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A Componential Model for Mental Addition 

Keith F. Widaman, David C. Geary, Pierre Cormier, and Todd D. Little 
University of California at Riverside 

A componential model capable of representing simple and complex forms of mental addition 

was proposed and then tested by using chronometric techniques. A sample of 23 undergraduate 

students responded to 800 addition problems in a true-false reaction time paradigm. The 800 
problems comprised 200 problems of each of four types: two single-digit addends, one single- 

and one double-digit addend, two double-digit addends, and three single-digit addends. The 
results revealed that the columnwise product of addends, a structural variable consistent with a 
memory network retrieval process, was the best predictor of mental addition for each of the four 

types of problem. Importantly, the componential model allowed estimation of effects of several 

other structural variables, e.g., carrying to the next column and speed of encoding of digits. High 

levels of explained variance verified the power of the model to represent the reaction time data, 

and the stability of estimates across types of problem implied consistent component use by 
subjects. Implications for research on mental addition are discussed. 

Over the past 20 years, several types of  models for mental 

addition have been proposed-- for  example, models hypoth- 

esizing that analog (Restle, 1970), counting (Groen & Park- 

man, 1972), or memory network retrieval (Ashcrafl & Battag- 

lia, 1978) processes are invoked to arrive at the solution for a 

given problem. Although a great deal has been learned about 

the manner  in which persons respond to addition problems, 

a comprehensive model identifying the several elementary 

processes underlying problem solution has not been devel- 

oped. The primary aim of the present study is to propose and, 

by use of  chronometric techniques, to evaluate a general 

processing model specifying the processes required to solve 

mental addition problems of  any magnitude. 

Sternberg (1977) outlined the componential analysis ap- 
proach for isolating the elementary information processes 

involved in solving ability problems. Chronometric, or reac- 

tion time (RT), tasks are typically used to validate proposed 

componential  models. In the componential  analysis frame- 

work, internal validation refers to the determination that RT 

to problems of a given domain is affected by the hypothesized 

elementary information processes. Internal validation may 

take two forms: intensive and extensive. Intensive validation 
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refers to internal validation of  processes on a single type of 

problem, and extensive validation denotes the finding that 

identical or similar processing models hold across two or 

more types of problem that theoretically involve the same 

component  processes. Componential  models have been pro- 

posed for several types of  reasoning tasks (e.g., Sternberg, 

1977; Sternberg & Gardner, 1983), for verbal ability (e.g., 

Hunt, 1978; Hunt, Lunneborg, & Lewis, 1975), and for spatial 

ability (e.g., Pellegrino & Kail, 1982), among others. In the 

present study, the application of  componential  analysis is 

extended to numerical facility tasks through intensive and 

extensive validation of  elementary information processes un- 

derlying performance on four types of mental addition prob- 

lem. 

The most consistent finding in studies of  mental addition 

is a problem size effect: The larger the addends in an addition 

problem, the longer the RT to respond to the problem. The 

general goal of most previous studies of mental addition has 

been the specification and testing of several conceptual models 

that could account for the problem size effect. Associated 

with each conceptual model is a statistical, or mathematical, 

model that identifies a structural variable of  which RT should 

be a linear function. The alternative processing models are 

then pitted against one another by determining which statis- 

tical model best represents average RT across a sample of 

subjects to a set of addition problems. The fit of  the statistical 

model best representing RT data provides evidential support 

for its associated conceptual model of processing. One short- 

coming of  previous research, discussed in detail below, has 

been the lack of  unique predictions by competing conceptual 

models of mental addition and the lack of  correspondence 

between the conceptual and statistical models for certain 

models of  addition. 

A second limitation of  previous research is rather more 

important: the failure to specify and test a cognitive compo- 

nent model for mental addition. In most studies (e.g., Groen 

& Parkman, 1972), investigators posited several alternative 

counting or memory retrieval processes that might be used to 
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solve addition problems and then compared the fit of the 

corresponding statistical models, each model having a single 

predictor, or structural variable. Other researchers (e.g., Ash- 

craft & Stazyk, 1981) used stepwise regression analyses that 

were essentially exploratory and data-driven in nature. Un- 

fortunately, the results obtained by using the latter procedure 

were difficult to relate to any simple conceptual model of 

mental addition. In contrast to the preceding approaches, 

research on a cognitive component model for mental addition 

involves the specification of all cognitive components (e.g., 

encoding of digits) that, according to theory, should be used 

when responding to a given problem, rather than specifying 

only counting or retrieval components. The cognitive com- 

ponent model would therefore provide theoretical support, 

rather than merely empirical support, for the form of alter- 

native statistical models. The parameters estimated in such 

theoretically driven models should be less biased than esti- 

mates in statistical models composed in a solely empirical 

fashion (Cohen & Cohen, 1983). 

A third limitation associated with extant research is the 

rather restricted array of addition problems that has been 

included for study. That is, in previous research, attention has 

been focused largely on simple addition, which, admittedly, 

is (a) the simplest form of addition, (b) the most common 

type of problem encountered during early instruction on 

addition, and (c) likely an important component of the addi- 

tion of multidigit addends. However, addition problems en- 

countered in everyday life (e.g., adding the amount of a 

deposit to one's checking account balance) are often rather 

more complex than simple addition, involving two or more 

numbers each having several digits. Several recent studies 

included addition problems more complex than simple addi- 

tion (Ashcraft & Stazyk, 1981; Hamann & Ashcraft, 1985). 

However, in these studies, differing types of complex addition 

problem were not systematically investigated, and results re- 

ported were inconsistent with a straightforward conceptual 

model for complex addition. In the present article, a general 

model capable of representing all types of simple and complex 

addition is first proposed and then tested across four types of 

addition problem. 

Processes Proposed for the Search/Compute  Stage 

Five general types of process have been proposed for the 

search/compute stage, the stage during which the true sum of 

a simple addition problem is obtained. The five types of 

process are analog, digital (or counting), direct memory ac- 

cess, memory network retrieval, and rule-based, procedural 

processes. Because the first three types of process have been 

discussed in detail in several places (e.g., Ashcraft & Battaglia, 

1978), they will be covered only very briefly here; more 

attention will be paid to the latter two types of processes. 

Early Proposals for Processes Underlying Mental 
Addition 

Analog. On the basis of research on numerical compari- 

son (Moyer & Landauer, 1967), Restle (1970) proposed a 

model in which each addend is transformed into an analog 

representation. The analog process utilizes an internal equiv- 

alent of a number line and represents each addend as a line 

segment proportional in length to the magnitude of the ad- 

dend. Concatenating the two line segments results in a line 

representing the magnitude of the sum of the addends, which 

could then be compared with the stated sum for the problem. 

Given the preceding conceptual model, it is possible to de- 

velop several alternative statistical models, each specifying 

one or more structural variables of which RT should be a 

linear function, depending on whether RT is a function of 

the distance a line segment is transported, the length of the 

transported line segment, or both. These conclusions are 

summarized in Table 1. 

Digitalprocesses. Digital, counting processes compose the 

second type of process hypothesized for the search/compute 

stage. Groen and Parkman (1972; Parkman & Groen, 1971) 

posited a mental counter that could be set at most once and 

then incremented an unlimited number of times in a unit-by- 

unit fashion. Thus, the counter could be set to zero, the first 

addend, the second addend, the smaller addend, or the larger 

addend, and then incremented a number of times equal to 

the remaining addend(s). After the incrementing process is 

complete, the recomputed sum would be compared for cor- 

rectness with the stated sum. 

Given the metaphor of the mental counter and its use, 

Groen and Parkman (1972) discussed five strategies for using 

the counter and translated these strategies directly into cor- 

responding statistical models (see Table 1). For example, if a 

subject consistently set his or her mental counter to the larger 

addend and then incremented the smaller, RT should be a 

linear function of the smaller addend, or MIN; also, the esti- 

mated regression slope for the MIN variable would reflect the 

time required to increment the mental counter. Groen and 

Parkman (1972; Groen & Resnick, 1977; Parkman & Groen, 

1971) found that RT for simple addition problems was pre- 

dicted better by the MIN structural variable than by any of the 

remaining four structural variables for both adults and chil- 

dren. Adults, however, had an estimated regression slope that 

was V2o the size of the slope parameter estimated on data from 

first graders; this indicates much greater proficiency by adults. 

It is important to note that support for the MIN model is only 

differential support with regard to alternative digital models; 

the superior fit of the MIN model is equally strong support for 

one version of Restle's 1970 analog model. 

Direct memory access. Groen and Parkman (1972) re- 

ported that RT to "tie" problems, which have identical ad- 

dends, failed to show a MIN effect, even though RT to nontie 

problems was strongly related to the MIN variable. Instead, 

RT to tie problems was equally rapid regardless of the mag- 

nitude of the addends. This suggested that the correct sums 

for tie problems are stored in a similar, easily accessible 

fashion in long-term memory and require a constant amount 

of time for retrieval. On the basis of this, Groen and Parkman 

(1972) stated the direct memory access model, which pro- 

posed that RT is unrelated to the magnitude of the addends 

comprising a simple addition problem if the correct sum is 

retrieved from a memory store. If this were so, no structural 

variable representing a problem size effect should explain RT 

variance. 
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Table l 

Structural Variables Consistent With Search~Compute Stage in Hypothesized Processing 
Models 

Conceptual processing model 

Network retrieval 

Structural variable Analog Digital Table Nontable 

First addend 
Second addend 
Larger addend (MAX) 
Smaller addend (MlN) 
Sum 

Sum squared 
Sum of squared addends 
Product 
Distribution of associations 
Difficulty 
Frequency of presentation 
Order of presentation 

x X 
x X 
x x 
X x 

x X 
X 
X 
X 

X 
X 
X 
X 

However, Groen and Parkman (1972) reasoned that the 

direct memory access process would require back-up by some 

slower, more reliable counting process on trials on which 

there was retrieval failure (cf. Browne, 1906). If  first graders 

always use counting processes and adults revert to counting 

on the 5 % of trials on which they suffer retrieval failure, this 

alone could account for the twentyfold decrease in the size of  

the regression slope estimate for the MIN structural variable 

when comparing performance of  children in first grade (b = 

400 ms) with that of  adults (b = 20 ms), assuming that 

counting speed were identical at the two age levels. 

Memory Network Retrieval Processes 

More recent research has focused on memory network 
retrieval processes, which were first proposed by Ashcraft and 

Battaglia (1978) as alternatives to the processes discussed by 

Groen and Parkman (1972). Memory network retrieval re- 

flects the search through a stored network of  number facts for 

the correct sum for a problem. In contrast to the direct access 

model, Ashcraft and Battaglia (1978) hypothesized that the 

time required for retrieval from the memory network of  the 

correct sum for a problem was related to problem size. Thus, 

the retrieval process proposed by Ashcraft and Battaglia is 

assumed to take longer amounts of  time with problems that 

have larger addends because a longer search through the 

memory network would be required for such problems. 

Table-related processes. When developing their memory 

network retrieval model, Ashcraft and Battaglia (1978) used 

the metaphor of  a square, symmetric, printed addition table 

as a reasonable first approximation of  an adult's memory 

network for simple addition facts. The row and column 

dimensions of  the table are termed entry or parent nodes and 

take on values from 0 to 9, which represent the addends in a 

simple addition problem. The correct answer for a problem 

is stored at the intersection of  the row and column correspond- 

ing to the two addends. Thus, upon viewing the problem 7 + 

6 = 13, nodal values of  7 (e.g., the row node) and 6 (e.g., the 

column node) would be activated, and the spreading activa- 

tion would result in the activation of the correct sum of 13 

stored at their intersection. 

Given the preceding conceptual model, several submodels 

may be specified that correspond to particular ways of  access- 

ing the information stored in the tabular memory network. 

