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Abstract— The implementation of lightweight high-
performance motion systems in lithography applications
imposes among others lower requirements on actuators,
amplifiers, and cooling. However, the decreased stiffness of
lightweight designs brings the effect of structural flexibilities
to the fore especially when the so-called point of interest is
not at a fixed location. This is for example the case when
exposing a silicon wafer. To deal with structural flexibilities,
a feedforward controller is proposed that combines two
concepts: (a) continuous compliance compensation control and
(b) snap feedforward control. Expanded to a subclass of LTV
motion systems, the resulting controller compensates for the
position-dependent and time-varying compliance of a flexible
structure. The compliance function used will be derived using
partial differential equations (PDE). The method is validated
by simulation results.

I. INTRODUCTION

In the semiconductor industry, the focus on ever improving
throughput, overlay, and imaging of exposed silicon wafers
traditionally lead to more aggressive motion profiles, i.e.
higher accelerations, and structural designs with higher stiff-
ness and mass. The required forces to be applied during op-
eration are therefore increasingly higher, which increases the
demands on actuators, amplifiers, and cooling. The resulting
force density and heat generation necessitated to accelerate
the mass therefore becomes increasingly infeasible, which
prompts for more flexible lightweight designs [14].

As a consequence, when the performance location changes
with time which typically occurs during wafer exposure, the
dynamics of the system are expressed differently due to the
different contributions from structural modes at that specific
location. This leads to the requirement of taking the time-
varying aspect of the plant into account when calculating
feedforward compensation forces, which are key in achieving
position accuracy.

The traditional approach toward the positioning problem
would be an acceleration (or mass) feedforward controller.

1Nikolaos Kontaras is with the Department of Mechanical Engineering,
Control Systems Technology group , Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands n.kontaras@tue.nl

2Marcel Heertjes is with the Department of Mechanical Engineering,
Control Systems Technology group, Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands m.f.heertjes@tue.nl

3Hans Zwart is with the Department of Mechanical Engineering, Dynam-
ics and Control group, Eindhoven University of Technology, 5612 AZ Eind-
hoven, The Netherlands h.j.zwart@tue.nl, and with the Faculty
of Electrical Engineering, Mathematics and Computer Science, Department
of Applied Mathematics, University of Twente, 7500 AE Enschede, The
Netherlands h.j.zwart@utwente.nl

4Maarten Steinbuch is with the Department of Mechanical Engineering,
Control Systems Technology group, Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands m.steinbuch@tue.nl

But this is not sufficient to compensate for the flexible dy-
namics. Alternatively, snap feedforward control [9] can only
account for structural flexibilities to a certain extend, and
cannot cope easily with time or parameter-varying dynamics.
In [4] and [5] a collection of feedback and feedforward
control methods are summarized, applicable to non-minimum
phase and flexible motion systems. Among them, the work
in [7] proposes a model inverse-based feedforward control
signal for nonlinear plants, which requires the feedforward
signal be known a priori and also pre-actuation, i.e. non-
causal control effort. More recently, [8] addresses the prob-
lem of regulating the plant output when the disturbance
is not known a priori, and [12] proposes a model-based
non-causal feedforward scheme for double integrator-based
Linear Time-Varying (LTV) systems, a class of systems
also considered in the present work. In [6], work has been
done on the discrete-time control of a stage, considering
the plant as a Linear Time-Invariant (LTI) system. In [11] a
feedforward method for flexible systems with time-varying
performance locations is presented. The method utilizes a
lifted feedforward (discrete-time) representation, however,
it does not take the plant variation in-between the time-
intervals into account. Spatial feedforward control [10] has
been developed in order to prevent excitation of the structural
modes of the positioning system. However this method uses
over-actuation. Hence, the number of structural modes to be
suppressed should equal the number of additional actuators.

