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Systems with both continuous and discrete behaviors can be modeled using a mixed-signal style or
a hybrid systems style. This article presents a component-based modeling and simulation frame-
work that supports both modeling styles. The component framework, based on an actor metamodel,
takes a hierarchical approach to manage heterogeneity in modeling complex systems. We describe
how ordinary differential equations, discrete event systems, and finite-state machines can be built
under this metamodel. A mixed-signal system is a hierarchical composition of continuous-time
and discrete event models, and a hybrid system is a hierarchical composition of continuous-time
and finite-state-machine models. Hierarchical composition and information hiding help build clean
models and efficient execution engines. Simulation technologies, in particular, the interaction be-
tween a continuous-time ODE solving engine and various discrete simulation engines are discussed.
A signal type system is introduced to schedule hybrid components inside a continuous-time envi-
ronment. Breakpoints are used to control the numerical integration step sizes so that discrete
events are handled properly. A “refiring” mechanism and a “rollback” mechanism are designed to
manage continuous components inside a discrete event environment. The technologies are imple-
mented in the Ptolemy II software environment. Examples are given to show the applications of
this framework in mixed-signal and hybrid systems.

Categories and Subject Descriptors: 1.6.5 [model Development]: modeling methodologies; 1.6.8
[Types of Simulation]: continuous, discrete event; C.3 [Special-Purpose and Application-
Based Systems]: real-time and embedded systems

General Terms: Design

Additional Key Words and Phrases: Component-based modeling, simulation, mixed-signal systems,
hybrid systems, actors-oriented design, hierarchical heterogeneity, Ptolemy II

1. INTRODUCTION

Complex engineering systems are usually heterogeneous. In a broad sense, het-
erogeneity means that the types of components in a system and their interaction
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styles are different. Heterogeneity can be obvious at the implementation level.
For example, in an electromechanical system, there are mechanical parts that
have certain physical properties, and component interactions are usually char-
acterized by Newton’s laws; there are electronic parts, whose physical dimen-
sion may not be very important, and component interactions are usually char-
acterized by Kirchoff’s laws. Although the ultimate goal of a design is usually
the implementation, a system is not necessarily being modeled to the physical
details at early design stages. The art of system modeling is to choose the right
level of abstraction to capture the aspects worth exploring, and to ignore the
irrelevant details.

Over the years, different engineering domains have come up with various
modeling abstractions that best suit the design of particular kinds of systems.
These abstractions expose the properties that domain engineers like to explore,
and hide the information that is of less interest. For example, software engi-
neers think in terms of procedural operations and sequential changes of values
in variables. This hides the way that software is executed physically in elec-
tronic devices. In another example, most digital signal processing (DSP) engi-
neers think in terms of data samples, which, although they may keep a certain
connection with physical time, abstract away the duration between samples.
Time is no longer a continuous variable, and a signal becomes a sequence of
numbers.

So, even at the modeling level, heterogeneity exists in the formalisms of
systems, components, and interactions. This heterogeneity is a mathematical
abstraction and reflects the different ways of thinking by domain engineers.
As systems become more complex, intelligent, software-enabled, and intercon-
nected, the integration of multiple modeling formalisms becomes a major bot-
tleneck in engineering design [Barker 2000; Mosterman 1999]. An ideal model-
ing and design framework should allow engineers to express and explore their
ideas in their preferred domain-specific ways of thinking, and to integrate small
designs systematically to build complex systems.

Multiparadigm modeling and design [Barker 2000; Lee 2000; Liu et al.
2001; Mosterman and Vangheluwe 2000] integrate heterogeneous modeling
techniques to achieve scalable designs. Among such techniques, the integra-
tion of continuous and discrete dynamics has received attention in system
theory [Antsaklis et al. 1995; Henzinger 1996], microelectromechanical de-
vices and systems (MEMS) [Senturia 1998], computer-aided design (CAD)
[Alexander et al. 2000; Bakalar and Christen 1999; Tiller 2001], and automatic
control [Branicky 1995; Tomlin 1998], among other communities. Two kinds
of integration have been widely accepted by modeling and design theories and
practices—the mixed-signal style that integrates continuous-time differential
equations with time-based discrete event models and the hybrid system style
that integrates differential equations with untimed state machine models. Al-
though it is arguable that these two models can adequately express each other,
we respect the fact that they have relative strengths and weaknesses in engi-
neering applications, and complex system designs may need both of them at
the same time.

ACM Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, October 2002.



Component-Based Modeling and Simulation Framework . 345

Integrating continuous and discrete models is common, and many tools
and engineering design languages have been developed over the past decades.
Examples include Simulink with the integration of Stateflow [Harman and
Dabney 2001], analog and mixed-signal extensions of hardware description
languages such as VHDL-AMS and Verilog-AMS [Bakalar and Christen 1999],
object-oriented modeling frameworks such as Omola [Mattsson and Andersson
1993] and Modelica [Elmqvist et al. 1993; Tiller 2001], and the hybrid concur-
rent constraint language HCC [Gupta et al. 1998]. These approaches typically
assume a unified model, such as a continuous-time model with discontinuities,
to capture semantically different components, but lack information hiding to
help scale up designs. All modeling details have to be exposed to the system
assembler to achieve a correct simulation.

