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Abstract. Partition functions, also known as homomorphism functions, form a rich family
of graph invariants that contain combinatorial invariants such as the number of k-colourings
or the number of independent sets of a graph and also the partition functions of certain “spin
glass” models of statistical physics such as the Ising model.

Building on earlier work by Dyer and Greenhill [7] and Bulatov and Grohe [6], we com-
pletely classify the computational complexity of partition functions. Our main result is a
dichotomy theorem stating that every partition function is either computable in polynomial
time or #P-complete. Partition functions are described by symmetric matrices with real
entries, and we prove that it is decidable in polynomial time in terms of the matrix whether
a given partition function is in polynomial time or #P-complete.

While in general it is very complicated to give an explicit algebraic or combinatorial
description of the tractable cases, for partition functions described by a Hadamard matrices —
these turn out to be central in our proofs — we obtain a simple algebraic tractability criterion,
which says that the tractable cases are those “representable” by a quadratic polynomial over
the field F2.

1. Introduction

We study the complexity of a family of graph invariants known as partition functions
or homomorphism functions (see, for example, [10, 17, 18]). Many natural graph invariants
can be expressed as homomorphism functions, among them the number of k-colourings, the
number of independent sets, and the number of nowhere-zero k-flows of a graph. The functions
also appear as the partition functions of certain “spin-glass” models of statistical physics such
as the Ising model or the q-state Potts model.
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Let A ∈ R
m×m be a symmetric real matrix with entries Ai,j . The partition function ZA

associates with every graph G = (V,E) the real number

ZA(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v).

We refer to the row and column indices of the matrix, which are elements of [m] := {1, . . . ,m},
as spins. We use the term configuration to refer to a mapping ξ : V → [m] assigning a spin
to each vertex of the graph. To avoid difficulties with models of real number computation,
throughtout this paper we restrict our attention to algebraic numbers. Let RA denote the set
of algebraic real numbers.1

Our main result is a dichotomy theorem stating that for every symmetric matrix A ∈
R

m×m
A

the partition function ZA is either computable in polynomial time or #P-hard. This
extends earlier results by Dyer and Greenhill [7], who proved the dichotomy for 0-1-matrices,
and Bulatov and Grohe [6], who proved it for nonnegative matrices. Therefore, in this paper
we are mainly interested in matrices with negative entries.

Examples

In the following, let G = (V,E) be a graph with N vertices. Consider the matrices

S =

(

0 1
1 1

)

and C3 =





0 1 1
1 0 1
1 1 0



 .

It is not hard to see that ZS(G) is the number of independent sets of a graph G and ZC3
(G)

is the number of 3-colourings of G. More generally, if A is the adjacency matrix of a graph H

then ZA(G) is the number of homomorphisms from G to H. Here we allow H to have loops
and parallel edges; the entry Ai,j in the adjacency matrix is the number of edges from vertex
i to vertex j.

Let us turn to matrices with negative entries. Consider

H2 =

(

1 1
1 −1

)

. (1.1)

Then 1
2ZH2

(G)+2N−1 is the number of induced subgraphs of G with an even number of edges.
Hence up to a simple transformation, ZH2

counts induced subgraphs with an even number of
edges. To see this, observe that for every configuration ξ : V → [2] the term

∏

{u,v}∈E Aξ(u),ξ(v)

is 1 if the subgraph of G induced by ξ−1(2) has an even number of edges and −1 otherwise.
Note that H2 is the simplest nontrivial Hadamard matrix. Hadamard matrices will play a
central role in this paper. Another simple example is the matrix

U =

(

1 −1
−1 1

)

.

It is a nice exercise to verify that for connected G the number ZU (G) is 2N if G is Eulerian
and 0 otherwise.

A less obvious example of a counting function that can be expressed in terms of a partition
function is the number of nowhere-zero k-flows of a graph. It can be shown that the number of

1There is a problem with the treatment of real numbers in [6], but all results stated in [6] are valid for
algebraic real numbers. We use a standard representation of algebraic numbers by polynomials and standard
Turing machines as our underlying model of computation.
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nowhere-zero k-flows of a graph G with N vertices is k−N ·ZFk
(G), where Fk is the k×k matrix

with (k − 1)s on the diagonal and −1s everywhere else. This is a special case of a more
general connection between partition functions for matrices A with diagonal entries d and off
diagonal entries c and certain values of the Tutte polynomial. This well-known connection can
be derived by establishing certain contraction-deletion identities for the partition functions.
For example, it follows from [20, Equations (3.5.4)] and [19, Equation (2.26) and (2.9)]