Different from the current approaches in the literature,
this work introduces a compliance compensating feedfor-
ward control scheme for motion systems with time-varying
performance locations. That is, the same system class as
addressed in [13]. The feedforward controller proposed here
will be combined with the control objectives of classical
snap feedforward, but for a time-varying performance lo-
cation. Therefore this feedforward controller can account
for position-dependent dynamics, which does not merely at-
tempt at masking possible internal chuck deformations (ICD)
caused during acceleration and deceleration, but instead
generates appropriate control effort (force) to counteract such
deformations. This renders the controller capable of tackling
more arbitrary tracking set-points and control objectives than
in [13]. Furthermore, as low as second-order set-points are
compatible with this control scheme, which is the minimum
required to be followed by a mass. Moreover, third order
set-points produce a continuous control effort while fourth-
order or higher set-points produce a smooth control effort
which doesn’t excite higher order dynamics as much as snap
feedforward control. This feedforward controller does not
require pre-actuation, i.e. is causal, which allows for set-



points not given a priori. The spatially continuous dynamics
of the plant used as an example in this work (a flexible
Euler-Bernoulli beam) are derived from the partial differ-
ential equation (PDE) representation, and so is the position-
dependent compliance function of the beam. The method is
validated by continuous-time simulation.

The remainder of this paper is organized as follows.
Section II introduces the problem statement. Section III
proposes the novel feedforward control scheme, along with
its mathematical derivation, notions of stability and perfor-
mance. Section IV discusses the simulation environment and
the results which validate the method. Finally, in Section V,
some concluding remarks are given.

II. PROBLEM STATEMENT

During the production of chips, a silicon wafer is positioned
atop the wafer stage of a lithographic system. A source
emanating (extreme) ultraviolet (EUV) light passes through
the reticle, which is part of the reticle stage, and which
contains a blueprint of the integrated circuits (ICs) to be
processed. Beyond the reticle, light passes an optical column
with projection lenses before it exposes the photo-sensitive
layers of the wafer’s surface. An illustration of the wafer
stage during exposure is shown in Fig. 1. Assuming that
it is a lightweight structure, i.e. its dynamic behavior is
substantially dependent on position, it follows that during
exposure the time-varying performance location is subjected
to position-dependent dynamics.

Fig. 1: Schematic representation of a wafer stage of a
lithographic system, where the sensors lie at the edges of
the stage, and where during exposure of the silicon wafer to
the laser beam, the performance location changes over time.

Consider a straightforward snap feedforward control scheme
[9], illustrated in Fig. 2, and an LTI double-integrator based
motion system P , that is,

P (s) =
1

ms2︸︷︷︸
Prb

+

l∑

n=1

b0,nc0,n
mns2 + dns+ kn

︸ ︷︷ ︸
Pnrb

,
(1)

where m is the total mass, b0,n and c0,n the input and
output coefficients, mn, dn and kn the modal mass, damping
and stiffness respectively, Prb the rigid body (RB) mode,
l ∈ N+ the number of non-rigid body modes (NRB), and s
the Laplace variable. Aiming to satisfy the control objective
of perfectly compensating for the low-frequency properties

of the plant, i.e. mass and compliance, the snap feedforward
controller follows from the principle of plant inversion, or

FFsnap(s) =
Uff (s)

Yd(s)
= Kfas

2 +Kfss
4 = ms2 −m2Cs4,

(2)

with Yd(s), Uff (s) the Laplace transforms of the desired
output and the control effort respectively, and C the com-
pliance, which equals the DC contributions of all the NRB
modes of Pnrb, that is,

C =

l∑

n=1

b0,nc0,n
kn

. (3)

A straightforward attempt to extend this control scheme for
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Fig. 2: Snap feedforward control scheme.

plants with a now time-varying compliance function, defined
as C(t), is to straightforwardly use the feedforward controller

FFsnap(p, t) =
uff (t)

yd(t)
= mp2 −m2C(t)p4, (4)

where p = d/dt is the time differential operator1. It will be
shown however that in general, feedforward control schemes
developed for LTI systems such as (2) cannot be directly
applied to position-dependent and time-varying systems.

m1 m2

F

x1 x2

k

d

Fig. 3: Mass-spring-damper (MSD) system.

To see this, consider the example of a mass-spring-damper
LTI Single-Input Multiple-Output (SIMO) system, shown in
Fig. 3. Given no damping, i.e. d = 0, the non-collocated
(from force F to displacement x2) response of the system is
given by

Pmsd(s) =
k

s2(m1m2s2 + k(m1 +m2))
. (5)

1Use of p instead of s is required due to the time-varying nature of the
controller, which does not admit a straightforward Laplace transform.