Our component-based approach differs from these models in that there
is no unified model that covers all possible interactions among components.
Component-based approaches decompose complex designs into more manage-
able pieces and help reuse existing modules. Instead of mapping all components
to a grand unified model, we use domain-specific primitive models, such as dif-
ferential equations and automata, to capture local component interactions, and
use hierarchical compositions to build complex designs. Thus the interaction
styles among components are well-defined at each level and are constrained
to that local scope. Designers can still work in their familiar domain-specific
modeling paradigms and the heterogeneity is hidden when composing large
systems.

In complex designs, the interaction among components can be significantly
diverse for different parts of a system, and this diversity has profound implica-
tions on the efficient implementation of simulation engines. For example, the
interaction between two continuous-time components is via continuous wave-
forms, and the simulation engine typically computes the waveform using ODE
solving techniques. The interaction between two discrete event components is
events, and the simulation engine needs to process events that are transmitted
between components in chronological order. A careless aggregation of hetero-
geneous components not only gives hard-to-understand designs, but makes it
difficult to build correct simulation engines. The more scalable hierarchical
approaches treat an aggregation of components as an atomic component at a
higher level. In particular, hierarchies can help encapsulate component inter-
action. Correct and efficient simulation engines are easier to build based on
homogeneous components in the same scope.

This article presents a hierarchical heterogeneous component metamodel—
the actor model—and discusses mixed-signal and hybrid system modeling and
simulation technologies in actor frameworks. In particular, we address the
issues:

—how to model continuous-time, discrete event, and finite-state machine sys-
tems in a hierarchical component-based way;

—how to hierarchically compose primitive models to build mixed-signal and
hybrid systems;
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—how to resolve signal types in a component-based framework and perform
signal conversions at the boundaries of continuous and discrete systems;

—how to achieve correct simulations in a component-based framework, in-
cluding scheduling continuous-time components to solve ODEs with discrete
components in the loop, adjusting continuous-time ODE solving step sizes
to accurately detect discrete events, and managing the interaction of time
progression in continuous and discrete models.

These technologies have been implemented in the Ptolemy II software en-
vironment [Davis et al. 2001]. In Ptolemy II, different component interaction
styles are characterized as models of computation, and implemented as “do-
mains.” Multiple domains can be hierarchically composed to build complex
models. Ptolemy II uses hierarchical compositions to hide the implementation
details of one component from other components, and keeps the components at
the same level of hierarchy interacting in the same way. For example, a mixed-
signal model can be built using hierarchical composition of continuous-time
and discrete event domains, and hybrid systems can be built using hierarchical
composition of continuous-time and finite-state machine domains.

The rest of the article is organized as follows. In Section 2, we give a motivat-
ing example to illustrate heterogeneous modeling and to introduce the hierar-
chical approach. Section 3 describes the actor model that provides the abstrac-
tion of components, communication, composition, and models of computation.
Section 4 further shows how discrete event, continuous-time, and finite-state
machine models can be built in this architecture, and how mixed-signal and
hybrid systems can be composed using these primitive models of computation.
Section 5 is devoted to the simulation technologies that integrate continu-
ous and discrete executions. Signal conversion mechanisms, time synchroniza-
tion, and execution scheduling are discussed in detail. Section 6 gives exam-
ples to illustrate the modeling and simulation results for some heterogeneous
systems.

2. HETEROGENEITY AND HIERARCHY

We motivate hierarchical heterogeneous modeling and design methodologies
by an example. Consider an automotive powertrain control (see, e.g., Cho and
Hedrick [1989]), depicted in Figure 1. A cylinder of an internal combustion en-
gine has four working phases: intake (I), compress (C), explode (E), and exhaust
(H). The engine generates torque through the transmission that drives the car
body. Depending on the gear ratio, car body dynamics, the fuel and air supplies,
and the spark signal timing, the engine works at different speeds, and makes
phase transitions at various time instants. The job of the engine controller is
to control the fuel and air supplies as well as the spark signal timing, corre-
sponding to the driver’s commands and available sensor information from the
engine and the car body.

When designing engine controllers, designers want to quickly validate the
control algorithms before considering the implementation details. So, one may
start with modeling and simulating the entire system, including the engine and
car dynamics, at a high level of abstraction.
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Fig. 1. An example of a power-train control system.

The mechanical properties of the engine and the car body may be naturally
modeled using differential equations. But the four phases of the engine, and
the different gear ratios in the transmission, may be better modeled as finite-
state machines. Although all the mechanical partsinteract in a continuous-time
style, the embedded controller, most likely implemented by embedded comput-
ers with hardware and software, works discretely. In addition, sensor informa-
tion and driver’s commands may come through some communication network.
The controller gets this information, computes the control law, drives the air
and fuel valves, and produces spark signals, discretely. Discrete event models
can be used to model the discrete controller and the communication network.
Within the discrete controller, the control algorithms may be implemented as
real-time software, and there may be multiple software tasks sharing the same
CPU. The real-time scheduling policy among software tasks may have a signif-
icant impact on the closed-loop control performance.