The first of  these submodels was termed a simple table look- 
up model by Stazyk, Ashcraft, and Hamann (1982). Assuming 

equal-sized steps between values along each parent node, 

Stazyk et al. reasoned that RT should be related to the true 

sum for each problem. This prediction holds only under the 

implicit assumption that memory search occurs according to 

a city-block metric. Under a city-block metric, given the 

problem "a + b = c," the subject would start from the origin, 

move a steps along one parent node and then b steps parallel 

to the other parent node to arrive at the intersection, and 

hence the correct sum c, of  the two nodal values. As noted by 

Stazyk et al. and shown in Table 1, the structural variable for 

the table look-up model, the sum of the addends, is identical 

to that for one of  the digital models, resulting in nonunique- 

ness of  a central prediction of  the table look-up model. More 

importantly, several studies (e.g., Ashcraft & Battaglia, 1978) 

found stronger support for other memory search models. 

Ashcraft and Battaglia (1978) found that RT was more 

strongly related to the square of  the sum of the addends than 

to other simple functions of  problem size, for example, digital 

model structural variables. This led Ashcraft and Battaglia to 

specify their memory network retrieval model, hereinafter 

referred to as the sum squared model. Ashcraft and Battaglia 

hypothesized that, rather than equally spaced distances be- 

tween nodal values, an adult's memory network is square and 

symmetric but stretched in the direction of  larger sums, with 

values along each of  the parent nodes spaced in a systematic 

but nonlinear fashion. As shown in Figure IA, in which the 

nonlinear spacing of  nodal values is assumed to conform to 

the square of  the addend, the distance along each parent node 

between 0 and 1 is 12, or 1 unit; the distance between 0 and 

2 is 22, or 4 units, and so forth. Ashcraft and Battaglia claimed 

that a model such as that shown in Figure IA would result in 

the square of  the sum of the addends being the important 
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Figure 1. Conceptual models for network retrieval process (Ashcraft, 1982): (A) Symmetric model 
proposed by Ashcraft and his associates; (B) Asymmetric model consistent with "true-sum-squared" as 
structural parameter. 

structural variable relating RT to problem size. On the basis 

of  the initial study by Ashcraft and Battaglia, Ashcrafl and 

his associates (Ashcraft & Fierman, 1982; Ashcrafl et al., 

1984; Ashcraft & Stazyk, 1981; Hamann & Ashcraft, 1985) 

launched a program of  studies that consistently reported 

superiority of  the sum squared over structural variables based 

on counting models (Groen & Parkman, 1972) in samples of  

proficient subjects. 

However, a basic incompatibility between the conceptual 

and statistical models proposed by Ashcraft and Battaglia 

(1978) has heretofore gone unnoticed. Referring to Figure 1 A, 

it is clear that the distance from the origin to a nodal value 

along each parent node is a simple nonlinear function of  the 

nodal value. Figure 1A was drawn under the assumption that 

the stretching of  the square table in the direction of  larger 

sums was a function of  the square of each of  the addends. 

Thus, given addends a and b, the city-block metric distance 

from the origin to the intersection of  a and b is (a 2 + b2). 

Ashcraft and Battaglia implicitly assumed that a city-block 

metric would describe search through such a memory network 

by stating that longer search times would result from "longer 

vector distances from entry nodes to intersection" (1978, p. 

536). But the sum squared, or (a + b) 2, does not in general 

equal the sum of  squared addends (a 2 + b2). Therefore, 

assuming the nonlinear spacing of  nodal values shown in 

Figure 1A, the conceptual model discussed by Ashcraft and 

Battaglia (1978) is consistent with a statistical model in which 
the sum of the square (or other power) of  each addend is the 

variable structurally relating problem size to RT. A statistical 

model employing the sum of squared addends as structural 

variable would therefore preserve the square, symmetric prop- 

erty, as well as the stretching of  the nodal values, of  the 

conceptual model developed by Ashcraft and Battaglia (1978). 

The simplest revision of the Ashcraft and Battaglia model 

that restores compatibility between conceptual and statistical 

models is shown in Figure lB. The conceptual model pre- 

sented in Figure IB is an asymmetric table with a horizontal 

dimension termed the entry node and a vertical dimension 

termed the capture node. Because of  the asymmetric nature 

of the layout of the table, the table is entered along the entry 

node by moving b steps along the entry node, where b is the 

magnitude of  the larger addend. Assuming a city-block metric, 

movement of a steps vertically along the capture node at b, 

where a is the magnitude of  the smaller addend, would lead 

to an intersection of entry and capture node values at which 

the sum of the addends would be stored. According to the 

sum squared structural variable, problems with identical sums 

should lie equal city-block vector distances from the origin. 

For example, the distance from 2 to 3 along the entry node is 

equal to the distance from 2 to the first intersection vertically 

above 2; this leads to a prediction that the problem "3 + 0" 

and the problem "2 + 1" have equal search times, consistent 

with the identical value of  the square of the sum for each 

problem. The tabular array in Figure 1B fans out away from 

the origin. The intersections labeled x in Figure 1B represent 

intersections containing correct sums for problems of the form 

"b + 1," where b is the larger addend, and intersections labeled 

y contain correct sums for problems of the form "b + 2." It 

is interesting that, in the tabular models in both Figures 1A 

and 1B, tie problems fall on adjacent intersection points on 

straight-line diagonals, the only nonparent node intersections 

following such patterns. The latter property may account for 

the exceptional RT results for tie problems reported in most 
studies of  simple addition. 

A fourth structural variable that is consistent with retrieval 

from a tabular memory network of  addition facts is the 
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product of addends. Although Ashcraft and his associates 

apparently never used the product of addends in studies of 

addition, Stazyk et al. (1982) found the product of the mul- 

tiplicand and the multiplier to be the best predictor of RT to 

simple multiplication problems. In a recent study, Miller, 

Perlmutter, and Keating (1984) found the product of the two 

single-digit numbers to be the best predictor of RT for both 

simple addition and multiplication. Thus, it appears that the 

product may be more appropriate than the sum squared as 

the proper structural variable in statistical models for both 

addition and multiplication, reflecting an important func- 

tional component common to these two types of performance. 

But Miller et al. did not discuss any specific conceptual models 

that were compatible with the product as structural variable. 

As a result, the finding that the product of addends is the best 

predictor of addition RT is a rather enigmatic, unexplained 

phenomenon. 

There is, however, a conceptual model of the network 

retrieval sort that is consistent with the product of addends as 

structural variable. This model is a geometric one and utilizes 

the square, symmetric, printed addition table as a metaphor 

for an adult's memory network for addition facts. Under this 

geometric model, we assume equal spacing of nodal values 0 

through 9 along each of the two nodes. Next, we assume that 

activation of a nodal value takes a constant amount of time 

regardless of the magnitude of the addend. The activation of 

a nodal value may represent the memory network counterpart 

of the encoding of an addend, which may require a duration 

of time on the order of that required for access to name codes 

for letters (approximately 50-80 ms; Posner, Boies, Eichel- 

man, & Taylor, 1969). Finally, we assume that the spread of 

activation through the memory network begins at the origin 

(i.e., the "0,0" intersection) and proceeds at a constant rate 

and as a linear function of the area of the network that must 

be traversed. Given these assumptions, the product of addends 

is equal to the area of the rectangle formed by the origin, the 

nodal values involved, and the intersection of the nodal values 

and is therefore linearly related to the area of the memory 

network that must be traversed to arrive at the correct sum 

for a problem. The geometric model has the features of a 

square, symmetric addition table with equally spaced nodal 

values, properties that Ashcraft and his associates found de- 

sirable but that had to be discarded under the sum squared 

model. The only additional assumptions required by the 

geometric model concern activation of nodal values and 

spread of activation through the memory network, and these 

assumptions appear to be reasonable and compatible with 

notions of spreading activation in semantic memory networks 

(e.g., Collins & Loftus, 1975). 

Nontabular processes. Recently, several conceptual 

models that are not directly related to a tabular memory 

network have been proposed. One of the nontabular models 

is the distribution of associations model formulated by Siegler 

and Shrager (1984), as indicated in Table 1. In samples of 

subjects of rather low proficiency, Siegler and Shrager found 

an interesting relation between problem size and the distri- 

bution of associative strength of alternative potential answers 

for each problem: For problems with small addends, the 

distribution of associations for potential answers for a given 

problem tended to be rather peaked, with only one potential 

answer, the correct sum, clearly above a criterion for respond- 

ing. For problems with larger addends, the distribution of 

associations tended to be flatter, with a less clear distinction 

of the correct sum from other potential answers. Problems 

with more peaked distributions of association require less 

time to verify because less cognitive effort is required to arrive 

at the correct sum; conversely, problems with flatter distri- 

butions of association require a greater amount of time to 

verify in order to determine which of several relatively likely 

answers is the correct answer. 

The predictions made by the "distribution of associations" 

model may be highly related to those for certain table-related 

models. For example, if the peakedness of the distributions of 

associations for nontie problems is inversely and linearly 

related to the magnitude of each addend, the distribution of 

associations to a particular addition problem would be in- 

versely and linearly related to the product of the addends. But 

the distributions of associations for tie problems may be very 

peaked, leading to a prediction of rather fast reaction times, 

regardless of the size of the addends. In this way, the "distri- 

bution of associations" model could account for the relatively 

constant RT for tie problems regardless of size of addends, 

while predicting a linear increase in RT as a function of 

product of the addends for nontie problems. 

A second nontabular model, tested by Ashcraft, Fierman, 

and Bartolotta (1984), is based on the assumption that the 

speed of answering a problem should be a function of the 

difficulty associated with the problem. Ashcraft et al. used 

norms presented by Wheeler (1939), who reported the pro- 

portion of second-grade pupils who mastered each of the 100 

simple addition problems and the ranked difficulty for each 

problem. Using the ranked difficulty measure, Ashcraft et al. 

found that problem difficulty was a better predictor of RT 

than was the MIN structural variable for samples of subjects 

from first grade through college and led to very similar equa- 

tions for both verification and production formats of problem 

presentation. 

A third nontabular model was recently proposed by Ha- 

mann and Ashcraft (1986), Hamann and Ashcrafl reasoned 

that the problem size effect may arise because problems with 

larger addends are presented less frequently and later in order 
during the grades when children are learning addition. The 

inverse relation between problem size and frequency of pres- 

entation may lead to lower memory strength, and therefore 

longer retrieval times, for problems as a function of problem 

size. Using textbooks designed for use at each grade from 

kindergarten through third grade, Hamann and Ashcraft ob- 

tained indices of the frequency of presentation and the order 

of presentation of each of the 100 basic addition problems. 

Hamann and Ashcrafl reported relatively large correlations 

for both the frequency and order of presentation with RT 

measures from their earlier studies for subjects ranging from 

first grade through college. Interestingly, the Hamann and 

Ashcraft study replicated the correlation between problem 

size and frequency of textbook presentation reported by 

Thorndike (1922). 

One advantage of the preceding nontabular models is that 

the models appear to be more similar to, or more compatible 
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with, models for nonarithmetic types of memory network 

(Siegler & Taraban, 1986), for example, models for semantic 

memory. A second advantage is that such models are capable 

of representing the basis for the exceptional RT results asso- 

ciated with tie problems; tie problems may have special appeal 

to children because they represent the addition of like sets 

(Arthur Baroody, personal communication, October, 1987), 

leading to rather lower levels of difficulty than would be 

expected from the magnitude of the addends in the problems. 

A third advantage of nontabular models is that such models 

could reflect the true parameters of network access that lead 

table-related structural variables to be highly related to RT. 

Some form of memory network storage of arithmetic facts is 

supported by recent research on priming and interference 

effects with mental multiplication (Campbell, 1987a, 1987b; 

Campbell & Graham, 1985; LeFevre, Bisanz, & Mrkonjic, 

1988). Ultimately, the choice between tabular and nontabular 

models must be determined on bases such as which type of 

model leads to maximal goodness of fit with empirical data 

and to the confirmation of the greatest number of unique, 

testable hypotheses. The present study will allow evaluations 

of the relative goodness of fit of tabular and nontabular 

models. 

