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Abstract. In this paper we present a coordination model for component-based software systems
based on the notion of mobile channels, define it in terms of a compositional trace-based semantics,
and describe its implementation in the Java language. Channels allow anonymous, and point-to-
point communication among components, while mobility allows dynamic reconfiguration of channel
connections in a system. This model supports dynamic distributed systems where components can
be mobile. It provides an efficient way of interaction among components. Furthermore, our model
provides a clear separation between the computational partand the coordination part of a system,
allowing the development and description of the coordination structure of a system to be done in a
transparent and exogenous manner. Our description of the Java implementation of this coordination
model demonstrates that it is self-contained enough for developing component-based systems in
object-oriented languages. However, if desired, our modelcan be used as a basis to extend other
models that focus on other aspects of components that are less concerned with composition and
coordination issues.

1. Introduction

In the last decades, structured software development has emerged as the means to control the complexity
of systems. However, concepts like modularity and encapsulation alone have shown to be insufficient�
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to support easy development of large software systems. Ideally, large software systems should be built
through a planned integration of perhaps pre-existing components. This means not only that compo-
nents must be pluggable, but also that there must be a suitable composition mechanism enabling their
integration.

Component-based software describes a system in terms ofcomponentsand theirconnections. Com-
ponents are black boxes, whose internal implementation is hidden from the outside world. Instead, the
composition of components is defined in terms of their (logical) interfaces which describe their externally
observable behavior. By hiding all of its computation in components, a system can be described in terms
of the observable behavior of its components and their interactions. As such, component-based software
provides a high-level abstract description of a system thatallows a clear separation of concerns for its
coordination and its computational aspects. The importance of such high level logical descriptions of
systems is growing in the Software Engineering community. For example, in the standard OO modeling
languageUML [8] extensions are now emerging to support logical entitiesas components, their inter-
faces, and connectors, which allow a logical decompositionand description of a system. An example
of such an extension is UML-RT[26], which is an integration of the architectural description language
ROOM[27] into UML.

In this paper we present and advocate a coordination model for component-based software that is
based on mobile channels, give its description in terms of a transition system, and describe its imple-
mentation in the object-oriented language Java. A mobile channel is a coordination primitive that allows
anonymous point-to-point communication between two components, and enables dynamic reconfigura-
tion of channel connections in a system. It also supports dynamic distributed systems where components
can be mobile.

From a software development point of view, mobile channels provide a highly expressive data-flow
architecture for the construction of complex coordinationschemes, independent of the computation parts
of components. This enhances the re-usability of systems: components developed for one system can
easily be reused in other systems with different (or the same) coordination schemes. Also, a system
becomes easier to update: we can replace a component with another version without having to change
any other component or the coordination scheme in the system. Moreover, a coordination scheme that is
independentof the computation parts of components can also be updated without the necessity to change
the components in the system.

The Java implementation presented in this paper provides a general framework that integrates a
highly expressive data-flow architecture for the construction of coordination schemes with an object-
oriented architecture for the description of the internal data-processing aspects of components.

The rest of this paper is organized as follows. In section 2 wediscuss components and several
coordination mechanisms for their composition, and present our rationale for a model based on channels.
In section 3, we introduce and show the advantages of the notion of mobility for channels. In section 4,
we give a compositional trace-based semantics for our model. In section 5 we describe an implementation
of our model in the Java language [18]. We conclude in section6, where we discuss related work.

2. Components and their Composition

In this section we briefly discuss the general notion of a component, the integration of components with
object-oriented technology, and coordination mechanismsfor composing components.
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2.1. Components and their Interfaces

We define acomponentas a black-box entity that can be used (composed) by means of its interface
only. Such an interface describes theinput, output, and theobservable behaviorof the component. For
example, the interface of a component may tell us that, givena specific input, a window with a message
will appear on the screen. However, how this is implemented in the component is hidden from the outside
world, i.e., a component is viewed as ablack box. An interface of a component, therefore, provides an
abstraction of the component which encapsulates its internal implementation details that are not relevant
for its use.

In our channel-based coordination model a component interface consists of a set of mobile channel-
ends through which a component sends and receives values. This set can be static or dynamic. The
observable behavior can be expressed by using, for example,predicates, comments, or some graphical
notation, e.g., protocol state machines as defined inUML. In section 4 we express the external observable
behavior of a component in terms of a compositional trace-based semantics.

2.2. Integration of Components with Object-Oriented Technology

Components adhere to the fundamental principles that are the underpinnings of object-oriented technol-
ogy:

- systemwide unique identity;

- bundling of data and functions manipulating those data;

- encapsulation for hiding detailed information that is irrelevant to its environment and other com-
ponents.

However, componentsextendthese principles by adhering to a stronger notion of encapsulation. Whereas
the interface of an object involves only a one-way flow of dependencies from the object providing a
service to its clients, an interface of a component involvesa two-way reciprocal interaction between the
component and its environment. This stronger notion of encapsulation accommodates a more general
notion of re-usability because mutual dependencies are nowmore explicit through component interfaces.
Furthermore, it allows components to be independently developed, without any knowledge of each other.

Components are self containedbinary packages. Objects that are used to implement a component
should not cross the component boundaries. No other restrictions are imposed on a component imple-
mentation.

The Java implementation of our coordination model, presented in section 5, demonstrates that object-
oriented languages are well-suited to implement components and their composition. This implementation
ensures the stronger notion of encapsulation needed for components, allowing access to a component
only through its interface (which is a set of mobile channel-ends).

2.3. Coordination Among Components

Besides components, a system also needsconnectionsamong them. There are several coordination
mechanisms for composing components. Because components must be pluggable, it is important that
these mechanisms do not require a component to know anythingabout the structure of the system they
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are plugged into. We discuss four important types of coordination mechanisms:messaging, events,
shared data spaces, andchannels[2].

Messaging. With this type of connection, components send messages to each other. These messages
need not be explicitly targeted; a component can send a message meant for any component having some
kind of specific service (publish-and-subscribe model), instead of sending it to a particular component
(point-to-point model). However, messaging is not really suitable for component-based software be-
cause it requires the components to know something about thestructure of the system: even if they do
not directly know their service providers, they must know the services provided in the system. An imple-
mentation example of this type of connection is the Java Message Queue (JMQ) [29], a package based
on the Java Message Service (JMS) [30] open standard. The Microsoft Message Queuing Services [15]
for COM+ [22], is another example.