In this not so complicated example, we have seen both continuous-time (CT)
models and several quite different discrete models: finite-state machines (FSM),
discrete events (DE), and priority-driven multitasking (PM). A hierarchical
heterogeneous modeling approach decomposes a heterogeneous system such as
this into multiple hierarchical components. At each level of hierarchy, it uses
a clean model of computation to characterize the interaction of components
within that level.

For example, the engine control system can be modeled as in Figure 2. At
the top level, a discrete event model may be used to characterize the discrete
interaction among the controller, the network, and a discrete abstraction of the
car dynamics. Within the controller, a priority-driven multitasking model can
be used to model multiple software tasks and their priority-driven execution.
Within the discrete abstraction of the car model, there could be a continuous
car dynamics, interfaced via event generation and waveform generation com-
ponents (abstractions of sensors and actuators) so that it can provide a discrete
interface to the discrete upper level. The car model may consist of a hybrid en-
gine model and a hybrid transmission model, each of which is a hybrid system
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Fig. 2. A hierarchical model for the engine control systems.

consisting of hierarchies of finite-state machines and differential equations.
Each individual layer of models may be relatively well understood. But, when
integrating these models, the interaction among them requires further study.

3. THE ACTOR METAMODEL

The actor metamodel provides an abstract architecture for components and
their composition. Actors encapsulate components; ports represent the com-
munication among components; directors implement models of computation
that guard the interaction styles among actors. A more formal and complete
discussion of the actor model can be found in Eker et al. [2003] and is beyond
the scope of this article. However, we focus on two specific aspects—modal mod-
els and signal type systems—which are essential for modeling mixed-signal and
hybrid systems.

3.1 Actors and Ports

In the actor model, the basic building blocks of a system are components called
actors. Actors encapsulate executions and provide communication interfaces to
other actors. Our notion of actors, called Ptolemy actors due to its implemen-
tation in the Ptolemy project, differs from Agha’s actor model [Agha 1986] in
the sense that Ptolemy actors do not necessarily associate with a thread of con-
trol. An actor can be an atomic actor, at the bottom of the hierarchy. An actor
can be a composite actor, which contains other actors. A composite actor can be
contained by another composite actor, so hierarchies can be arbitrarily nested.

Actors have ports, which are their communication interfaces. A port is an
aggregation of communication channels, which are established when ports
are connected. Ports support message passing at an abstract level. Exactly
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what message passing semantics ports achieve depends on the interaction style
among the actors, which is defined by directors. A port can be an input, output,
or both. A port of a composite actor can have connections to both the inside and
the outside.

3.2 Directors

Actors at the same level of hierarchy are managed by a common director. Di-
rectors are properties of composite actors. Because of the hierarchy, composite
actors may involve two directors. The outside one, managing the composite
actor, is called its executive director, and the inside one, managing the actors
contained by the composite actor, is called its local director. A composite actor
with a local director is an opaque composite actor. In general, the top-level com-
posite actor is always opaque and has no ports. Opaque composite actors are
treated as atomic actors by their executive directors, and thus hide the activi-
ties inside them from the rest of the system. A composite actor without a local
director is a transparent composite actor. The actors contained by a transparent
composite actor are managed by the executive director of the composite actor.
In a sense, directors can “see through” transparent composite actors.

A director implements a model of computation. More precisely, it defines
communication styles between ports, and manages the execution order among
actors. By using opaque composite actors, different models of computation can
be composed hierarchically.

A director enforces the communication style by providing receivers to input
ports and the inside of output ports of opaque composite actors. There is one
receiver for each communication channel. A receiver can be a buffer, a queue,
a rendezvous point, or a proxy to a global queue depending on the model of
computation that the director implements. Hierarchical heterogeneity suggests
that receivers provided by the same director be the same. This implies that,
for an opaque composite actor, its input ports contains receivers provided by its
executive director, and the inside of its output ports contains receivers provided
by its local director. There are no receivers inside the ports of transparent
composite actors.

For example, in Figure 3, A0 is a composite actor at the top level of the
hierarchy. Actor A0 directly contains actors A1, A2, and A4. Having director D2,
actor A2 is an opaque composite actor, which further contains actor A3. Actor A4
is a transparent composite actor, managed by director D1, and thus port p6 does
not have receivers. Actors A1, A3, and A5 are atomic actors. In this diagram, ports
pl, p4, and p5 are output ports, and p2, p3, p6, and p7 are input ports. Director D1
manages actors A1, A2, and A5, and ports p2 and p7 contain receivers compatible
with D1. Director D2 manages actor A3, and ports p3 and the inside of p5 contain
receivers compatible with D2. Director D2 controls the transfer of data from p2
to p3, and director D1 controls the transfer of data from p5 to p7.

3.3 Modal Models

Actors and ports intrinsically capture concurrent execution and message pass-
ing in a system. Sometimes it is useful to explicitly model sequential operation
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Fig. 4. A modal model uses a finite-state machine to switch between composite actors.

modes in the lifetime of the system and the transitions among these modes. For
this, we introduce the notion of a modal metamodel called *-charts (pronounced
star-charts) [Girault et al. 1999] that allows state machines to be composed
with many concurrent models in a hierarchical way.

