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Abstract

While a large fraction of application system code is
devoted to user interface (UI) functions, support for reuse in
this domain has largely been confined to creation of UI tool-
kits (“widgets”). We present a novel architectural style
directed at supporting larger grain reuse and flexible system
composition. Moreover, the style supports design of distrib-
uted, concurrent, applications. A key aspect of the style is
that components are not built with any dependencies on
what typically would be considered lower-level components,
such as user interface toolkits. Indeed, all components are
oblivious to the existence of any components to which notifi-
cation messages are sent. Asynchronous notification mes-
sages and asynchronous request messages are the sole basis
for inter-component communication. While our focus has
been on applications involving graphical user interfaces,
the style has the potential for broader applicability. Several
trial applications using the style are described1.

1.0 Introduction

Software architectural styles are key design idioms
[PW92][GS93]. Unix’s pipe-and-filter style is more than
twenty years old; blackboard architectures have long been
common in AI applications. User interface software has typ-

1. This material is based upon work sponsored by the Air
Force Materiel Command, Rome Laboratory and the
Advanced Research Projects Agency under contract number
F30602-94-C-0218. The content of the information does not
necessarily reflect the position or policy of the Government
and no official endorsement should be inferred.

ically made use of two primary run-time architectures: the
client-server style (as exemplified by X windows) and the
call-back model, a control model in which application func-
tions are invoked under the control of the user interface.
Also well known is the model-view-controller (MVC) style
[KP88], which is commonly exploited in Smalltalk applica-
tions. The Arch style is more recent, and has an associated
meta-model [Wor92].

This paper presents a new architectural style. It is
designed to support the particular needs of applications that
have a graphical user interface aspect, but the style clearly
has the potential for supporting other types of applications.
This style draws its key ideas from many sources, including
the styles mentioned above, as well as specific experience
with the Chiron-1 user interface system [TJ93]. In the fol-
lowing exposition, the style is referred to as the Chiron-2, or
C2, style.

A key motivating factor behind development of the C2
style is the emerging need, in the user interface world, for a
more component-based development economy. User inter-
face software frequently accounts for a very large fraction
of application software, yet reuse in the UI domain is typi-
cally limited to toolkit (widget) code. The architectural style
presented supports a paradigm in which UI components,
such as dialogs, structured graphics models (of various lev-
els of abstraction), and constraint managers, can more
readily be reused. A variety of other goals are potentially
supported as well. These goals include the ability to com-
pose systems in which: components may be written in dif-
ferent programming languages, components may be running
in a distributed, heterogeneous environment without shared
address spaces, architectures may be changed dynamically,
multiple users may be interacting with the system, multiple
toolkits may be employed, multiple dialogs may be active
(and described in different formalisms), multiple media
types may be involved, and multiple user tasks (“pro-



cesses”) supported. We have not yet demonstrated that all
these goals are achievable or especially supported by this
style. We have examined several key properties and built
several diverse experimental systems, however. The focus
of this paper, therefore, is to present the style and describe
the evidence we have to date. We believe our preliminary
findings are encouraging and that the style has substantial
utility “as is.” Further studies will examine the degree to
which the style supports attainment of the various goals.

The new style can be informally summarized as a net-
work of concurrent components hooked together by mes-
sage routing devices. Central to the architectural style is a
principle of limited visibility: a component within the hier-
archy can only be aware of components “above” it, i.e.,
components typically closer to the “application,” and thus
further from, e.g., the windowing system2. Components are
totally unaware of the components—including toolkits—
which reside “beneath” them. All components have their
own thread(s) of control and there is no assumption of a
shared address space. It is also important to recognize that
this conceptual architecture is distinct from the implementa-
tion architecture. There are many ways of realizing a given
conceptual architecture, and this topic will be briefly dis-
cussed later.

A small example serves to illustrate several of these
points. In Figure 1, we diagram a system in which a pro-
gram alternately pushes and pops items from a stack; the
system also displays the stack graphically, using the visual
metaphor of a stack of plates in a cafeteria. The human user
can “directly” manipulate the stack by dragging elements to
and from it, using a mouse. As the user drags elements
around on the display, a scraping sound is played. Whenever
the stack is pushed, a sound of a spring being compressed is
played; whenever the stack is popped, the sound of a plate
breaking is played.