Events. With the event mechanism a component, called theproduceror event source, can create and
fire events, the events are then received by other components, calledconsumersor event listeners, that
listen to this particular kind of events.JavaBeans[19], which are seen as the components in Java, use
the event mechanism.

Shared data spaces. In a shared data space, all components read and write values, usually tuples like
in Linda [9], from and to a shared space. The tuples contain data, together with some conditions. Any
component satisfying these conditions can read a tuple; tuples are not explicitly targeted. TheJavaSpaces
technology [10], a powerful Jini service from Sun, is an example of a shared data space that is being used
for components.Lime[24] (Linda in a Mobile Environment), is a Linda middleware that can also be used
for components, especially if these are mobile.

Channels. A channel, see figure 1, is a one-to-one connection that offers two ends to components,
either asource- or asink-end. A component can write by inserting values to thesource-end, and read by
removing values from thesink-end of a channel; the data-flow is locallyone way: from a component into
a channel or from a channel into a component. The communication isanonymous: the components do
not know each other, only the channel-ends they have access to. Channels can be synchronous or asyn-
chronous, mobile, with conditions, etc. Examples of systems based on channels include:Communicating
Threads for Java[16], CSP for Java[31], both based on theCSPmodel [17], andPict [25], a concurrent
programming language based on the�-calculus. However, these systems either do not support distrib-
uted environments, or their channels are not mobile.MoCha[12, 7] andNomadic Pict[32], a distributed
version ofPict, do implement distributed mobile channels. However, the channels ofNomadic Pictdo
not have two distinct ends as defined above and are only synchronous. We explainMoChain more detail
in section 5.2.

SinkSource

Component Component

BA
Writes Reads

Channel

Figure 1. A Channel.

We base our coordination model on (mobile) channels. The last three coordination mechanisms
support true separation of coordination and computation concerns in a system. However, channels share
many of the architectural strengths ofeventsand shared data spaceswhile offering some additional
benefits. Four of these benefits are:efficiency, security, architectural expressiveness, and transparent
exogenous coordination.
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First, although shared data spaces are useful in network architectures like blackboard systems, for
most networks, like messaging, point-to-point channels can be implemented moreefficientlyin distrib-
uted systems. In shared data space models, the coordinationmiddleware itself cannot generally know the
potential receiver(s) of a message at the time that it is produced;anypresent or future entity with access
to the shared data space can be the consumer of this message. In contrast, a channel-based coordination
middleware always knows the connection at the opposite end of a channel, even if it changes dynam-
ically. This additional piece of information allows the middleware to more efficiently implement the
appropriate data transfer protocols. Second, like messaging and events, point-to-point channels support
a moreprivate means of communication that prevents third parties from accidentally or intentionally
interfering with the private communication between two components. In contrast, shared data spaces are
in principle “public forums” that allow any component to read any data they contain. Accommodating
private communications within the public forum of a shared data space places an extra burden on many
applications that require it. Third isarchitectural expressiveness. Like messaging, using channels to ex-
press the communication carried out within a system is architecturally much more expressive than using
shared data spaces. With a shared data space, it is more difficult to see which components exchange data
with each other, and thus depend on or are related to each other, because in principle, any component
connected to the data space can exchange data with any or all other components in the system. Using
channels, it is easy to see which components exchange data with each other, making it easier to apply
tools for analysis of the dependencies and data-flow. Finally, in contrast to events, channels allow several
different types of connections among components, e.g., synchronous, FIFO, etc., without the components
knowing which channel types they are dealing with. This makes it possible to coordinate components
from ’outside’ (exogenous).

3. Mobile Channels

In our coordination model, components interact with each other through mobile channels. A channel is
calledmobilewhen the identities of its channel-ends can be passed on through channels to other compo-
nents in the system (logical mobility). Furthermore, in distributed systems the ends of a mobile channel
can physically move from one location to another, where location is alogical address spacewhere in a
components executes (physical mobility). Because the communication via channels isanonymous, when
a channel-end moves (physically or logically), the component at its other end is not affected.

Mobility allows dynamic reconfiguration of channel connections among the components in a system,
a property that is very useful and even crucial in systems where the components themselves are mobile.

A component is called mobile when, in a distributed system, it can move from one location (where
its code is executing) to another. For example, mobile Internet agents can be seen as mobile components.
The structure of a system with mobile components changes dynamically during its lifetime. Mobile
channels give the crucial advantage of moving a channel-endtogether with its component, instead of
deleting a channel and creating a new one.

In distributed systems, a channel is aresourcethat must be shared among several component in-
stances. Therefore, in our model, a component instance mustsuccessfully	
���	 to a channel-end
before it can use that channel-end, and���	
���	 from it when it is no longer needed. At every mo-
ment in time, at most one component can be connected to a particular channel-end. Therefore, although
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many components may know the identity of a specific channel-end, the communication via mobile chan-
nels is still one-to-one.

As a concrete example of the utility of mobile channels, suppose we want to use agents to search
for some specific information, e.g., coffee prices, on the Internet. Agents consult different XML[33]
information sources, like databases and Internet pages. Each information source has a channel where
requests can be issued, and an agent knows the identity of thesource end of this channel plus the location
of the information source. The agents may have a list with these channel-ends available at their creation,
or this information may be passed to them through channels. In our example, we use a mobile agent that
moves to the information sources at various locations. An alternative that we will consider later is to
create an agent at every location.
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Figure 2. An Example: a Hopping Agent.

A componentU has two channel connections for interaction with a mobile agent, one to send instruc-
tions and the other to receive results. At some point in time,U asks the agent to search for MoCha-bean
prices. Figure 2 shows the situation after the agent moves tothe information sourceA which is in a
different Internet location, as expressed by the dashed lines in the figure. Right after the move, the agent
creates a channel meant for reading information from the information source, and sends a request toA
together with the identity of the source channel-end of the created channel.

At some point in time the agent finishes searching the information sourceA and writes all relevant
information it finds for the componentU into the proper source channel-end. Regardless of whether or
not this information has already been read byU, the agent moves to the location of the next information
source (see figure 3). Together with the agent, the two ends ofthe channels connecting it toU also move
with it to this new location. However, the componentU is not affected by this. It can still write to and
read from its channel-ends, even during the move; all data ina mobile channel are preserved while its
ends move. For the agent the advantages of moving the channel-ends along with it is that it avoids all
kinds of problems that arise if it were to delete the channelsand create new ones after the move, e.g.,
checking if the channels are empty, notifyingU that it cannot use them anymore, perhaps some locking
issues to accomplish the latter, etc.