The total mass of the system equals mmsd = m1 +m2 and
from (5) it can be found that the compliance is

Cmsd = −m1m2

m2
msdk

. (6)

As follows from (2) and (5), the snap feedforward controller

FFsnap-msd(s) = mmsds
2 −m2

msdCmsds
4 (7)

perfectly accounts for the plant dynamics in the sense that
Pmsd(s)FFsnap-msd(s) = 1.

Let us now consider by means of example a smooth time-
varying stiffness, i.e. k(t) ∈ C2.This introduces a time-
varying compliance in (5), while the mass of the system
remains the same. The equations of motion are given by

F (t)− k(t)(x1(t)− x2(t)) =m1ẍ1(t)

k(t)(x1(t)− x2(t)) =m2ẍ2(t).
(8)

Assuming a desired trajectory for the second mass, yd(t),
eliminating x1(t) from (8), the force Fmsd(t) required to
account for the plant dynamics is given as follows,

Fmsd(t) =mmsdÿd(t) +
2k̇2(t)− k(t)k̈(t)

k3(t)
m1m2ÿd(t)

− k̇(t)

k2(t)
2m1m2yd(t)

(3) +
m1m2

k(t)
yd(t)

(4).

(9)

The first and last term of (9) correspond to the mass and
snap terms in (7), however as it can be seen there are two
additional terms required in order to account for the time-
varying plant dynamics. In (9), the first two time derivatives
of the time-varying stiffness appear, along with the third
time-derivative of yd(t). Therefore, the structure as suggested
by (4) is inherently too limited to cope with the time-varying
stiffness.

To account for time-varying compliance, we first adopt the
more general (possibly infinite-dimensional) motion system
P , described by the LTV state-space model,

ẋ(t) = A′x(t) +B′u(t),

y(t) = C ′(t)x(t) +D′(t)u(t),
(10)

where A′ ∈ Rn×n, B′ ∈ Rn×1, C ′(t) ∈ R1×n, D′(t) ∈
R1×1. The output matrices can be time-dependent, due to
a time-varying point-of-interest.

In terms of (1), the symbolic transfer function from u to
y of (10) can be written as

P (p, t) =
y(p, t)

u(p, t)
=

1

mp2
+

l∑

n=1

b0,nc0,n(t)

mnp2 + dnp+ kn
. (11)

III. COMPLIANCE FEEDFORWARD CONTROL FOR A CLASS
OF LTV MOTION SYSTEMS

The proposed control scheme is illustrated in Fig. 4 and
consists of the following components,

1) Desired output signal; the signal yd can be a second-
order or higher setpoint, which typically has a continu-
ous first derivative (velocity), that is yd ∈ C1(0,∞);

Cfb P (rp)

Cff(rp)

ΣΣ −
e y

uff

yd

rp

u

Fig. 4: Block diagram of the proposed LTV feedforward
control scheme.

note that for the lithographic industry the scanning
interval of constant velocity (in-between the dashed
lines) is the interval in which the tracking error is
required to be sufficiently small;

2) Performance location function; in the case of position-
dependent dynamics, a real-valued function rp = rp(t)
is required, which indicates the point of interest (POI)
as a function of time t ∈ R; for a distributed parameter
system, rp is continuously differentiable at least once,
i.e. rp ∈ C1; note that in some applications rp = yd, e.g.
during wafer stage operation, in the x and y directions,
which are parallel to the stage;

3) Plant; the plant P (rp) is a Single-Input Single-Output
(SISO) flexible motion system, defined by (10), or
”equivalently” by (11); its performance location can be
static or time-varying in nature indicated by rp;

4) Feedback controller; the LTI feedback controller Cfb
acts on the error e between the setpoint and the plant
output, i.e. e = yd − y;

5) Feedforward controller; the feedforward controller Cff
accounts for the mass and time-varying compliance of
P ; it connects the setpoint yd to the output signal uff .

