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The growing requirements of persistent application systems challenge software engineers to provide the appro-
priate architectural infrastructure. Where the structure of the data is simple, file systems and operating systems are
sufficient to supply the infrastructure for the storage and use of data and the execution of programs. When the struc-
ture of the data becomes more sophisticated, data models implemented in databases may be used. The contribution
of orthogonal persistence [ABC+83] is to integrate the notions of long and short term data and to allow programs to
be treated as first class data objects [AM85]. As the application system evolves, more data, meta-data, programs and
users are accumulated and must be accommodated by a further step in architectural design. While process modelling
systems [War89] provide the conceptual support for this evolutionary style, there is no agreed software architecture to
supply these needs [FKN94].

The challenge in supporting process modelling systems is in efficiently providing the radically varying facilities
required by different process models [BPR91, RR96, WLM+98]. When implemented on a conventional software
architecture, there is often a repetition and duplication of both mechanism and policy in different architectural compo-
nents which conflict with each other and add complexity to the overall system. The repetition occurs when the same
policies are implemented in different components, and duplication occurs when the policies in different components
are radically different and may interact in an undesirable manner. This complexity makes it difficult to predict how
the system will perform, particularly in terms of failure semantics and run-time efficiency.

Process modelling systems may be seen as archetypal data intensive applications systems, sometimes referred to
as Persistent Application Systems (PASs) [AM95]. They are potentially long-lived, concurrently accessed and consist
of large bodies of programs and data. In particular, process models evolve frequently and therefore must accommodate
dynamic change within the application domain. Thus, the architectural problems encountered in implementing process
modelling systems are similar to, if not the same as, those investigated by the persistent programming community over
many years now [ABJ+92, ACO85, AM95, AMP86, BM92, BMM+92, Bro89, CBC+90, DBF+94, Dea88, DRH+92,
MDB+85, MS93, Mun93, Ros90].

This paper describes a new architectural approach to the construction of persistent systems that accommodates the
needs of particular applications. We describe this as being compliant to these needs. The architecture takes advantage
of the fact that persistent systems are well structured to discover the dynamically changing demands of applications;
since they define precisely the extent to which they are open, the computation which takes place within the persistent
environment may be relatively easily tracked.

The novelty of a compliant architecture is that the components are designed, top down, with the philosophy of
fitting the architecture to the needs of the particular application. This contrasts with the more traditional, bottom up,
approach of providing static abstract components or layers designed to meet the predicted needs of the majority of
applications. The key scientific advance, in our approach, is to separate mechanism and policy, a technique that has
been used before but not all at once, and consistently, on every component of the architecture.

We report here on our first attempt at building a compliant architecture. We start by proposing a generic architecture
for compliance and then show how it may be instantiated with components. We also show how the architecture operates
in a manner that is compliant to a target application.

The key components of our initial compliant architecture are: a nano-kernel, HWO, and its associated library-
based operating system which together constitute the Arena system [May93, MB97]; a new persistent programming
language, ProcessBase [MBG+99]; and the mechanisms for defining and separating policy and mechanism. We
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postulate, since we have not yet measured, that the benefits of compliant architectures will be a reduction in complexity,
with corresponding gains in flexibility, portability, understandability in terms of failure semantics, and performance.
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