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Abstract 
 

In this paper, we develop an -matrix-based fast direct integral equation solver 

that has a significantly reduced computational complexity, with prescribed 
accuracy satisfied, to solve large-scale electrodynamic problems. In light of the 
fact that the cost of an -matrix-based computation of high-frequency problems is 

not only determined by the block rank that increases with electric size, but also 
determined by the -matrix partition, we propose a new parameter, average 

partition rank kave, to derive the storage units and operation counts of the -matrix 

based computation of electrodynamic problems. Different from block rank, the 
partition rank kave contains the information of the -matrix partition. We show that 

the computational cost of an -matrix-based computation of electrodynamic 

problems can be significantly reduced without sacrificing accuracy, by minimizing 
the rank of each admissible block based on accuracy requirements; and by 
optimizing the -partition to reduce the number of admissible blocks at each tree 

level for a prescribed accuracy and for each frequency point. To minimize the rank 
for a given accuracy, we develop an efficient matrix algebra based method to 
determine the minimal rank for each admissible block. The algebraic method has a 
linear complexity, and hence the computational overhead is negligible. To 
minimize the number of admissible blocks at each tree level for a given accuracy, 
we develop a new -partition method that is frequency dependent, and also 

controlled by accuracy requirements. With the proposed cost reduction methods, 
we develop a fast LU factorization for directly solving the dense system matrix 
resulting from an IE-based analysis of large-scale electrodynamic problems. The 
proposed solver successfully factorizes dense matrices that involve more than 1 
million unknowns associated with electrodynamic problems of 96 wavelengths in 
fast CPU time, modest memory consumption, and with the prescribed accuracy 
satisfied. As an algebraic method, the underlying fast technique is kernel 
independent.  
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A Complexity-Reduced H-Matrix Based Direct
Integral Equation Solver with Prescribed Accuracy

for Large-Scale Electrodynamic Analysis
Wenwen Chai, and Dan Jiao, Senior Member, IEEE

Abstract—In this paper, we develop an H-matrix-based fast
direct integral equation solver that has a significantly reduced
computational complexity, with prescribed accuracy satisfied, to
solve large-scale electrodynamic problems. In light of the fact that
the cost of an H-matrix-based computation of high-frequency
problems is not only determined by the block rank that increases
with electric size, but also determined by the H-matrix partition,
we propose a new parameter, average partition rank kave, to
derive the storage units and operation counts of the H-matrix-
based computation of electrodynamic problems. Different from
block rank, the partition rank kave contains the information of
the H-matrix partition. We show that the computational cost
of an H-matrix-based computation of electrodynamic problems
can be significantly reduced without sacrificing accuracy, by
minimizing the rank of each admissible block based on accuracy
requirements; and by optimizing the H-partition to reduce the
number of admissible blocks at each tree level for a prescribed
accuracy and for each frequency point. To minimize the rank for
a given accuracy, we develop an efficient matrix algebra based
method to determine the minimal rank for each admissible block.
The algebraic method has a linear complexity, and hence the
computational overhead is negligible. To minimize the number
of admissible blocks at each tree level for a given accuracy, we
develop a new H-partition method that is frequency dependent,
and also controlled by accuracy requirements. With the proposed
cost reduction methods, we develop a fast LU factorization
for directly solving the dense system matrix resulting from an
IE-based analysis of large-scale electrodynamic problems. The
proposed solver successfully factorizes dense matrices that involve
more than 1 million unknowns associated with electrodynamic
problems of 96 wavelengths in fast CPU time, modest memory
consumption, and with the prescribed accuracy satisfied. As
an algebraic method, the underlying fast technique is kernel
independent.

Index Terms—Integral-equation-based methods, electromag-
netic analysis, direct solution, H matrix, large-scale analysis

I. INTRODUCTION

THe Integral equation (IE) based computational electro-
magnetic methods generally lead to dense systems of

linear equations. When a direct method is used, the operation
count is proportional to O(N 3) and the memory requirement is
proportional to O(N 2), with N being the matrix size. When an
iterative solver is used, the memory requirement remains the
same, and the computing time is proportional to O(N itN

2),
where Nit denotes the total number of iterations required to

This work was supported by grants from NSF under award No. 0747578
and award No. 0702567. The authors are with the School of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN 47907 USA.

reach convergence. In recent years, fast solvers such as fast
multipole based methods [1]–[3], fast low-rank compression
methods [4]–[7], and FFT-based methods [8], [9] have been
developed that dramatically reduce the memory requirement
of the iterative IE solvers to O(N), and the CPU time to
O(NitN log N) for electrodynamic problems. This represents
an impressive improvement as compared with conventional
O(N3) or O(NitN

2) techniques.
Fast direct solvers have also been developed for electro-

dynamic problems. Most recent work can be seen in [10],
[11]. LU factorization of O(N 2) time complexity and O(N 1.5)
memory complexity has been reported. Compared to iterative
solvers, direct solvers have advantages when the number of
iterations is large or the number of right hand sides is large.
For example, if there exist N right hand sides, each of which
costs O(NitN log N) operations, the total cost of the iterative
solver will be O(NitN

2 log N), which is expensive.
Recently, the H- and H2-matrix based mathematical frame-

work has been introduced and further developed to reduce
the computational complexity of iterative IE-based solvers
for electrodynamic problems [12], [13]. It is shown that
given a wide range of electric sizes which lead to a wide
range of N , the dense system of O(N 2) parameters can
be compactly stored in O(N) units, and the dense matrix-
vector multiplication can be performed in O(N) operations.
Moreover, the same order of accuracy can be kept across this
range.

In this work, under the mathematical framework of the
H matrix, we develop a fast direct IE solver that has a
significantly reduced computational complexity, with the pre-
scribed accuracy satisfied, to solve large-scale electrodynamic
problems. The H (hierarchical)-matrix is a general mathemat-
ical framework [14]–[17], which enables a highly compact
representation and efficient numerical computation of dense
matrices. To be specific, if matrix C is an m×n off-diagonal
block in an H matrix that describes a far-field interaction
specified by a so-called admissibility condition [17], it can
be written as C = ABT , where A is of dimension m × k,
B is of dimension n × k, and k denotes the rank of C with
k < m and k < n. Storage requirements and matrix-vector
multiplications using H-matrices have been shown to be of
complexity O(N log N). From a mathematical point of view,
existing low-rank compression based IE methods developed
for electromagnetic analysis can be viewed in the framework
of H matrices, although their technical details could be very
different and many of them predated the literature of H matri-
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ces. For example, the direct integral equation solver reported
in [10] can be viewed as an H-based direct integral equation
solver, although H-based fast arithmetics was not employed.
It successfully solves electrically large integral equations for
problem sizes to 1 M unknowns. It is also worth mentioning
that the matrices underlying generic Fast Multipole algorithms
are H2-matrices, as noted in [19].

In the literature of H matrices, it is shown that matrix-
matrix multiplications and matrix inversions using H-matrices
are of complexity O(N log2 N) [14]–[17], which is very
efficient. However, the actual complexity of an H-matrix based
method is associated with the rank k of the off-diagonal
blocks. For static problems, a constant k can be used for
all problem sizes without sacrificing accuracy, and hence
ignored in complexity analysis. For electrodynamic problems,
however, the k required to achieve a given accuracy typically
increases with the electric size [12], [21]. Since the rank k
becomes a variable in electrodynamic analysis, the existing
complexity analysis developed for H-matrix based arithmetics
[17], which is based on a constant rank, becomes not proper
for analyzing electrodynamic problems. To be specific, if
one uses the maximum rank of all the admissible blocks to
bound the complexity, the complexity is overestimated. More
importantly, the complexity of an H-matrix based computation
of electrodynamic problems is highly dependent on the H-
matrix partition, i.e. the number of admissible blocks and the
row/column dimension of each block etc. This is an impor-
tant factor that received little attention in previous research.
Existing H-matrix partition is based on a geometry based
admissibility condition. The resultant partition is by no means
optimal especially for electrodynamic problems.