In our alternative version, we have a different non-mobile agent at each location, instead of one
mobile agent, and there are only two channels for interaction with the componentU. The channel-ends
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Figure 3. Moving to Another Location.

meant for the agents then move from one agent to the other. From the point of view of the componentU
there is no difference between the two alternatives in our example.

In our example, the two channel-ends used byU do not move, but it is possible to have mobility at
both ends of a channel; if desired one can extend the example by passing these channel-ends on to other
components in the system.

4. A Semantic Approach of our Model

In this section, we give a more precise and formal description of our coordination model, by presenting a
compositional trace-based semantics of component-based systems. The semantics forms the formal basis
of the notion of ‘contracts’ and provides a formal basis of the Java implementation in the next section.

We summarize the following from the previous sections. A component is a black-box entity that
communicates through mobile channels. A channel has two ends each of which can either be asource
or asinkend; a component writes values to thesourceand reads/takes values from thesink. The iden-
tity of channel-ends can also be communicated through channels, allowing dynamic reconfiguration of
channel-end connections in a system. The data-flow is locally one way. Channels can besynchronousor
asynchronous. Because in a distributed system a channel is aresourcewhich must be shared among sev-
eral component instances, a component instance must successfully connectto a channel-end before being
able to use it; therefore, it must alsodisconnectfrom it when the channel-end is not needed anymore. In
our model, at most one component instance can be connected toa particular channel-end at any given
time, making the communication one-to-one. This ensures the soundness and completeness properties
that are the prerequisites for compositionality [5]. Our one-to-one channels can still be composed into
many-to-many connectors, while preserving these prerequisites for compositionality [3, 4].

Physical movement of channel-ends, see section 3, is present in our model for reasons of efficiency;
to minimize the amount of non-local transfers in distributed systems. Therefore, both in the semantics
and the implementation in section 5 components do not directly perform any kind ofmoveoperation on
channel-ends. A physical channel-endmoveis indirectly performed when a component instance either
successfullyconnectsto the specific channel-end or moves itself to a new (physical) location, where all
the connected channel-ends move with it. This means that thephysical layout of the system, whether it
is distributed or not, is of no concern for the semantics thatrightfully abstract from it.
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Below, we first describe the observable behavior of the interface of a component, that is, its external
observable behavior, in terms of a transition system that abstracts away its internal behavior. Next, we
introduce a global transition system which describes the behavior of a component-based system in terms
of the interactions of its components and show how this behavior can be obtained in a compositional
manner. Finally, as an alternative to our global transitionsystem, we make some comments of how to
model mobile channels in the�-calculus.

4.1. Component Transition System

Definition 4.1. Given a set������ of abstract states ranged over by� and (mutually disjoint) sets������
and���� of all source and sink channel-ends, we specify a component by a transition system��� !"���# $%&$ �'(, where���# ! ������ )*+������,����- is the set of configurations with its typical
element�. The configuration of a component instance thus consists of apair

"�$. (, where
.

is the set
of channel-ends known in this particular configuration. Theinitial configuration�/ is defined as

"�/ $ 0(,
where�/ denotes the initial abstract state. We define the transitionrelation as

%&1 ���# )��� )���# ;

as usual, we use� 234%& �5 to indicate that+�$ ���$ �5- 6%&.
The set of actions��� consists of the following operations:

- � 7 connect the executing component instance to the channel-end �.
- � 8 disconnect the executing component instance from the channel-end�.
- �9: write the value: to the source channel-end�.
- �;: take the value: from the sink channel-end�.
- �<: read the value: from the sink channel-end� (read is the non-destructive version oftake).

- ="�$ �( create a new channel with source- and sink-ends� and �.
- ="��� $.( create a new component instance with the initial set of knownchannel-ends

.
.

- > is the invisible operation we use to denote all other component operations that are not related to
channels.

Here: ranges over the set of values which includes������ , ����. Furthermore, we have� 6 ������,� 6 ����, and� 6 ������ , ����.

4.2. Local Conditions

We assume that the transition relation of component satisfies the following conditions:

1. If
"�$. ( ?@%& "�5 $.5( then � 6 .

and
.5 ! .

.
A component instance can connect only to a channel-end it knows, and this operation does not
affect its set of known channel-ends.

2. If
"�$. ( ?A%& "�5 $.5( then � 6 .

and
.5 ! .

.
The same is true fordisconnect.
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3. If
"�$. ( BCD%& "�5 $.5( then� 6 .

and
.5 ! .

.
A component instance can write only to a channel-end it knows, and its set of known channel-ends
is not affected.

4. If
"�$. ( 4ED%& "�5 $.5( and : 6 ������ , ���� then � 6 .

and
.5 ! . , F:G.

A component instance can take only from a channel-end it knows. If the value obtained is a
channel-end, it becomes known to the component instance.

5. If
"�$. ( 4ED%& "�5 $.5( and : H6 ������ , ���� then � 6 .

and
.5 ! .

.
A component instance can take only from a channel-end it knows. If the value obtained is not a
channel-end, its set of known channel-ends is not affected.

6. All conditions fortakealso apply to the operationread.

7. If
"�$. ( IJBK4L%& "�5 $.5( then� H6 .

and � H6 .
and

.5 ! . , F�$ �G.
When a new channel is created, the two new channel-ends must be added to the set of known
channel-ends of the component instance.

4.3. Global Transition System

We consider a component based system� ! F��� M$ NNN$ ��� OG, where��� P ! "���#P $ %&P $ �P/(,
for � ! Q$ N N N $ �. To identify component instances we use the infinite set�RS of component id’s, with
its typical element�S. A system configuration is a tuple

"T$U $ �V��(, whereT and
U

are two partial
functions defined as: TW �RS X ,P ���#P YZ[ U W +������ , ����- X �RS$
and �V�� 1 ������ )���� N
A function T maps every existing (i.e., element of its domain) componentinstance of��� P to its
current configuration� 6 ���#P. On the other hand, a function

U W ������ , ���� X �RS maps every
channel-end to the�S of the component instance it is connected to. A channel-end� is disconnected
if
U +�- is undefined. The set�V�� 1 ������ ) ���� indicates which channel-end pairs constitute a

channel.
We now proceed by presenting a labelled transition system which describes the observable interaction

of components and channels at the system level. We have the following global actions:� 7 �S, which
indicates that the component�S connects to�; � 8 �S, which indicates that the component�S disconnects
from �; "�$ �$ : $ ;(, which indicates that the value: has been taken from the sink� via a synchronous
communication along channel

"�$ �(; similarly,
"�$ �$ : $ <( indicates that the value: has been read from

the sink � via a synchronous communication along channel
"�$ �(; "�S$ �$ �(, which indicates that the

component instance�S has created the channel
"�$ �(; finally,

"�S$ �S5 $. (, which indicates the creation
by �S of a new component instance�S5 with the initial set of channel-ends

.
.