A. Controller derivation

Consider a system as in (1). A low-frequency approximation
can be derived by preserving the RB mode, i.e. Prb(s), plus
the total compliance, the latter is given in in (3). Assuming
the input and output signals admit Laplace transformations
U(s), Y (s), the low-frequency approximation is given by

P0,1(s) =
Y (s)

U(s)
= Prb(s) + C

=
1

ms2
+

l∑

n=1

b0,nc0,n
kn

.

(12)

Given a time-varying compliance function C = C(t), the
input-output relation in time-domain can be represented by

P0,2(p) =
y(t)

u(t)
=

1

mp2
+ C(t)⇔

y =
1

m

t∫∫
u(τ)dτ + C(t)u(t)⇔

mÿ(t) = u(t) +m( ¨C(t)u(t)).

(13)



The plant in (13) provides an accurate plant approximation in
the low frequency interval only. Plant inversion of (13) would
(if possible) produce a model-based feedforward controller
which can account for low-frequency output disturbances, i.e.
tracking setpoints commonly used in such systems. Assum-
ing yd a desired output trajectory and uff the desired control
input, yields the feedforward control differential equation

üff (t) = −
2Ċ(t)

C(t)
u̇ff (t)−

1 +mC̈(t)

mC(t)
uff (t) +

1

C(t)
ÿd.

(14)

As it can be seen, a critical issue in solving (14) is the
division by the compliance function C(t). This results in
the possibility of division by zero, namely if the compliance
function becomes zero, as found in [13]. Furthermore, even
if C(t) is non-zero and slowly varying, it can be shown that
the solution to (14) is only marginally stable if C(t) < 0,
causing undesirable undamped oscillations.

To resolve the possible non-feasibility of the inversion, a
plant modification is introduced which allows for inversion
and simultaneously maintains a fairly accurate low frequency
plant description. This is achieved by pre-filtering the time-
varying compliance function C(t) with a second-order low-
pass filter, as shown in Fig. 5. Note that a second (or
arbitrarily higher) order low-pass filter is required to prevent
division by zero when solving for the signal v(t). The plant

C(t)a2

(p+a)2

1
mp2

u(t) v(t)
Σ

y(t)

Fig. 5: Plant approximation P2(p) underpinning the proposed
feedforward controller, consisting of a RB mode, and second-
order low-pass filter cascaded with a time-varying gain C(t)
which equals the time-varying compliance of the system.

to be inverted as illustrated in Fig. 5 is governed by the
equations

y(t) = C(t)v(t) +
1

m

t∫∫
u(τ)dτ ⇔

mÿ(t) = u(t) +m( ¨C(t)v(t)),

(15)

and

a2u(t) = v̈(t) + 2av̇(t) + a2v(t), (16)

where a > 0 denotes the cut-off frequency of the low-pass
filter. Given a desired trajectory yd(t) ∈ C1, solving (16)
with respect to v(t) and after substitution in (15), gives the

differential equation,

v̈(t) = −2a(amĊ(t) + 1)

a2mC(t) + 1︸ ︷︷ ︸
ξ1(t)

v̇(t)−a
2(mC̈(t) + 1)

a2mC(t) + 1︸ ︷︷ ︸
ξ2(t)

v(t)

+
a2m

a2mC(t) + 1︸ ︷︷ ︸
ξ3(t)

ÿd(t).

(17)

Since there is no explicit solution to (17), the signals v(t),
v̇(t), and v̈(t) for a given yd are obtained through numerical
integration. Utilizing (16) then gives the control input by

uff (t) =
1

a2︸︷︷︸
µ1

v̈(t) +
2

a︸︷︷︸
µ2

v̇(t) + v(t).
(18)

In state-space form, the feedforward controller can be written
and implemented as

ẋ(t) =

[
0 1

ξ2(t) ξ1(t)

]

︸ ︷︷ ︸
AFF (t)

x(t) +

[
0

ξ3(t)

]

︸ ︷︷ ︸
BFF (t)

ÿd(t),

uff (t) =
[
µ1ξ2(t) + 1 µ1ξ1(t) + µ2

]
︸ ︷︷ ︸

CFF (t)

x(t)

+
[
µ1ξ3(t)

]
︸ ︷︷ ︸
DFF (t)

ÿd(t),

(19)

where x(t) = [x1(t) x2(t)]
T = [v(t) v̇(t)]T . Naturally,

in the context of this control scheme, time-dependency of
the compliance function and its derivatives is introduced by
the POI function rp(t), thus yielding C(rp(t)), Ċ(rp(t)),
and C̈(rp(t)). A block diagram of this feedforward control
scheme is depicted in Fig. 6. Note that the second time-
derivative of yd is often known a priori.