Complexity

Like the complexity of graph polynomials [2, 12, 14, 16] and constraint satisfaction prob-
lems [1, 3, 4, 5, 8, 11, 13], which are both closely related to our partition functions, the
complexity of partition functions has already received quite a bit of a attention. Dyer and
Greenhill [7] studied the complexity of counting homomorphisms from a given graph G to
a fixed graph H without parallel edges. (Homomorphisms from G to H are also known as
H-colourings of G.) They proved that the problem is in polynomial time if every connected
component of H is either a complete graph with a loop at every vertex or a complete bi-
partite graph, and the problem is #P-hard otherwise. Note that, in particular, this gives
a complete classification of the complexity of computing ZA for symmetric 0-1-matrices A.
Bulatov and Grohe [6] extended this to symmetric nonnegative matrices. To state the result,
it is convenient to introduce the notion of a block of a matrix A. To define the blocks of
A, it is best to view A as the adjacency matrix of a graph with weighted edges; then each
non-bipartite connected component of this graph corresponds to one block and each bipartite
connected component corresponds to two blocks. A formal definition will be given below.
Bulatov and Grohe [6] proved that computing the function ZA is in polynomial time if the
row rank of every block of A is 1 and #P -hard otherwise. The problem for matrices with
negative entries was left open. In particular, Bulatov and Grohe asked for the complexity of
the partition function ZH2

for the matrix H2 introduced in (1.1). Note that H2 is a matrix
with one block of row rank 2. As we shall see, ZH2

is computable in polynomial time. Hence
the complexity classification of Bulatov and Grohe does not extend to matrices with negative
entries. Nevertheless, we obtain a dichotomy, and this is our main result.

Results and outline of the proofs

Theorem 1.1 (Dichotomy Theorem). Let A ∈ R
m×m
A

be a symmetric matrix. Then the
function ZA either can be computed in polynomial time or is #P-hard.

Furthermore, there is a polynomial time algorithm that, given the matrix A, decides
whether ZA is in polynomial time or #P-hard.

Let us call a matrix A tractable if ZA can be computed in polynomial time and hard if
computing ZA is #P-hard. Then the Dichotomy Theorem states that every symmetric matrix
with entries in RA is either tractable or hard. The classification of matrices into tractable and
hard ones can be made explicit, but is very complicated and does not give any real insights.
Very roughly, a matrix A is tractable if each of its blocks can be written as a tensor product
of a positive matrix of row rank 1 and a tractable Hadamard matrix. Unfortunately, the real
classification is not that simple, but for now let us focus on tractable Hadamard matrices.
Recall that a Hadamard matrix is a square matrix H with entries from {−1, 1} such that
H · HT is a diagonal matrix. Let H ∈ {−1, 1}n×n be a symmetric n × n Hadamard matrix
with n = 2k. Let ρ : F

k
2 → [n] be a bijective mapping, which we call an index mapping. We
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say that a multivariate polynomial h(X1, . . . ,Xk, Y1, . . . , Yk) over F2 symmetrically represents
H with respect to ρ if, for all x = (x1, . . . , xk),y = (y1, . . . , yk) ∈ F

k
2, it holds that

h(x1, . . . , xk, y1, . . . , yk) = 1 ⇐⇒ Hρ(x),ρ(y) = −1.

For example, the F2-polynomial h2(X1, Y1) = X1 ·Y1 symmetrically represents the matrix
H2 with respect to the index mapping ρ(x1) = x1+1. The F2-polynomial h4(X1,X2, Y1, Y2) =
X1 · Y2 ⊕ X2 · Y1 symmetrically represents the matrix

H4 =









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









with respect to the index mapping ρ(x1, x2) = 2 ·x1 +x2 +1. The qualifier “symmetrically” in
“symmetrically represents” indicates that the same index mapping is applied to both x and y.
We will need to consider asymmetric representations later. Note that we can only represent
a matrix H ∈ {−1, 1}n×n by an F2-polynomial in this way if n is a power of 2. In this case,
for every index mapping ρ there is a unique F2-polynomial symmetrically representing h with
respect to ρ. We say that H has a quadratic representation if there is an index mapping ρ

and an F2-polynomial h of degree at most 2 that symmetrically represents H with respect to
ρ.

Theorem 1.2 (Complexity Classification for Hadamard Matrices). A symmetric Hadamard
matrix H is tractable if it has a quadratic representation and hard otherwise.