The channels in our transition system are allsynchronous, since this is the most basic type of channel.
Other Channels can be viewed as special types of components whose communication with the rest of
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the system can be described using thesynchronouschannels only. Therefore, our transition system
generalizes to systems with any type of mobile channels.\]^^_\`T+�S- ?@%& � and

U +�- !a �S"T$U $ �V��( ?@Pb%&%& "T5 $U5 $ �V��(
where

U +�- !a �S holds if
U +�- is either undefined or is equal to�S, T5 ! Tc�d�Se, and

U5 ! U c�Sd�e.
A component instance can connect to a channel-end if either the channel-end is disconnected or it is

already connected to the same component instance.fgh\]^^_\T̀+�S- ?A%& �"T$U $ �V��( ?APb%&%& "T5 $U5 $ �V��(
whereT5 ! Tc�d�Se andU5 ! i U cjd�e if

U +�- ! �S (i.e.,
U5 +�- ! j

indicates that
U5 +�- is undefined)

NU5 ! U
if
U +�- H! �S.

A component instance can disconnect from a channel-end if itis currently connected to it.
Thedisconnectoperation also succeeds if the component instance was not connected to the channel-end
in the first place.`kl_andmng`_T+U +�-- BCD%& � andT+U +�-- 4ED%& �5 and

"�$ �( 6 �V�� and
U +�- H! U +�-"T$U $ �V��( JBK4KDKEL%&%& "T5 $U $ �V��(

whereT5 ! Tc�dU +�-ec�5 dU +�-e. The operationstakeandwrite must be performed at the same time on
the ends of the same channel. The channel-ends must be connected to the component instances, however,
we do not have to check this since the function

U
returns only a connected component instance. Since

self-communication is a non-global internal issue of the component we must insist that
U +�- H! U +�-.n_kfandmng`_T+U +�-- BCD%& � andT+U +�-- 4oD%& �5 and

"�$ �( 6 �V�� and
U +�- H! U +�-"T$U $ �V��( JBK4KDKoL%&%& "T5 $U $ �V��(

whereT5 ! Tc�5dU +�-e. The case of the operationsreadandwrite is analogous to the case oftakeand
write, with the exception that the operationwrite does not succeed yet. Only in combination with atake
operation can awrite operation succeed, and before then many reads can happen on the same channel.
The component instance performing thewrite operation can be seen as an unbounded source of the same
value:, until a takeoperation is performed.^_m \pk^^_qT+�S- IJBK4L%& �"T$U $ �V��( JPbKBK4L%&%& "T5 $U5 $ �V��5(

whereT5 ! Tc�d�Se, U5 ! U cjd�ecjd�e and
"�$ �( H6 �V�� and �V��5 ! �V�� , F"�$ �(G. Upon

creation of a new channel, the channel-ends pair must not already exist. The new pair is added to�V��.
They are initially disconnected in

U
.
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^_m r]st]^_^` g^h`k^\_T+�S- IJu'vwx KyL%& �"T$U $ �V��( JPbKPbz KyL%&%& "T5 $U $ �V��(
where �S5 does not occur in the domain ofT, T5 ! Tc�d�Sec�5d�S5e, and �5 ! "�/$. (, with �/ the

initial configuration of��� P.
The creation of a new component instance consists of the selection of a new component identifier

and initializing its configuration.

4.4. Trace Semantics

Given an initial set
.

of channel-ends, we define formally the interface
R��+��� $.-

of a component��� as the set of component traces

F{ | "�/$. ( }%&%&G$
where�/ denotes the initial (abstract) state of��� and }%&%& is the transitive closure of the transitive
relation

%& of ��� collecting additionally the action-labels into the sequence
{
.

In order to obtain the global traces generated by the global transition system in a compositional man-
ner from the interfaces of its components, we introduce a projection operator~+{$ �S$. -

that extracts
from the global trace

{
the local trace of component�S assuming that it is (initially) connected to the

channel-ends in
.

.

- \]^^_\ :̀ ~+� 7 �SN{$ �S$. - ! � 7 N~ +{$ �S$. , F�G-~ +� 7 �S5 N{$ �S$. - ! ~+{$ �S$. - �S H! �S5
-
fgh\]^^_\ :̀

~+� 8 �SN{$ �S$. - ! � 8 N~ +{$ �S$. � F�G-~ +� 8 �S5 N{$ �S$. - ! ~+{$ �S$. - �S H! �S5
- `kl_ k^f mng`_:

~+"�$ �$ : $ ;(N{$ �S$. - ! �����
�9:N~ +{$ �S$. - � 6 .
�;:N~ +{$ �S$. - � 6 .
~+{$ �S$. - �$ � H6 .

- n_kf k^f mng`_:
~+"�$ �$ : $ <(N{$ �S$. - ! �����

�9:N~ +{$ �S$. - � 6 .
�<:N~ +{$ �S$. - � 6 .
~+{$ �S$. - �$ � H6 .
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- ^_m \pk^^_q:
~+"�S5 $ �$ �(N{$ �S$. - ! i "�$ �(N~ +{$ �S$. - �S ! �S5~ +{$ �S$. - �S H! �S5

- ^_m \]st]^_^ :̀

~+"�S5 $ �S55 $. 5(N{$ �S$. - ! i "�S55 $. 5(N~ +{$ �S$. - �S ! �S5~ +{$ �S$. - �S H! �S5
We define~+{$ �S- as~+{$ �S$ 0-.

We have the following compositionality result.