∫ ∫
ΣΣ

µ2

µ1

ξ1

ξ2

ξ3d2

dt2

yd uffvv̇v̈

Fig. 6: Compliance compensating feedforward scheme.

B. Feasibility analysis

In terms of feasibility, as previously mentioned, division
by zero mid-experiment should be excluded, otherwise (17)
cannot have a solution. Moreover, for LTI cases, (17) needs
to be asymptotically stable in order for the feedforward con-
troller to be bounded-input, bounded-output (BIBO) stable.



Following this reasoning, a can be chosen as follows,




a ∈ R+ if C(t) > 0

a <
1√

−MC(t)
if C(t) < 0 (20)

which also translates to keeping the eigenvalues of AFF (t)
inside the left-half (complex) plane (LHP).

IV. NUMERICAL RESULTS

The simulation results given in this section illustrate the
compliance compensating feedforward control scheme when
applied to a beam system with a time-varying performance
location. For the plant, an Euler-Bernoulli beam is considered
[1][2], which is illustrated and specified in Fig. 7. These
specifications induce a frequency response that has similar-
ities to a typical wafer stage system. That is with respect
to both the RB and the first NRB mode’s frequency and
magnitude.

In frequency domain, the PDE describing this beam is
given by,

d4

dr4p
Y (s, rp) +

2325

3s+ 5 108
s2Y (s, rp) = 0. (21)

The solution to (21) yields the position-dependent trans-
fer function of the beam, Gd(s, rp) [13]. This infinite-
dimensional transfer function can be expanded via modal
approximation into its RB and infinite NRB modes, bringing
it to the form that closely matches (11) but still being of
infinite order. For simulation purposes, a finite-order model
can be obtained through truncation. In this simulation model
the RB and the first NRB mode of the beam will be included.
It should however, be mentioned that the modeling strategy
remains valid if more than one NRB modes are considered.

Given a pole λk, we define a = Re(λk), b = Im(λk),
c(rp) = Re(Res(λk, rp)), d(rp) = Im(Res(λk, rp)), where
Res(λk, rp) is the Cauchy residue of the pole λk (see [3]),
which is dependent on the point of interest function rp. The
first NRB mode of the beam is given by

G1(s, rp) =
Res(λ1, rp)

s− λ1
+
Res(λ∗1, rp)

s− λ∗1
=
2(c(rp)s− ac(rp)− bd(rp))

s2 − 2as+ a2 + b2
.

(22)

u(t)
y(t, rp)

rp rp = L

Cb(rp)

Fig. 7: Vertically-moving cantilever Euler-Bernoulli beam,
where u(t) the actuation force, y(t, rp) the displacement at
the point-of-interest rp, and Cb(rp) the position-dependent
compliance; length L = 0.6 [m], cross-sectional area A =
h2 = 10−4 [m2], mass density ρ = 7.75 · 103[kg/m3],
Young’s modulus E = 2 ·103[kg/(m ·sec2)], second moment
of area I = h4/12 = 10−4/12[m4], Kelvin-Voigt damping
cd = 10−3.
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Fig. 9: Fourth-order reference setpoint yd. The black dashed
lines enclose the critical scanning interval (constant velocity).