Figure 4 shows an example of a modal model. A composite actor, FSM, repre-
sents a finite-state machine. Each state of the state machine can associate with
a composite actor, which is called the refinement of the state. The interpretation
of the modal model is that when the state machine is at a particular state,
the FSM composite actor will be semantically replaced by the refinement of the
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state. By matching the port names, corresponding inputs to the FSM composite
actor will be received by the refinement, and corresponding outputs from the
refinement will be produced as the output of the FSM. The refinement may
have fewer input ports and more output ports than the FSM actor and still
define a meaningful model. In the FSM, the transitions among the states can
be triggered by both the inputs to the FSM actor and the outputs from the
current refinement. A direct use of the *-chart formalism in our context is the
formulation of hybrid systems using finite-state machines and continuous-time
differential equations, as discussed in Section 4.4.

3.4 Higher-Order Components

Higher-order components (HOCs) are components that manipulate other com-
ponents. For example, a HOC may construct, change, or destroy other compo-
nents and connections during the execution of a model. By this definition, the
FSM actor in the *-chart formalism is a higher-order component, which, de-
pending on run-time conditions, is replaced by one of its state refinements. The
notion of composite actors helps localize these manipulations without affecting
the rest of the system.

Some HOCs instantiate other components at the initialization phase of an
execution and remain unchanged during the rest of the execution. These com-
ponents are syntactic shortcuts for constructing complex models from high-
level specifications. They can be viewed as model generators. An example is
given in Section 4.2 that shows how HOCs may help build complex continuous-
time models. Dynamically, automatically, and systematically constructing ac-
tors and connections from users’ high-level specifications can reduce the burden
of model construction and improve the usability of a component-based environ-
ment. More sophisticated HOCs can take model manipulation parameters or
inputs at run-time and dynamically mutate models. Although the Ptolemy II
software environment supports dynamic HOCs, a full discussion of them is
beyond the scope of this article.

3.5 Signal Types

In a system that contains both continuous and discrete dynamics, there can be
two distinct kinds of signals represented by the connections among the ports:
continuous-time signals (or waveforms) that have meaningful values at all time
points and discrete signals that are only defined on a discrete subset of the time
line. Some components require that specific types of signal be connected to
their ports. Among them, continuous components only have continuous ports,
discrete components only have discrete ports, and hybrid components can have
both continuous and discrete ports. For example, a WaveformSwitch actor shown
in Figure 5 is a hybrid component that switches between two continuous inputs,
input, and input, depending on the last event received at the discrete a/b port.
There are also domain-polymorphic components that work with either kind
of signal depending on the context to which the component is connected. For
example, a Scale actor can be used to scale a waveform by a factor, or it can
scale all the event values in a set of discrete events.
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For a correct model, all connections among ports must have a definite type of
either continuous or discrete. A model is illegal if a port producing continuous
signals is connected to a port consuming discrete signals, and vice versa. The
type of domain-polymorphic ports must be resolved after the construction of
the system depending on its connection context. For the purpose of checking
the correctness of mixed-signal specification, we design a signal type system.

The signal type system defines four possible signal types: UNRESOLVED,
CONTINUOUS, DISCRETE, and NOT-A-TYPE, forming the lattice in Figure 6,
meaning that the type UNRESOLVED can be resolved to either CONTINUOUS
or DISCRETE, and the types CONTINUOUS or DISCRETE can be resolved to
NOT-A-TYPE. A type that is lower in the lattice is more specific than a type that
is higher in the lattice. Some components have fixed signal types at their ports.
For example, an integrator has a CONTINUOUS input and a CONTINUOUS
output, a periodic sampler has CONTINUOUS inputs and DISCRETE outputs,
a zero-order-hold actor has DISCRETE inputs and CONTINUOUS outputs, and
many actors only work for DISCRETE inputs and outputs. But for actors that
are applicable to both continuous and discrete signals, their signal types are ini-
tially UNRESOLVED. The signal type system resolves all the UNRESOLVED
types by converting them to either CONTINUOUS or DISCRETE, following
these rules.

—If a port p is connected to another port g with a more specific type, then the
type of p is resolved to that of the port q. If p is CONTINUOUS but q is
DISCRETE, then both of them are resolved to NOT-A-TYPE.

— Unless otherwise specified, the types of the input ports and output ports of
an actor are the same.

At the end of the signal-type resolution, if any port is of type UNRESOLVED
or NOT-A-TYPE, then the topology of the system is illegal, and the execution
is denied.
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4. ACTOR MODELS OF CONTINUOUS AND DISCRETE DYNAMICS

The actor metamodel and the notion of models of computation are broad enough
to model both continuous and discrete dynamics, and hierarchical composition
gives a clean and scalable foundation to build mixed-signal and hybrid systems.

4.1 Modeling Discrete Event Systems

A discrete event (DE) model is a timed model, where time is continuous and
global to all components. An event has a value and a timestamp. Actors in this
model communicate via a set of events located discretely on the continuous time-
line. The execution of actors (via firings) is triggered by events. An actor, when
executing, consumes input events and produces output events. These events
may further trigger other actors. For source actors, which do not have inputs
to trigger them, a self-triggering (also called refiring) mechanism is typically
used to register events that trigger the source actor’s next execution.