Hence, in particular, the matrices H2 and H4 are tractable. The tractability part of
Theorem 1.2 is an easy consequence of the fact that counting the number of solutions of
a quadratic equation over F2 (or any other finite field) is in polynomial time (see [9, 15]).
The difficulty in proving the hardness part is that the degree of a polynomial representing
a Hadamard matrix is not invariant under the choice of the index mapping ρ. However,
for normalised Hadamard matrices, that is, Hadamard matrices whose first row and column
consists entirely of +1s, we can show that either they are hard or they can be written as an
iterated tensor product of the two simple Hadamard matrices H2 and H4. This gives us a
canonical index mapping and hence a canonical representation by a quadratic F2-polynomial.
Unfortunately, we could not find a direct reduction from arbitrary to normalised Hadamard
matrices. To get a reduction, we first need to work with a generalisation of partition functions.
If we view the matrix A defining a partition function as an edge-weighted graph, then this
is the natural generalisation to graphs with edge and vertex weights. Let A ∈ R

m×m
A

be a

symmetric matrix and D ∈ R
m×m
A

a diagonal matrix, which may be viewed as assigning the
weight Di,i to each vertex i. We define the partition function ZA,D by

ZA,D(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v) ·
∏

v∈V

Dξ(v),ξ(v),

for every graph G = (V,E). As a matter of fact, we need a further generalisation that takes
into account that vertices of even and odd degree behave differently when it comes to negative
edge weights. For a symmetric matrix A ∈ R

m×m
A

and two diagonal matrices D,O ∈ R
m×m
A

we let

ZA,D,O(G) =
∑

ξ:V→[m]

∏

{u,v}∈E

Aξ(u),ξ(v) ·
∏

v∈V
deg(v) is even

Dξ(v),ξ(v) ·
∏

v∈V
deg(v) is odd

Oξ(v),ξ(v),
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for every graph G = (V,E). We call ZA,D,O the parity-distinguishing partition function
(pdpf) defined by A,D,O. We show that the problem of computing ZA,D,O(G) is always
either polynomial-time solvable or #P-hard, and we call a triple (A,D,O) tractable or hard
accordingly. Obviously, if D = O = Im are identity matrices, then we have ZA = ZA,D =
ZA,D,O.

Returning to the proof of Theorem 1.2, we can show that, for every Hadamard matrix H,
either H is hard or there is a normalised Hadamard matrix H ′ and diagonal matrices D′, O′

such that computing ZH is polynomial time equivalent to computing ZH′,D′,O′ . Actually, we
may assume D′ to be an identity matrix and O′ to be a diagonal matrix with entries 0, 1
only. For the normalised matrix H ′ we have a canonical index mapping, and we can use this
to represent the matrices D′ and O′ over F2. Then we obtain a tractability criterion that
essentially says that (H ′,D′, O′) is tractable if the representation of H ′ is quadratic and that
of O′ is linear (remember that D′ is an identity matrix, which we do not have to worry about).

For the proof of the Dichotomy Theorem 1.1, we actually need an extension of Theorem 1.2
that states a dichotomy for parity-distinguishing partition functions ZA,D,O, where A is a
“bipartisation” of a Hadamard matrix (this notion will be defined later). The proof sketched
above can be generalised to give this extension. Then to prove the Dichotomy Theorem, we
first reduce the problem of computing ZA to the problem of computing ZC for the connected
components C of A. The next step is to eliminate duplicate rows and columns in the matrix,
which can be done at the price of introducing vertex weights. Using the classification theorem
for nonnegative matrices and some gadgetry, from there we get the desired reduction to
parity-distinguishing partition functions for bipartisations of Hadamard matrices.

Let us finally mention that our proof shows that the Dichotomy Theorem not only holds
for simple partition functions ZA, but also for vertex-weighted and parity-distinguishing par-
tition functions.

Preliminaries

Let A ∈ R
m×n
A

be an (m × n)-matrix. The entries of A are denoted by Ai,j . The ith
row of A is denoted by Ai,∗, and the jth column by A∗,j . By abs(A) we denote the matrix
obtained from A by taking the absolute value of each entry in A.

Let Im be the m × m identity matrix and let Im;Λ be the m × m matrix that is all zero
except that Ij,j = 1 for j ∈ Λ.

The Hadamard product C of two m × n matrices A and B, written C = A ◦ B, is the
m × n component-wise product in which Ci,j = Ai,jBi,j. −A denotes the Hadamard product
of A and the matrix in which every entry is −1.

We write 〈u, v〉 to denote the inner product (or dot product) of two vectors in R
n
A
.