Naturally the frequency response along the beam changes
only through the residue, which affects only the zeros. The
poles of the structure remain unchanged, regardless of the
point of interest rp = rp(t). From (22) it can be seen that
the compliance of the single flexible mode is given by,

Cλ1(rp) = lim
s→0

G1(s, rp) =
−2(a c(rp) + b d(rp))

a2 + b2
. (23)

Generally, the compliance function of the beam does not
equal the compliance of its first NRB mode. Therefore
an adjustment in the compliance function is required to
correctly match the compliance to the infinite-dimensional
beam system, similar to the approximation in (12), however
now one NRB mode is preserved. The simulation model is
given as follows,

Gs(s, rp) = Grb(s) +G1(s, rp)− Cλ1
(rp) + Cb(rp), (24)

where the RB mode is given by

Grb(s) =
1

ρALs2
, (25)

and

Cb(rp) =
6L4 − 30L2r2p + 20Lr3p − 5r4p

120E I L
, (26)

is the compliance function of the beam, see [13].
Simulations were performed in continuous time. The

fourth-order trajectory yd in Fig. 9 is used as the track-
ing setpoint, in order to facilitate a comparison with snap
feedforward. Two example POI functions rp are chosen, one
staying in the area of the beam where C(rp) > 0, and the
other one also venturing toward the area where C(rp) < 0:

rp1(t) = 0.1 (1− cos(12.5πt)) , (27)

and
rp2(t) = 0.3 (1− cos(12.5πt)) . (28)
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Fig. 8: Simulation with position-dependent (black), (fixed) snap (gray) and (fixed) acceleration feedforward (red) for the
beam with a time-varying performance location, in closed loop; the scanning interval is enclosed by the vertical dashed
lines, while the (scaled) setpoint is drawn in dotted curves.

The feedback controller, which robustly stabilizes the beam
in the case that one or two NRB modes are included in the
model, irrespective of the position rp considered, is given by

Cfb(s) = CPID(s)C1st(s)N1(s)N2(s)Ns(s), (29)

where

CPID(s) =
1.64 108s2 + 6.48 1010s+ 9.93 1011

s
, (30)

C1st(s) =
1

s+ 2.088 105
, (31)

N1(s) =
s2 + 0.3184 s+ 5.191 107

s2 + 1.297 104s+ 5.191 107
, (32)

N2(s) =
s2 + 8.823 s+ 1.516 109

s2 + 7.008 104s+ 1.516 109
, (33)

and

Ns(s) =
6.25 10−6s2 + 7.226 s+ 2.088 108

s2 + 2890s+ 2.088 108
. (34)

For the case rp1 in (27), a cut-off frequency a1 =
7400 [rad/sec] was chosen, and for rp2 in (28) the cut-off
frequency is a2 = 4700 [rad/sec].

The simulation results are illustrated in Fig. 8, which
show the tracking error in closed loop using the proposed
feedforward controller (black), a fixed acceleration feed-
forward (red), and a position-independent (or fixed) snap
feedforward controller (gray), which was tuned to account
for the compliance at the base of the beam, i.e. Cb(0) in
(26). It can be seen that the proposed feedforward controller
results in a smaller error when compared both to snap feed-
forward and acceleration feedforward control. Superiority
over acceleration feedforward control can be understood in
terms of the more complex (position-dependent) model used
to calculate the proposed feedforward controller, which can

account for compliant part of the beam system and for
which acceleration feedforward is unable to compensate.
Snap feedforward control, while correctly tuned for the base
of the beam, starts to deteriorate the error, observed for both
POI functions. Moreover, the discontinuous, step-like control
inputs produced by the snap feedforward controller lead to
higher oscillations of the system, for which the smooth signal
produced by the proposed LTV controller does not suffer
from.

V. CONCLUSIONS AND REMARKS

Inspired by the snap feedforward [9] and the continuous
compliance compensation scheme [13], on which an accurate
compliance function was found, this paper further exploits
this information. More precisely, a model-based compliance
compensating feedforward controller is obtained for flexible
structures with a time-varying performance location. A low-
frequency approximation of the plant was used to produce
the controller, modified sufficiently in order to be invertible,
while its inverse is simultaneously stable. Simulations using
an Euler-Bernoulli beam’s PDE representation, a fourth-order
setpoint trajectory and two arbitrary point-of-interest time
functions indicate improved performance in terms of the
closed loop tracking error, regarding the compliant part of the
LTV system. In terms of wafer stage control, this may help
in reducing internal chuck deformations otherwise resulting
in the controlled stage dynamics.
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