Events in a system are processed in chronological order. This implies that
for any actor execution, the output events cannot be earlier in time than the
input events that trigger them. This property, called causality, has profound
semantics implications on discrete event systems [Lee 1999].

Because of the continuous and global notion of time, and the discrete no-
tion of events, discrete event models are usually used to model systems with
discrete actions and timing concerns, such as communication networks, digi-
tal circuits, and queueing systems. Many domain-specific modeling tools and
languages, such as hardware description languages (VHDL and Verilog) and
network simulators [Bajaj et al. 1999], are built using such models.

4.2 Modeling Continuous Dynamics

We focus on continuous-time (CT) models that can be written as a set of ordinary
differential equations (ODE) with initial conditions:

= flx,u,t) (1)
x(to) = xo, (3)

where

—t € R, t > ty, a real number, representing continuous time;

—x are the n-dimensional state variables of the system; x is the initial value
of state variable at time #y;

—u are the m-dimensional input variables;
— v are the [-dimensional output variables;
—x is the derivative of x with respect to time ¢;
—f :R"x R™ x R — R" gives the derivative of the states;
—g :R" x R™ x R — R! gives the output.
Using components, the ODE system (1) to (3) can be modeled by a block
diagram as shown in Figure 7. In this model, components communicate via
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Fig. 7. A conceptual block diagram for continuous-time systems.

Fig. 8. An implementation for a transfer function in the controllable canonical form.

(piecewise-) continuous waveforms. The components are continuous maps from
input waveforms to output waveforms. A special component, the integrator,
makes a feedback loop an ODE. The functions f and g can consist of a feedfor-
ward composition of components that implement piecewise-continuous maps.
Higher-order ODEs may involve multiple integrators connected in serial or
parallel ways.

4.2.1 Higher-Order Continuous Components. Continuous-time models are
usually highly structured. For example, linear systems are always built using
integrators, scale actors, and adders. And there are canonical realizations in
which the actors are connected in similar ways. For these systems, wiring primi-
tive components from scratch is tedious and error prone. For example, a transfer
function

Y(s) s+b
U(s)  s2—ais —ay

4)

has zero-initial-state controllable canonical form (see, e.g., Callier and Desoer

[1991)):
-LARHE
X | | @o a1 | | X2 1
y = [b 1]{2} (6)
x(0)] _J0O

which can be built as the composite actor shown in Figure 8.

Some higher-order components can take advantage of the regular structures
of CT systems and build continuous-time systems automatically from their
higher-level specifications. For example, a transfer function HOC can take a set
of parameters such as the coefficients of the numerator and the denominator in
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triggeri/action1

» trigger2/action2

Fig. 9. A finite-state machine actor.

(4) and automatically build the composite actor that contains the model shown
in Figure 8 at initialization time. In fact, using generic expression actors, which
encapsulate arbitrary mathematical expressions, any pure (linear or nonlinear)
CT system can be built using HOCs from their ODE specifications.

4.2.2 Signal Conversion Components. Signals in continuous and discrete
models are fundamentally different. When combining these models, appropri-
ate signal conversion mechanisms need to be introduced. Many signal conver-
sion algorithms are application-specific, and must be implemented as separate
components. Event generators are components that generate discrete events
from piecewise-continuous waveforms. A key job for event generators is to find
event timestamps. We classify two kinds of events:

—time events. These are events whose timestamps are known beforehand. A
typical case is the sampling events in a sampled-data system.

—state events. The timestamps of this type of event depend on the values of
the state variables in the CT system. An example is a zero-crossing event,
which is triggered when the input waveform crosses zero.

In general, the timestamps of state events cannot be predicted accurately in
advance. Special treatments are required in the ODE solvers.

Waveform generators are components that convert discrete events into
piecewise-continuous waveforms. These components typically provide values
in the waveform between successive event timestamps. One useful waveform
generator is the zero-order hold, which is consistent with the common features
of D/A converters. In general, any extrapolation of previous event values is a
valid waveform generation algorithm.

4.3 Modeling Finite-State Machines

Finite-state machines (FSMs) can be used at two levels. Within an atomic actor,
they can be used as primitives to build a discrete event actor, as shown in
Figure 9. There is a finite set of states (the bubbles), a finite set of events, an
initial state, and transitions from states to states (the arcs). The set of events,
received and produced, respectively, by the input and output ports, does not
necessarily have a notion of time. A transition is associated with a trigger and
some actions. A trigger is a predicate on input events, and an action might
produce output events. The interpretation is that the execution starts from the
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initial state, and if an outgoing trigger is valid, it makes the corresponding
transition to another state and performs the associated actions.

A more powerful use of FSMs is to compose them with concurrent models at
a composite actor level to build modal models, as discussed in Section 3.3. The
information hiding in the hierarchical composition suggests that even in the
*.chart formalism, the semantics of states and transitions at the state machine
level be the same as those in primitive state machines.

4.4 Hierarchical Composition

When building hierarchical models with continuous and discrete dynamics,
we always put hybrid components, event generators and waveform generators
inside the CT model. This significantly simplifies the interfaces between these
models.