Rule-Based, Procedural Processes 

In the preceding section on memory network retrieval 

processes, retrieval of declarative knowledge was presumed to 

underlie addition performance. Declarative knowledge refers 

to stored knowledge of addition facts--for example, facts such 

as 2 + 3 = 5. Procedural knowledge, on the other hand, refers 

to stored knowledge about arithmetic. Procedural knowledge 

subsumes knowledge about procedural algorithms for arriving 

at a correct sum, procedural rules or heuristics for obtaining 

sums, and the like. As a function of systematic instruction in 

simple numerical operations that begins in first grade, Ash- 

craft (1982) hypothesized that the strength of both declarative 

and procedural knowledge increases with schooling. In early 

grades, children likely need to access procedural knowledge 

in order to recalculate the correct sum when presented with 

an addition problem because the memory trace representing 

declarative knowledge of the correct answer is not sufficiently 

strong to enable its retrieval. Upon successful solution of the 

addition problem and the resultant association of the correct 

answer with the two addends comprising the addition prob- 

lem, the strength of the memory trace associations for the 

given problem is enhanced. Eventually, with practice and the 

strengthening of memory traces for the declarative knowledge 

of addends and their sums, retrieval of the correct answer for 

a given problem becomes the more efficient way of solving 

simple addition problems. Ashcraft (1982; Ashcraft & Fier- 

man, 1982) documented just such a developmental progres- 

sion from use of procedural (e.g., digital) processes to use of 

declarative, retrieval processes, a trend noted in earlier re- 

search (e.g., Brownell, 1935; Ilg & Ames, 1951). 

However, in a number of recent articles, Baroody (1983, 

1985, 1987) argued that procedural knowledge, rather than 

declarative knowledge, may frequently be used by highly 

proficient persons to solve addition problems. For example, 

frequency of practice cannot account for acquisition of all 

number facts (Baroody & Ginsburg, 1986) because acquisition 

and representation of addition combinations involving zero 

appear to involve a rule (Baroody, 1983), and there is clear, 

swift transfer to unpracticed problems once combinations 

involving zero are mastered (Baroody, 1985, 1987). The learn- 

ing of "plus one" combinations, of the form "x + 1" and 

"l + x," also appears to involve a rule relating the addition 

operation and knowledge of the basic number sequence (Bar- 

oody, 1985, 1987). Baroody reviewed these and other findings 

to support his argument that rules and procedures may un- 

derlie much addition performance. Incorporating such proc- 

esses into our componential model, discussed below, is be- 

yond the scope of the present article, but further research on 

such efforts appears strongly merited. 

Components  Required in a General Model for Mental 

Addition 

In the preceding section, five general classes of process were 

discussed as alternative representations of the central elemen- 

tary information process that is invoked when a person re- 

trieves or recomputes the correct sum for an addition prob- 

lem. There remains the task of placing the search/compute 

process within an adequate, comprehensive processing model 

for mental addition that specifies all of the important elemen- 

tary information processes involved in problem solution. In 

the present section, a general model, capable of representing 

addition problems of any degree of complexity, will be pro- 

posed and discussed. 

A Model for Simple Addition 

The simple flow diagram for mental addition presented in 

Figure 2 provided an adequate conceptualization for most 

previous research on simple addition. However, when inves- 

tigators (e.g., Ashcraft & Stazyk, 198 l) introduced more com- 

plex forms of addition, certain parameters were estimated, 

such as time taken to carry from the units to the tens column, 

though it was unclear how such processes conformed to the 

simple flow diagram. Further, in several instances (see Ash- 

craft & Stazyk, 1981; Tables 2 & 4), two structural variables 

corresponding to alternative processes in the search/compute 

stage entered into the same equation. Ashcraft and Stazyk 

(1981) did not attempt to explain the latter findings, and it 

appears that there is no simple way in which to reconcile such 

findings with the model in Figure 2. There is a need, therefore, 

to develop a processing model that explicitly includes all 

elementary information processes invoked in solving addition 

problems. 

A General Model for Simple and Complex Addition 

The flow diagram for a general model for verification-task 

performance on mental addition is presented in Figure 3, 

which builds on the simple model in Figure 2. The general 

model is able to represent simple addition problems, as well 

as complex problems with any number of addends and any 
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Figure 2. Flow diagram of simple model for verification task per- 
formance on addition (after Ashcraft, 1982). (Flow diagram adapted 
from Figure 3 in "The Development of Mental Arithmetic: A Chron- 
ometric Approach" by Mark H. Ashcraft, 1982; Developmental Re- 
view, 2, p. 229. Copyright 1982 by Academic Press, Inc. Adapted by 
permission.) 

number of  digits per addend. Given space constraints, only 

the components of  the model in Figure 3 will be discussed 

below; this is not problematic because all components in the 

simple model in Figure 2 are contained within the model in 

Figure 3. Note here the following figural conventions used in 

Figure 3: Model components enclosed in boxes represent 

more controlled processes, processes assumed to require non- 

trivial durations that may be separately estimated; diamonds 

enclose branching operators that direct the flow of  processing 

but that, being quite overlearned and therefore rather auto- 

matic, likely require trivial amounts of  time for execution; 

and circles enclose operation of  a counter that keeps track of  

the column of  current processing, for example, units column. 

The first stage depicted in the general model in Figure 3 

involves encoding the type of  addition problem presented. If 

problems are presented in homogeneous sets (e.g., a block of 

trials containing only simple addition problems), the first 

stage would be unnecessary. However, if problems of  several 

types are presented in an intermingled, random manner, the 

person may need to initialize, or preset, certain counters or 

branching operators, given the number of  addends and num- 

ber of  digits per addend, to allow optimally efficient processing 

of  the given problem. As an example of  the initialization of  

counters, we assume that persons will solve most simple and 

complex addition problems in columnwise fashion, beginning 

with the units column. Therefore, the column indicator is 

initialized with a setting to the first, or units, column, that is, 

c = l .  

The second step of  processing involves a branching opera- 

tor, the operation of which is determined by the number of  

digits in column c to be summed. The units column of  all 

simple and complex addition problems must contain at least 

2 digits, so the initiation of  processing of  an addition problem 

will always result in selection of  the ">  l" branch the first 

time the present branching operator is invoked. However, in 

complex problems with more than one digit per addend, there 

may be only a single digit in the final, or leftmost, column of 

digits in the problem. In the latter case and if no carry 

operation to the final column is required, the "1" branch may 

be taken, as no summing of  digits is required. 

In the next stage of  processing, two digits from column c 

are encoded. The encoding stage in Figure 3 assumes encoding 

of only two digits in column c. Previous conceptual models 

of  addition, discussed above, presume that the elementary 

information process for addition obtains the correct sum of 

two numbers, and this appears to be a reasonable assumption. 

As a result, regardless of  the number of digits in column c, 

we assume that the solving of the given addition problem will 

commence with the encoding of two, and only two, digits in 

column c. If  there are more than two digits to be summed in 

column c, when encoding the first two digits the person must 

maintain in short-term memory an index variable indicating 

which digits are being encoded and which digits remain to be 

encoded and processed further. We assume that the encoding 

of  the addends of  an addition problem is likely to be a very 

rapid and overlearned process (cf. Poltrock & Schwartz, 1984), 

given the frequency with which individuals in our culture 

encounter numerical stimuli. However, encoding an addend 

probably requires retrieval from a long-term memory (LTM) 

store of  certain attributes of  the addend, such as the number 

of  units represented by the addend. Such retrieval should take 

a consistent but estimable amount of  time, perhaps on an 

order comparable to that found for access to name codes of 

letters (Posner et al., 1969; Hunt, Lunneborg, & Lewis, 1975). 

The following stage is the search/compute stage, during 

which the correct sum of the two encoded digits is obtained. 

Once again, the search/compute stage in the present model is 

identical, in terms of  both componential composition and 

temporal operating characteristics, to the like-named stage in 

the simple model in Figure 2. Thus, the correct sum of the 

two encoded digits is either retrieved from a memory store or 

calculated anew, with a temporal duration determined by 

problem size. The five major classes of  processes presumed to 

underlie processing during the search/compute stage were 

discussed in detail above. 
Immediately after the correct sum of the two digits has 

been obtained, a branching operator is encountered. If there 

are more digits in column c to be summed, the current sum 

is only provisional. Therefore, the current sum must be held 

in short-term memory while the yes branch is taken, which 

leads to the encoding of one more digit and the subsequent 

obtaining of  a new sum. The preceding series of  "encoding 

then summing" of  digits continues until all digits in column 
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Figure 3. Flow diagram of general model for verification-task performance on mental addition. 



906 WIDAMAN, GEARY, CORMIER, AND LITTLE 

c have been summed; at this point, the no branch is taken, as 

a correct column sum has been determined. One important  

prediction may be proposed regarding the form of  the search/ 

compute sequence. All conceptual models developed for a 

memory search process have assumed the existence of  a long- 

term memory store for simple addition facts, that is, facts 

involving two single-digit addends. Given the preceding as- 

sumption, the first t ime the search/compute process is in- 

voked in column c in a problem with more than two addends, 

the correct sum of  any two of  the digits in column c may be 

obtained via the efficient, automatized memory search proc- 

ess. The provisional sum, which serves as one addend as 

further digits in column c are summed, will soon be greater 

than 9, exceeding the bounds of  the hypothesized memory 

network for simple addition facts. Hence, any subsequent 

invocation of  the search/compute stage for column c should 

always result in the use of  a slower, back-up process, of the 

counting or analog sort, because the correct sum would not 

reside in the stored network of  facts. 

Upon completion of  the summing of  digits in column c, 

the digits in the stated sum must be encoded so that the 

obtained and stated sums may be compared. If  column c is 

not the final column of  digits to be summed, only the single 

digit in column c of  the stated sum need be encoded for 

comparison with the units value of  the obtained sum. On the 

other hand, if  column c is the final column in the given 

problem, then all remaining digits in columns c, c + 1, and 

so forth, of the stated sum must be encoded for comparison 

with the stated sum. 

The decision stage comprises the comparison of  the ob- 

tained and stated sums. The t ime required for this comparison 

may be an inverse function of  the split, or difference, between 

stated and true sums (e.g., Ashcraft & Stazyk, 1981). 

If the obtained and stated sums are unequal, the no branch 

from the decision stage is taken, and the response signifying 

"incorrect" is selected and then executed. If, conversely, the 

obtained and stated sums are identical, the yes branch is 

taken, leading to another branching operator. If there are no 

further columns of  digits to be summed, the no branch is 

taken, and the response signifying that the stated sum is 

correct is selected and then executed. However, if  there remain 

one or more columns of  digits to be summed, the yes branch 

is taken. Processing then continues with a unit increment of 

the column counter, shifting the locus of processing to the 

next column of digits. 

The final branching operator in our model governs whether 

the carry operation is performed. If the most recently obtained 

column sum was 9 or less, the no branch is followed, and 

processing of  the given problem resumes with the encoding 

of one or two digits in column c. But, if the column sum in 

question was greater than 9, the yes branch must be taken, 

leading to the carrying to column c of  information regarding 

the number of  provisional tens. The latter information must 

be summed with one of  the digits in column c before further 

digits from column c are encoded and summed. 

C o l u m n w i s e  Versus N o n c o l u m n w i s e  Process ing  o f  

Add i t ion  Prob lems  

The design of  the general model presented in Figure 3 was 

based on the assumption ofcolumnwise processing of addition 

problems, an implicit  assumption of  most previous concep- 

tual models for mental addition. However, both the analog 

model proposed by Restle (1970) and the procedural processes 

of  Baroody (1987) presume that addition of  numbers may be 

performed "o fa  piece," rather than columnwise. To represent 

such a conceptual model would require some modifications 

of  the flow diagram in Figure 3. Specifically, all column 

counters and branching operators relating to column of  proc- 

essing and digits to be summed would be deleted as might the 

carry operator. Also, rather than encoding and summing only 

digits in column c, encoding of  all digits in two multicolumn 

addends would be followed by the summing of  the addends. 

The branching operator allowing looping if there were more 

than two addends would remain, as would the encoding of 

the stated sum, the comparison of the obtained and stated 

sums, and the selection and execution of  a response. It appears 

that the flow diagram for noncolumnwise processing may 

require only modification and simplification of the diagram 

in Figure 3, but explicit, convincing tests of  the relative fit of 

columnwise and noncolumnwise processing models could not 

be pursued within the scope of  the present study. 