Recall that the tensor product (or Kronecker product) of an r × s matrix B and an t × u

matrix C is an rt × su matrix B ⊗ C. For k ∈ [r], i ∈ [t], ℓ ∈ [s] and j ∈ [u], we have
(B ⊗C)(k−1)t+i,(ℓ−1)u+j = Bk,ℓCi,j. It is sometimes useful to think of the product in terms of
rs “blocks” or “tiles” of size t × u.

B ⊗ C =







B11C . . . B1sC
...

. . .
...

Br1C . . . BrsC







For index sets I ⊆ [m], J ⊆ [n], we let AI,J be the (|I|×|J |)-submatrix with entries Ai,j for
i ∈ I, j ∈ J . The matrix A is indecomposable if there are no index sets I ⊆ [m], J ⊆ [n] such
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that (I, J) 6= (∅, ∅), (I, J) 6= ([m], [n]) and Ai,j = 0 for all (i, j) ∈
(

([m]\I)×J
)

∪
(

I×([n]\J)
)

.
Note that, in particular, an indecomposable matrix has at least one nonzero entry. The
blocks of a matrix are the maximal indecomposable submatrices. For every symmetric matrix
A ∈ R

n×n we can define a graph G with vertex set [n] and edge set
{

{i, j}
∣

∣ Ai,j 6= 0
}

. We
call the matrix A bipartite if the graph G is bipartite. We call A connected if the graph G

is connected. The connected components of A are the maximal submatrices AC,C such that
G[C], the subgraph of G induced by C ⊆ [n], is a connected component. If the connected
component G[C] is not bipartite then AC,C is a block of A. If the connected component G[C]

is bipartite and contains an edge then AC,C has the form

(

0 B

BT 0

)

, where B is a block of

A. Furthermore, all blocks of A arise from connected components in this way.
For two Counting Problems f and g, we write f ≤ g if there is a polynomial time Turing

reduction from f to g. If f ≤ g and g ≤ f holds, we write f ≡ g. For a symmetric matrix
A and diagonal matrices D,O of the same size, EVAL(A,D,O) (EVAL(A,D), EVAL(A))
denotes the problem of computing ZA,D,O(G) (ZA,D(G), ZA(G), respectively) for an input
graph G (which need not be a simple graph - it may have loops and/or multi-edges).

2. Hadamard matrices

The main focus of this section is to prove Theorem 2.2 below which is a strengthened
version of Theorem 1.2. Suppose that H is an n × n Hadamard matrix and that ΛR and
ΛC are subsets of [n]. It will be useful to work with the bipartisation M,Λ of H, ΛR and
ΛC which we define as follows. Let m = 2n and let M be the m × m matrix defined by the
following equations for i, j ∈ [n]: Mi,j = 0, Mi,n+j = Hi,j, Mn+i,j = Hj,i, and Mn+i,n+j = 0.
The matrix M can be broken into four “tiles” as follows.

M =

(

0 H

HT 0

)

.

Let Λ = ΛR ∪ {n + j | j ∈ ΛC}. Note that the matrix Im;Λ can be decomposed naturally in
terms of the tiles In;ΛR and In;ΛC .

Im;Λ =

(

In;ΛR 0
0 In;ΛC

)

.

We identify a set of conditions on H, ΛR and ΛC that determine whether or not the prob-
lem EVAL(M, Im, Im;Λ) can be computed in polynomial time. We will see how this implies
Theorem 1.2.

The Group Condition. For an n × n matrix H and a row index l ∈ [n], let

G(H, l) := {Hi,∗ ◦ Hl,∗ | i ∈ [n]} ∪ {−Hi,∗ ◦ Hl,∗ | i ∈ [n]} .

The group condition for H is:

(GC) For all l ∈ [n], both G(H, l) = G(H, 1) and G(HT , l) = G(HT , 1).

The group condition gets its name from the fact that the condition implies that G(H, l)
is an Abelian group . As all elements of this group have order 2, the group condition gives us
some information about the order of such matrices:

Lemma 2.1. Let H be an n × n Hadamard matrix. If H satisfies (GC) then n = 2k for
some integer k.
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The Representability Conditions. We describe Hadamard matrices H satisfying (GC) by F2-
polynomials. By Lemma 2.1 these matrices have order n = 2k. We extend our notion of
“symmetric representation”: Let ρR : F

k
2 → [n] and ρC : F

k
2 → [n] be index mappings (i.e.

bijective mappings) and X = (X1, . . . ,Xk) and Y = (Y1, . . . , Yk). A polynomial h(X,Y ) over
F2 represents H with respect to ρR and ρC if for all x,y ∈ F

k
2 it holds that

h(x,y) = 1 ⇐⇒ HρR(x),ρC(y) = −1.