In this work, we develop new bounds of the computational
cost for the H-matrix-based computation of electrodynamic
problems. In light of the fact that the complexity of an H-
matrix based computation of electrodynamic problems is deter-
mined by both block rank (the rank of each admissible block)
and H-matrix partition, we propose a new parameter, average
partition rank kave, to bound the storage units and operation
counts of an H-matrix based computation. Different from
block rank, the partition rank kave contains the information
of the H-matrix partition.

With the new bounds of the computational cost derived
for electrodynamic problems, it becomes clear how to reduce
the complexity of an H-matrix based computation for solving
high-frequency problems. We propose two methods. One is
to minimize the rank of each admissible block based on
accuracy requirements. Although the block rank is observed
to be proportional to the electric size of the block diameter,
the actual number should be determined and minimized based
on accuracy requirements. We determine the minimal rank for
each admissible block by an efficient matrix algebra based
method. The algebraic method has a linear complexity, and
hence the computational overhead is negligible. The other
method for reducing the computational cost is to optimize
the H-partition to reduce the number of admissible blocks
at each tree level based on accuracy requirements for each
frequency point. We show that the admissibility condition
used in the conventional H-partition is empirical instead of

theoretical, and hence not optimal for a given accuracy and a
given frequency. We hence develop a new H-partition method
that is frequency dependent, and also controlled by accuracy
requirements. With the proposed new partition, the number of
admissible blocks at each tree level is significantly reduced
compared to that generated by the admissibility condition
based, i.e. geometry based partition. The methods we devel-
oped for minimizing the rank and optimizing the H-partition
not only can be used in the proposed solver, but also can be
used in other fast integral equation solvers to speed up their
computation.

Moreover, we developed an efficient LU-factorization
for directly solving the dense system matrix resulting
from an IE-based analysis of large-scale electrodynamic
problems. The operation counts of the proposed direct
solver are O((kaveCsp)2N log2 N) in LU factorization,
O((kaveCsp)N log N) in LU solution, and the storage re-
quirement is O(kaveCspN log N), all of which were derived
theoretically and also verified numerically. The Csp is the
maximal number of blocks that can be formed by a cluster in
a block cluster tree. Although both kave and Csp depend on
N in electrodynamic analysis, that is why we include these
two parameters in the computational cost, they are reduced
to small numbers compared to N by the proposed methods.
We also give a detailed implementation of the H-based LU
factorization, which is not reported elsewhere.

The remainder of this paper is organized as follows. In Sec-
tion II, we give the background of the H-matrix based analysis
of electrodynamic problems. In Section III, we propose the
new bounds of the computational cost for the H-matrix based
computation of electrodynamic problems. In Section IV, we
propose methods to reduce the complexity of the H-matrix
based computation. In Section V, we give a numerical proof
on the existence of an H-matrix based representation of the
inverse and LU factors of an IE based system matrix for an
electrodynamic problem. In Section VI, we give a number
of pseudo-codes to show a detailed implementation of the
LU factorization using H matrices, which is not reported
in the mathematical literature. In Section VII, we analyze
computational cost. In Section VIII, we present numerical
results to demonstrate the accuracy and efficiency of the
proposed direct IE solver. In Section IX, we summarize our
findings.

II. BACKGROUND

The H-matrix based methods are kernel independent. In
the following, we use an electric-field integral equation as
an example to illustrate the basic concept of H-matrix based
methods.

A. Electric Field Integral Equation

We consider the electric-field integral equation (EFIE) [1],
[22]

Ei|tan =
∫∫

S

[jωμJS(r)g(r, r′)]tan dS′

−
∫∫

S

[
j

ωε
(∇′ · JS(r′))∇′g(r, r′)

]
tan

dS′, (1)
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in which Green’s function g(r, r′) = e−jκ|r−r′ |
|r−r′| , JS is the

induced surface current density, ω is angular frequency, κ is
wave number, and subscript tan denotes tangential component.

By expanding the unknown JS using the RWG basis
functions [22], a Method of Moment based solution of (1)
results in the following linear system of equations

GI = V, (2)

where

Gmn =
∫∫

Sm

dS

∫∫
Sn

dS′ [jωμJm(r) · Jn(r′)

− j

ωε
(∇ · Jm(r)) (∇′ · Jn(r′))

]
g(r, r′), (3)

and

Vm =
∫∫

Sm

Jm(r) ·EidS. (4)

The conventional way to solve (2) could be very expensive,
since the entries of G are all nonzero. In the following section,
we introduce the H matrix as a data-sparse representation
of G, from which a significant reduction in computational
complexity can be achieved.

B. Definition of the H Matrix

An H matrix is generally associated with an admissibility
condition [17]. To define an admissibility condition, we de-
note the whole index set containing the indices of the basis
functions in the computational domain by I = {1, 2, · · · , N},
where N is the total number of unknowns. Considering two
subsets t and s of the I, the admissibility condition is defined
as

(t, s) are admissible:=

⎧⎪⎨
⎪⎩

True if min{diam(Qt), diam(Qs)}
≤ ηdist(Qt, Qs);

False otherwise,
(5)

where, as shown in Fig. 1, Qt,s is the minimal subset of the
space containing the supports of all basis functions belonging
to t or s, diam(·) is the Euclidean diameter of a set, dist(·) is
the Euclidean distance of two sets, and η is a positive param-
eter that can be used to control the admissibility condition. If
subsets t and s do not satisfy the admissibility condition, they
are called inadmissible. The admissibility condition shown in
(5) is rather empirical than theoretical. It is controlled by an
empirical parameter η, instead of a prescribed accuracy. In
this work, we will develop a new method to partition a matrix
into admissible and inadmissible blocks, which is controlled
by accuracy requirements.

In an H-matrix representation, an inadmissible block keeps
its original full-matrix representation; while an admissible
block has a factorized low-rank form. To be specific, an
admissible block Gt,s that is formed by subsets t and s can
be written as a factorized form

Gt,s = ABT , (6)

where Gt,s ∈ C
m×n, A ∈ C

m×k, B ∈ C
n×k, and k ∈ N is

the rank of Gt,s. Here, as long as k is less than the minimum

t

s

diam(Qt)

dist(Qt ,Qs)

diam(Qs)

Qt

Qs

Fig. 1. An illustration of the admissibility condition.

of m and n, Gt,s is low rank. The k is not required to be
O(1).

If all the blocks Gt,s formed by the admissible (t, s) in G
can be represented by a factorized low-rank form shown in
(6), G has an H-matrix representation ( [17], p. 18). Clearly,
to store admissible Gt,s, we only need to store A and B, the
cost of which is O(k(m + n)) in contrast with the original
storage that is O(mn). Similar cost reduction in matrix-vector
and matrix-matrix multiplication can be achieved. Therefore, if
we are able to represent the dense matrix resulting from an IE
based analysis by an H matrix, we can reduce the complexity
of IE-based solutions significantly. The detail of the H-matrix
representation of an IE-based system matrix is given in next
subsection.

C. H-Matrix Representation of the IE-Based System Matrix

The essential idea of an H-matrix representation is to
represent the off-diagonal matrix block that satisfies the ad-
missibility condition by a rank-k matrix shown in (6).

There are three representative schemes that can be used
to generate a rank-k matrix of an IE-based dense matrix
block: interpolation, Taylor expansion, and adaptive cross
approximation (ACA). In [12], [13], an interpolation scheme is
used to obtain an H-representation without any compression
cost for electrodynamic kernels. The error bound of the in-
terpolation based H-representation was derived. It was shown
that exponential convergence with respect to the number of
interpolation points can be achieved irrespective of the electric
size. Taylor expansion can also be used to locally replace the
kernel function by degenerate approximations, as shown in
( [17], p. 10). Its accuracy is controlled by the expansion
order. Neither interpolation nor Taylor expansion involves rank
compression cost. Another approach is to directly compute
a low rank approximation of the original matrix up to a
prescribed accuracy. The representative method is ACA [17],
[20], which is purely algebraic. In [10], [21], ACA was used
to solve electromagnetic problems. For each matrix block, the
cost of ACA is linear. A simple flow to obtain the H-matrix
representation of a given matrix block is shown in Fig. 2.
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Input t and s

Interpolation 

Taylor expansion 

ACA  

Others 

,t sG AB

Fig. 2. A flow to obtain a rank-k matrix representation of a given dense
matrix block.