The  Presen t  S tudy  

The aim of the present study was to evaluate several hy- 

potheses generated from consideration of  the general model 

for mental addition presented in Figure 3. The first hypothesis 

was that the general model will allow the specification of one 

or more statistical models that well describe RT to simple and 

to several types of  more complex addition problems. One 

supplement to the preceding general hypothesis is the hypoth- 

esis that one form of  search/compute process would emerge 

as the best representation of RT data across types of addition 

problem, regardless of  complexity of  the problems. 

The second hypothesis was that well-conditioned estimates 

for several elementary information processes underlying ad- 

dition performance are estimable. Specifically, we attempted 

to estimate time associated with encoding of  digits, the search 

for or computing of  the sum, and the carry operation. 

The third, and final, hypothesis was that the temporal 

operating characteristics associated with the elementary infor- 

mation processes will either remain unchanged or change in 

a consistent, interpretable fashion as a function of problem 

Because we were interested in studying addition problems repre- 
sentative of those encountered outside the laboratory, we included in 
the present study only problems with correct or with "reasonably 
incorrect" stated sums. Exclusion of problems with "unreasonably 
incorrect" stated sums obviously led to nonidentifiability of a split 

effect parameter. Although the split effect, demonstrated by Ashcrafl 
and Stazyk (1981 ), is of great importance when attempting to under- 
stand and model efficient verification-task performance on addition, 
the split structural variable appears only in models for verification- 
task performance and, therefore, is likely not representative of typical, 
everyday addition performance. Although the preceding argument 
appears to cast some doubt on the appropriateness of the verification- 
task format for the study of mental addition, Ashcraft, Fierman, and 
Bartolotta (1984) showed that use of production-task and verification- 
task formats led to nonsignificant differences in regression estimates 
for important structural variables common to the two formats. 
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complexi ty.  The  preceding hypothes is  covers two types o f  

effect: (a) instances in which the same p r o c e s s - - f o r  example,  

the s ea r ch / com pu te  p r o c e s s - - i s  invoked more  than  once in 

the solving o f  a given p r o b l e m - - f o r  example,  in the units and  

tens  columns,  and  (b) instances in which the same process 

appears  in the identical  posi t ion in the flow o f  processing in 

p rob lems  differing in overall complexi ty.  

Method 

Subjects 

The subjects in the study were 23 undergraduate students at the 

University of California at Riverside who received course credit in 

introductory psychology for participation in the experiment. The 

mean age of subjects was 19.6 years (range: 16-29 years); there were 

9 males and 14 females. 

Stimuli 

A set of 800 addition problems was used for the present study. The 

global set of problems comprised four types of problem, 200 problems 

of each type. 

Type I: Two single-digit addends. The Type I problems were the 

basic 100 simple addition problems used in many previous studies 

(e.g., Parkman & Groen, 1971). The basic 100 problems result from 

the Cartesian product of using the digits 0 through 9 as first addend 

and the same set of digits as second addend. Presenting each problem 

once with the true sum and once with an incorrect sum, differing 

from the true sum by ± 1 or + 2, resulted in the 200 Type I problems. 

Type Il: One single-digit and one double-digit addend. Each Type 

II problem contained one single-digit and one double-digit addend. 

The problems included in the study consisted of a random sample of 

100 of the 900 problems formed by the Cartesian product of the l0 

single-digit numbers 0 through 9 with the 90 double-digit numbers 

l0 through 99. For double-digit numbers, constraints invoked en- 

sured that the numbers 0 through 9 appeared equally often in the 

units column and the numbers 1 through 9 appeared equally often 

in the tens column across the 100 problems. In 50 problems, the 

double-digit number appeared as the first addend; in the remaining 

50 problems, the double-digit number was the second addend. Across 

the 100 problems, the numbers 0 through 9 appeared equally often 

as the single-digit addend, and the unit digit of the double-digit addend 

never equaled the single-digit addend; that is, no tie problems were 

allowed. 

Presenting the 100 Type II problems once with the true sum and 

once with an incorrect sum led to the set of 200 Type II problems. 

Of the 100 incorrect problems, one half had sums differing from the 

correct sum by -+ 1 or ± 2, while the remaining incorrect problems 

had sums differing from the correct sum by ± l0 (i.e., ± l in the tens 

column). These values were used to ensure that all Type II problems 

had either correct sums or sums that were not obviously incorrect. 

Type III: Two double-digit addends. A constrained random sam- 

ple of 100 of the 8,100 addition problems defined by the Cartesian 

product of the numbers 10 through 99 as the first addend and the 

same array of numbers as the second addend was chosen. The 

constraints resulted in each of the 90 numbers 10-99 appearing at 

least once as the first addend and at least once as the second addend, 

the digits 0 through 9 appearing equally often in each of the four 

positions (i.e., units or tens column of the first or second addend) 

and no ties allowed in either the units or tens columns. As with 

previous types of problem, the 100 problems with two double-digit 

addends were presented once with the true sum and once with an 

incorrect sum, generating the set of 200 Type III problems. For the 

incorrect problems, constraints with regard to the position and mag- 

nitude of the error in the stated sum identical to those for Type II 

problems were used. 

Type I K" Three single-digit addends. The set of Type IV problems 

comprised a random sample of 100 of the 1,000 problems formed by 

the Cartesian product of using the single digits 0 through 9 as the 

first, second, and third addend in three-addend problems. Each of 

the digits 0 through 9 appeared equally often in each of the three 

positions across the 100 problems, and the same digit did not appear 

in consecutive positions within a given problem. The 100 Type IV 

problems were each presented once with the true sum and once with 

an incorrect sum (differing from the true sum by + 1 or _ 2) to 

generate the 200 Type IV problems. 

Problem sets. The 800 addition problems were randomly assigned 

to 200 quartets of four problems so that each quartet contained, in 

random order, one of each of the four types of problem. Consistent 

with previous research, no more than five consecutive correct or 

incorrect problems were allowed. In addition, a particular combina- 

tion of digits was never allowed to occupy the same column in 

consecutive problems, to eliminate priming effects. 

The first 100 quartets of problems were termed Set A, and the 

second 100 quartets were termed Set B. Twenty practice problems, 

five of each of the four types, were developed for each set of 400 

problems. 

Apparatus 

The addition problems were presented at the center of a 30-cm x 

30-cm video screen controlled by an Apple II Plus microcomputer. 

A Cognitive Testing Station clocking mechanism ensured the collec- 

tion of RTs with + 1-ms accuracy. Subjects were seated approximately 

40 cm from the video screen and responded by depressing one of two 

response buttons located on a board directly in front them. Subjects 

were instructed to indicate that the stated sum for a problem was 

correct by depressing one of the response buttons and to depress the 

other response button if the stated sum was incorrect. 

For each problem, a READY prompt appeared at the center of the 

video screen for a 500-ms duration, followed by a 1,000-ms period 

during which the screen was blank. Then, an addition problem 

appeared on the screen and remained until the subject responded, at 

which time the problem was removed. If the subject responded 

correctly, the screen was blank for 1,000 ms, and the READY prompt 

for the next problem then appeared. If the subject responded incor- 

rectly, a WRONG prompt with a 1,000-ms duration followed the 

removal of the stimulus and preceded the 1,000-ms blank period. 

Procedure 

Subjects were tested individually in a darkened room in two 

sessions separated by at most 1 week. Twelve of the subjects received 

Set A during the first session and Set B during the second, and the 

remaining 11 received the sets in the B-A order. Subjects were told 

that they would see a variety of types of addition problem and were 

to indicate whether a problem was correct or incorrect by depressing 

the appropriate button. Speed and accuracy of responding were 

emphasized equally. After responding to the 20 practice problems, 

the speed/accuracy instructions were briefly repeated, and the subjects 

responded to the 400 problems in the set. Each session lasted approx- 

imately 45-50 min. 

Results and Discussion 

For  clarity of  presentat ion,  the results f rom the present  

s tudy will be presented  and  discussed in two major  sections, 

follov~ed by a general discussion of  the results and  their  
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Table  2 

Summary  o f  Regression Analyses for  Type I Addition Problems 

Equation R 2 df F RMSe 

True, nontie problems 
RT = 926 + 7.91 (PROD) .671 1, 88 179.28 106.1 
RT = 879 + 2.09 (SUM 2) .657 1, 88 168.21 108.3 
R T =  908 + 64.1 (MIN) .601 1, 88 132.53 116.8 

False, nontie problems 
R T =  1057 + 10.53 (PROD) .640 1, 88 156.70 151.1 
R T =  998 + 2.74 (SUM 2) .609 1, 88 136.94 157.6 
R T =  1027 + 87.3 (raiN) .600 1, 88 132.04 159.4 

Combined set, nontie problems 
R T =  926 + 7.91 (PROD) -I- 131 (TRUTH) 

+ 2.62 (PROD X TRUTH) .702 3, 176 138.50 130.6 
Partial Fs: 118.36, 22.17, 6.52 

R T =  

R T =  

682 + 80 (ENCODE) at" 6.25 (PROD) 
+ 133 (TRUTH) 4- 2.72 (PROD X TRUTH) 
Partial Fs: 6.89, 43.01, 23.54, 7.20 

.714 4, 175 109.08 128.4 

712 + 66 (ENCODE) -I- 7.26 (PROD) 
+ 93 (TRUTH) 4- 66 (REENC) 
Partial Fs: 13.42, 97.32, 8.99, 13.42 

.713 3, 176 145.96 128.2 

R T =  971 + 121 (TRUTH) 
Combined set, tie problems 

.240 1, 18 5.68 113.3 

Combined set, tie and nontie problems 
RT--  726 + 68 (ENCODE) -I- 5.32 (PROD) 

4- 81 (TRUTH) -1- 68 (REENC) .561 3, 196 83.81 154.8 
RT = 760 + 50 (ENCODE) "at" 7.72 (PROD*) 

+ I06 (TRUTH) + 50 (REENC) .702 3, 196 153.88 127.7 

Note. Mean RT = 1,169.40 ms. PROD stands for product of addends; PROD* is same as PROD except that 
values for tie problems are set to zero; SUM 2 = squared sum of addends; MIN = smaller addend; TRUTH 
= correct (0) or incorrect (1) stated sum; ENCODE = number of items encoded (3 or 4); and REENC --- 
reencoding of digits in incorrect stated sums ( 1 or 2). 

implications.  In the first major  section, the results o f  analyses 

demonstra t ing the intensive validation o f  the proposed general 

mode l  for each type o f  problem will be presented. In the 

second major  section, results demonst ra t ing  the extensive 

validation o f  the general mode l  will be reported. Fol lowing 

previous research (e.g., Ashcraft  & Battaglia, 1978), the aver- 

age R T  across subjects was computed  for each problem and 

served as dependent  variable. 

In tens ive  Validat ion 

Type  I: S i m p l e  Add i t ion  

A total o f  200 simple addi t ion problems were included in 

the study, leading to 4,600 reaction t imes across the 23 

subjects. Overall  error  rate was 2.52%, and an addit ional  0.1% 

of  responses were e l iminated on the basis o f  a test for outliers 

(Dixon 's  test; Wike, 1971). Thus, a total o f  2.63% of  the 

responses, or  121 of  the 4,600 responses, by subjects were 

excluded from analyses, an error  rate that  is relatively low 

and comparable  to that in previous studies (e.g., Asheraft & 

Battaglia, 1978). 