So a symmetric representation is just a representation with ρR = ρC . We say that the
set ΛR is linear with respect to ρR if there is a linear subvectorspace LR ⊆ F

k
2 a such that

ρR(LR) = ΛR. Note that, if ΛR is linear, then |ΛR| = 2l for some l ≤ k. We may therefore
define a coordinatisation of ΛR (with respect to ρR) as a linear map φR : F

l
2 → F

k
2 such that

φR(Fl
2) = LR, that is ΛR is just the image of the concatenated mapping ρR ◦ φR. We define

the notion of linearity of ΛC with respect to ρC and the coordinatisation of ΛC with respect

to ρC similarly. For a permutation π ∈ Sk we use the shorthand Xπ · Y :=
⊕k

i=1 Xπ(i) · Yi.
The following conditions stipulate the representability (R) of H by F2-polynomials, the

linearity (L) of the sets ΛR and ΛC , and the appropriate degree restrictions on the associated
polynomials (D).

(R) There are index mappings ρR : F
k
2 → [n] and ρC : F

k
2 → [n] and a permutation π ∈ Sk

such that (w.r.t. ρR and ρC) the matrix H is represented by a polynomial of the form

h(X,Y ) = Xπ · Y ⊕ gR(X) ⊕ gC(Y ). (2.1)

Moreover, if ΛR is non-empty, then ρR(0) ∈ ΛR. Similarly, if ΛC is non-empty, then
ρC(0) ∈ ΛC .

Finally, if H is symmetric and ΛR = ΛC , then gR = gC and ρR = ρC .

(L) ΛR and ΛC are linear with respect to ρR and ρC respectively.

(D) Either ΛR is empty or there is a coordinatisation φR of ΛR w.r.t ρR such that the
polynomial gR ◦ φR has degree at most 2. Similarly, either ΛC is empty or there is a
coordinatisation φC of ΛC w.r.t ρC such that the polynomial gC ◦ φC has degree at
most 2. Finally, if H is symmetric and ΛR = ΛC is nonempty then φR = φC .

Actually, it turns out that condition (D) is invariant under the choice of the coordinatisations
φR, φC . However, the conditions are not invariant under the choice of the representation
ρR, ρC , and this is a major source of technical problems.

Before we can apply the conditions (R), (L) and (D) we deal with one technical issue.
Let H be an n × n Hadamard matrix and let ΛR,ΛC ⊆ [n] be subsets of indices. Let M,Λ
be the bipartisation of H, ΛR and ΛC . We say that H is positive for ΛR and ΛC if there
is an entry Hi,j = +1 such that (1) i ∈ ΛR or ΛR = ∅, (2) j ∈ ΛC or ΛC = ∅, and (3)
If H is symmetric and ΛR = ΛC then i = j. Otherwise, note that −H is positive for ΛR

and ΛC . Since ZM,Im,Im;Λ
(G) = (−1)|E(G)|Z−M,Im,Im;Λ

(G), the problems EVAL(M, Im, Im;Λ)
and EVAL(−M, Im, Im;Λ) have equivalent complexity, so we lose no generality by restricting
attention to the positive case, which is helpful for a technical reason.

Theorem 2.2. Let H be an n×n Hadamard matrix and let ΛR,ΛC ⊆ [n] be subsets of indices.
Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. If H is positive for ΛR and ΛC

then EVAL(M, Im, Im;Λ) is polynomial-time computable if, and only if, H ΛR and ΛC satisfy
the group condition (GC) and conditions (R), (L), and (D). Otherwise EVAL(M, Im, Im;Λ)

is #P-hard. If H is not positive for ΛR and ΛC then EVAL(M, Im, Im;Λ) is polynomial-time
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computable if, and only if, −H ΛR and ΛC satisfy the group condition (GC) and condi-
tions (R), (L), and (D). Otherwise EVAL(M, Im, Im;Λ) is #P-hard. There is a polynomial-

time algorithm that takes input H, ΛR and ΛC and decides whether EVAL(M, Im, Im;Λ) is
polynomial-time computable or #P-hard.

The theorem is proved using a sequence of lemmas.

Lemma 2.3 (Group Condition Lemma). Let H be an n × n Hadamard matrix and let
ΛR,ΛC ⊆ [n] be subsets of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and
let m = 2n. If H does not satisfy (GC) then EVAL(M, Im, Im;Λ) is #P-hard. There is a
polynomial-time algorithm that takes determines whether H satisfies (GC).