D. H-Matrix Partition

To use an H-matrix representation, we have to partition a
dense matrix into admissible blocks and inadmissible blocks.
An admissible block is represented by a rank-k matrix shown
in (6), and an inadmissible block is represented by a full-
matrix form.

In [12], [13], we show how to build a cluster tree and a block
cluster tree to efficiently carry out the H-matrix partition for a
dense matrix resulting from the IE-based analysis of electro-
dynamic problems. We denote the cluster tree constructed for
the full index set I by TI . We then find a disjoint partition of
the index set and use this partition to create children clusters.
We continue this procedure until the index number in each
cluster is less than the leafsize which is a parameter to control
the depth of the tree. A block cluster tree, as shown in Fig.
3(a), between cluster trees TI and TI is constructed based on
a given admissibility condition recursively. In Fig. 3(a), each
link in an upper level represents an admissible block shown by
a shaded block in Fig. 3(b). The number of links is bounded
by sparsity constant Csp, which is the maximum number of
blocks that can be formed by a cluster in a block cluster tree
( [17], p. 125).

The admissible block cluster tree results in a matrix par-
tition as shown in Fig. 3(b). The shaded matrix blocks are
admissible blocks; the un-shaded ones are inadmissible blocks.
The admissible blocks and inadmissible blocks together form
a complete H partition. In Fig. 3(b), we also label the
levels present in an H partition, which is shown by dashed
rectangular boxes.

III. PROPOSED BOUNDS OF STORAGE UNITS AND
OPERATION COUNTS FOR H-MATRIX BASED

COMPUTATION OF ELECTRODYNAMIC PROBLEMS

The complexity of H-matrix based arithmetics has been
conducted for kernel functions that do not change with fre-
quencies [17]. Storage requirements and matrix-vector multi-
plications using H-matrices have been shown to be of com-
plexity O(N log N). Moreover, the inverse of an H matrix can
be obtained in O(N log2 N) complexity. In this section, we
show that for electrodynamic problems, the complexity bounds
of H-matrix based computations need to be re-derived. In light
of the fact that the cost of an H-matrix-based computation of
high-frequency problems is not only determined by the block
rank that increases with electric size, but also determined by
the H-partition, we propose a new parameter, average partition

rank kave, to bound the computational cost of the H-matrix-
based computation of electrodynamic problems. With the new
bounds, it becomes clear how to reduce the complexity of
an H-matrix based computation for solving high-frequency
problems.

A. Proposed definition of average partition rank, kave, for the
H-based computation of electrodynamic problems

For frequency independent kernels, a constant rank k across
all the admissible blocks is sufficient to generate a constant
order of accuracy for the H-based computation of the dense
system matrix. This can be theoretically verified from the
error bound for an H-matrix based representation of a static
kernel [17]. For frequency dependent kernels, however, a
constant k, in general, cannot guarantee a constant order of
accuracy across a wide range of electric sizes. This can be
seen from the error bound of an H-matrix-based representation
of electrodynamic problems [12], [13]. This can also be seen
from ACA-based rank revealing presented in [21]. As a result,
the complexity analysis of H-based computations given in the
mathematical literature, which is based on a constant rank, is
not proper for analyzing electrodynamic problems.

Take the storage complexity of an H-matrix as an example,
which is also the complexity of an H-matrix based matrix-
vector multiplication. In an H matrix, since each admissible
block Gmi×ni has a factorized form Ami×kiBT

ni×ki
with rank

ki, the storage is reduced from mi × ni units to ki(mi + ni)
units. By summing up the storage of all the admissible blocks,
we obtain

Storage =
nk∑
i=1

ki(mi + ni), (7)

where nk is the total number of admissible blocks. The above
can be evaluated as

Storage =
p∑

l=0

nkl∑
i=1

ki(mi + ni), (8)

where l is tree level, p is tree depth, and nkl is the number of
admissible blocks at level l. Clearly, as can be seen from (7), if
we use the maximal k among all the admissible blocks, kmax,
to bound the computational complexity, we will overestimate
the complexity because many admissible blocks have a rank
much smaller than kmax. To give an example, in Fig. 4, we
plot the storage of the blocks that have the largest rank kmax

in comparison with that of the rest of the blocks that have
a rank smaller than kmax, for a cone sphere across a wide
range of electric sizes. The electric size ranges from κa = 2
to κa = 600, where κ is wave number and a is the largest
physical dimension of the cone sphere. It is clear that the
total storage is not dominated by the cost of storing rank-
kmax blocks. In fact, the storage of the rank-kmax blocks is
much less than that of the rest of the blocks. This is because
although kmax is large, the number of admissible blocks that
have rank kmax is also the smallest.

Furthermore, as can be seen from (8), in addition to the
block rank ki, the number of admissible blocks at each tree
level nkl also plays an important role in determining the
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Fig. 3. (a) A block Cluster Tree. (b) An H-matrix partition.
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Fig. 4. Comparison between the storage of the rank-kmax blocks and that
of the other blocks for a cone-sphere from κa = 2 to κa = 600.

computational complexity. If nkl is proportional to 2l, then
the advantage of the H-based computation of high-frequency
problems may not be significant since the block rank k i

is observed to be proportional to the electric size of the
block diameter. However, in reality, nk l is not proportional
to 2l. This will become clear in the following subsections. In
addition, there exists a big space to optimize the H-parition
to reduce nkl without sacrificing accuracy.

From the aforementioned analysis, the complexity of an H-
based computation of high-frequency problems is determined
by the block rank ki as well as the number of admissible
blocks at each tree level and the row/column dimension of
each admissible block, i.e. H-partition. In light of this fact, we
propose a new parameter, average partition rank kave, to derive
the computational cost of an H-based computation of high-
frequency problems. We define average partition rank kave as
the following:

kave =
∑nk

i=1 ki(mi + ni)∑nk
i=1 (mi + ni)

, (9)

where nk is the total number of admissible blocks, ki is the
rank of the i-th admissible block, mi and ni are the number
of rows and columns of the admissible block. From the above

definition, it is clear that kave is not only related to the block
rank ki, but also related to the H-partition. Different partitions
can result in different kave. That is why we name kave as
average partition rank to distinguish it from the block rank
that does not contain any information about partition.

B. Proposed bounds of storage units and operation counts for
the H-based computation of electrodynamic problems

By using (9), the storage complexity (7) can be written as

Storage = kave

nk∑
i=1

(mi + ni), (10)

The summation of the mi and ni over all the admissible blocks
can be evaluated as the following:

nk∑
i=1

(mi + ni) ≤
p∑

l=0

nkl∑
i=1

(
N

2l
× 2) =

p∑
l=0

nkl(
N

2l
× 2), (11)

in which we use the fact that the row/column dimension of a
block at level l is N

2l , where l = 0 represents the root level.
The above should be evaluated based on actual nk l, which is
problem dependent and partition dependent. Here, we use the
fact that nkl is less than 2lCsp to bound (11), substituting (11)
into (10), we thus obtain

Storage = O(kaveCspN log N). (12)

Therefore, we can use the average partition rank defined in
(9) to bound the storage units.

Similarly, we can use an average square partition rank
defined below to bound the operation counts of the H-based
computation.