True, nontie problems. As in previous studies o f  mental  

addition, a wide variety o f  potential  predictors o f  R T  to the 

90 true, nontie  problems was entertained. Specifically, all 12 

structural variables listed in Table 1 were tested individually 

as were 8 additional structural variables proposed by Ashcrafl 

and Battaglia (1978) and Ashcraft  and Stazyk (1981). The  

latter set o f  structural variables included such variables as 

whether  the first addend was even or  odd and whether  the 

true sum was a single- or  double-digit  n u m b e r /  

A summary  of  the results o f  the regression analyses is 

presented in the first section o f  Table 2, where equat ions for 

the best three predictors are given. As shown in Table 2, both 

the MIN (R 2 -- .601) and the sum-squared (R 2 = .657) struc- 

tural variables provided good representations o f  R T  to the 

true, nont ie  problems. However ,  the strongest predictor  o f  

R T  was the product  o f  the addends, which explained over  

67% of  R T  variance, F(1, 88) = 179.28, p < .0001. The  

analyses o f  the true, nont ie  problems thus provided strong 

support  for some type o f  network retrieval conceptual  model  

over  any of  the count ing models  because two structural vari- 

ables consistent with network retrieval m o d e l s - - t h e  sum- 

squared and the p r o d u c t - - w e r e  clearly the strongest predic- 

tors o f  RT.  The  best nontabular  retrieval mode l  included the 

2 Because of space limitations, a table providing the intercorrela- 

tions among all potential predictors and RT for true and false 

problems was not included. This table is available from the first 

author on request. 
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Wheeler difficulty measure 3 as predictor and had an R 2 of  

only .620. 

Because there have been no previously published results 

using the product as predictor of  raw RT to addition prob- 

lems, 4 it is not possible to determine the comparabil i ty of  the 

obtained results for the product variable with any previous 

findings. However, the RT data reported in Table 2 appear 

quite representative of  certain previous results. For example, 

Ashcraft and his associates (Ashcraft & Battaglia, 1978; Ash- 

craft & Stazyk, 1981) reported regression weights for the sum- 

squared structural variable, across several experiments, that 

ranged from 1.15 to 2.60 ms per unit increase in the sum 

squared. 5 

False, nontie problems. The set of  structural variables for 

predicting RT to simple addit ion problems was applied next 

to the false, nontie problems. The results for the best three 

equations are presented in the second section of  Table 2. The 

best structural variable consistent with a counting model was 

once again the M1N (R -~ = .60), and the sum-squared again 

outperformed all counting and nontabular  retrieval models 

(R 2 = .61). However, the product structural variable was 

clearly the strongest predictor of  RT to the false, nontie 

problems (R 2 = .64), repeating its success in representing RT 

to true, nontie problems. 

The regression equation for the product structural variable, 

R T  = 1,057 + 10.53 (product), offered interesting contrasts 

with the corresponding equation for true, nontie problems: 

The intercept for the false problems was about 130 ms larger 

than that for true problems, and the regression slope for the 

product variable was approximately 33% larger for false prob- 

lems. The differences in intercept between true and false 

problems probably reflect a difference in the selection and 

execution of  responses for the two types of  problems. Fur- 

thermore, the intercept difference is similar to intercept dif- 

ferences reported for a variety of  tasks, from scanning in 

short-term memory (Sternberg, 1966) to spatial rotation 

(Cooper & Shepard, 1973). 

The difference between true and false problems in the 

regression slope for the product structural variable is, however, 

more problematic than the intercept difference. According to 

additive factors methodology (Sternberg, 1969), the interac- 

tion of  a structural variable, such as the product, with a 

second variable, such as truth versus falsity of  the stated sum, 

implies some form of  departure from strict serial processing 

of  the associated stages; this problem will be discussed in more 

detail below. However, the slope difference reported in Table 

2 is representative of  previous research findings. For  example, 

Ashcraft and Battaglia (1978) reported regression slope esti- 

mates for the sum-squared variable that were approximately 

50%-70% larger for false problems than for true problems, 

and similarly disparate weights for true and false problems 

were reported by Ashcraft and Stazyk (198 l). To our knowl- 

edge, in no previous research on mental addition has the 

apparent difference between true and false problems in proc- 

essing rates for important  structural variables been stressed; 

rarely, if ever, has the difference in slope estimates for true 

and false problems been tested for significance. 

Combined set of nontie problems. In order to represent 

and test most efficiently the differences between true and false 

problems, analyses of  the combined set of  180 nontie prob- 

lems were undertaken. As discussed in texts on regression 

analysis (e.g., Cohen & Cohen, 1983), a simple way to test 

differences between regression equations is to place all obser- 

vations in a single data set and then to employ properly 

specified pseudovariates, both alone and multiplied by im- 

portant structural variables, to test intercept and slope differ- 

ences for groups of observations. Here, one pseudovariate, 

coded 0 for true problems and 1 for false problems, was used 

to represent intercept differences between true and false prob- 

lems, and the product of the preceding pseudovariate and the 

product structural variable was used to test the difference in 

slope estimates for true and false problems. 

Analyses of the combined set of  simple, nontie addition 

problems are presented in the third section of  Table 2; analyses 

were restricted to use of  the product structural variable be- 

cause of  the superior performance of  the product variable as 

predictor of  RT for both true and false problems. The first 

equation included the product variable, the truth variable, 

and the product of the preceding two variables. The first 

regression equation provided a strong representation of  the 

RT data, R 2 = .702, F(3, 176) = 138.50, p < .0001. Because 

the truth variable was zero for all true problems, the truth 

and Truth x Product structural variables may be dropped 

from the equation for true problems; this leaves an equation, 

RT = 926 + 7.91 (product), that was identical to that derived 

from analyses of  true problems alone. In a similar manner,  

the equation for false problems, for which the truth variable 

takes on a value of  unity, is obtained as R T = (926 + 131 ) + 

(7.91 + 2.62) (product) = 1057 + 10.53 (product), identical 

to the equation from analyses of  false problems alone. Most 

importantly, the combined analyses allow a direct estimate 

and test of the intercept difference between true and false 

problems, b = 131 ms, F(1, 176) = 22.17, p < .000 l, and of 

the slope difference for the product structural variable, b = 

2.62 ms, F(1,176) = 6.52, p < .01. 

Although the preceding tests imply that the slope estimates 

for the product structural variable differ significantly across 

true and false problems, there remains the possibility that the 

3 The Wheeler difficulty measure employed in our analyses was 

the percentage of students in the Wheeler study who failed to master 
each simple addition problem. Because Wheeler (1939) reported 

percent mastery for each problem, we simply calculated ( 1 - percent 
mastery) to arrive at a measure of problem difficulty. This percentage 
measure consistently explained more variance than did the ranked 

difficulty index provided by Wheeler. 
4 Miller, Perlmutter, and Keating (1984) used the product as struc- 

tural variable for predicting RT to simple addition problems but did 

not use raw RT as the dependent variable. Rather, Miller et al. used 

an adjusted RT as dependent variable, adjusted RT computed as RT 

to simple addition problems minus time taken to name the correct 
sum, estimated on the basis of a number naming task. 

5 Because Baroody (1983, 1987) discussed the exceptional nature 

of problems involving zero, we recomputed all analyses reported in 
Table 2 excluding all problems involving zero. The results of these 
supplementary analyses were virtually identical to those reported in 
Table 2, both with respect to parameter estimates and to the ranking 
of models for their predictive efficiency. A table reporting these 
supplementary analyses is available from the first author on request. 
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test of  the interaction is biased because of  model misspecifi- 

cation, which may lead to bias in regression weight estimates 

and their associated tests of  significance (Cohen & Cohen, 

1983). A common type of model misspecification is failure to 

include a structural variable that is required to represent the 

underlying processes generating the data. According to the 

general model in Figure 3, time for encoding digits is a 

parameter that could be estimated, and the failure to estimate 

encoding time could have biased the previous regression 

results. Therefore, another structural variable, ENCODE, was 

specified that represented the number of  items, or digits, 

encoded during processing of  a given addition problem, and 

took on values of  3 and 4 for problems with one- and two- 

digit stated sums, respectively. The ENCODE variable was 

included in the second equation for the combined set of  

problems (see Table 2). The time taken to encode each digit 

was estimated to be 80 ms, a value rather similar to that 

reported for retrieving name codes for letters (Hunt et al., 

1975). Incorporating the ENCODE variable in the regression 

equation led to a significant increase in explained variance, 

A R 2 = .011, F(1, 175) = 6.89, p < .01. But, although 

introduction of  the ENCODE variable appropriately altered 

certain of  the regression estimates, the regression weight esti- 

mates and associated levels of  statistical significance for the 

truth main effect and the Truth x Product interaction re- 

mained largely unchanged. 

The final form of model misspecification that was consid- 

ered involved a possible difference in the processing of  stated 

sums for true and false problems. There is evidence for 

multiplication facts that presenting an incorrect answer for a 

problem increases RT, presumably due to interference effects 

between the true and stated answers (Campbell, 1987b). The 

interference probably leads the subject to engage in longer or 

more involved encoding of  the incorrect answer; we have 

termed this effect a "reencoding" of the digits in the incorrect 

s u m .  

The effect that the encoding of  digits and the reencoding of  

digits in incorrect stated sums might have on RT is illustrated 

in Figure 4 with hypothetical data. The bottom two solid lines 

represent RT for true problems, and the top two solid lines 

represent RT for false problems. The solid lines drawn 

through unfilled data points represent RT to problems with 

single-digit sums, while solid lines drawn through filled data 

points represent RT to problems with double-digit sums. All 

solid lines in Figure 4 are parallel, reflecting identical memory 

search rates for simple addition problems regardless of  the 

number of  digits in the stated sum and the correctness of  the 

stated sum. The vertical separation between the two solid 

lines for true problems represents the difference in time taken 

to encode one digit; three digits are encoded in true problems 

with single-digit sums, and four digits are encoded when sums 

have two digits. The dashed line drawn as a single best-fit line 

for true problems provides a graphical demonstration of  

model misspecification: If  the difference in number of digits 

encoded for true problems with one- and two-digit sums is 

not accounted for, the regression weight for the product 

variable based on RT to true problems will be positively 

biased and, hence, overestimated. 

Turning to false problems, the effects of  model misspecifi- 

cation are again apparent in the patterns in data portrayed in 

Figure 4. Assuming that subjects spend more time encoding 

digits in stated sums of  false problems, the vertical separation 

of the two solid lines for false problems should be twice that 

for true problems, reflecting the difference in RT for encoding 

two digits. In false problems with single-digit stated sums, 

subjects would encode three digits and then reencode the 

single-digit sum, a total of  four digits; in problems with two- 

digit sums, subjects would encode four digits and then teen- 

code the two-digit sum, a total of six digits. If subjects perform 

such reencoding of  digits in incorrect stated sums, the failure 

to include a reencoding parameter in the model would lead 

to positive bias in the estimated search rate for false problems 

(see the dashed line for false problems in Figure 4); more 

importantly, the failure to include a reencoding parameter 

would lead to different estimated search rates for true and 

false problems, represented by the two dashed lines in Figure 

4, even though the true search rates for all problems were 

identical. 
To test the plausibility of  the reencoding hypothesis, we 

specified a reencoding structural variable (REENC) with a value 

of 0 for all true problems and values of  1 and 2 for false 

problems with single- and double-digit sums, respectively. 

With the procedures outlined by Rindskopf (1984), the esti- 

mated regression weights for the ENCODE and REENC variables 

were forced to equality, embodying the a priori hypothesis 

that encoding and reencoding have identical temporal dura- 

tions per digit. The resulting equation is presented as the third 

equation based on the combined set of nontie problems. In 

the third equation, encoding is estimated to take 66 ms per 

digit, reencoding is estimated to take an additional 66 ms per 

digit in false stated sums, the search rate parameter for the 

product structural variable is 7.26 ms per unit increase in the 

product, and the residual difference in RT between true and 

false problems is 93 ms. The third equation, which utilized 

three regression parameter estimates, had a level of  fit (R 2 = 

.713, SE = 128.2 ms) that was essentially equal to that of  the 

0 TRUE, I-DIGIT SUM 

• TRUE, 2-DIGIT SUM 

A FALSE, I-DIGIT SUM 

• FALSE, 2-OIGtT SUM / f ~ ' ' ~ A  

J 

1 / I  

PRODUCT 

Figure 4. Hypothetical data embodying effects of the product struc- 

tural variable, the correctness of the stated sum, and the encoding 

and reencoding of digits on RT to simple addition problems. 
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second equation (R 2 = .713, SE -- 128.4 ms), which required 

four parameter  estimates; the third equation was therefore 

preferable on grounds of  pars imony--equa l  levels of  fit based 

on one fewer parameter  estimate. 