2. It is sometimes convenient to consider an application sys-
tem as being subdivided into two parts: one part being those
aspects of the system which do not directly perform any user
interface functions (the “application”), and the other part
being those aspects concerned with interacting with the user
(the “user interface”). Such a distinction is rather arbitrary,
and can usually be read as “those parts of an application sys-
tem constructed according to our architectural style and prin-
ciples, and those parts which are not”

Notions of above and below are used in this paper to sup-
port an intuitive understanding of the architectural style. In
this discussion the application code is (arbitrarily) regarded as
being at the top while user interface toolkits, windowing sys-
tems, and physical devices are at the bottom. (The human user
is thus at the very bottom, interacting with the physical
devices of speaker, keyboard, mouse, microphone, and so
forth.) While this vertical orientation may be helpful in devel-
oping understanding, it should be noted that the precise uses
of top and bottom, provided below, do not rest on assumption
of this particular vertical orientation.

FIGURE 1. An audio-visual stack manipulation
system.

Visual depiction of the stack is performed by the “art-
ist” that receives notification of operations on the stack and
creates an internal abstract graphics model of the depiction.
The rendering agent monitors manipulation of this model
and ultimately creates the pictures on the workstation
screen. To produce the audio effects, the sound server at the
bottom of the hierarchy monitors the notifications sent from
the artist and the graphics server; depending on the events
detected, the various sounds are played. Performance is
such that playing of the sound is very closely associated
with mouse movement; there is no perceptible lag. The art-
ist and rendering agent are completely unaware of the activ-
ities of the sound server; similarly, the stack manipulator is
completely unaware that its stack object is being visualized.

The paper is organized as follows. Section 2.0 presents
the new architectural style. Section 3.0 presents a set of
sample applications that have been built to investigate vari-
ous aspects of the style. Section 4.0 discusses related work.
Discussion of a large list of open issues and a conclusion
round out the paper.

2.0 A UI architectural style supporting
heterogeneity, concurrency, and
composition

In this section we present thearchitectural style and its
rationale. Key elements of the C2 architectural style are
components and connectors. A configuration of a system of
connectors and components is anarchitecture. There is also
a set of principles governing how the components and con-
nectors may be legally composed. We attempt to provide a
rationale for the desired properties of the components and
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connectors, as well as the choice of principles. Due to space
constraints, our presentation is largely informal.

The architectural style consists ofcomponents andcon-
nectors. Components and connectors both have a defined
top and bottom. The top of a component may be connected
to the bottom of a single connector. The bottom of a compo-
nent may be connected to the top of a single connector.
There is no bound on the number of components or connec-
tors that may be attached to a single connector. Components
can only communicate via connectors; direct communica-
tion is disallowed. When two connectors are attached to
each other, it must be from the bottom of one to the top of
the other. Both components and connectors have semanti-
cally rich interfaces.

Components communicate by passingmessages: notifi-
cations travel down an architecture andrequests up. Con-
nectors are responsible for the routing and potential multi-
cast of the messages.

2.1 Components
Components have state, their own thread(s) of control,

and a top and bottom domain. The top domain specifies the
set of notifications to which this component responds, and
the set of requests that this component emits up an architec-
ture. The bottom domain specifies the set of notifications
that this component emits down an architecture and the set
of requests to which it responds. (The elements of a bottom
domain’s sets are closely related, as will be discussed later.
The two sets comprising the top domain do not necessarily
have any relation.)

For purposes of exposition below, a specific internal
architecture, targeted at the user interface software domain,
is assumed. (It will be clear from the ensuing discussion that
issues concerning composition of an architecture are inde-
pendent of a component’s internal structure.) Components
contain an object with a defined interface, a wrapper around
the object, and a dialog and constraint maintenance pro-
gram, as shown in Figure 2. The object can be arbitrarily
complex. (For example, one component’s object might be a
complete structured graphics model of the contents of a
window.) An object’s wrapper provides the following ser-
vice: whenever one of the access routines of the object’s
interface is invoked, the wrapper reifies that invocation and
its return values as a notification (in the component’s bottom
domain) and sends the notification to the connector below
the component3. Thus the types of notifications emitted
from a component are determined by the interface to its
internal object.

A domain translator subcomponent may also be
present, to assist in mapping between the component’s inter-

3. Components can alternatively be formulated such that the
wrapper sends the connector the state, or part of the state, of
the internal object. This variation is discussed briefly in
Section 5.0.

nal semantic domain and that of the connector above it.

FIGURE 2. The Internal Architecture of a C2
Component.