A mixed-signal system can be built by hierarchically composing CT and DE
domains. For example, Figure 10 shows a scenario where a DE model is embed-
ded in a CT system. An event generator produces discrete events that trigger
the execution of the DE subsystem. The response, another set of events, is fed
through the waveform generator and converted to waveforms. Figure 11 shows
a scenario where a continuous model is embedded in a DE system. Event gen-
erators and waveform generators are used again at the boundaries of these
models.

A hybrid system is shown in Figure 12, where each state is refined into a CT
composite actor. Notice that by including the event generation facilities in CT
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models, a CT subsystem that refines an FSM state can produce discrete events
as their outputs, like the port e in the figure. State machine transition triggers
can be built using these events, as well as continuous signals.

5. COMPONENT-BASED SIMULATION TECHNOLOGIES

5.1 Discrete Simulation

The simulation of pure discrete models is fairly straightforward. For discrete
event models, the simulation engine typically has a global event queue, which
sorts events by their timestamps. When a component generates an output event,
the event is placed in the queue. At each iteration of the simulation, the event
with the smallest timestamp is taken out of the queue, and its destination
component is executed. Additional subtleties exist for handling events with
the same timestamp. We take an approach proposed in Chang et al. [1997],
which applies topological sorting to actors and yields a deterministic ordering
on simultaneous events.

An actor can schedule itself to be executed at a particular future time by
placing a pure event (an event without a value) in the event queue, with the
component itself as the destination. This mechanism is called refiring. When
this pure event is taken out of the queue, the component can be executed. Pure
events are useful for source components (components without input ports) to
produce events at a reasonable rate, and they are also essential for interacting
with other timed models.

The execution of state machine models starts from the initial state. The sim-
ulator keeps track of the current state. For each input event from the outside
model or from the refinement of the current state, the trigger on the outgoing
transitions is evaluated. If a trigger evaluates to true, then the transition is
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taken and the associated action will be performed. The end state of the transi-
tion will be the new current state.

5.2 Component-Based Simulation of Mixed-Signal ODEs

5.2.1 Simulating Pure ODEs. Simulating pure continuous-time systems
requires solving the initial value ODE problems numerically. A widely used
class of algorithms, called time-marching algorithms, discretizes the continu-
ous timeline into an increasing set of discrete time instants, and numerically
computes state variable values at these time instants in increasing order. The
discretization of time reflects the trade-off between speed and accuracy of a
simulation, and is handled based on the error tolerance of the solutions and
the order of the algorithms. To compute the values of state variables at each
time instant, the right-hand side (RHS) of the ODE needs to be evaluated with
different values. For example, the trapezoidal-rule algorithm solves the ODE
in (1) using the formula:

x(+h)=x@)+ g(f(x(t), u(®),t) + fx +h),ult +h),t +h)), ®

where ¢ is the last time instant where the solution has been computed, so
x(t) and f(x(¢),u(t),t) are known, A is the step size; and ¢ + A is the time
instant where the new values of x are to be computed. Notice that (8) is an
algebraic equation that involves evaluating the RHS of the ODE at ¢ + A.
Numerically, algebraic equations are typically solved by fixed-point iterations
or Newton iterations. For example, in fixed-point iterations, the RHS of the
ODE will be evaluated with a new approximation of x(t + h) for each iter-
ation. Theorems about contraction mappings and the continuity of x imply
that if the step size is sufficiently small, the fixed-point iteration always con-
verges, and the converged value is the solution for x at time ¢ + & (see, e.g.,
Lambert [1991]).

Under the component-based approach, the evaluation of the RHS of the ODE
can be achieved by firing actors that construct the f function. For example, for
the model shown in Figure 7, an evaluation of f(x(¢), u(¢),t) at time #; corre-
sponds to letting the integrator emit its current state x(¢;), firing actor u to
produce u(¢1), and firing actor f(x(¢), u(¢),t), which consumes x(¢1) and u(¢y),
and produces f(x(¢1), u(¢1),t1). The data received by the integrator are x(¢;).
Obviously, if the RHS of the ODE is built using chains of actors, these actors
need to be executed in a data dependency order. By determining what val-
ues the integrators emit and what computations the integrators perform on
the received token, different numerical ODE solving algorithms can be imple-
mented. After resolving the state of the system, the actors that construct the
output map are fired in their topological order to produce the output of the ODE
system.

5.2.2 Handling Discrete Events in ODE Solving. Traditional ODE solvers
assume sufficient smoothness of the RHS functions between integration time
points. This may not be the case when the inputs of a CT subsystem are gen-
erated from discrete events. Furthermore, the event generation components
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require that the solvers find the states of the CT system at the time points
when an event occurs, which may not coincide with the discretization of time
in CT simulation. In order to handle discrete events in continuous-time simu-
lation, we develop the notion of breakpoints.

A breakpoint is a time instant in the CT execution when the right-hand side
of the ODE is not smooth, or the output map is not continuous. The numerical
ODE solvers cannot cross breakpoints in one integration step since either the
smooth-RHS assumption is violated or an event needs to be produced.

According to whether a breakpoint is known before an integration step is
taken, we classify two kinds of breakpoints: predictable ones and unpredictable
ones. For example, time events and some unsmoothness in input signals are
predictable, whereas state events and unsmoothness depending on state vari-
ables are unpredictable.