Two further results support acceptance of  the third equation 

over the second. First, relaxing the equality constraint on the 

regression weights for the ENCODE and REENC variables led to 

a nonsignificant increment in explained variance ( F  < 1.0), 

favoring the a priori equality constraint. Second, and more 

important,  the Product x Truth variable, representing the 

interaction of  search rate and correctness of  the stated sum, 

was nonsignificant, F(1, 175) = 2.09, p > . 15. Therefore, a 

model positing identical memory search rates for true and 

false problems cannot be rejected if the reencoding parameter  

is included in the model. The two effects of  proper model 

specification represented in the hypothetical data in Figure 4 

were, thus, borne out in analyses of  data from the combined 

set of  problems: (a) the estimated search rate parameter from 

the third combined set equation (b = 7.26 ms) was smaller, 

and presumably less biased, than the corresponding parameter  

estimate based on analyses of  either true (b = 7.91 ms) or 

false (b = 10.53 ms) problems alone, and (b) the search rate 

parameter  did not differ significantly across true and false 

problems. 

Tie problems. Regression analyses were performed on true 

tie problems, false tie problems, and the combined set of tie 

problems. In none of  the analyses did any structural variable 

associated with the search/compute stage, whether reflecting 

a counting or memory search conceptual model, emerge as a 

significant predictor of  RT. The only structural variable sig- 

nificantly related to tie problem RT was the truth variable. 

As shown in the fourth section of  Table 2, the truth variable 

explained 24% of  RT variance for the combined set of 20 

true and false tie problems, F( 1, 18) = 5.68, p < .01. As shown 

by the equation, true tie problems had a mean RT of  971 ms, 

while false problems had a mean RT of  1,092 ms. The 

difference between true and false tie problems, b = 121 ms, 

was approximately the same order of  magnitude as that 

estimated on the basis of  nontie problems (see Table 2). 

Combined set of tie and nontie problems. A final set of  

analyses, based on the total set of  200 tie and nontie problems, 

was undertaken, to test a central assumption associated with 

the nontabular retrieval models: that nontabular models could 

more easily account for the exceptional RT patterns for tie 

problems than could any tabular retrieval model. In the fifth 

section of  Table 2, two equations are presented that have the 

product of  addends as the retrieval structural variable. In the 

first equation, the product of  addends was used for all prob- 

lems; in the second equation, the value on the product variable 

(PROD*) for each tie problem was set to zero, representing the 

lack of  a problem size effect for tie problems. The second 

equation had a rather higher level of  fit, R 2 = .702, than did 

the first equation, R 2 = .561, supporting the hypothesis that 

tie problems have a flat problem size effect. More important,  

replacing the product variable in the first equation with any 

of the nontabular retrieval structural variables invariably led 

to rather lower levels of  fit. The best equation involved the 

Wheeler difficulty measure, an equation that had an R 2 of 

only.550. These results clearly support the product of  addends 

as the structural variable, among those considered in this 

study, most strongly reflecting the temporal course of  retrieval 

of  addition facts from an LTM store. 

Type H: Addition of One Single-Digit and One 

Double-Digit Addend 

A total of 200 Type II addition problems were included in 

the study, resulting in 4,600 RTs to Type II problems across 

the 23 subjects. Overall error rate was 3.48%, and an addi- 

tional 0.3% of responses were eliminated on the basis of  a test 

for outliers (Dixon's test; Wike, 1971). Thus, a total of  3.78% 

of the responses, or 174 o f tbe  4,600 responses, by subjects to 

Type II problems were excluded from analyses. The error rate 

for the Type II problems, although somewhat higher than that 

for Type I problems, was still quite low. The somewhat higher 

error rate was most probably due to the greater complexity of  

the Type II problems. Given the successful combined set 

analyses of  Type I problems and the subsequent ability to test 

interactions of  structural variables with the truth variable, 

only combined set analyses were performed on Type II prob- 

lems. Also, the constraints invoked during construction of  

Type II problems eliminated tie problems, simplifying the 

types of analyses performed. 

Under  columnwise processing of  Type II problems, the 

effects of  several elementary components should be identifi- 

able. Given the general model in Figure 3, the identifiable 

components include the following: the encoding of  digits in 

the addends and stated sum, the searching for/computing of 

the correct sum in the units column, the presence of  a carry 

from the units to the tens column, the searching for/comput-  

ing of  the correct sum in the tens column if a carry is 

undertaken, a residual intercept difference between true and 

false problems, and a possible reencoding of digits in incorrect 

stated sums. 

To identify the operation of the preceding processes, struc- 

tural variables for each had to be specified. To reflect column- 

wise processing, structural variables associated with the 

search/compute stage were specified separately for the units 

and tens columns. Note that the search for, or computing of, 

a sum in the tens column was required only if a carry from 

the units column occurred. To represent self-terminating 

processing, the encoding structural variable, ENCODE, took on 

a value of  3 for false problems with an error in the units 

column, and values of  5 or 6 for the remaining problems, 

depending on whether the stated sum had 2 or 3 digits, 

respectively. The reencoding variable had a value of  0 for true 

problems, 1 for false problems with an error in the units 

column, and 1 or 2 for false problems with single- or double- 

digit sums in the tens column, respectively. The carry struc- 

tural variable had values of 0 for absence and 1 for presence 

of  a carry, and the truth variable was coded 0 for true problems 

and 1 for false problems. Finally, the structural variables for 

the search/compute process for the tens column and the carry 

were coded 0, indicating self-termination and hence absence 

of  process execution, for false problems with an error in the 

units column of  the stated sum. 
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Table 3 

Summary of Regression Analyses for Type H Addition Problems 

Equation R 2 df F RMSe 

RT = 776 + 108 (ENCODE) -k 11.60 (UNITPROD) 
-k 150 (CARRY) -I- 1 !.60 (TENPROD) 
d- 111 (TRUTH) q- 10g (REENC) .743 4, 195 140.93 200.0 
Partial Fs: 38.03, 142.43, 9.61, 142.43, 13.68, 38.03 

RT= 

RT= 

724 + 118 (ENCODE) d- I i.66 (UNITPROD) 
+ 147 (CARRY) + 11.66 (TENPROD) 
+ 236 (TRUTH) 
Partial Fs: 34.66, 140.62, 8.93, 140.62, 49.30 

749 + 104 (ENCODE) "1- 96.3 (UNITMIN) 
+ 142 (CARRY) -t- 96.3 (TENMIN) 
+ 117 (TRUTH) -k 104 (REENC) 
Partial Fs: 35.31, 141.77, 8.38, 141.77, 15.30, 35.31 

.740 4, 195 138.19 201.5 

.741 4, 195 140.56 200.6 

Note. Mean RT = 1,682.96 ms. ENCODE stands for number of items (digits) encoded (either 3, 5, or 6 
in this set of problems); UNITMIN and TENMIN for minimum addend in units and tens columns, 
respectively; UNITaROD and TENPROD for product of addends in units and tens columns, respectively; 
CARRY for presence (1) or absence (0) of a carry from the units to tens column; TRUTH for correct (0) or 
incorrect (l) stated sum; and REENC for the reencoding of digits in incorrect stated sums (1 or 2). 

All structural variables for the search/compute stage listed 

in Table 1 were used in separate equations, once with and 

once without the reencoding process, to model RT to Type II 

problems. In Table 3, the three equations providing the best 

fit to RT are presented. The first equation had the highest 

level of  fit, R -~ = .743; this equation included the columnwise 

product of  addends as structural variable for the search/ 

compute stage as well as the reencoding process. Two a priori 

equality constraints were invoked: one for the search rate 

estimate in the units and tens columns and the other for the 

encoding and reencoding processes. Both equality constraints 

were justifiable statistically because relaxing either constraint 

led to nonsignificant increments in R 2 (p  > .25). Interactions 

of  truth with encoding, product, and carry structural variables 

were all nonsignificant (p  > .  15). The parameter estimates for 

the intercept and truth variables were approximately 10% 

higher than those from equations for simple addition, while 

estimates for the encoding, reencoding, and search rate vari- 

ables were approximately 60% higher; the reliability and 

interpretation of  these differences between estimates from 

simple and complex addition problems are discussed later. 

The second and third equations are presented for purposes 

of  comparison. The second equation is identical to the first 

except for the deletion of  the reencoding process. Because of  

the equality constraint on encoding and reencoding processes, 

the first equation attained a somewhat higher level of  fit than 

did the second equation, R -~ = .743 versus .740, for the same 

number of parameter estimates, supporting acceptance of  the 

first equation. The third equation, which included a structural 

variable consistent with a counting process, gave the next 

highest level of  fit. The level of  fit for the best model incor- 

porating the columnwise sum-squared structural variable was 

lower still, R 2 = .722. 

Type IlL" Addition o f  Two Double-Digit Addends 

Across the 23 subjects, a total of  4,600 RTs to Type III 

problems were obtained, given the 200 Type III problems 

included in the study. Overall error rate was 6.72%, and an 

additional 0.11% of  the RTs was excluded on the basis of  a 

test for outliers (Wike, 1971). Thus, a total of  6.83% of  the 

responses, or 314 of  the 4,600 responses, by subjects to Type 

III problems were excluded from analyses. Although the over- 

all error rate was somewhat higher than the error rates for 

Type I and Type II problems, the greater complexity of  the 

Type III problems is likely responsible for the higher error 

rate. In spite of  this, the error rate is still relatively low and 

should not affect modeling of  effects on RT. The analyses of 

Type III problems were very similar in form to those per- 

formed on Type II problems. The only important  difference 

involved model specification of  the structural variable for the 

search/compute process in the tens column. In Type III 

problems, the search/compute process was executed regard- 

less of  the presence of  a carry from the units column because 

there were always two tens-column digits to be summed. In 

all modeling of  Type III data, if a carry occurred, we assumed 

that the carried unit value was added to the first digit in the 

tens column by the same process and the same search rate as 

occurred for the summing of  the two tens-place digits. 

The three equations providing the best fit to Type III 

problem RT data are presented in Table 4. The first equation 

includes separate columnwise search rate estimates and in- 

cludes the reencoding process. An a priori equality constraint 

for the encoding and reencoding processes resulted in poorer 

fit and a negative regression weight for the truth variable that 

would be difficult to interpret. The estimated regression 

weight for the ENCODE variable for Type III problems was 

rather larger than that estimated for previous problem types; 

it seemed reasonable to assume that forcing the reencoding 

regression weight to equal the relatively large regression weight 

for the ENCODE variable might have produced the unaccepta- 

ble set of  estimates. Freely estimating the reencoding rate led 

to a much lower estimate, but the standard error for the 

estimate was rather large. Hence, to produce a statistically 

well-conditioned, appropriate estimate, the regression weight 

for the reencoding variable was constrained to equal one-third 
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Table  4 

Summary of Regression Analyses for Type III Addition Problems 

Equation R 2 df F RMSe 

RT = 798 + 158 (ENCODE) + 10.71 (UNITPROD) 
+ 245 (CARRY) + 7.52 (TENPROD) 
+ 113 (TRUTH) + 53 (REENC) .841 5, 194 205.10 224.3 
Partial Fs: 104.26, 84.93, 24.37, 53.11, 10.39, 104.26 

RT= 

RT= 

893 + 141 (ENCODE) + 8.92 (UNITPROD) 
+ 287 (CARRY) + 8.92 (TENPROD) 
+ 117 (TRUTH) + 47 (REENC) 
Partial Fs: 116.97, 129.24, 39.27, 129.24, 10.91, 116.97 

791 + 150 (ENCODE) + 76.4 (UNITMIN) 
+ 352 (CARRY) + 62.6 (TENMIN) 
+ 134 (TRUTH) + 50 (REENC) 
Partial Fs: 68.81, 61.51, 50.75, 31.89, 12.96, 68.811 

.837 4, 195 251.04 226.2 

.821 5, 194 177.97 237.9 

Note. Mean RT = 2,254.43 ms. ENCODE stands for number of items (digits) encoded (either 3, 6, or 7 
in this set of problems); UNITMIN and TENMIN for minimum addend in units and tens columns, 
respectively; UNITPROD and TENPROD for product of addends in units and tens columns, respectively; 
CARRY for presence (1) or absence (0) of a carry from the units to tens column; TRUTH for correct (0) or 
incorrect (1) stated sum; and REENC for the reencoding of digits in incorrect stated sums (1 or 2). 

the weight for the ENCODE variable so that  the reencoding rate 

would  be o f  similar  magni tude  to that  found for Type  I 

problems.  The  resulting equat ion  is reported as the first 

equa t ion  in Table  5; the equa t ion  has a very high level o f  fit, 

R 2 --- .835, and reasonable regression weights for all structural 

variables. The  weights for the encoding (ENCODE) and carry 

variables for Type  III problems are rather larger than corre- 

sponding estimates for Type  II problems,  but  the remaining  

estimates were ei ther fairly stable or  decreased somewhat  

when compared  with est imates f rom Type II problems. No  

interactions o f  structural variables with truth approached 

significance (all ps > .40). 