(k2)ave =
∑nk

i=1 k2
i (mi + ni)∑nk

i=1 (mi + ni)
. (13)

Take the matrix-matrix multiplication as an example, the cost
for each admissible block involved in the multiplication is
Cspki

2(mi + ni) ( [17], pp. 127-130). By summing up the
cost of all the admissible blocks across all the tree levels, we
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Fig. 5. Comparison of two average partition rank for a 3D PEC plate with
electric size from 2 to 30 wavelengths.

obtain

Operation counts = Csp

p∑
l=0

nk∑
i=1

ki
2(mi + ni)

≤ Csp

p∑
l=0

(k2)ave

nk∑
i=1

(mi + ni) (From (13))

≤ Csp(k2)ave

p∑
l=0

nk∑
i=1

(mi + ni)

≤ Csp
2(k2)aveO(N log2 N), (14)

where p is the tree depth that is proportional to log N . From
(13) and (9), it can be seen that the (k2)ave is an O(k2

ave)
quantity. As an example, in Fig. 5, we plot kave and

√
(k2)ave

for a 3D conducting plate from 2 to 30 wavelengths. It can
be seen that these two average rank follow each other closely.
Therefore, we can also use kave to bound the CPU time cost
of an H-based computation of electrodynamic problems. We
thus obtain

Operation counts ≤ O((kaveCsp)2N log2 N). (15)

It is worth mentioning that the bounds derived above for
storage and time cost are valid for any H-partition. They are
not specifically developed for the H-partition based on the
admissibility condition given in (5). Different partitions could
result in different kave and Csp. Moreover, different problems
could have different kave and Csp. However, regardless of the
value of kave and Csp, the storage units are bounded by (12),
and the operation counts are bounded by (15). In addition, for
electrodynamic problems, the kave and Csp generally depend
on N . The objective of this work is to minimize kaveCsp based
on accuracy requirements.

IV. PROPOSED METHODS FOR REDUCING THE
COMPUTATIONAL COST OF H-MATRIX BASED

DIRECT SOLUTION OF ELECTRODYNAMIC
PROBLEMS

From (12) and (15), it can be seen that to reduce the com-
putational cost of an H-based computation of electrodynamic
problems, we have to reduce kaveCsp. In the following two
subsections, we present methods for reducing kaveCsp.

A. Proposed methods for minimizing average partition rank
kave based on a prescribed accuracy for a given H-partition

Given an H-partition, to minimize kave, for each admissible
block, we determine a minimal rank based on a prescribed
accuracy. The reason is obvious. If each admissible block has
a minimal rank, the resultant average partition rank kave for
the given H partition is also minimized.

Given an accuracy requirement, singular value decomposi-
tion (SVD) is the most accurate method to obtain the minimum
rank that can meet the accuracy requirement for an admissible
block. However, if we directly apply SVD to the original
full matrix to obtain its H-matrix representation, although the
resultant rank is minimal, the computational cost is high.

On the other hand, we can use interpolation, Taylor ex-
pansion, and ACA based approaches to efficiently convert a
full matrix block to an H-matrix representation. However,
the resultant rank is, in general, not the minimal one that is
necessary to satisfy the accuracy requirement. In other words,
the resultant rank can be much larger than what is necessary
to satisfy a prescribed accuracy.

In this paper, we first use ACA+ ( [17], pp. 71-74), which is
a variant of ACA, to efficiently compute an H-matrix represen-
tation. We then apply SVD to the H-matrix representation to
determine the actual rank that is needed to satisfy the accuracy
requirement. By doing so, we keep the advantages of both
SVD and ACA-based methods. The resultant rank is minimal,
and meanwhile it is obtained in linear complexity for each
block. In the following, we give more details of the proposed
approach.

First, we use ACA+ to numerically obtain a factorized
form of an admissible block. Conventional ACA fails in some
examples [20]. ACA+ does not have such a problem. In
addition, ACA+ involves less storage and computational cost
than ACA. The detailed procedure of ACA+ is very similar to
that of the conventional ACA. The difference between them
is as follows. At the beginning of an ACA+ algorithm, a
reference row and a reference column of the original matrix
are chosen to determine where to start the pivot search. A row
and column pivot index is then determined from the reference
ones. In the subsequent steps, the reference row and column
can still be used. But if they are chosen as a pivot index, a new
reference row and a new reference column has to be chosen.
This method only requires assemble k rows and k columns
of an admissible block , where k is the rank determined by a
certain accuracy requirement ε. The output of ACA+ algorithm
is G̃

m,n
= Am,kBT

n,k, where k is, in general, much less than
m and n. The ACA+ algorithm terminates when∥∥∥G − G̃

∥∥∥ =
∥∥G − ABT

∥∥ ≤ ε ‖G‖ (16)

is satisfied. Therefore, the error of the resultant H-matrix
representation is bounded by ε.

After the ACA+ is completed, we obtain a factorized form
Am,kBT

n,k. For such a factorized form, SVD can be efficiently
performed by a reduced SVD ( [17], p. 108). The resultant
computational cost is O(k2(m + n)), which is linear.

To test the effectiveness of the proposed approach to
determining the minimal rank of an admissible block, we
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Fig. 6. Rank distribution in the lowest level of an H-partition generated with
ε = 10−4. (a) A 10 λ perfect electrically conducting (PEC) plate.(b) An 8
λ PEC sphere.

simulated a 3D conducting plate of 10 wavelengths, and a
3D conducting sphere of 8 wavelengths respectively. The ε in
ACA+ and SVD was set to be 10−4. In Fig. 6, we plot the rank
distributions with the proposed scheme (ACA+ and SVD) and
with ACA+ only in the lowest H-partition level that has an
admissible block. This level is the closest to the root of a block
cluster tree, and hence the admissible blocks therein have
the largest electric size. The horizontal axis of Fig. 6 is the
admissible block index. It can be seen from Fig. 6 that by using
the proposed method, the rank in most admissible blocks is
reduced by half. Moreover, the same accuracy is achieved. The
accuracy is measured by

∥∥∥G − G̃
∥∥∥ /‖G‖, where a Frobenius

norm is used. The accuracy is 1.021689 × 10−5 without the
proposed rank minimization, and 1.079537 × 10−5 with the
proposed minimization for the plate example. Clearly, the rank
is reduced without sacrificing accuracy. The same is true for
the sphere example. The accuracy is 1.931219×10−5 without
the proposed rank minimization, and 1.996355×10−5 with the
proposed minimization. In addition, with the proposed method,
the new rank distribution becomes more uniform across all the
admissible blocks as can be seen from Fig. 6.

B. Proposed method for optimizing H-matrix partition to
reduce kaveCsp

Existing H-matrix partition is based on the admissibility
condition as shown in (5). It is not an optimal one for
frequency dependent kernels. This can also be understood from
the fact that the admissibility condition (5) is frequency inde-
pendent. Physically speaking, whether the interaction between
two regions can be represented by a low-rank block or not
is frequency dependent. For example, for a given accuracy, it
is possible that an off-diagonal block that is inadmissible at
certain frequency becomes admissible at a lower frequency.
It is also possible that multiple small admissible blocks can
be merged into a single admissible block with prescribed
accuracy. In other words, they start to become admissible in a
lower level of an inverted block cluster tree when frequency
changes. However, the admissibility condition given in (5) is
empirical instead of theoretical. It is controlled by an empirical
parameter η, instead of a prescribed accuracy.

In the following, we show our proposed algorithm that can
optimize an H-matrix partition based on a prescribed accuracy.
The resultant H-matrix partition is frequency dependent. It
significantly reduces the number of admissible blocks at each
tree level, with the prescribed accuracy satisfied.

The proposed H-matrix partition algorithm for a prescribed
accuracy εopt is shown in (17). A new error tolerance εopt is
introduced instead of reusing ε in (16) to facilitate separated
accuracy control of the H-partition optimization and the rank
minimization for each admissible block. In (17), the original
partition given by (5) is used as an initial guess from which
we construct an optimized partition.