The access routines of the object may be invoked (only)
by the dialog portion of a component. This code, which has
its own thread of control, may act upon the object for any
reason, but the intended style includes three situations: a) in
reaction to a notification that it receives from the connector
above it, b) to execute a request received from the connector
below it, and c) to maintain some constraint, as defined in
the dialog.

For case (a), the dialog receives a notification in its top
domain and determines what, if anything, to do as a result of
receiving the notification.

In case (b), the component receives a request in its bot-
tom domain and determines what, if anything, to do with the
request. For instance, it could choose to delay processing of
the request, ignore it, perform it without any additional pro-
cessing, or perhaps perform some other action.

Case (c) is best understood by considering its user
interface purpose: constraint managers are commonly
employed in GUI applications to resize fields, planarize
graphs, or otherwise keep parts of objects in some defined
juxtaposition. The constraint portion of a component can
play this role either as part of case (a) or (b), or the con-
straint manager may autonomously manipulate the compo-
nent’s object.

The dialog portion of a component may, in addition,
choose to send a request to the connector above it. These
requests should be phrased in terms of a function of the con-
nector’s top_in domain, a property which derives from the
definitions in Section 2.4.

2.2 Notifications and Requests
Components in an architecture communicate asynchro-

nously via messages. There are two types of messages: noti-
fications and requests. A notification is sent downward
through a C2 architecture while a request is sent up. Notifi-
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cations are announcements of state changes of the internal
object of a component. As noted above, the types of notifi-
cations that a component can emit are fully determined by
the interface to the component’s internal object.

For instance, consider a small system consisting of two
components connected by one connector, as shown in
Figure 3. One component manages a binary tree abstract
data type (ADT) while the other component manages a
depiction of that binary tree4. An example notification from
the ADT component is “new key has been inserted”. This
notification is generated automatically by the wrapper that
monitors the usage of the component’s internal object. The
Artist component receives the notification and makes calls
to its internal object to update the depiction.

FIGURE 3. A partial C2 architecture.

Requests, on the other hand, are directives from com-
ponents below, generated by their dialog, requesting that an
action be performed by some set of components above. The
requests that a component can receive are determined by the
interface to the component’s internal object, similar to the
way that notifications are determined. The difference is that
a notification is a statement of what interface routine was
invoked and what its parameters and return values were,
whereas a request is a statement of a desired invocation of
one of the object’s access functions.

To continue the example, the user may select a node of
the binary tree depiction, managed by the Artist, indicating
that the node should be removed from the tree. A request to
remove the key associated with the selected node is gener-
ated by the Artist and sent by the connector to the ADT. The
Binary Tree Component removes the key from its internal
object to satisfy the request. This, in turn, generates a notifi-
cation down the architecture, stating that the key has been
deleted, causing the Artist to update its depiction.

Note that many potential C2 components, such as com-
mercial user interface toolkits, have interface conventions
that do not match up with C2’s notifications and requests.
Typically these systems will generate events of the form
“this window has been selected” or “the user has typed the
letter ‘a’” and send themup an architecture. These toolkit
events will need to be caught by C2 bindings to the toolkits
(i.e., adaptors) and converted into C2 request messages.

4. For purposes of this discussion, the external applications
using the binary tree, as well as the other components and
connectors needed to actually display the depiction are elided.

Binary Tree Artist
Component

Binary Tree ADT
Component

Connector

Conversely, notifications from a C2 architecture will have to
be converted to the type of invocations that a toolkit
expects. In order for these translations to occur and be
meaningful, careful thought has to go into the design of the
internal objects of the bindings to the toolkits such that they
contain the required functionality and are reusable across
architectures. (This is not an unreasonable task: we have
already accomplished this for both Motif and OpenLook.)

2.3 Connectors
Connectors bind components together into a C2 archi-

tecture. They may be connected to any number of compo-
nents as well as other connectors. A connector’s primary
responsibility is the routing and broadcast of messages. A
secondary responsibility is message filtering.

2.3.1 Broadcast Policies
Connectors may provide a number of filtering and

broadcast policies for messages, such as the following.

• No Filtering: Each message is sent to all connected
components on the relevant side of the connector (bot-
tom for notifications, top for requests).

• Notification Filtering: Each notification is sent to only
those components that registered for it.