The  second equat ion  in Table 4 is identical to the first 

except  for imposi t ion  o f  an equali ty constraint  on search rate 

in the units and tens columns.  The  equali ty constraint  led to 

a small  decrease in explained variance, A R 2 = .004, that was 

o f  border l ine  significance, F (1 ,194)  = 2.30, p < .08. Because 

there are benefits associated with each o f  the first two equa- 

tions, the two equat ions  are presented as alternative represen- 

tations o f  the Type III data; however,  pars imony likely resides 

on the side of  the second equat ion.  The  third equat ion,  which 

incorporates a count ing process structural variable, provided 

the next best, but  rather poorer,  fit to the Type III R T  data. 

As with the first equat ion,  in neither the second nor  the third 

equat ion did structural parameters  differ significantly for true 

and false problems (all ps > .40). 

Type IV: Addition o f  Three Single-Digit Addends  

Given the 200 Type IV problems included in the study, 

4,600 RTs  were obtained across the 23 subjects. Overall  error 

rate was 3.63%, and an additional 0.17% of  the RTs  were 

excluded f rom analyses on the basis o f  a test for outliers 

(Wike, 1971). Thus,  a total o f  3.80% of  the responses, or  175 

Table 5 

Summary of Regression Analyses for Type IV  Addition Problems 

Equation R 2 d f  F RinSe 

RT = 675 + 114 (ENCODE) + 7.42 (LARGEPROD) 
+ 239 (MlN) + 114 (REENC) 
Partial Fs: 36.26, 28.68, 238.87, 36.26 

RT = 1,154 + 9.68 (LARGEPROD) + 242 (MIN) 
+ 168 (TRUTH) 
Partial Fs: 48.57, 225.78, 17.52 

RT = 843 + 54.7 (LARGESUM) -b 246 (MIN) 
+ 169 (TRUTH) 
Partial Fs: 55.18, 266.31, 18.24 

.827 3, 196 311.99 271.6 

.812 3,196 281.55 283.3 

.817 3, 196 290.92 279.5 

Note. Mean RT = 2,027.19 ms. ENCODE stands for number of items (digits) encoded (either 4 or 5 in 
this set of problems); LARGEPROD for the product of the two largest addends; MIN for the smallest of the 
three addends; LARGESUM for the sum of the two largest addends; TRUTH for correct (0) or incorrect (1) 
stated sum; and REENC for reencoding of digits (1 or 2) in incorrect stated sums. 
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of the 4,600 responses, by subjects to Type IV problems were 

excluded from analyses, an error rate that was rather low and 

approximately equal to the error rate for Type II problems. 

The Type IV problems presented some unique possibilities 

and difficulties for the modeling of  RT. Translating previous 

types of  statistical models, developed for addition of  two 

addends, to represent accurately the addition of  three addends 

led to a geometrically increased array of  models to be consid- 

ered. According to our general model in Figure 3, addition 

always proceeds with the summing of  two digits, and a third 

digit could then be added onto the provisional sum. Formu- 

lating models representing analog or digital processing led to 

a large set of  potential models. For example, one model that 

represented an extension of  the MIN model to Type IV prob- 

lems was this: Set the counter to the largest addend, then 

increment the midsized and smallest addends. 

A similarly large array of  memory network retrieval models 

was specified. An example of  network retrieval models was as 

follows: Search the memory network for the sum of the two 

largest addends and then either search the network for the 

sum of the provisional sum and the smallest addend or 

increment the smallest addend onto the provisional sum. The 

former option might be taken if the sum of the two largest 

addends was less than 10 because the provisional sum could 

be relabeled mentally as a single-digit addend; incrementing 

might occur only if the provisional sum was greater than 9 

because the provisional sum exceeded the bounds of  the 

memory network. Or, the latter, incrementing option might 

always be taken; once a sum is retrieved from the memory 

network, the subject may automatically switch to a back-up 

process because of  the need to expend mental resources on 

monitoring the process of  problem solution. Thus, because 

he or she must keep track of  the digits already summed and 

the digit that remains to be summed, the subject may always 

revert to a slower, back-up incrementing process after obtain- 

ing the provisional sum in the most efficient manner. The 

structural variable representing the memory search process 

was not specified in the preceding example; in fact, any of  the 

network retrieval structural variables listed in Table 1 could 

be used. As a result, separate models were fit to the data by 

using each of  the retrieval structural variables, in turn, as the 

representation of  the retrieval process. 

Finally, several models, which might be termed three-sum 
models were considered. An example of  the three-sum models 

was one incorporating as a structural variable the product of  

all three addends. The product of  the three addends is a direct 

function of  the volume of  a three-dimensional network that 

must be traversed to arrive at the intersection of  the three 

nodal values, a direct function of  volume, assuming equally 

spaced nodal values 0 through 9 in a network with three 

orthogonal dimensions. No such three-dimensional network 

has been proposed in previous research on mental addition. 

Furthermore, the preceding three-sum model reflects simul- 

taneous summing of  all three addends, rather than summing 

of two addends at a time as embodied in our general model. 

Thus, none of  the three-sum models was expected to describe 

well RT to Type IV problems. However, several types of  

three-sum models were fit to the data to ensure that formu- 

lation of  our general model in Figure 3 had not led to our 

failure to consider other potentially appropriate models. 

The three regression models providing the best fit to RT 

data for Type IV problems are presented in Table 5. The best 

equation, listed as the first equation in Table 5, included the 

product of the two largest addends as structural variable for 

the memory search process. Interestingly, the estimated 

regression weight for the product variable (b = 7.42 ms) was 

very similar to the corresponding regression weight derived 

on the basis of  other problem types (e.g., b = 7.26 ms for 

Type I problems). The first regression model also included 

digit encoding and incorrect sum digit reencoding processes. 

The estimated time for encoding digits, b = 114 ms, was very 

similar to estimates based on Type II problems. When the 

encoding and reencoding processes were added to the equa- 

tion, the truth variable had a negligible, nonsignificant regres- 

sion weight and was therefore dropped from the equation. 

The estimated intercept for the model, a = 675 ms, was 

somewhat lower than, but still quite similar to, estimates 

based on previous problem types. 

The first regression model also included the smallest ad- 

dend, M~N, as a structural variable, representing rate of incre- 

menting onto the provisional sum. The estimated regression 

weight for the UlN variable was b = 239 ms, a value that was 

several times larger than regression weights estimated for the 

MIN variable from previous types of  problems. An explanation 

of  the magnitude of  this effect is provided by an experiment 

by Landauer (1962). Among other conditions, Landauer 

(1962) had adult subjects recite, either aloud or implicitly, the 

10 numbers from 11 to 20. The preceding task, whether 

numbers were recited aloud or implicitly, took between 2 and 

2.5 s, yielding a recitation rate of  200-250 ms per number. 

The estimate from Landauer (1962) of  200-250 ms per num- 

ber agrees quite well with the estimated incrementing rate of 

239 ms, suggesting that subjects increment the smallest ad- 

dend onto the provisional sum in a unit-by-unit fashion via a 

relatively slow, implicit speech process. 

The second and third equations are presented in Table 5 

for purposes of  comparison with the first equation. If the 

reencoding process is dropped from the first equation, the 

truth structural variable becomes a significant predictor of  

RT, resulting in the second equation in Table 5, which had a 

lower level of  fit than the first equation. The third equation 

replaced the retrieval variable with a digital process variable, 

but this equation also had a lower level of fit. These equations 

support inclusion of  the retrieval and reencoding processes, 

even at the expense of the truth parameter. 

To summarize the remaining, unreported analyses, the best 

model including the sum-squared structural variable had a 

lower level of  fit than did the models listed in Table 5, R 2 = 

.809. Alternative counting models also had lower levels of  fit, 

R2s < .800. Finally, the best three-sum equation, utilizing the 

product of  all three addends, had a still worse level of  fit, R -~ 

= .727. 

Extensive Validation 

Analyses of Problems with Two Addends: Types L II, 
and I l l  

The processing models for Type I, II, and III problems were 

fairly similar, including the summing of  at most two digits 
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per column. In order to determine whether a smaller, con- 

strained set of  estimates would adequately represent RT for 

three types of  problem, the 600 problems in Types I, II, and 

III were combined into a single data set. The 20 Type I tie 

problems were included in all combined analyses. Because 

RT to tie problems did not vary as a function of problem 

size, tie problems were given values of  0 on the product 

structural variable. Values for tie problems on other structural 

var iables--for  example, the encoding structural var iab le - -  

were set at appropriate levels. 

The first model specified was termed the basel ine  model. 

The baseline model comprised a fully parameterized regres- 

sion model that had separate regression estimates for each 

type of  problem for the intercept and truth variables, for speed 

of  encoding and reencoding processes, for memory network 

search rates in the units and tens columns, and for speed of 

executing the carry operation. The baseline model resulted in 

identical parameter  estimates and levels of  fit for each type of  

problem as were reported in Tables 2, 3, and 4. Across the 

600 problems, the baseline model required 18 parameter  

estimates and had a very high level of  fit, R e = .9075, F(18, 

581) = 316.48, p < .0001, S E  = 188.6. 

Next, a series of  nested models was specified, each member 

of  which constrained to equality across all problem types one 

set of  parameters (e.g., the parameter  estimate for the carry 

operation). The fit of  each of  these models was compared 

with the baseline model to determine whether a significant 

decrease in fit accompanied imposition of the particular 

equality constraint. For  example, forcing the intercept terms 

to be equal across the three problem types left the R 2 un- 

changed to four decimal places, F(2, 581) < l, ns, indicating 

that the intercept terms did not differ significantly across 

problem types. 

Only two of  the initial set of  nested models led to significant 

decrements in fit, the models involving equality constraints 

on the memory search rate and encoding parameters. Given 

the lack of  equality of  memory search rate estimates, A R 2 = 

.004, F(4, 581) = 5.85, p < .0002, two possibilities remained 

for determining a smaller, constrained set of parameters. 

When results of  analyses reported in Tables 2, 3, and 4 are 

compared, it appears that either of  two conditions may hold: 

Memory search rate may be slower in Type II problems, or 

memory search rate may be slower in the units column of  

two-column problems. The results supported the latter option 

because statistical models embodying the latter type of model 

led to higher levels of  fit, on the basis of  the same number  of  

parameter estimates, than did models allowing a slower search 

rate for Type II problems. 

Turning to speed of  encoding digits, constraining encoding 

speed estimates to equality across problem types led to a 

significant decrease in fit, ~X R 2 = .003, F(2, 581) = 8.93, p < 

.0002. The estimates from the baseline suggested that t ime 

for encoding each digit increased linearly across problem 

Types I, II, and III, whereas reencoding rate remained con- 

stant. Therefore, a basic encoding rate parameter, ENCODEim 

for intercept of  the ENCODE function, was specified with values 

equal to the number of  digits encoded. Then, an encoding 

rate increase variable, ENCODE,. for linear increase in encod- 

ing time, was specified that contained values of  the number  

of digits encoded multiplied by 0, 1, and 2 for problem Types 

I, II, and III, respectively. The ENCODEli. variable represented 

the linear increase in encoding time per digit across the three 

types of  problem. Substitution of the ENCODEim and ENCODE~in 

structural variables in place of the three separate ENCODE 

variables resulted in a very nonsignificant decrease in fit from 

the baseline model, F(1,581)  < l, ns. The need to specify a 

linear increase in encoding time across problem type stands 

in stark contrast to the constraints imposed on reencoding 

time. An equality constraint across problem type for the 

reencoding parameter was quite satisfactory, A R 2 = .0001, 

F(2, 581) < 1, ns. 