H-Partition Optimization

Procedure H−Popt(P , εopt)
(Input P is the original H partition,

output P is overwritten by an optimized H partition)

If P is a non-leaf off-diagonal matrix block

for (i = 0; i < 4; i + +)

if P(i) is an inadmissible block

Rk Factor(P(i), εopt)
end if

if P(i) is a non-leaf block

H−Popt(P(i), εopt)
end if

end for

If all blocks in P are admissible blocks

Merge Rkblocks (P , εopt)
end if

end if (17)

In (17), the function Rk Factor is to factorize a full-
matrix block to a rank-k matrix shown in (6) based on a
prescribed accuracy. The procedure is the combined ACA+
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with SVD, which is detailed in section IV-A. The function
Merge Rkblocks is to merge multiple small admissible blocks
to a single one based on the prescribed accuracy. To give an
example, four admissible sub-blocks can be merged into one
admissible block as follows.[

A1(f1)B1(f1)T A2(f2)B2(f2)T

A3(f3)B3(f3)T A4(f4)B4(f4)T

]
=

[
A1(f1)

0

] [
B1(f1)

0

]T

+
[

A2(f2)
0

] [
0

B2(f2)

]T

+
[

0
A3(f3)

] [
B3(f3)

0

]T

+
[

0
A4(f4)

] [
0

B4(f4)

]T

=

Ã1(f1)B̃1(f1)
T

+ Ã2(f2)B̃2(f2)
T

+ Ã3(f3)B̃3(f3)
T

+

Ã4(f4)B̃4(f4)
T εopt= ABT , (18)

where the fi(i = 1, 2, 3, 4) denotes the electric size the blocks
are associated with, and the addition in the final step is carried
out by the truncated addition operation in ( [17], p. 110), with
the new rank k determined based on the accuracy requirement
εopt. Different from static problems, in electrodynamic prob-
lems, when the size of the admissible block increases, its rank
also increases in general. Consequently, although each merging
operation reduces four admissible blocks to one block, it
also increases the rank of the resultant block. Therefore, we
should check which one is computationally more efficient:
merging or not merging. This can be assessed by comparing
the storage requirement of the merged block with that of the
four children admissible blocks. If the former is less than the
latter, we perform merging; otherwise, we do not perform
merging, instead we keep the original four blocks. To be
more specific, we check whether kmerge(mmerge+nmerge) ≤∑4

j=1 kj(mj + nj) is satisfied or not, where kmerge is the
rank of the big block resulting from the merging operation,
mmerge(nmerge) is the row(column) dimension of the block,
and kj is the rank of the children admissible blocks. If it is
satisfied, we merge blocks based on accuracy requirements; if
not, we keep the original blocks.

In (17), we only perform two basic operations: making an
inadmissible block in the off-diagonal part admissible based
on a prescribed accuracy via function Rk Factor, or merging
small admissible blocks to be a big admissible block based on
the accuracy requirement through function Merge Rkblocks.
Both operations do not increase the number of inadmissible
blocks. In fact, the number of inadmissible blocks is even
reduced due to the first operation. Therefore, given an H-
partition, the proposed optimization algorithm does not in-
crease the number of inadmissible blocks. If the number of
admissible blocks is reduced, the total number of blocks is
also reduced.

To validate the effectiveness of the proposed H-partition
optimization algorithm, we simulated a conducting plate from
2λ to 60λ, the number of unknowns of which is from 1,160
to 1,078,800. The εopt was chosen as 10−3. In Fig. 7, we plot
the maximum number of admissible blocks that can be formed
by one cluster in a block cluster tree (Cad) in the original H-
partition, and that in the optimized H-partition. Clearly, the
Cad is reduced significantly. Since the proposed H-partition
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Fig. 7. Cad versus N in the simulation of a conducting plate from 2λ to
60λ. (a) Original H-partition. (b) Optimized H-partition.

optimization does not increase the number of inadmissible
blocks as analyzed above, the Csp is also reduced significantly.

When the H-partition changes, the average partition rank
kave also changes. Thus, in addition to Csp, we need to
examine the product of kave and Csp to assess the success
of the proposed H-partition optimization algorithm, since it is
kaveCsp that determines the storage and time complexity as
can be seen from (12) and (15). In Fig. 8(a), we plot k aveCad

for the plate example simulated above with respect to κa,
where κ is the wave number, and a is the side length of the
plate. We compare the kaveCad generated by the proposed
method, and that generated by the conventional method that
is based on an ACA-based rank scheme and an admissibility
condition based H-partition. It is clear that the proposed
method greatly reduces kaveCad. In Fig. 8(b), we plot kaveCad

for a sphere of diameter a with respect to κa from 2 λ to 45
λ. Again, kaveCad is greatly reduced by the proposed method.
Since the proposed H-partition optimization does not increase
the number of inadmissible blocks as analyzed above, the
kaveCsp is also reduced significantly.

Although Csp is a parameter that can be used to qualitatively
measure the number of blocks formed by an H-partition, it
does not give a quantitative measurement of the number of
blocks obtained by the H-partition. To provide a quantitative
analysis, in Fig. 9(a), we plot the exact number of blocks with
respect to tree level generated by the original H-partition that
is based on the admissibility condition in comparison with
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Fig. 8. Comparison between kaveCsp generated by conventional method
and that generated by the proposed method. (a) A PEC plate from 2 λ to 60
λ. (b) A sphere from 2 λ to 45 λ.

the number of blocks generated by the proposed partition,
for a 15λ sphere. In Fig. 9(b), we plot the same for a 40λ
plate. Clearly, compared to the original partition, the proposed
partition significantly reduces the number of blocks at each
tree level, and hence significantly reducing the computational
cost. In addition, across the entire tree depth, it is observed
that the number of blocks is not necessarily reduced by half
when one ascends the inverted tree by one level from leaf
level l = p to root level l = 0, which can be seen from both
conventional partition and the proposed partition.

C. Study on the dependence of kave and Csp of the proposed
methods with respect to scatterer shape

We varied the scattering shape continuously from plate,
Sierpiski gasket, cylinder, open cone, cone sphere, to sphere.
We plotted the maximal rank kmax versus electric size for
these scatterers. For comparison, we also plotted the average
partition rank kave obtained by the proposed methods for the
same accuracy. As can be seen from the figures in the left
column of Fig. 10 and Fig. 11, for all these scatterers, kave is
much smaller compared to kmax. In addition, the rate of the
change of kave with respect to electric size is much slower
than that of kmax. Denoting the electric size by a/λ, where
a is the maximal size of the structure, kmax is observed to
be O(a/λ). However, kave is not, it is much smaller than
O(a/λ). Theoretically speaking, this is because kave is not
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Fig. 9. Comparison between the number of blocks generated by the
conventional geometry-based partition and that by the proposed optimal
partition with respect to tree level. (a) A 15λ sphere. (b) A 40λ sphere.

only determined by the rank of each admissible block, but
also determined by the number of admissible blocks at each
tree level, and hence the H-partition. In addition, compared to
kmax, kave is less shape dependent.

In the right column of Fig. 10 and Fig. 11, we plot the
number of admissible blocks obtained by the proposed method
with respect to electric size for a variety of scatter shapes. The
dependence of the Csp on the scatter shape is shown to be
little. In addition, with proposed methods, both kave and Csp

are minimized to be small compared to N .