• Conditional: The connector defines an ordering (i.e. pri-
ority ranking) over its connected components and sends
a notification to each component in order until some
condition has been met. This is useful for cases in
which components connected to one side of the connec-
tor all perform the same function (with possibly differ-
ent implementations) and a destination is computed
based on current conditions.

A connector has an upper and lower domain, defined by
the components and connectors5 attached to it. These are
described in the following section.

2.4 Architecture Composition and Properties
An architecture consists of a specific configuration of

components and connectors. The meaningfulness of an
architecture is a function of the connections made. This sec-
tion formalizes several key relationships. In addition to aid-
ing precise exposition, the formalizations are the basis for
automated analyses of candidate architectures by a design
environment [RWMT95].

Let bottom_in be the set of requests received at the bot-
tom side of a component or connector. Letbottom_out be
the set of notifications that a component or connector emits
from its bottom side. Furthermore, lettop_in be the set of
notifications received on the top side of a component or con-
nector, and lettop_out be the set of requests that they send
from their top sides.

5. For the purposes of the discussion below, we do not make
a distinction between components attached to a connector and
a connector attached to a connector.



Figure 4 represents the external view of a component
Ci. Ci.top_out andCi.top_in are defined by the component’s
dialog: they are the requests it will be submitting and notifi-
cations it will be handling.Ci.bottom_out are the notifica-
tions the component will be making, reflecting changes to
its internal object.Ci.bottom_in are the requests the compo-
nent accepts. In keeping with the discussion of Section 2.2,
the types of those requests can be defined as a function,
N_to_R, of the notifications

This function is 1-to-1 and onto; it has an inverse func-
tion, R_to_N, that will uniquely map the requests to notifica-
tions.

FIGURE 4. C2 Component Domains

Figure 5 represents the external view of a connector Bi,
with the components Ctj and Cbk attached to its top and bot-
tom respectively. A connector’s upper and lower domains
are completely specified in terms of these components.

FIGURE 5. C2 Connector Domains

Consider the notifications that come in from the com-
ponents Cti above the connector:

Ci .bottom_in N_ to_ R Ci .bottom_out( )=

Ci

Ci.top_out Ci.top_in

Ci.bottom_outCi.bottom_in

...

Bi

Bi.top_inBi.top_out

Bi.bottom_inBi.bottom_out

Ct1 Ct2 Ctn

...Cb1 Cb2 Cbm

Then, since connectors may have the ability to filter
messages, as discussed in Section 2.3.1, the notifications
that come out of the bottom of a connector are a subset of
the notifications that come in from above. Thus, for each
connector Bi, it is possible to identify the functionFil-
ter_TB, such that

Similarly, consider the requests that come in from the
components Cbk below the connector:

Finally, if it is also possible for a connector to filter
requests, the requests that come out of the top of a connector
are a subset of those that come in from below, so that the
functionFilter_BT is defined as follows

In summary, a connector’s domain is defined by the
unions of the domains of the components above and below
it, along with any filtering that the connector does to those
domains.

Pairwise relationships can be specified between the
domains of any connector and the component attached to it.
These relationships are expressed in terms of the potential
for communication between them.

A connector Bi and the j-th component above it, Ctj, are
consideredfully communicating if every request the connec-
tor sends up to the component is “understood.”

Bi and Ctj arepartially communicating if the compo-
nent understands some, but not all of the requests the con-
nector sends.

Finally, they arenot communicating as follows:

The relationship between a connector Bi and a compo-
nent Cbk below it can be defined in a similar manner, by
substituting ‘bottom_out’ for ‘top_out’ and ‘top_in’ for
‘bottom_in’ in the above equations.

The degree of utilization of a component’s services,
i.e., the relationship between a component and a connector
from the perspective of the requests and notifications the

Bi .top_in Ctj .bottom_out
j

∪=

Bi .bottom_out Filter_ TB Bi .top_in( )=

Bi .bottom_in Cbk.top_out
j

∪=

Bi .top_out Filter_ BT Bi .bottom_in( )=

Full- Comm Bi Ctj,( ) ≡
Bi . top_ outj Ctj .bottom_in⊆

Partial- Comm Bi Ctj,( ) ≡
Bi .top_outj Ctj .bottom_in∩ ∅≠( ) ∧
Bi .top_outj Ctj .bottom_in∩ Bi .top_outj⊂( )

No- Comm Bi Ctj,( ) ≡
Bi .top_outj Ctj .bottom_in∩ ∅=



componentreceives from the connector can be defined
through a simple substitution of terms in the three equations
above. For instance, if Bi.top_out is a non-empty proper
subset of Ctj.bottom_in, then Ctj is beingpartially utilized.