Theorem 4.1. The set of global traces of a system of componentsF��� M$ NNN$ ��� OG generated by
the global transition system equals the set

F{ | �� +{- and��S 6 ��� +{-N ~ +{$ �S- 6 R��+��� $.-G$
where��� +{- denotes the set of component instances occurring in

{
. The predicate

��+{- rules out
occurrences in

{
of communications involving channel-ends that are disconnected.

The proof of this theorem proceeds by a straightforward induction on the length of the computation.

It would be interesting to investigate if the above trace semantics is fully abstract with respect to an
appropriate testing equivalence [11].

4.5. Mobile Channels as�-calculus Processes

In section 4.3 we used a simple labelled transition system tomodel the observable interaction between
the components and channels of a system, which is enough for the purposes of this paper. However, this
observable interaction can also be modelled using more elaborated semantics like the�-calculus [23]. In
[14] we introduce the MoCha-� calculus, an exogenous coordination calculus that extendsthe�-calculus
and is based on mobile channels. Channels in MoCha-� are (special kinds of)�-calculus processes.
This allows the calculus to have user defined channel types without having to change the rules of the
calculus itself. MoCha-� offers high-level interfacewrite, take, connectanddisconnectoperations on
mobile channels. Thewrite and takeactions are dynamically transformed into a pattern of traditional�-calculus synchronous actions, when a processconnectedto a particular channel-end performs one of
these I/O actions on it. Therefore, any mobile channel type,like FIFO, is dynamically transformed into
a �-calculus process that interacts with its environment by means of synchronous�-calculus channels
actions. Just like in our coordination model, in MoCha-� processes have no direct references to channels
but only to channel-ends, and therefore, all interface operations are performed on channel-ends. Futher-
more, another difference with the�-calculus is that MoCha-� treats channels as resources. Processes
must compete with each other in order to gain access to a particular channel-end. More details about
MoCha-� and the modelling of mobile channes in the�-calculus can be read in [14].
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5. Implementation in Java

The coordination model we present in this paper can be implemented in any object-oriented programming
language that supports distributed environments, like Java[18], or C++[28]. In this section we describe
an implementation of our model in the Java language.

The implementation consists of a framework that provides (a) aprecompilertool for writing compo-
nents, (b) mobile channels, and (c) operations on these channels. All the component source files have
the extension�	��, and theprecompilertransforms them into normal Java files. We do not define a
new language: the�	�� files contain Java code and theprecompilerjust verifies certain restrictions we
need to impose to have components in Java. We explain these restrictions gradually while describing the
implementation.

5.1. Components in Java

Usually, JavaBeans [19] are used to implement components inJava. However, they do not comply
with our definition of components (see section 2.1) for two reasons. First, a JavaBean consists of just
one class, and this puts a serious restriction on the internal implementation of components. Second,
JavaBeans communicate with each other throughevents, while we want to use channels (see section
2.3).

Instead of using JavaBeans to implement components, we use the��	���� feature of Java. However,
a ��	���� is too broad and does not provide the hard boundaries we need for components (see section
2.2). Therefore, we impose some restrictions that must be verified by our precompiler. These restrictions
are (1) a component must haveat leastone 	���� that represents the component’sinterface, through
which all coordination and access to channels takes place; (2) theseinterfaceclasses are the only�����	
classes in a��	����; and (3) onlyinterfaceclasses can have methods that are�����	. For simplicity,
in the sequel we assume that the interface of a component consists of just one	����.

Implementing a component as a��	����plus the restrictions explained above has two major advan-
tages. One advantage is that access to a component is possible only through its interface. This, combined
with the fact that internal references cannot be sent through a channel (see section 5.5), makes it possible
to protect the internal implementation of a component.

The second advantage is that restrictions (1), (2) and (3) are so minimal that they do not impose
any real restrictions concerning the internal implementation of a component. A component may consist
of one or more objects, one or more threads, its implementation may be distributed, or it may be a
channel-based component system itself, etc.

5.2. MoCha

Our Java implementation uses themobile channels provided by the MoCha package. MoCha, is a frame-
work for mobile channels in distributed environments that supports mobility as described in section 3.
More details on MoCha can be found in [12, 7].

In figure 4, we show how a channel is realized in MoCha. For components, a channel consists of two
data-structures, thesourceand thesinkchannel-ends, which they (separately) refer to throughinterface
references. An interface referenceis a reference from a component to a channel-end, restricting the
access of the component to only the pre-defined operations onthe channel. These operations include:
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A

Channel End
Source Component

B

Channel End
SinkComponent

sink_rf source_rf

Buffer

Figure 4. A mobile Channel in MoCha.

create, read, take, write, move, anddelete. The ends of a channel must internally know each other to
keep the identity of the channel and control communication.For this purpose, the ends have references
to each other: thesink rf- andsourcerf-fields in the figure. If the type of a channel isasynchronous
then its channel-ends also have references to a buffer. The implementation of this buffer depends on the
asynchronous channel type.

Component
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Component

Cm’

������������ ������������
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Buffer

Buffer
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Buffer
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Bufferlink_rf

link_rf

link_rf

link_rf

link_rf
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Figure 5. A FIFO mobile Channel in MoCha.

Figure 5 shows the implementation of an asynchronous FIFO mobile channel in MoCha. The buffer
is implemented as a chain of unbounded FIFO buffers, each pointing to its next buffer through itslink rf
reference. A local buffer is created by thesourcechannel-end each time a component performs the
operationwrite and no local buffer yet exists. This buffer is then added to the existing chain of buffers.
Buffers get destroyed when they get empty due to atakeoperation on thesinkchannel-end. Both channel-
ends have references,buffer rf, to a buffer. If this reference is local and the channel-end moves to another
location, then the local buffer it refers to does not move with it, instead, thebuffer rf reference is changed
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from local to non-local. With this implementation eachwrite operation is always local. Aread/take
operation is either local or non-local, depending on the amount of elements needed.moveoperations do
not involve data-transfer of elements at all [12, 7].

MoCha has been implemented in Java using the Remote Method Invocation,RMI, package[20].

5.3. Implementation Overview

Figure 6 shows a general overview of the structure of our implementation. A component is a��	����
that contains (a) a	���� that describes itsinterface, and (b) internal entities (objects) created by the
component’s programmer(s), which may also be active (threads). This ��	���� is produced by our
precompilerfrom its �	�� files.