Predictable breakpoints can be stored in a table in their chronological or-
der and handled efficiently. Before each integration step, the breakpoint table
is queried and the intended step size (possibly adjusted for error-control con-
cerns) may be reduced so that it does not cross any predictable breakpoints.
After taking care of the predictable breakpoints, the smoothness assumption
is always taken to proceed for one integration step. Having the new states
resolved, the actors that may generate unpredictable breakpoints (which are
called step-size-control actors) are queried as to whether the integration results
are valid. If there is one or more of these actors that reports missing discrete
events, then the actors will be asked for a refinement on the last integration
step size. The integration process will be recalculated with the smallest refined
step size. This process is repeated until the discrete event is located within a
specified accuracy.

5.2.3 Hybrid Components in CT: Two-Phase Execution. A CT system with
discrete or hybrid components needs to be scheduled in clusters. The clustering
of a mixed-signal ODE into continuous and discrete parts helps build correct
and efficient simulation engines, since within each cluster the simulation tech-
nologies are relatively well understood. Notice that during the solving of the
ODEs, there are many intermediate firings for the continuous parts of the sys-
tem. During these firings, the discrete actors should not be fired. Instead, the
mixed-signal semantics requires that the CT solver always step on the time
instants when the discrete events happen, and perform an event-triggered ex-
ecution on discrete components only at that time.

The signal type system helps partition a mixed-signal CT system into two
clusters, a continuous cluster and a discrete cluster. Any actor with a CONTIN-
UOUS port is in the continuous cluster, and any actor with a DISCRETE port
is in the discrete cluster. Notice that there may be actors, namely, the hybrid
components, in both clusters. Waveform generators, not requiring an input to
produce the output, are treated as a source actor in the continuous cluster. Sim-
ilarly, event generators are treated as sinks. Thus the system in Figure 10 is
scheduled into a continuous cluster shown in Figure 13 and a discrete cluster
that consists of the DE composite actor together with the event generator and
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Fig. 14. The flow of the two-phase execution of mixed-signal CT systems.

the waveform generator. A conceptual flow of the two-phase execution is shown
in Figure 14.

5.3 Continuous Components in a Discrete Event Environment

When a CT component is contained in a DE system, as shown in Figure 11,
the CT component is required to be causal, like all other components in the DE
system. Consider that the CT component has local time ¢ when it receives an
input event with timestamp z. Since time is continuous in the CT model, it will
execute from its local time, and may generate events at any time greater than
or equal to ¢. Thus we need

t>r1 9
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to ensure the causality of the CT subsystem. This means that the local time of
the CT component should be greater than or equal to the global time whenever
it executes.

Lookahead executions are not entirely new in coordinating discrete event
simulators [Jha and Bagrodia 2000]. In the mixed-signal context, this implies
that the CT component should be able to remember its past states and be ready
to roll back if the input event time is smaller than its current local time. The
state it needs to remember is the state of the component after it has processed
the last input event, since no events earlier than that can come. Consequently,
the CT component should not emit its detected events to the outside DE system
before the global time reaches the event time, since a later input event may
change the CT trajectory and have an impact on the detected events. Instead,
it should send a pure event to the DE system at the event time, and wait until
it is safe to emit it.

Optimizations can prevent unnecessary rollbacks if the discrete event sim-
ulator can provide more information. For example, if the DE simulator pro-
vides for a CT component the component’s next input event time, then the CT
component can safely execute to that time instant. This can always be done
if the DE system is reduced to a cycle-driven model, where events only occur
at predefined time instants. In general cases, this next input time is still pre-
dictable if there is no feedback from the output of the CT component to its
input. To further reduce the impact introduced by feedback, the CT compo-
nent can request a refiring at the current time after emitting its output. The
DE simulator can process this “zero-delay refiring” request after processing all
other events at the current time. By that time, the effect of the output from
the CT component has taken place, so that we can have a conservative esti-
mation about the next input event time for the CT component. If there is no
feedback in the DE system that involves two CT components, then no rollback is
necessary.

5.4 Hierarchical Hybrid System Simulation

Simulating hybrid systems, such as the one shown in Figure 12, requires the
coordination of two layers of CT models across the FSM model in the middle.
Although FSM is an untimed model, its composition with a timed model re-
quires it to transfer the notion of time from its external model to its internal
model. The actions associated with transitions can be used to set parameters
in the destination state. In particular, setting the initial values of integrators
corresponds to a continuous-time state jump.

The execution again proceeds in two phases. During the continuous phase,
the system is simulated as a CT system where the FSM is replaced by the
continuous component refining its current state. After each time point of CT
simulation, the triggers on the transitions starting from the current FSM state
are evaluated. If a trigger is enabled, the simulation goes to the discrete phase.
The FSM makes the corresponding transition. The continuous dynamics of the
destination state may be initialized by the actions on the transition. The sim-
ulation continues with the transition time treated as a breakpoint.
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6. EXAMPLES

In this section, some examples are given that use the component-based frame-
work for modeling and simulating heterogeneous systems. All the models are
built in Ptolemy II v2.0.

6.1 Mixed-Signal Modeling: Controller with Time Delay

This example models a discrete controller that controls a continuous plant, as
shown in Figure 15. The control algorithm is simply a proportional feedback.
We assume that the controller is implemented in software so it introduces a
time delay from receiving the input sample to producing the control value.
Depending on other software tasks that may be running, this delay varies for
each sample input.