Proof sketch. For any integer p and a symmetric non-negative matrix C [p], which depends
upon H, the proof uses gadgetry to transform an input to EVAL(C [p]) into an input to
EVAL(M, Im, Im;Λ). The fact that H does not satisfy (GC) is used to show that, as long as p

is sufficiently large with respect to M , then C [p] has a block of rank greater than one. By a
result of Bulatov and Grohe, EVAL(C [p]) is #P-hard, so EVAL(M, Im, Im;Λ) is #P-hard.

Lemma 2.4 (Polynomial Representation Lemma). Let H be an n×n Hadamard matrix and
ΛR,ΛC ⊆ [n] subsets of indices. Suppose that H satisfies (GC) and that H is positive for ΛR

and ΛC . Then the Representability Condition (R) is satisfied. There is a polynomial-time
algorithm that computes the representation.

Proof sketch. The representation is constructed inductively. First, permutations are used to
transform H into a normalised matrix Ĥ, that is, a Hadamard matrix Ĥ whose first row
and column consist entirely of +1s, which still satisfies (GC). We then show that there is

a permutation of Ĥ which can be expressed as the tensor product of a simple Hadamard
matrix (either H2 or H4) and a smaller normalised symmetric Hadamard matrix H ′. By
induction, we construct a representation for H ′ and use this to construct a representation
for the normalised matrix Ĥ of the form Xπ · Y for a permutation π ∈ Sk. We use this to
construct a representation for H.

Lemma 2.5 (Linearity Lemma). Let H be an n × n Hadamard matrix and ΛR,ΛC ⊆ [n]
subsets of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. Suppose
that (GC) and (R) are satisfied. Then the problem EVAL(M, Im, Im;Λ) is #P-hard unless the
Linearity condition (L) holds. There is a polynomial-time algorithm that determines whether
(L) holds.

Proof sketch. For a symmetric non-negative matrix C, which depends upon H, the proof uses
gadgetry to transform an input to EVAL(C, Im, Im;Λ) to an input of EVAL(M, Im, Im;Λ). By

(R), there are bijective index mappings ρR : F
k
2 → [n] and ρC : F

k
2 → [n] and a permutation

π ∈ Sk such that (w.r.t. ρR and ρC) the matrix H is represented by a polynomial of the
appropriate form. Let τR be the inverse of ρR and τC be the inverse of ρC . Let LC = τC(ΛC)
and LR = τR(ΛR). We show that either EVAL(C, Im, Im;Λ) is #P-hard or (L) is satisfied. In
particular, the assumption that EVAL(C, Im, Im;Λ) is not #P-hard means that its blocks all

have rank 1 by the result of Bulatov and Grohe. We use this fact to show that LR and LC

are linear subspaces of F
k
2. To show that LR is a linear space of F

k
2, we use LR to construct

an appropriate linear subspace and compare Fourier coefficients to see that it is in fact LR

itself.



PARTITION FUNCTIONS WITH MIXED SIGNS 501

Lemma 2.6 (Degree Lemma). Let H be an n×n Hadamard matrix and ΛR,ΛC ⊆ [n] subsets
of indices. Let M,Λ be the bipartisation of H, ΛR and ΛC and let m = 2n. Suppose that
(GC),(R) and (L) are satisfied. Then EVAL(M, Im, Im;Λ) is #P-hard unless the Degree
Condition (D) holds. There is a polynomial-time algorithm that determines whether (D)
holds.

Proof sketch. For any (even) integer p and a symmetric non-negative matrix C [p], which
depends upon H, the proof uses gadgetry to transform an input to EVAL(C [p]) into an input
to EVAL(M, Im, Im;Λ). Using the representation of H, a coordinatisation φR with respect to

ΛR, and a coordinatisation φC with respect to ΛC , some of the entries C
[p]
a,b of the matrix C [p]

may be expressed as sums, over elements in F
ℓ
2, for some ℓ, of appropriate powers of −1. We

study properties of polynomials g(X1, . . . ,Xk) ∈ F2[X1, . . . ,Xk], discovering that the number
of roots of a certain polynomial gα,β,γ(X1, . . . ,Xk), which is derived from g(X1, . . . ,Xk),
depends upon the degree of g. From this we can show that if (D) does not hold then there

is an even p such that EVAL(C [p]) is #P-hard.