Finally, by utilizing the specified functions and rela-
tionships, it is possible to express a number of other rela-
tionships in a given configuration (e.g., Bi.bottom_out can
be expressed as a function ofCtj.bottom_in).

These definitions enable us to answer such questions as
whether a component can be added to an existing architec-
ture without modifications, whether its requests will be han-
dled, if it will be able to process the notifications it will be
receiving, etc. Conceivably such analyses could be per-
formed either statically or dynamically. We are currently
focusing only on analyses performed statically, on a model
of an architecture, by a system development environment.

The C2 design environment is also intended to provide
support for domain translation. Substrate independence has
a clear potential for fostering substitutability and reusability
of components across architectures. One issue that must be
addressed, however, is the potential dependence of a given
component on its “superstrate,” i.e., the components above
it. If each component is built so that its top domain closely
corresponds to the bottom domains of those components
with which it is specifically intended to interact in a given
architecture, its reusability value is greatly diminished. For
that reason, the C2 style introduces the notion of request
translation. For each component, a mapping from generic
requests to the specific interfaces of those the connector
above it can be produced and encapsulated in the domain
translator sub-component. Producing this mapping will take
place in the development environment by the system archi-
tect.

2.5 Design and Development Environment
The specific architecture formed when components are

connected plays as large a role in determining the behavior
of the overall system as the internal logic of the compo-
nents. For that reason, development tools that operate on
architectural specifications are as important as tools that
work on individual components. This section describes the
goals of a design environment [FGNR92] for building C2-
style architectures. A prototype of such an environment has
been built (See Section 3.3), and work is continuing
[RWMT95].

The C2 design environment will be an editor in which
designers can construct a model of a software system, have
that model checked for syntactic and semantic correctness,
receive some domain-specific feedback about various
design qualities, keep track of unfinished steps in the design
process, and view example architectures. Because diagrams
are so effective for describing software architectures, the C2
design environment will use a graphical front end to a pre-
cise internal representation.

Given additional implementation details as annotations
on the internal abstract architectural description, a design
environment also holds the promise of automatically gener-
ating some parts of the final system. Examples of imple-
mentation details include grouping of components into
operating system processes and location of source files that
implement individual components. Examples of generated
parts include makefiles, process invocation scripts, and rout-
ing tables in cases where connectors are implemented with
static routing. When implementation details are incomplete,
the design environment may be able to generate some parts
by use of defaults, hints, or rules.

2.6 Principles of the C2 Architectural Style
The architectural style is characterized by several prin-

ciples, the collection of which distinguish it from other UI
architectures (subsets of the principles, of course, character-
ize a variety of other systems). A few of these are described
below.

• Substrate Independence- a component is not aware of
the components below it. In particular, the notification
of a change in a component’s internal object is entirely
transparent to its dialog. Instead, the wrapper does this
automatically when the dialog accesses the internal
object. However, even the wrapper only generates a
message, not knowing whether anyone will receive it
and respond. Substrate independence fosters substitut-
ability and reusability of components across architec-
tures.

• Message-based Communication - all communication
between components is solely achieved by exchanging
messages. This requirement is suggested by the asyn-
chronous nature of applications that have a GUI aspect,
where both users and the application perform actions
concurrently and at arbitrary times and where various
components in the architecture must be notified of
those actions. Message-based communication is exten-
sively used in distributed environments for which this
architectural style is suited.

• Multi-thread - this property is also suggested by the
asynchronous nature of tasks in the GUI domain. It
simplifies modeling and programming of multi-user
and concurrent applications and enables exploitation of
distributed platforms.

• No assumption of shared address space - any premise
of a shared address space in an architectural style that
allows composition of heterogeneous components,
developed in different languages, with their own
threads of control, internal objects, and domains of dis-
course, would be unreasonable.

• Implementation separate from Architecture - many
potential performance issues can be remedied by sepa-
rating the design architecture from actual implementa-
tion techniques. For example, while the C2 style



disallows any assumptions of shared threads of control
and address spaces in a design architecture, substantial
performance gains may be made in the actual imple-
mentation by placing multiple components in a single
process and a single address space where appropriate.
Furthermore, modelling the exchange of messages
among components by procedure calls where appropri-
ate could yield performance gains.