Uses Uses

BasicComponent MoChaComponent

Package Package Package

High level 

Mobile Channels Mobile Channels

Low level
Interface

Figure 6. Implementation Overview

The component��	����uses, with the���
� feature of Java, ourBasicComponent��	����. The
BasicComponent��	���� is an extra layer, between the component and the low level mobile channels
of MoCha, needed in order to avoid dangling local referencesto channel-ends that may result from
mobility. The BasicComponent��	���� provides channel-endvariables that only indirectly refer to
MoCha channel-ends.

A component can have���� and�
��	� channel-end variables. However, it can perform operations
on these variables only through the coordination methods ofits interface (see section 5.5). To accomplish
this, the package BasicComponent provides methods that are��
�	�� and which only the coordina-
tion methods of the interface can use. The��	���� also provides a�
	��
� for the components. This
data-structure is used to identify both the location of the component in the network (the IP-address) and
the specific virtual machine where it is running.

Observe that instead of MoCha, we can use any other implementation of mobile channels, if desired.

5.4. The Interface of a Component

The interface of a component has two parts, a��	���� ������ part accessible only to the internal
entitie(s) of the component, and a�����	 part accessible to all the entities in the system. A component
interface is a normal Java	���� and should not be confused with the ���¡�	� feature of this lan-
guage. Figure 7 shows the skeleton of a�	�� file for the interface. There is some syntactic sugar in this
file that theprecompilertranslates into legitimate Java code:¢ £
��
��� r]st¤ks_¥

must appear as the header of each�	�� file of a component. It is translated into��	���� r]st¤ks_;���
� ¦���	£
��
��� �§¥.
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¢ £
��
��� ���¡�	� ¨^ ¤̀ks_
is translated into�����	 	���� ¨^ ¤̀ks_ �©���� ¦���	 ���¡�	�.

The interface class inherits from¦���	 ���¡�	�, a class that contains basic methods for both the�����	and the��	���� ������ parts of the interface (see figure 8). The precompiler adds this class
to the component’s package, which precludes the possibility of change by the programmers.ª«¬«®¯®° ±²³´µ¶³·¸¹º »¼¼ ½¬«¾° ¿½À° Á¯¾¯ º¹
ª«¬«®¯®°Â®°¯¾Ã»Ä¯ ÅÆÇÈµ¶³·É ¹¹ ¼¯Ã»Ê¿° ½À ±²³´µ¶³·Â®°¯¾Ã»Ä¯Ë ÊÌ¿½Ä ÆÇÈµ¶³·Í¹º »¾»¬¯°¯¾ÀÎ Ï«¾ ¯Ð»¬¿¯Ñ »® ½®½°½»¿ À¯° «Ã ÄÁ»®®¯¿Ò¯®¼À º¹ÓË ÀÊ¯¾Í¿«ÄÓ¸ ¹¹ Ä»¿¿ ÀÊ¯¾ Ä¿»ÀÀ Ä«®À°¾ÊÄ°«¾¹º ª¾¯»°¯ »®¼ ½®½°½»¿½Ô¯ Á¯¾¯ »¿¿ °Á¯ ¯®°½°½¯À «Ã °Á¯ Ä«¬«®¯®° º¹ÕÊÌ¿½Ä Ö«½¼ Ã½®»¿½Ô¯ÍÓË¹º ×¯°Á«¼ ½À «°½«®»¿Ñº ¯¾Ã«¾¬ Ä¿¯»®Ê »Ä°½«®À Ì¯Ã«¾¯ °Á¯ «ÌØ¯Ä° ½À Ù»¾Ì»Ù¯ Ä«¿¿¯Ä°¯¼ º¹ÕÕ

Figure 7. TheÚÛÜÝ Skeleton File for the Interface of a Component

The�����	 part of the interface consists of three parts (see figures 7 and 8): one or more construc-
tors, a���
	��
� method, and a¡�����Þ� method. The precompiler checks if these items are the
only �����	ones in the interface.

The interface can have one or more�����	 constructors. The class has a����� 	���� (see figure
8) that needs a�
	��
� as a parameter for its constructor. This way weenforcethat each constructor
of the interface class must provide a�
	��
�, which is either created in the constructor or passed
through as a parameter. In the constructor(s) all internal entities of the component must becreatedand
initialized. Thus, in order to create a component, it is enough to import the component’s package and
make an instance of its interface class.

Optionally, a¡�����Þ� method can be present to perform cleanup operations before acomponent
instance is garbage collected.

Channel-end references can be passed on through the constructor of the interface. These channel-
end references constitute the initial set of mobile channel-ends known to the newly created component
instance as defined in section 2.2. Alternatively, a channel-end set reference can be passed on to the
component instance for it to return a new set of channel-endsthat it creates during the execution of the
constructor.

In this implementation we do not describe, nor dictate, any particular way of expressing the observ-
able behavior of a component. For example, one can use the compositional trace-based semantics given
in section 4.
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The��	���� ������part of the interface includes the coordination methods provided by the class¦���	 ���¡�	� (see figure 8), channel-end variables, and all the other methods and variables in the
interface that are not�����	. We explain the coordination methods in section 5.5.»Äß»Ù¯ ±²³´µ¶³·¸½¬«¾° ×«ªÁ»Îº¸½¬«¾° à»À½Äª«¬«®¯®° Îº¸Ä¿»ÀÀ à»À½ÄÂ®°¯¾Ã»Ä¯Ë á¶âãäÆÇÈ·åæ¶ä·Íç«Ä»°½«® ¿«ÄÓÊÌ¿½Ä ç«Ä»°½«® è·Èé²ä¶Èã²ÇÍÓêÌØ¯Ä° ÅÉ ±å·¶È·±ë¶ÇÇ·ìÍªÁ»®®¯¿íî¯ °î¯ÓÌ««¿¯»® ±²ÇÇ·äÈÍªÁ»®®¯¿ï®¼ Ä¯Ñ ½®° °½¬¯«Ê°Ó °Á¾«ðÀ ïÐÄ¯°½«®Ì««¿¯»® ñãâä²ÇÇ·äÈÍªÁ»®®¯¿ï®¼ Ä¯Ó °Á¾«ðÀ ïÐÄ¯°½«®Ì««¿¯»® òåãÈ·Íó«Ê¾Ä¯ Ä¯Ñ êÌØ¯Ä° Ö»¾Ñ ½®° °½¬¯«Ê°Ó °Á¾«ðÀ ïÐÄ¯°½«®êÌØ¯Ä° ô·¶õÍó½®ß Ä¯Ñ ½®° °½¬¯«Ê°Ó °Á¾«ðÀ ïÐÄ¯°½«®êÌØ¯Ä° ö¶÷·Íó½®ß Ä¯Ñ ½®° °½¬¯«Ê°Ó °Á¾«ðÀ ïÐÄ¯°½«®Ì««¿¯»® ò¶ãÈÍó°¾½®Ù Ä«®¼ÀÑ ½®° °½¬¯«Ê°Ó °Á¾«ðÀ ïÐÄ¯°½«®Õ

Figure 8. TheøùúûÛüýþÿ��ùÛÿClass

For simplicity, we assumed that the interface of a componentconsists of just one	����. However,
we do allow components to have more than one£
��
��� ���¡�	� 	����. Therefore, a component
can provide several interfaces to its users with different views and/or functionality.