The model has two levels of hierarchy, a CT top-level containing a DE com-
posite actor. A transfer function actor is used to model the differential equa-
tions. The output of that actor is periodically sampled and fed into the discrete
controller. Inside the discrete controller, the control law is applied. The input
event also triggers a random number generator and a variable delay actor,
which delays its input events by the amount of time indicated by the value of
the lower input.We model the delay as a random number that takes two values
0.05 and 0.1 with equal probability. One execution trace is shown in Figure 16.
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Fig. 16. One execution trace of the discrete control system with random delay.

The random delays introduced by the controller make the settling time vary
from time to time.

6.2 Mixed-Signal Modeling: /A Modulated A/D Conversion

Sigma-delta (X/A) modulation [Candy 1974], also called pulse density mod-
ulation, is an oversampling A/D conversion technology. The analog input is
oversampled N times faster than the requested digital output frequency, and
quantized to one bit, 1. The quantized value is fed back to the analog part,
as well as accumulated by a digital accumulator. For every N samples, the
converter produces the digital output and resets the accumulator. Due to its
robustness, ¥ /A modulated A/D convertors have been extensively developed.
Recently, this technique has been applied to microelectromechanical accelerom-
eters to reduce noise and improve stability and sensing ranges [Lemkin 1997].

Figure 17 shows a model for a ¥/A modulated microaccelerometer. A CT
composite actor, CTSubsystem, is used to model the mechanical dynamics of
the accelerometer, which is built by silicon beams and anchors. A second-order
ODE is used as the simplified dynamics. The sensing signal is sampled by the
PeriodicSampler, filtered by a lead compensator (FIR Filter), and fed to an
one-bit Quantizer. A delay actor is used to model the time delay introduced
by filtering and quantization. In addition to feeding back to the analog part,
the outputs of the quantizer are filtered again by the MovingAverage actor and
accumulated. A DigitalClock, which produces a trigger every N sampling pe-
riod, triggers the accumulator to produce the digital output, as well as to reset
the accumulator.

Figure 18 shows an execution result of the model for a sine wave input.
The upper plot in the figure shows the discrete signals. The dense events, with
values +1, are the quantization result. The sparse events are produced by the
accumulator, that is, the digital outputs, and as expected, they have a sinsoidal
shape. The lower plot shows the continuous signals, where the low-frequency
sine wave is the system input signal, the high-frequency waveform is the analog
sensing signal, and the square wave is the zero-order hold of the feedback from
the digital part.
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6.3 Hybrid System Modeling: Sticky Point Masses

This example shows a simple hybrid system. As shown in Figure 19, there are
two point masses on a frictionless surface with two springs attaching them to
fixed walls. Given initial positions other than the equilibrium points, the point
masses oscillate. The distance between the two walls is small enough that the
two point masses may collide. The point masses are sticky, so that when they
collide, they will stick together and become one point mass with two springs
attached to it. Assume the stickiness decays exponentially after the collision,
such that eventually the pulling force between the two springs is big enough to
pull the point masses apart. This gives the two point masses a new set of initial
positions and speeds, and they oscillate freely until they collide again.

The system model, as shown in Figure 20, has three levels of hierarchy:
CT, FSM, and CT. The top level is a continuous-time model with two actors,
a composite actor, Sticky Mass Model, which outputs the position of the two
point masses, and a plotter that simply plots the trajectories. The composite
actor is a finite-state machine with two modes, separate and together.

In the separate state, there are two ODEs modeling two independently
oscillating point masses. There is an event detection mechanism, implemented
by subtracting one position from the other and detecting the zero crossing.
If the positions are equal, meaning that the two point masses collide, then a
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Fig. 19. A sticky point mass system.

collision event, touched, is produced. This event will trigger a FSM transition
from the separate state to the together state. The actions on the transition
set the velocity of the stuck point mass based on the law of conservation of
momentum.

In the together state, there is one differential equation modeling the stuck
point masses, and another first-order differential equation modeling the ex-
ponentially decaying stickiness. An expression computes the pulling force be-
tween the two springs. The trigger on the transition from the together state to
the separated state compares the pulling force to the stickiness. If the pulling
force is bigger than the stickiness, then the transition is taken. The positions
and velocities of the two separated point masses are equal to those before the
separation. The simulation result is shown in Figure 21.
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7. CONCLUSION

This article presents a component-based framework for modeling and simulat-
ing systems with continuous and discrete dynamics. The framework system-
atically and modularly integrates different models using an actor metamodel
and hierarchical composition of heterogeneous models of computation. Both
modeling and simulation technologies for mixing continuous-time differential
equations, timed discrete event models, and finite-state machines in this frame-
work are studied. Signal conversions, signal type systems, and breakpoints
are used to handle mixed-signal components in a continuous-time framework.
The execution coordination among continuous and discrete models allows us
to achieve correct and efficient simulations. The technologies are implemented
in the Ptolemy II software environment. Examples are given to show the mod-
eling and simulation capabilities of Ptolemy II for mixed-signal and hybrid
systems.
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