Proof of Theorem 2.2. By the equivalence of the problems EVAL(M, Im, Im;Λ) and

EVAL(−M, Im, Im;Λ) we can assume that H is positive for ΛR and ΛC . The hardness part
follows directly from the Lemmas above. We shall give the proof for the tractability part.
Given H, ΛR and ΛC satisfying (GC), (R), (L) and (D), we shall show how to compute
ZM,Im,Im;Λ

(G) for an input graph G in polynomial time.
Note first that ZM,Im,Im;Λ

(G) = 0 unless G is bipartite. If G has connected components
G1, . . . Gc, then

ZM,Im,Im;Λ
(G) =

c
∏

i=1

ZM,Im,Im;Λ
(Gi).

Therefore, it suffices to give the proof for connected bipartite graphs. Let G = (V,E) be such
a graph with vertex bipartition U ∪̇W = V . Let Vo ⊆ V be the set of odd-degree vertices in
G and let Uo = W ∩ Vo and Wo = W ∩ Vo be the corresponding subsets of U and W . Let
Ue = U \ Uo and We = W \ Wo. We have

ZM,Im,Im;Λ
(G) =

∑

ξ:V→[m]

∏

{u,w}∈E

Mξ(u),ξ(w)

∏

v∈Vo

(Im;Λ)ξ(v),ξ(v) =
∑

ξ:V→[m]
ξ(Vo)⊆Λ

∏

{u,w}∈E

Mξ(u),ξ(w).

As G is bipartite and connected this sum splits into ZM,Im,Im;Λ
(G) = Z→ + Z← for values

Z→ =
∑

ξ:U→[n]
ξ(Uo)⊆ΛR

∑

ζ:W→[n]
ζ(Wo)⊆ΛC

∏

{u,w}∈E
u∈U

Hξ(u),ζ(w) and Z← =
∑

ξ:U→[n]
ξ(Uo)⊆ΛC

∑

ζ:W→[n]
ζ(Wo)⊆ΛR

∏

{u,w}∈E
u∈U

Hζ(w),ξ(u)

We will show how to compute Z→. The computation of the value Z← is similar.
Fix configurations ξ : U → [n] and ζ : W → [n] and let ρR, ρC be the index mappings and

h the F2-polynomial representing H as given in condition (R). Let τR be the inverse of ρR

and let τC be the inverse of ρC . Let LR = τR(ΛR) and LC = τC(ΛC). Then ξ and ζ induce
a configuration ς : V → F

k
2 defined by

ς(v) :=

{

τR(ξ(v)) , if v ∈ U

τC(ζ(v)) , if v ∈ W
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which implies, for all u ∈ U,w ∈ W that h(ς(u), ς(w)) = 1 iff Hξ(u),ζ(w) = −1. Let φR and φC

be coordinatisations of ΛR and ΛC w.r.t. ρR and ρC satisfying (L) and (D). We can simplify

Z→ =
∑

ξ:U→[n]
ξ(Uo)⊆ΛR

∑

ζ:W→[n]
ζ(Wo)⊆ΛC

∏

{u,w}∈E
u∈U

(−1)h(τR(ξ(u)),τC(ζ(w)))

=
∑

ς:V→Fk
2

ς(Uo)⊆LR

ς(Wo)⊆LC

(−1)
L

{u,w}∈E:u∈U h(ς(u),ς(w))

Define, for a ∈ F2, sets

sa :=

∣

∣

∣

∣

∣

∣

∣

∣















ς : V → F
k
2 | ς(Uo) ⊆ LR, ς(Wo) ⊆ LC ,

⊕

{u,w}∈E
u∈U

h(ς(u), ς(w)) = a















∣

∣

∣

∣

∣

∣

∣

∣

. (2.2)

Then Z→ = s0− s1. Therefore, it remains to show how to compute the values sa. Define,
for each v ∈ V , a tuple Xv = (Xv

1 , . . . ,Xv
k ) and let hG be the F2-polynomial

hG :=
⊕

{u,w}∈E
u∈U

h(Xu,Xw) =
⊕

{u,w}∈E
u∈U

(Xu)π · Xw ⊕
⊕

u∈Uo

gR(Xu) ⊕
⊕

w∈Wo

gC(Xw). (2.3)

Here the second equality follows from the definition of the polynomial h given in condition (R)
and the fact that the terms gR(Xu) and gC(Xw) in the definition of h appear exactly deg(u)
and deg(w) many times in hG. Therefore, these terms cancel for all even degree vertices.