5.5. The Coordination Operations

The interface of a component provides coordination methodsfor the active internal objects (i.e.,threads)
in an instance of that component for operations on channels.These methods are listed in figure 8. The
threads cannot perform any operation directly on the channel-ends, because the channel-ends do not
provide any methods for them, not even a constructor. Therefore, the only way to perform an operation
on a channel is to use the coordination methods in the component interface. The coordination operations
are divided in three groups: thetopological operations, theinput/outputoperations, and theinquiry
operations.

These operations are basic operations and more complex operations can be created by composition
of these basic ones. It is, also, the responsibility of the component to ensure proper synchronization
for its internal threads, if they refer to the same channel-ends. Our basic coordination primitives can be
wrapped in component defined methods to enforce such internal protocols.

For every method containing a���
� parameter, there is also a version without the time-out (not
listed in the figure). When no time-out is given the thread performing the method suspends indefinitely
until the operation succeeds or the method throws an�©	���
�. For uniformity of explanation, we
assume that the time-out parameter can also have the specialvalue of infinity. This way we need not
define two versions of each operation.
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Topological Operations

rn_k`_rpk^^_q creates a new channel of the specified���. The value of this parameter can be���	��
�
�� or asynchronous channels like� ��, ���, ��, etc. The channel-ends, source and sink,
are created at the same location as the component and their references are returned as an array of type
����	: ����	c�e � �
��	� and����	c	e � ����. We return this array, instead of some£������
data-structure containing the channel-end references, inorder to avoid introducing new unnecessary data
types. If desired, this method can be wrapped to return such a£������ class but this is not necessary.

r]^^_\`connects the specified channel-end	� to the component instance that contains the thread that
performs this operation. If the channel-end is currently connected to another component instance, then
the active entity suspends and waits in a queue until the channel-end is connected to this component
instance or, its time-out expires. The method returns��� to indicate success, or¡���� to indicate
that it timed-out. When a connect operation is successful and other threads in the same component
instance are waiting to connect to the same channel-end, they all succeed. If a thread tries to connect to
a channel-end already connected to the component instance,it also immediately succeeds.

When the£
���	 operation succeeds, the channel-endphysically moves to the location of the
component instance in the network. All channel-ends connected to the component move along with it
while they remain connected.
gh\]^^_\`disconnects the specified channel-end	� from the component instance that contains the
thread performing this operation. This methodalways succeedson a valid channel-end. It returns���
if the channel-end was actually connected to the component instance and¡���� otherwise. If	� is
invalid, e.g.����, then the method throws an exception.

Input/Output Operations

�ng`_suspends the thread that performs this operation until either the����	 ��� is written into the
channel-end	�, or its specified time-out expires. Only�������Þ���� objects, channel-end identities,
and component locations can be written into a channel. The�������Þ���� objects are copied before
inserted into the channel, therefore no references to the internal objects of a component can be sent
through channels. The method returns the value��� if the operation succeeds, and the value¡���� if
its time-out expires. The method throws an exception if either 	� is invalid, the component instance is
not connected to the channel-end, the����	 ��� is not�������Þ����, or it contains a reference to a
non-�������Þ���� object.

�_kf suspends the thread that performs this operation until a value is read from the sink channel-end	�, or its specified time-out expires. In the first case, the method returns a�������Þ���� ����	, a
channel-end identity, or a�
	��
�. In the second case the method returns the value����. The value
is not removed from the channel. The method throws an exception if either	� is not valid, or the com-
ponent instance is not connected to the channel-end.

kl_ is the destructive variant of the���� operation. It behaves the same as a���� except that the read
value is also removed from the channel.
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Inquiry Operations

�kg` is the inquiry operation. It suspends the thread that performs it until either the conditions specified
in 	
��� become true or its time-out expires. In the first case the method returns���, and other-
wise it returns¡����. The channel-ends involved in	
��� need not be connected to the component
instance in order to perform this operation, but an invalid channel-end reference throws an exception.
The argument	
��� is a boolean combination of primitive channel conditions such as	
���	���	��,���	
���	���	��, �����	��, ¡����	��, etc.

5.6. A Small Example

We use a simple implementation of the mobile agent componentof the example in section 3, to show
the utility of the coordination operations provided by our model. Figure 9 shows the Java pseudo-
code for this agent.���� ���¡�	� is the agent’s interface and consists of the basic interfaceplus a
method�
��. This method moves the agent to the specified location, together with the channel-ends it
is connected to, (����£���������, ����£���������, and	�������	�). The����£���������and
����£���������channel-ends are, respectively, the sink and the source of the channels for interaction
with the component U. The agent has a list containing the locations of the information sources it is
expected to visit, together with their respective source channel-end references where it can issue its
requests.Ö«½¼ »Ù¯®°Â¬¿¯¬¯®°»°½«® ÍÓË