D. Study on the dependence of kave and Csp on accuracy
requirements

We also tested the dependence of kave and Csp with
respect to accuracy. The results in Fig. 10 and Fig. 11 were
generated based on ε = 10−4 and εopt = 10−3, where ε
is a parameter shown in (16) for controlling the accuracy
of rank reduction, and εopt is a parameter shown in (17)
for controlling the accuracy of the H-partition optimization.
To test the dependence with respect to accuracy, we set
ε = 10−7 and εopt = 10−6. We used a plate and a sphere
as examples, and tested the dependence of kave and Csp

generated by the proposed methods with respect to accuracy
across a wide range of electric sizes. As can be seen from
Fig. 12, with the accuracy requirement increased, kave and√

(k2)ave increase. However, the increase is small compared
to the three orders of magnitude increase in accuracy. In
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Fig. 10. The kave and Csp generated by the proposed method with respect to electric size for a variety of scatterer shapes. (a-b) Plate. (c-d) Sierpiski
gasket. (e-f) Cylinder. (g-h) Open cone.

addition, the dependence of kave and
√

(k2)ave with respect to
electric size is similar to what is observed for a lower order of
accuracy. In addition, with the accuracy requirement increased,
the number of admissible blocks also increases. Again, the
increase is minor compared to the three orders of magnitude

increase in accuracy. Moreover, the frequency dependence of
Csp is also similar to that for a lower order of accuracy.
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Fig. 11. The kave and Csp generated by the proposed method with respect to electric size for a variety of scatterer shapes (Continued from Fig. 10). (a-b)
Cone sphere. (c-d) Sphere.
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Fig. 12. The dependence of kave and Csp generated by the proposed method with respect to accuracy requirements over a wide range of electric sizes
(Accuracy setting 1: ε = 10−4 and εopt = 10−3; Accuracy setting 2: ε = 10−7 and εopt = 10−6). (a-b) Plate. (c-d) Sphere.
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V. ON THE EXISTENCE OF THE H-MATRIX
REPRESENTATION OF G−1 AND G’S LU FACTORS

In this section, we numerically prove the existence of an H-
matrix representation of the inverse of G and G’s LU factors
by examining their rank distributions. The detailed procedure
is as follows: we directly compute G−1 and G’s LU factors
without introducing any approximation; we then use SVD to
obtain the rank distribution in G−1 and G’s LU factors. Since
the computation requires a complete full-matrix form of G−1

and G’s LU factors, it is not practical to use a problem having
a large electric size as an example. We thus considered a
conducting plate of 6λ and a conducting sphere of 4λ. We
computed the rank of each off-diagonal block that satisfies
the admissibility condition (5) at the lowest level of a block
cluster tree. The accuracy requirement in SVD is set to be
10−4. In Fig. 13, we plot the rank distribution measured by
k/min(m, n) with respect to matrix block index. It is clear that
the off-diagonal blocks that satisfy the admissibility condition
in G−1 and G’s LU factors are low rank. Therefore, not only
the original matrix G can be represented by an H-matrix, but
also G−1 and G’s LU factors can be represented by an H-
matrix. Furthermore, the rank distribution of G−1 and G’s
LU factors is very similar to that of G. In addition, both
G−1 and G’s LU factors have a smaller rank than the original
matrix, with the rank of G’s LU factors being the smallest.
This suggests that the H-matrix partition constructed for the
original matrix G is equally applicable to G−1 and G’s LU
factors. In Fig. 13, U’s rank distribution is plotted to represent
L’s and U’s rank distribution since these two have a very
similar rank distribution, with U’s rank being slightly larger.

VI. PROPOSED FAST IMPLEMENTATION OF LU
FACTORIZATION

In this section, we show how to perform a fast LU factor-
ization using the H-matrix based representation of G and G’s
LU factors. Based on the findings in the section above, we
use the H-partition constructed for G for the H-partition of L
and U.

The H-based LU factorization has been discussed in (
[17], p. 119). However, no detailed implementation is given.
In the following, we give a number of pseudo-codes to
show a fast implementation of H-based LU factorization,
which is not reported anywhere else. It is worth mentioning
that [10] did an ACA-based LU factorization, the proce-
dure of which is very different from the proposed one. The
fast H-based LU factorization proposed in this paper has
a factorization cost of O((kaveCsp)2N log2 N), a solution
cost of O((kaveCsp)N log N), and memory consumption of
O((kaveCsp)N log N), with kave and Csp minimized for a
prescribed accuracy by the methods described in section IV.

A. LU factorization basics

Given an IE-based system matrix G, we cast it into a form

G =
[

G11 G12

G21 G22

]
. (19)

min( , )
k
m n
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Fig. 13. Rank distributions in G, G−1, and G’s LU factors. (a) PEC plate.
(b) PEC sphere.

The LU decomposition can be recursively computed by the
following equation:

G =
[

G11 G12

G21 G22

]
=

[
L11 0
L21 L22

]
·
[

U11 U12

0 U22

]
= LU. (20)

B. Proposed fast implementation of the LU factorization

We developed a pseudo-code shown in (21) to recursively
perform LU factorization.

LU-Decomposition G=LU

Procedure H-LU(G)

(G is the input matrix overwritten by L and U)

If G is a non-leaf block

H−LU(G11) → L11, U11,

Solve LX(L11, G12) → U12,

Solve XU(G21, U11) → L21,

−L21 × U12 + G22 → G22,

H−LU(G22) → L22, U22,

else

Full-LU(G) (21)
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The underlying algorithm is as follows. When G is a non-leaf
matrix block, we recursively call (21) until G11 is a full
matrix block. We then directly compute the LU factors of
the G11 using a full-matrix-based LU factorization, which
generates L11 and U11. Next, we call function Solve LX
shown in (22) and Solve XU to compute U12, and L21

respectively.

Algorithm for Solving a Lower Triangular System

LX = G, with G being an H matrix

Procedure Solve LX(L,G)

(L and G are input matrices, G is overwritten by X)

If L is a non-leaf block

If G is a non-leaf block

Solve LX(L11, G11), Solve LX(L11, G12)

−L21 × G11 + G21 → G21, Solve LX(L22, G21)

−L21 × G12 + G22 → G22, Solve LX(L22, G22)

else if G is an admissible block

Solve LF(L, A)

else

Solve LF(L, G)

end if

else

Full LX(L, G)

(Solve a full-matrix triangular system)

end if (22)

The Solve LX(L,G) is to solve a lower triangular system
LX = G, where L and G are input matrices having H-
representations, and X is the solution. The Solve XU(G, U)
is to solve an upper triangular system, which can be derived
in a similar fashion as (22). In (22), a function Solve LF is
called. Similar to Solve LX, Solve LF also solves a triangular
system. The difference is that the right-hand-side matrix
for Solve LX is an H matrix, whereas that for Solve LF
is a full matrix. The pseudo-code of Solve LF is given in (23).

Algorithm for Solving a Lower Triangular System

LX = F, with F being a Full Matrix

Procedure Solve LF(L,F)

(L and F are input matrices, F is overwritten by X)

If L is a non-leaf block

Solve LF(L11, F1)

−L21 × F1 + F2 → F2

Solve LF(L22, F2)

else

Full LX(L, F)

(Solve a full-matrix triangular system)

end if (23)

In the final step of (21), we use U12 and L21 to update G22,
and then call (21) recursively until L22 and U22 are computed.
As can be seen from (20) to (23), efficient LU factorization
relies on efficient block multiplication and block addition. In
next subsection, we show how to efficiently perform these two
operations for a prescribed accuracy.

C. Fast implementation of the block multiplication Gb =
Gb1 × Gb2

We give a pseudo-code of computing Gb = Gb1 × Gb2 in
(24).

Recursive Multiplication Algorithm

Procedure H-mult(Gb1, Gb2, Gb, εLU )

If (Gb1, Gb2, Gb are all non-leaf blocks)

for(i = 0; i < 2; i + +)
for(j = 0; j < 2; j + +)

for(k = 0; k < 2; k + +)
H-mult(Gb1(i, k), Gb2(k, j), Gb(i, j))

else if (Gb is a non-leaf block,

Gb1 or Gb2 is a leaf block)

Multiply RK(Gb1, Gb2, G̃
b
)

Gb εLU= G̃
b
+ Gb

else if Gb is an admissible block

Multiply RK(Gb1, Gb2, Gb)

else if Gb is an inadmissible block

Multiply Full(Gb1, Gb2, Gb)

end if (24)

where, b, b1, and b2 represent three blocks in the same level
of an H-partition, εLU represents a prescribed accuracy. If
Gb, Gb1, and Gb2 are all non-leaf blocks, we recursively call
(24). If one of Gb1 and Gb2 is a leaf block, or Gb is an
admissible block, we call function Multiply Rk shown in
(25) to compute an admissible product. In (24), the addition
is performed based on the prescribed accuracy εLU , which
is denoted by

εLU= . The detailed procedure of the addition is
given in the following subsection.

