o))a)v - sin/. (59)

The consistency condition implies

d2 [h((o)\ = cos xxx =-sin XXy (60)dxdy
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The equation for / is then of the form

Z^cos* + /ysin/ = 0, (61)

which is a type of nonlinear wave equation for which the solution (see [2]) is

y — x tan / = // (tan /), (62)

where //(tan/) is a real and arbitrary function of tan/. Elimination of tan/ from
(59) gives the real equation

y-x(coy/cox) = H{coy/cox). (63)

Again from Eq. (53) the ratio cov/cx>x can be expressed explicitly in terms of co and
^ by _

J_L = % _ [jvV) ~ N\co) exp((N + N + 4y)/2vi)] = Q
ux 1 cox i[exp({N + N + 4v)/2ui)N'((o) + N'((o)]

so that Eqs. (53), (62) can be combined by elimination of co /co to give

L, = y + ix

H

N (co) - N'{(o) cxp((N + N + 4\ii)/2vi)
iN'(co) exp((N + N + 4y/)/2ivi) + N'{co)i

n'(co) - N\co) exp((N + N + 4y/)/2vi)
/exp((Ar + N + 4<//)/2vi)N'(co) + iN'(co)

Equations (64), (65), together with

= 0. (65)

L = co—+ (I + i)i//—+ (2v) Vi = 0 (66)
define a solution of the Navier-Stokes equations in which the complex function N(co)
and the real function H are arbitrary. Effectively three integrations of the fourth or-
der system have been carried out and the resulting equations containing the arbitrary
functions N and H can be displayed in parametric form by

dL, , dL' dL' d2L' d2r _ nL3 = = L = —=■ = —— =  y = L = 0, (67)
3 dy dz dz dzdz Qz2

The system represented by (67) comprises 11 equations containing the six second-
order derivatives (pzz, </>—, 4>zJ, ^zz , ty—, (/zz , the four first-order derivatives
co_, cojz, y/- and co, y/ . There are eight equations linear in the second-order
derivatives and three linear in the first-order derivatives and it is a relatively rou-
tine but cumbersome procedure to eliminate these derivatives to produce two real
equations containing co, if/ and (x, y). This elimination process is best suited to
a symbolic computer language program and will not be carried out here. In spite of
this the underlying analytical structure of the solutions is revealed and it is hoped
in a future publication to present the solutions in a more accessible form so that
streamlines can be constructed for specific functions H and N. As an example to
check the method of solution consider the simplest representation for N(co) given
by

N(co) = aco + k,
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where a, k are complex constants. Equations (53), (66) are satisfied by

(f> - b\ogz + Mogz, ^ = clogz + clogz,

where the complex constants are determined from

e\p(k/2vi)a(b - c) = 1, a(b - c) + 2c = 0,

It is found that

a{b-c) + 2c-Q, -b — ic + (2v) 'c2 = 0.

c-vi/2-v, b-( 2v) 1 {vi/2 - v)2 - i(vi/2 - v),

which verifies there is a solution for the stream function of the form

y/ = (vi/2 - ^)logz - [yi/2 + v)\og~z.
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