3.0 Examples and Trial Applications

To formulate a viable new architectural style is a major
undertaking. A variety of experiments and proof-of-concept
exercises are needed just to assess initial plausibility of the
key ideas. As we are especially concerned with user inter-
face applications, and since performance is a critical factor
in assessing the viability of any technology in this domain,
we have conducted a variety of research prototypes. The
trial applications described below, as well as the example of
Section 1.0, are results of projects completed by students in
a graduate-level course on user interfaces at the University
of California, Irvine (UCI). These trial applications were
designed as small-scale experiments to examine one or
more aspects of the C2 style. We present a selection of these
prototypes here, focusing on those which examined the
style’s visibility rules and multi-component nature. Space
constraints prohibit discussion of a multi-user distributed
appointment system. With the exception of the modeling
workbench (Section 3.3), these applications were imple-
mented using the Chiron-1 user interface system [TJ93].

3.1 A Petri Net Tool with Multiple Place Symbols
This example consisted of building a Petri Net editor

and simulator such that places in the net are depicted by
polygons whose number of sides equals the number of
tokens inside each place. Clearly, places with zero, one, or
two tokens cannot be represented by polygons. For the pur-
pose of this exercise, they were depicted by an empty circle,
a point (dot), and a line respectively. Every time a transition
is fired, the shapes of all the places connected to that transi-
tion will change.

In order to achieve this, an existing Chiron-1 Petri Net
artist was redesigned to fit the C2 architectural style by sep-
arating the layout of the Petri Net from its presentation. In
addition, the presentation of places with different numbers
of tokens was entrusted to separate components. The result-
ing architecture is shown in Figure 6. The Petri Net Layout
Artist maintains the coordinates of places, transitions, and
arcs, addresses issues of adjacency, and maintains logical
associations with ADT objects. At the same time, it has no
knowledge of the artists in the presentation layer or the
actual look of the Petri Net.

The project illustrates the substrate independence prin-
ciple, as well as the multi-level and multi-component nature
of the style. The separation of the presentation from the lay-
out enabled the designers to easily change the presentation

of Petri Net places from the standard circle-with-dots-as-
tokens to polygons. The components in the presentation
layer are simple and entirely independent of each other.
They can be added, interchanged, or substituted with new
ones, without affecting the rest of the system.

FIGURE 6. Petri Net places are polygons whose
number of sides equals the number of
tokens

3.2 Graph Editor with Constraints
This exercise focused on a simple boxes-and-arrows

editor, where arrows are constrained to begin and end on
edges of certain boxes. As boxes are moved, the arrows are
updated accordingly.

The architecture is shown in Figure 7. The Network
component maintains a graph of nodes with their incoming
and outgoing links. The Layout block defines the geometry
of various types of nodes and maintains their display coordi-
nates and associations with Network objects. The Constraint
Manager generates and maintains constraints: for each link
between two nodes in a graph, the Manager builds a set of
linear constraints based on the geometry of the nodes. The
Manager receives the same notifications as the Graphics
server. These notifications are processed, constraints
applied, and requests sent back to the Layout artist, so that
positions may be updated6.

This example highlights one goal of our work: to be
able to include a complex constraint manager in a UI archi-
tecture, where its inclusion had not been previously

6. Note that other topologies are probably preferable for this
application, namely placing the constraint manager above the
rendering agent/window manager. The purpose of this exer-
cise was to examine feasibility issues and was done by evolv-
ing a legacy system.
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planned. Most constraint managers described in the UI liter-
ature are large and often intertwined with the rest of the sys-
tem [Mye89] This exercise demonstrated C2’s ability to
incorporate such a manager in a very clean way. While per-
formance may become an issue in such a configuration, no
slowdown was noticed in this simple trial.

FIGURE 7. A constraint manager is added as a
server to a drawing editor system

3.3 A Workbench for Experimenting with Multi-
Level Software Architectures

This exercise focused on building a modeling work-
bench in which various issues related to C2 could be
explored. A model was built of a simple stack application.
That model was embellished with various design features in
order to explore trade-offs such as the choice between
broadcasting (an abstraction of) the state of a component
when it changes or broadcasting notifications as described
above. Also explored was the usefulness of allowing the
domain of a component to vary over time, as a function of
its current state. The concept of a domain translator was
explored, both for its own usefulness and in combination
with run-time domain representation.