Procedure Multiply RK(Gb1, Gb2, Gb, εLU )

if Gb1 and Gb2 are both non-leaf blocks

for(i = 0; i < 2; i + +)
for(j = 0; j < 2; j + +)

for(k = 0; k < 2; k + +)

Multiply RK(Gb1(i, k), Gb2(k, j), G̃
b
(i, j))

Gb εLU= G̃
b
+ Gb

(G̃
b

is a non-leaf block)
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else if Gb1 or Gb2 is an admissible block

Gb1ABT → (Gb1A)BT = ÃbB̃
T

= G̃
b

(G̃
b

is an admissible block)

Gb εLU= G̃
b
+ Gb

else if Gb1 or Gb2 is an inadmissible block

Gb1Gb2 = Gb1F
εLU→ (Gb1A)BT = ÃbB̃

T
= G̃

b

Gb εLU= G̃
b
+ Gb

end if (25)

In (25), there are two multiplication cases. One is to
multiply an admissible block Gb1 by an admissible block of
an ABT form, for which we can compute Gb1A as a new
A. The other multiplication case is to multiply Gb1 by a full
matrix block F, for which we can first apply SVD to F to
generate a form ABT based on the prescribed accuracy εLU .
If Gb is a full matrix block, a normal full matrix multiplication
is computed. The additions in (25) again are performed based
on εLU .

D. Fast implementation of the block addition Gb = Gb1 +Gb2

Two cases are involved in the addition operations.
Case 1: If Gb, Gb1, and Gb2 have the same H-partition,

the addition can be done using the following procedure. (a)
If three blocks are all full matrices, we simply add two full
matrices up. (b) If three blocks are all admissible matrices,
for example, Gb1 = Ab1BT

b1 with rank k1, Gb2 = Ab2BT
b2

with rank k2, and Gb = AbAT
b , the Gb = Gb1 + Gb2 can be

realized by a truncated addition operation using the approach
shown in ( [17], p. 110). The rank k of the resultant G b is
adaptively determined by the prescribed accuracy εLU . (c) If
three blocks are all non-leaf blocks, the addition can be carried
out by summing over all the inadmissible blocks using (a), and
all the admissible ones using (b) respectively.

Case 2: If the three blocks do not share the same partition,
we convert the H-matrix partitions of Gb1 and Gb2 both into
the partition of Gb. Take the block Gb1 as an example. If Gb1

is an admissible block but Gb is a non-leaf block that has
four admissible subblocks, we convert Gb1 by the following
formula

Gb1 =

Ab1BT
b1 =

[
Ã1

Ã2

] [
B̃1

B̃2

]T

=[
Ã1B̃

T

1 Ã1B̃
T

2

Ã2B̃
T

1 Ã2B̃
T

2

]
= G̃

b1
. (26)

where G̃
b1

contains four admissible sub-blocks, which is
exactly equal to Gb1. The opposite procedure, where Gb is
an admissible block while Gb1 contains four admissible sub-
blocks, can be performed by the scheme shown in (18).

VII. COMPLEXITY ANALYSIS

Three numerical procedures are involved in the proposed
direct IE solver: rank minimization, H-partition optimization,
and LU-based direct matrix solution. We analyze the complex-
ity of each in the following.

The complexity of the rank minimization scheme for each
admissible block, described in section IV-A, is linear. This
is because both ACA+ and reduced SVD have a linear
complexity for each admissible block [17], [20].

For the H-partition optimization shown in (17), two basic
operations are involved. One is the factorization of inadmis-
sible blocks. This operation is carried out by the function
Rk Factor based on ACA+ and SVD. The other is the conver-
sion of non-leaf blocks into an admissible block shown in (18).
This operation is carried out by the function Merge Rkblocks
by using an SVD based truncated addition. Since both ACA+
and SVD have a linear complexity for each matrix block, the
two basic operations involved in (17) also have a linear cost.

From procedure (21), it can be seen that at the leaf level,
the computation of the recursive LU factorization essentially
includes a full-matrix LU factorization, a full-matrix solution
of a lower triangular system, and a full-matrix solution of an
upper triangular system, all of which have the same complexity
as a full-matrix block multiplication. At all the other levels,
a number of block-block multiplications are computed, which
have the same recursive pattern as that in an H-based matrix-
matrix multiplication. Therefore, the H-based LU factorization
has the same complexity as H-based multiplication, which
is bounded by O((kaveCsp)2N log2 N) for electrodynamic
problems as derived in (15). The H-based LU solution has the
same complexity as the H-based matrix-vector multiplication,
and hence its cost is O((kaveCsp)N log N) for electrodynamic
problems as derived in (12). Here, kaveCsp is minimized for
a given accuracy by the methods proposed in section IV.

VIII. NUMERICAL RESULTS

To test the performance of the proposed direct IE solver, we
simulated a PEC (perfect electrically conducting) plate, a PEC
sphere, and a PEC cylinder from a small number of unknowns
to over 1 million unknowns, from small electric sizes to over
95 wavelengths. In all these examples, η = 1 and leafsize = 32
were used. Note that η = 1 was used to generate an initial
H-partition, which was later replaced by the optimized H-
partition by the method proposed in Section IV-B. The error
tolerance εopt used in the H-partition optimization was set as
10−3. The error tolerance εLU used in the LU factorization
was 10−2. The computer used was a Dell’s PowerEdge 6950s
server with 8222SE AMD Opteron processors. Double preci-
sion was employed in all the simulations.

First, we tested the accuracy of the H-matrix representation
obtained by the proposed rank minimization and partition op-
timization methods. The error of the H-matrix representation
is measured by

∥∥∥G − G̃
∥∥∥ / ‖G‖, where G̃ is the H-matrix

representation of the original G, and the Frobenius norm is
used. We simulated a PEC plate from 2 λ to 14 λ, and a PEC
sphere from 2 λ to 8 λ. Fig. 14 shows the accuracy of the
H-matrix representation generated from the proposed method.
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Fig. 14. Accuracy of the proposed H-matrix representation. (a) PEC plate
from 2 λ to 14 λ. (b) PEC sphere from 2 λ to 8 λ.

Excellent accuracy can be observed in the entire range of
electric sizes. Since the assessment of the matrix error requires
the knowledge of the full matrix G, we did not simulate larger
problem sizes in this testing case.

Next, we tested the accuracy and efficiency of the proposed
direct LU based IE solver. The first example is a conduct-
ing sphere illuminated by a normally incident plane wave.
The electric size of the sphere is from 2 λ to 45 λ. The
discretization results in unknowns from 3,688 to 1,152,368.
The average partition rank kave resulting from the proposed
rank minimization and H-partition optimization methods is
shown in Fig. 15(a) in the entire range of electric sizes. It
can be seen that kave is minimized to be a small number
compared to N . In Fig. 15(b), we plot the memory cost of the
proposed solver. The theoretical expectation is also plotted for
comparison, which is shown by the red solid line. Excellent
agreement with the theoretical analysis is observed. In 15(c)
and (d), we plot the CPU time of the LU decomposition, and
LU solution respectively. Again, an excellent agreement with
the theoretical prediction is observed. To test the accuracy, in
Fig. 16(a) and (b), we plot the E-plane bi-static RCS simulated
for 12 λ and 26 λ respectively. The RCS is shown to agree
well with the analytical Mie-Series solution. In Fig. 16(c), we
plot the solution error. Less than 6% error is observed in the
entire frequency band.