Let var(hG) denote the set of variables in hG and for mappings χ : var(hG) → F2 we use
the expression χ(Xv) := (χ(Xv

1 ), . . . , χ(Xv
k )) as a shorthand and define the F2-sum hG(χ) :=

⊕

{u,w}∈E:u∈U h(χ(Xu), χ(Xw)). We find that sa can be expressed by

sa =

∣

∣

∣

∣

{

χ : var(hG) → F2 |
χ(Xu) ∈ LR for all u ∈ Uo,

χ(Xw) ∈ LC for all w ∈ Wo,
h(χ) = a)

}∣

∣

∣

∣

(2.4)

By equation (2.4) we are interested only in those assignments χ of the variables of hG

which satisfy χ(Xu) ∈ LR and χ(Xw) ∈ LC for all u ∈ Uo and w ∈ Wo. With |ΛR| = 2ℓR

and

|ΛC | = 2ℓC

for some appropriate ℓR, ℓC , we introduce variable vectors Y u = (Y u
1 , . . . , Y u

ℓR) and
Zw = (Zw

1 , . . . , Zw
ℓC ) for all u ∈ Uo and w ∈ Wo. If u ∈ Uo or w ∈ Wo then we can express the

term (Xu)π · Xw in hG in terms of these new variables. In particular, let

h′′G =
⊕

{u,w}∈E
u∈Uo,w∈Wo

(φR(Y u))π · φC(Zw) ⊕
⊕

{u,w}∈E
u∈Ue,w∈We

(Xu)π · Xw

⊕
⊕

{u,w}∈E
u∈Ue,w∈Wo

(Xu)π · φC(Zw) ⊕
⊕

{u,w}∈E
u∈Uo,w∈We

(φR(Y u))π · Xw.

Let
h′G = h′′G ⊕

⊕

u∈Uo

gR(φR(Y u)) ⊕
⊕

w∈Wo

gC(φC(Zw)) (2.5)

We therefore have

sa =
∣

∣

{

χ : var(h′G) → F2 | h′G(χ) = a)
}∣

∣ . (2.6)
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By condition (D), the polynomials gR ◦ φR and gC ◦ φC are of degree at most 2 and
therefore h′G is a polynomial of degree at most 2. Furthermore, we have expressed sa as the
number of solutions to a polynomial equation over F2. Therefore, the proof now follows by
the following well-known fact.

Fact 2.7. The number of solutions to polynomial equations of degree at most 2 over F2 can
be computed in polynomial time.

This is a direct consequence of Theorems 6.30 and 6.32 in [15] (see also [9]).

3. The General Case

In this section we will prove Theorem 1.1. Before we can give the proof some further
results have to be derived, which then enable us to extend Theorems 1.2 and 2.2. It will be
convenient to focus on connected components. This is expressed by the following Lemma.

Lemma 3.1. Let A be a symmetric matrix with entries in RA and let A1, . . . , Ac denote its
components. Then the following holds

(1) If EVAL(Ai) is #P-hard for some i ∈ [c] then EVAL(A) is #P-hard.
(2) If EVAL(Ai) is PTIME computable for all i ∈ [c] then EVAL(A) is PTIME com-

putable.

Recall that for each connected symmetric matrix A there is a block B such that either

A = B or, up to permutation of the rows and columns, A =

(

0 B

BT 0

)

. We call B the

block underlying A. For such connected A we furthermore see that the evaluation problem is
either #P-hard or we can reduce it to the evaluation problem on bipartisations of Hadamard
matrices.

Lemma 3.2. Suppose that A is a symmetric connected matrix.
Then either EVAL(A) is #P-hard or the following holds.

(1) If A is not bipartite there is a symmetric r×r Hadamard matrix H and a set ΛR ⊆ [r]
such that

EVAL(A) ≡ EVAL(H, Ir, Ir;ΛR).

(2) If A is bipartite then there is an r × r Hadamard matrix H, sets ΛR,ΛC ⊆ [r] and a
bipartisation M,Λ of H,ΛR and ΛC such that

EVAL(A) ≡ EVAL(M, I2r, I2r;Λ).

Furthermore it can be decided in time polynomial in the size of A which of the three
alternatives (#P-hardness, (1), or (2)) holds.

We are now able to prove the main Theorem.

Proof of Theorem 1.1. Given a symmetric matrix A ∈ R
m×m
A

. By Lemma 3.1 we may assume
that the matrix A is connected. By Lemma 3.2, Theorem 2.2 the problem EVAL(A) is either
polynomial time computable or #P-hard. The existence of a polynomial time algorithm for
deciding which of the two possibilities holds, given a matrix A, follows directly by these
results.
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