The modeling was done programmatically in Self
[US91]. Self allowed convenient what-if analysis via both
programmatic changes and direct manipulation of the model
in Self’s graphical inspector. Components were modeled as
Self objects. Paths between connectors and components
were modeled as pointers. Messages were modeled as Self
message sends. Connectors were modeled as Self objects
that responded to messages by resending them to all appro-
priate components. Domains were modeled as Self objects
containing a list of available operations. In addition to vari-
ous insights which resulted and which are reflected in this
paper, the need for a modeling and design environment to
aid the system designer to visualize and manipulate C2 style
architectures was clearly highlighted.

4.0 Related Work

The C2 work draws from the work of many other
researchers and systems. We highlight a few of them here,
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discussing them in a framework of fundamental concepts
which influenced the C2 architectural style.

4.1 Implicit Invocation
In the C2 style, implicit invocation occurs when a com-

ponent reacts to a notification sent down an architecture by
invoking some code. The invocation is implicit, because the
component which initially issued the notification did not
know if the notification would cause any reaction, and the
notification certainly did not explicitly name an entry point
into a component below it. An excellent discussion of the
benefits of implicit invocation can be found in [SN92], as
embodied in their mediators concept. The Chiron-1 system
[TJ93], through its transmission of abstract data type modi-
fication events to potentially reactive artists, also supports
implicit invocation. This is similar to VisualWorks [Inc94],
a Smalltalk GUI library based on the Model-View-Control-
ler paradigm [KP88], where the model broadcasts change of
state notifications to views and controllers. While many sys-
tems employ implicit invocation for its benefits in separat-
ing modules, the C2 style extends this by providing a
discipline for ordering components which use implicit invo-
cation, yielding substrate independence.

4.2 Messages and Message Mechanisms
Message mechanisms in existing systems transmit

either service requests, events (notifications), objects, or a
combination. Existing systems are distinguished by any dis-
cipline imposed on message use and by consequential usage
styles. Both Chiron-1 and X windows [SG86] use service
request and notification messages. However, their use of
notification messages varies: Chiron-1 notifications come
from either the application or the graphics server, yielding a
separation of concerns between application and depiction, a
feat X cannot duplicate. The Field [Rei90] and SoftBench
[Cag90] systems also use service request and notification
messages. However, unlike Chiron-1 and X, messages in
these two systems have no discipline on their use; the two
message types are indistinguishable.

In the Weaves system [GR91], concurrently executing
tool fragments communicate by passing (pointers to)
objects. This passing of objects causes Weaves to be used in
a data flow manner. Weave systems do not, to our knowl-
edge, involve data moving both forwards and backwards in
a weave. Additionally, there is no notion of reifying as mes-
sages (or objects) service invocations upon an internal
abstract object.

Experience from the Chiron-1 system indicates that if
message traffic occurs across a process boundary in a non-
shared address space, then inter-process communications
(IPC) becomes a key performance determinant. Experience
with the Avoca system [BO94] provides confirmation.
These observations motivate a key goal of the C2 style: to
provide a discipline for using service request and notifica-
tion messages which can be mapped to either inter- or intra-



process message mechanisms as needed.

4.3 Layered Systems
Concentrating solely on the layering in their architec-

ture, existing approaches span a wide range. Both Field and
SoftBench have only a single layer, while the client/server
spilt of X supports two. The Chiron-1 system has three lay-
ers, the application, artists, and graphics server. The Arch
Model (an extension of the Seeheim [Pfa83] model) and the
Slinky User Interface MetaModel [Wor92] partition the
work of supporting user interfaces into five layers, known as
the domain-specific (i.e., “application”) component, domain
adaptor, dialogue, presentation, and interaction toolkit com-
ponents. (The dialog component may be further subdivided
to arbitrary levels [Cou91].)

In contrast to these existing systems, the C2 architec-
tural style does not assume that a certain number of layers is
“magic” and allows layering to vary naturally with applica-
tion domain. In this, the C2 style is similar to the compos-
able, parameterized components of the GenAvoca style
[BO94], which may also be layered naturally to handle each
specific domain. Furthermore, C2 provides a layering mech-
anism based on implicit invocation, rather than the explicit
calls of the GenAvoca style. This allows the C2 style to pro-
vide greater flexibility in achieving substrate independence
in an environment of dynamic, multi-lingual components. In
particular component recompilation and relinking can be
avoided and on-the-fly component replacement enabled
through use of the message mechanisms.