The second example is a 3D conducting plate, the electric
size of which is from 2 λ to 60 λ. The discretization results in

1,160 unknowns to 1,078,800 unknowns. The average partition
rank kave resulting from the proposed rank minimization and
partition optimization methods is shown in Fig. 17(a). It is
clear that the average rank is minimized to be a small number,
in addition, for the plate example, it is controlled to be almost
a constant in the entire range of electric sizes. The Csp for
this example can be seen from Fig. 7(b). In Fig. 17(b), we
plot the memory cost of the proposed direct IE solver, which
agrees well with the theoretical prediction depicted by the solid
line. In Fig. 17(c), we plot the solution error of the proposed
LU solver measured by

∥∥∥G̃I − V
∥∥∥ / ‖V ‖. Good accuracy can

be observed. In addition, the accuracy is kept to be almost a
constant in the entire range. From Fig. 17(d) to (f), we plot the
CPU time of the H-matrix construction, LU decomposition,
and LU solution respectively. It can be seen clearly that the
computational cost of the proposed direct LU solver has a
very good agreement with the theoretical prediction depicted
by the solid lines. The computation for the 60 λ case having
over 1 million unknowns was finished within 10-hour LU
decomposition time, 55-second LU solution time, and costing
31.5 GB storage only.

The last example is a conducting cylinder, the length of
which is from 2 λ to 96 λ. The ratio of length to radius is 20.
The number of unknowns is from 1,391 to 1,075,200. In Fig.
18(a), we plot the average partition rank kave resulting from
the proposed rank minimization and partition optimization
methods in the entire electric-size range. In Fig. 18(b), we
plot Cad versus the electric size. Without the proposed H-
partition optimization, the Cad is between 47 and 51. Clearly,
Cad, and hence Csp is reduced greatly. In Fig. 19(a), we plot
the solution error with respect to the number of unknowns.
Good accuracy is observed. Note that the error is controllable
by ε, εopt, and εLU . If better accuracy is required, it can be
obtained by reducing the error tolerances. From Fig. 19(b) to
(d), we show the computational cost of the proposed direct LU
solver in LU factorization, LU Solution, and storage. Again,
an excellent agreement with theoretical analysis is observed.
The LU factorization for the 1,075,200 unknown case costs
less than 20 hours and 37.6 GB memory. The LU solution
time is 85 seconds only. Compared to results obtained for
similar examples reported in open literature, the proposed
direct IE solver is much more efficient in both CPU time and
memory consumption, even though double precision was used
for computation.

The above direct matrix solutions were all generated based
on ε = 10−4, εopt = 10−3, and εLU = 10−2. To test the
performance of the proposed direct solver for a higher order
of accuracy, we set ε = 10−5, εopt = 10−4, and εLU = 10−3.
We simulated the same plate example simulated in Fig. 17.
In Fig. 20(a), we plot the solution error with respect to the
number of unknowns. An excellent accuracy can be observed
in the entire range of electric sizes, where the worst error is
shown to be less than 0.33%, in comparison with the 3% error
achieved by the previous accuracy setting. From Fig. 20(b) to
(d), we show the computational cost of the proposed direct LU
solver in memory, LU factorization, and LU solution. Again,
an excellent agreement with theoretical analysis is observed.
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Fig. 15. Simulation of a PEC sphere from 2 λ to 45 λ with unknowns from 3,688 to 1,152,368. (a) Average partition rank kave. (b) Memory requirement.
(c) LU factorization time. (d) LU solution time.

IX. CONCLUSION

In this work, we further develop the H-matrix based math-
ematical framework to accelerate the direct solution of the
integral-equation-based analysis of electrodynamic problems.
We show that the existing complexity analysis of the H-matrix
based computation, which is based on a constant rank, is
not proper for analyzing electrodynamic problems. This is
because the rank of each block required by an electrodynamic
kernel for a given accuracy increases with the electric size
of the block diameter. It is not a constant any more. How-
ever, using the maximal rank of all the admissible blocks to
bound the complexity also overestimates the complexity, as
demonstrated clearly in Fig. 4. In addition, the complexity of
an H-matrix based computation of electrodynamic problems
is highly dependent on the H-matrix partition, i.e. the number
of admissible blocks at each tree level and etc. This is
an important factor that received little attention in previous
research. Traditionally, the number of admissible blocks at tree
level l is treated as O(2l), and the rank of each admissible

block at tree level l is regarded as O( N
2l ). As a result, the gain

in computational efficiency of an H-matrix based method for
solving high-frequency problems is pessimistic.

In this work, we show that there exists a big space to
optimize the H-matrix partition for frequency dependent prob-
lems. Existing H-matrix partition is based on a geometry
based admissibility condition. This condition is controlled
by an empirical parameter instead of a prescribed accuracy.
The resultant partition is by no means optimal especially
for electrodynamic problems. We hence develop a new H-
partition method that is frequency dependent, and also directly
controlled by accuracy requirements. With the proposed new
partition, the number of admissible blocks at each tree level
is significantly reduced compared to that generated by the
conventional geometry based H-partition. We also show that
the number of admissible blocks at tree level l is not O(2 l).

In addition, the block rank is observed to be proportional to
the electric size of the block diameter, as can be seen from Fig.
10 and Fig. 11. Since the number of unknowns in a surface
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Fig. 16. (a) RCS of a conducting sphere simulated by the proposed solver at 12 λ. (b) RCS of a conducting sphere simulated by the proposed solver at 26
λ. (c) Solution error in the entire frequency band from 2 λ to 45λ.

IE based method is proportional to the electric size’s square,
the rank of each admissible block at tree level l is bounded
by O((N

2l )0.5) instead of O(N
2l ), thus the block is low rank.

In addition, the actual number of the block rank should be
determined and minimized based on accuracy requirements.
This paper provides an efficient matrix algebra based method
to perform this task with negligible computational overhead.

In light of the fact that the complexity of an H-matrix based
computation of electrodynamic problems is determined not
only by block rank (the rank of each admissible block) but also
by H-matrix partition, we propose a new parameter, average
partition rank kave, to bound the storage units and operation
counts of an H-matrix based computation. Different from
block rank, the partition rank kave contains the information of
the H-matrix partition. Based on kave, we develop new bounds
of the computational cost for the H-matrix-based computation
of electrodynamic problems. The new bounds suggest that the
smaller the product kaveCsp is, the smaller the computational
cost. For electrodynamic problems, the kave and Csp are
frequency dependent and hence electric size dependent. The
objective of this work is to minimize the kaveCsp for each
frequency point to reduce computational cost. The kave for a
given partition is minimized by finding a minimal rank of each

admissible block for a given accuracy. The Csp and kaveCsp

are reduced by developing a new H-partition algorithm. By
minimizing kaveCsp for each frequency point, we significantly
reduce the cost of the H-matrix based direct solution of
electrodynamic problems.

Moreover, we developed an efficient LU-factorization
for directly solving the dense system matrix resulting
from an IE-based analysis of large-scale electrodynamic
problems. The operation counts of the proposed direct
solver are O((kaveCsp)2N log2 N) in LU factorization,
O((kaveCsp)N log N) in LU solution, and the memory con-
sumption is O(kaveCspN log N), all of which were verified
theoretically and also numerically. Numerical results have
demonstrated the accuracy and efficiency of the proposed
direct IE solver for simulating large-scale electrodynamic
problems, with the N−dependent kave and Csp minimized
to be small compared to N . The dense matrix involving over
1 million unknowns formulated for a 96-wavelength problem
is factorized in fast CPU run time, modest memory usage, and
with prescribed accuracy satisfied. The proposed methods for
minimizing the rank and optimizing the H-partition not only
can be used in the proposed solver, but also can be employed
in other fast integral equation solvers such as fast multipole
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Fig. 17. Simulation of a PEC plate from 2 λ to 60 λ. (a) Average partition rank. (b) Memory cost. (c) Solution error. (d) H-matrix construction time. (e)
LU factorization time. (f) LU solution time.
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