�Ù¯®°Â®°¯¾Ã»Ä¯Îª«®®¯Ä°Í¾¯»¼ªÁ»®®¯¿ï®¼Ó¸�Ù¯®°Â®°¯¾Ã»Ä¯Îª«®®¯Ä°Íð¾½°¯ªÁ»®®¯¿ï®¼Ó¸êÌØ¯Ä° ÅÉ ÄÁ»®®¯¿ � ª¾¯»°¯ªÁ»®®¯¿ÍÏÂÏêÄÁ»®®¯¿Ó¸�Ù¯®°Â®°¯¾Ã»Ä¯Îª«®®¯Ä°ÍÄÁ»®®¯¿Å�ÉÓ¸Ï«¾ ¯»ÄÁ ¯®°¾î ½® ½®Ã«¾¬»°½«®ó«Ê¾Ä¯ç½À° ¼«
�Ù¯®°Â®°¯¾Ã»Ä¯Î×«Ö¯Íç½À° ÅÂ®Ã«¾¬»°½«®ó«Ê¾Ä¯É Î¿«Ä»°½«® Ñ ÄÁ»®®¯¿Å�ÉÓ¸�Ù¯®°Â®°¯¾Ã»Ä¯Îª«®®¯Ä°Íç½À° ÅÂ®Ã«¾¬»°½«®ó«Ê¾Ä¯É ÎÀ«Ê¾Ä¯ï®¼Ó¸�Ù¯®°Â®°¯¾Ã»Ä¯Î�¾½°¯Íç½À° ÅÂ®Ã«¾¬»°½«®ó«Ê¾Ä¯É ÎÀ«Ê¾Ä¯ï®¼Ñ �ï��ïóí � ÄÁ»®®¯¿Å�ÉÓ¸�Ù¯®°Â®°¯¾Ã»Ä¯Î ½ÀÄ«®®¯Ä°Íç½À° ÅÂ®Ã«¾¬»°½«®ó«Ê¾Ä¯É ÎÀ«Ê¾Ä¯ï®¼Ó¸½®Ã«¾¬»°½«® Î»¼¼Í�Ù¯®°Â®°¯¾Ã»Ä¯Î�¯»¼ÍÄÁ»®®¯¿Å�ÉÓÓ¸½®Ã«¾¬»°½«® Î°¾»®ÀÃ«¾¬»°½«® ÍÓ¸�Ù¯®°Â®°¯¾Ã»Ä¯Î�¾½°¯Íð¾½°¯ªÁ»®®¯¿ï®¼Ñ ½®Ã«¾¬»°½«®Ó¸ó°¾½®Ù Ä«®¼ �!®«°ï¬°îÍ! � ¾¯»¼ªÁ»®®¯¿ï®¼ � !Ó!¸½®Ã«¾¬»°½«® ÎÄ¿¯»¾ÍÓ¸½Ã Í �Ù¯®°Â®°¯¾Ã»Ä¯Î�»½°ÍÄ«®¼Ñ �Ó Ó °Á¯®¾¯»¼ »® ½®À°¾ÊÄ°½«® Ã¾«¬ °Á½À ÄÁ»®®¯¿ï®¼ »®¼ ¾«Ä¯ÀÀ ½° ÎÃ½«¼

�Ù¯®°Â®°¯¾Ã»Ä¯Î ½ÀÄ«®®¯Ä°Í¾¯»¼ªÁ»®®¯¿ï®¼Ó¸�Ù¯®°Â®°¯¾Ã»Ä¯Î ½ÀÄ«®®¯Ä°Íð¾½°¯ªÁ»®®¯¿ï®¼Ó¸Õ
Figure 9. Simple Implementation of The Mobile Agent
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6. Related Work and Conclusion

In this paper we presented a coordination model for component-based software based on mobile chan-
nels. The idea of using (mobile) channels for components hasits foundations in the earlier work of some
of the authors of this paper, e.g., in [5], [6].

Our model provides a clear separation of concerns between the coordination and the computational
aspects of a system. We force a component to have aninterfacefor its interaction with the outside world,
but we do not make any assumptions about its internal implementation. We define the interface of a
component as a dynamic set of channel-ends. Channels provide ananonymousmeans of communication,
where the communicating components need not know each other, or the structure of the system. The
architectural expressiveness of channels allows our modelto easily describe a system in terms of the
interfaces of its components and its channel connections, abstracting away their computational aspects.
Coordination is expressed merely as operations performed on such channels. The mobility of channels
allows dynamic reconfiguration of channel connections within a system.

ThePICCOLAproject [1] is related to our work. PICCOLA is a language for composing applications
from software components. It has a small syntax and a minimalset of features needed for specifying
different styles of software composition, e.g.pipes and filters, streams, events, etc. At the bottom
level of PICCOLA there is an abstract machine that considerscomponents asagents. These agents
are based on the�-calculus, but they communicate with each other by sendingforms through shared
channels instead of tuples. Forms are a special notion of extensible, immutable records. In comparison
with PICCOLA, our coordination model can be seen as a possible mobile channelstyle for component
composition. Therefore, the interfaces of our components are defined in such a way that they already fit
within this style. Because our model only focuses on themobile channelstyle, it is much simpler to use
when this style is desired. However, our model is not just a style but also, like PICCOLA, a composition
language.

Certain aspects of and concerns inROOM[27] andDarwin [21], two architectural description lan-
guages (ADL), are related to our work. In ROOM components aredescribed by declaring their internal
structures, their external interfaces, and the behavior oftheir sub-components (if they are composite
components). The interface of a component is a set ofports. A port is the place where components
offer or require certain services. The communication through these ports is bidirectional and in the form
of asynchronous messaging. The components of Darwin are similar to the ones of ROOM, but instead
of ports, Darwin components haveportals. These portals specify the input and output of a component
in terms of services, as in ROOM. However, thebinding of portals is not specified, leaving them open
for all kinds of possible bindings. Another difference between Darwin and ROOM, is that Darwin can
describe dynamically changing systems, while ROOM can describe only static ones. This makes Darwin
more suitable than ROOM for component-based systems that use our coordination model. Of course, to
model mobile channels or the dynamic set of interfaces of a component, for instance, some extensions to
Darwin would be necessary.

Other models for component-based software can benefit from the coordination model presented in
this paper, because ours is a basic model that focuses only onthe coordination of components. Our model
can extend other models that are concerned with other aspects of components, for example, their internal
implementation, their evolution, etc.

Because our model providesexogenouscoordination (see section 2.3), it opens the possibility toap-
ply more powerful coordination paradigms that are based on the notion of mobile channels to component-
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based software. One such paradigm, isReo[3, 4]. Reosupports composition of channels into complex
connectors whose semantics are independent of the components they connect to. We are currently ex-
tending our coordination model for component based systemsin order to support all the features ofReo.

Finally, although it is not the main purpose of this paper, the Java implementation presented in
section 5 shows not only that components can be implemented using object-oriented languages, but also
how this can be done. This demonstrates that a clear integration of components is possible in object
oriented paradigms such as UML.
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