4.4 Language and Process Support
Many existing systems can support multiple languages,

though they are often skewed heavily towards a single lan-
guage and process subdivision. For example, while there are
now many different language bindings for the X system, it
still remains the case that C (and C++) is the preferred lan-
guage for X development. In the extreme, a particular sys-
tem is tied to a given language, as VisualWorks is to
Smalltalk. In contrast, C2 embodies no language assump-
tions; components may be written in any convenient lan-
guage. To support this, C2 employs technology and
embodies wisdom from previous multi-lingual systems
[Kad92] for mapping parameters from one type system to
another and avoiding conflicts in runtime language support,
heap memory allocation, and use of operating system
resources.

Existing systems tend to be rigid in terms of their pro-
cess mappings. At one extreme, X applications contain
exactly two processes, a client and a server. While there is
greater process flexibility in VisualWorks and Weaves, both
of these systems assume a shared address space. It is only
with systems such as GenAvoca, Field/SoftBench, and C2
that simultaneous satisfaction of arbitrary numbers of pro-
cesses in a non-shared address space is achieved.

While individual systems share key features with the

C2 architectural style, the goal of simultaneous satisfaction
of implicit invocation via notifications, inter- and intra-pro-
cess message mechanisms, domain-specific architectural
layering, and multi-language and multi-process support dif-
ferentiates C2 from existing work, and motivates our future
work.

5.0 Open Issues

Many issues crucial to the C2 style have been explored
in detail and several applications completed. Nonetheless,
assessing any new architectural style takes many years.
When pipe and filter or client/server paradigms were intro-
duced, it was unlikely that all of the ramifications and
required improvements could have been forecast in the
beginning. Similarly, we have not yet answered, or even
asked, all of the questions about the style. However, we do
recognize that certain areas warrant further study.

• As specified in this paper, notifications are reifications
of operations that occurred within a component. As
such, they are equivalent to messages encapsulating
deltas to the state of the component. An alternative is to
send out the full state of the component. We chose the
state delta approach because of our successful experi-
ence with it in the Chiron-1 system. There are circum-
stances when full state broadcast is more beneficial,
such as when the recipient would react to a notification
of an event by issuing a series of queries. Choice of the
nature of the notifications is orthogonal to other aspects
of the architecture. We will attempt to develop charac-
terizations of the situations favoring each choice.

• All of the applications built thus far have been relatively
small. The style, on the other hand, is also intended for
large-scale systems that reuse components and build
extensive multi-level hierarchies. In order to fully sup-
port compositionality, is a mechanism needed to sup-
port “recursive” application of the stylewithin a
component?

• Connectors in the architectural style have properties
similar to software buses. There are numerous existing
bus technologies that may be suitable in the implemen-
tation of an architecture. Examples include Chiron 1.4
dispatchers, Tooltalk, Softbench, and CORBA. We
need to determine under what circumstances these
could or should be used.

• One trade-off that is likely to occur is between scalabil-
ity and performance. All the trial applications com-
pleted thus far have shown excellent performance, but
they have also been smaller-scale systems. What will
happen when the applications start to grow? Will the
threshold of scalability with respect to performance be
reached, and when?

• The new architectural style admits fine-grain distribu-
tion, where each component and connector may be con-
tained in its own process, may have its own address



space, and may be running on different machines, and
even different platforms. When is this appropriate?
What operating systems, programming languages, and
interprocess communication mechanisms will support
the performance required?

6.0 Conclusion

User interfaces of emerging systems are rich and com-
plex. Future systems will be increasingly distributed, com-
plex, multi-media, heterogeneous, and multi-user.
Supporting such interfaces in a cost-effective manner
demands the use of open architectures, architectures that
enable a marketplace of components to flourish. C2 is being
developed in an attempt to create the basis for such architec-
tures. The C2 style exploits and generalizes key techniques
from a variety of previous systems to achieve this. One
notable characteristic is the inability for a component to
have dependencies on the technologies upon which it rests.
Rather a component is “hopeful” that the components below
it will create useful visualizations based on notification of
actions that it performs.

A variety of small scale experiments have been con-
ducted to provide initial assessment of the feasibility of the
approach. The experiments have been successful: the strong
separations enforced by C2 enable radical changes in sys-
tem structure without significant work. Moreover, the per-
formance of the systems has been very good.

Current and future work encompasses a wide range of
activities, including assessing key scalability factors, con-
struction of a development environment, and exploration of
how current commercial offerings may be adapted to serve
as reusable C2 components.
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