The final, highly constrained equation for Type I, II, and 

III problems is presented in the top half of Table 6. The 

constrained equation had a very high level of  fit, R 2 = .9048, 

F(6, 593) = 939.71, p < .0001, and each of  the individual 

parameter estimates was highly significant (all ps < .0001). 

Only six regression weights were estimated in the constrained 

equation because the regression weight for the reencoding 

structural variable was constrained to equal the weight for the 

basic encoding process, ENCODEint, an equality constraint that 

was reasonable a priori and the relaxing of  which led to a very 

nonsignificant increase in model fit, F( l, 592) < 1, ns. When 

compared with the fit of the baseline model, the constrained 

model, which had 12 fewer parameter estimates, explained 

only slightly less variance, A R 2 = .0027, a decrease in R e 

that was statistically nonsignificant, F(12, 581) = 1.39, p > 

• 15. Given both the notable economy of  estimates in the 

constrained equation (6 vs. 18 estimates) and the quite negli- 

gible decrease in goodness of fit, the constrained equation 

provides a concise, powerful summary of RT to Type I, II, 

and III problems. 

In addition to the overall fit o f  the constrained equation, a 

complementary way to demonstrate the adequacy of the 

regression model with contrained estimates is to compare the 

fit for each type of  problem under constrained estimation 

with the fit for each type under unconstrained, best fit esti- 

mation. In the first row of  Table 7, two measures of  fit, R 2 

and SE ,  are given for each type of problem under uncon- 

strained estimation of parameters. In the second and third 

rows of  Table 7, comparable measures of  fit for each type of  

problem based on the regression model with contrained esti- 

mates are presented. Inspection of  values in Table 7 indicated 

that the constrained model ted to only slightly poorer fit for 

each type of problem than did an unconstrained model, with 

the largest drop in R 2 being .011 for Type II problems. These 

results provided further evidence of  the utility and adequacy 

of the constrained model. 

Turning to the regression weight estimates in the con- 

strained equation, given in Table 6, the intercept of  757 ms 

represents a combined estimate of  the following processes: 

encoding the problem type, decision time, and selection and 

execution of  response. With regard to encoding of  digits, 

encoding was estimated to require 53 ms per digit for Type I 

problems, increasing to [53 + (1 × 57)] ms, or 110 ms, per 

digit for Type II problems and to [53 + (2 x 57)] ms, or 167 

ms, per digit for Type III problems. Because of  the equality 

constraint, reencoding of  incorrect sums took an additional 

53 ms per digit, The regression weight for the truth variable 

revealed that responses to false problems took 131 ms longer 

than responses to true problems• 



9 1 6  WlDAMAN, GEARY, CORMIER, AND LITTLE 

Tab le  6 

Summary of Regression Analyses on Combined Sets of Addition Problems 

Equation R 2 df F RM& 

Types I, II, and III 
RT = 757 + 53 (ENCODEint) + 57 (ENCODEBin) 

+ 7.17 (UNITPROD) + 4.36 (UNITPROD1) 
+ 205 (CARRY) -I- 7.17 (TENPROD) 
+ 131 (TRUTH) + 53 (REENC) .9048 
Partial Fs: 26.45, 403.07, 209.34, 32.75, 
50.80, 209.34, 50.63, 26.45 

6, 593 939.71 189.3 

Types I, II, III and IV 
RT = 744 + 55 (ENCODEint) + 56 (ENCODEIin) 

+ 7. l 0 (UNITPROD) + 4.91 (UNITPROD 1 ) 
+ 201 (CARRY) q- 7.10 (TENPROD) 
+ 114 (TRUTH) + 55 (REENC) 
+ 228 (MIN iv) .8873 
Partial Fs: 26.99, 332.76, 198.03, 35.08, 
38.94, 198.03, 33.61, 26.99, 850.19 

7, 792 890.34 214.4 

Note. Mean RT (Types I-III) = !,697.67 ms. Mean RT (Types I-IV) = 1,780.1 ms. UNITPROD and 
TENPROD stand for the columnwise product of addends in the units and tens columns of all problems, 
respectively; UNXTPROD 1 for additional retrieval time as a function of columnwise product of addends 
in units column of Type II and III problems; ENCODE~,, for a basic digit-encoding process for all 
problems; ENCODE~n for the linear increase in encoding time per digit from Type I to Types II and IV 
(+1) and then to Type III (+2); CARRY for presence (1) or absence (0) of a carry from the units to the 
tens column; TRUTH for correct (0) or incorrect (1) stated sum; REENC for reencoding of digits in 
incorrect stated sums; and MIN IV for the smallest addend in Type IV problems. 

The  r e m a i n i n g  two processes, ra te  o f  m e m o r y  search for 

the  correct  sum a n d  the  carry opera t ion ,  are cent ra l  to  mode ls  

o f  m e n t a l  addi t ion .  T he  latter,  carry process requi red  an  

es t imated  205 ms  o f  execu t ion  t ime.  T he  former ,  m e m o r y  

search rate process proceeds  at  a n  es t imated  7.17 ms pe r  un i t  

increase in the  co lumnwise  p r oduc t  s t ructura l  var iable  for all 

c o l u m n s  o f  processing. Search rate in the  un i t s  c o l u m n  o f  

m u l t i c o l u m n  p rob l ems  requ i red  an  es t imated  add i t iona l  4.36 

ms  per  un i t  increase  in the  s t ruc tura l  variable,  for a n  es t imated  

overall  search rate o f  11.53 ms  per  un i t  increase  in the  p roduc t  

s t ructura l  var iable  in  the  un i t s  c o l u m n  o f  Type II and  III 

problems.  

Combined Analyses o f  All Four Types o f  Problems 

G i v e n  the  successful f i t t ing o f  a cons t ra ined  mode l  for the  

first three  types o f  p rob lem,  a s imu l t aneous  analysis  o f  all 800 

p rob l ems  was under t aken .  Here,  the  basel ine  mode l  had  24 

Table  7 

Indices of Fit of Alternative Regression Models for All Types of Addition Problems 

Problem type 

I II III IV 

Regression equation R 2 MSEo R 2 RMSe R 2 RAISe R: RM& 

Least squares best fit .702 127.7 .743 200.0 .841 224.3 .827 271.6 
Constrained 

Types I-III 
~e # 0 per type .685 131.2 .732 204.4 .833 229.9 
~e = 0 per type .687 130.9 .733 203.8 .833 229.2 

Constrained 
Types I-IV 
Ze # 0 per type .697 128.6 .727 206.3 .833 229.7 .819 277.4 
~;e = 0 per type .687 130.9 .733 203.8 .833 229.7 .821 275.9 

Note. In regression analyses, errors of prediction (e) are defined so that the sum of errors, ~e, equals 
zero. But, when invoking constraints across types of problem, although the sum of errors across all 
problems must equal zero, the sum of errors per type may deviate from zero. In each set of constrained 
analyses, the first line (labeled "~;e # 0 per type") reports statistics consistent with Formula 1 from 
Kvhlseth (1985), in which the mean residual per type is not constrained to equal zero. The second line 
(labeled "~e = 0 per type") reports statistics consistent with Formula 4 from Kv~lseth, in which the 
mean error per type is subtracted from each residual. The results from Formula 1 reflect equal or worse 
fit for the regression model relative to Formula 4 because deviation from zero of the mean residual 
contributes to error sums of squares. 



A COMPONENTIAL MODEL FOR MENTAL ADDITION 917 

parameter estimates and an overall level of  fit o f R  2 = .8922, 

F(24, 775) = 267.22, p < .0001, SE  = 212.0. Procedures for 

nested model specification and testing identical to those out- 

lined above were followed in the model fitting on the entire 

set of  800 problems. 

The resulting highly constrained regression model is pre- 

sented in the bottom half of  Table 6. The fit of  the constrained 

model was very high, R 2 = .8873, F(7, 792) = 890.34, p < 

.0001, and each of  the individual parameters was highly 

significant (all ps < .0001). The difference between the base- 

line and constrained models was statistically significant, A R 2 

= .0049, F(17, 775) -- 2.07, .007 < p < .01. However, the 

differences between the two models in levels of  practical f i t - -  

for example, R 2 and SE--were very small and not of  any 

practical import, and there is decidedly greater parsimony 

associated with the constrained model. 

The differences in fit associated with the constrained model 

for all types of  problem are also shown by comparing fit under 

unconstrained estimation (line 1) with fit under the con- 

strained model (lines 4 and 5), indices presented in Table 7. 

Once again, the differences in fit of  constrained and uncon- 

strained models were not large, though the decrement in fit 

for Type II problems was slightly greater than that for the 

other three types of  problem. 

Finally, the regression estimates in the second equation in 

Table 6 were very similar to those given in the first constrained 

equation. Aside from the rather larger number of problems 

included, the major addition to the second equation was the 

inclusion of  a structural variable, MIN IV, for the smallest 

addend in Type IV problems. The estimated regression weight 

for the MIN IV variable, b = 228 ms, is a value still well within 

the 200-250-ms range for incrementing the mental counter 

by using a process based on implicit speech (Landauer, 1962). 

Genera l  Discussion 

The two major goals of  the present study were to provide 

further clarity regarding the search/compute process for men- 

tal addition and to specify and test a general model for mental 

addition across an array of simple and complex forms of 

addition problem. Our results provided strong support for the 

general model and indicated that subjects (a) tended to rely 

primarily on a memory network retrieval process, rather than 

analog or digital processes, to arrive at correct sums and (b) 

tended to utilize additional elementary information processes 

that require estimable, nontrivial amounts of  execution time. 

In the following, the implications of  each of these conclusions 

will be discussed in turn. 

M e m o r y  N e t w o r k  Retr ieval  

With regard to the issue of  the process by which subjects 

determine the correct sum of two digits, the results strongly 

supported the use of  some form of  memory network retrieval. 

When each of the four types of  problems was analyzed sepa- 

rately, a model that contained the columnwise product of  

addends provided the best representation of  RT data for each 

problem type. For two of  the problem types (Types I and III), 

a model incorporating the product structural variable was 

clearly the best representation of  data; for the remaining two 

types of problem (Types II and IV), a product model was 

somewhat better than models containing other sorts of  struc- 

tural variables for the search/compute stage. Thus, the prod- 

uct variable consistently led to better levels of  fit than did any 

other structural variable. Thus, the superiority of  the product 

structural variable in the present study replicated results re- 

ported by Miller et al. (1984) for simple addition and extended 

the applicability of  the product variable to three types of  more 

complex forms of  addition. Importantly, the sum squared 

structural variable, proposed by Ashcraft and his associates, 

was a serious competitor to the product variable only for Type 

I, or simple addition, problems. On other, more complex 

types of  problem, the strongest alternative models involved 

structural variables consistent with counting processes. 

One empirical finding related to the product variable will 

require additional research to resolve. Judging from combined 

set analyses, the estimated search rate in the units column of  

multicolumn problems was rather slower than that in the tens 

column of  such problems or the units column of  Type I and 

IV problems. Only further research with yet more complex 

types of addition problem will determine whether the column 

search-rate effect is replicable and, if so, whether even further 

slowing of  the search rate will occur in the units column of 

problems having addends with three or more digits. 

The product structural variable is consistent with two rela- 

tively simple conceptual models of the network retrieval 

process. Under the tabular model, retrieval time is related to 

the area of a tablelike network that must be traversed in order 

to obtain the correct sum of two single-digit addends. Given 

the conception of  a printed table of  addition facts with nodes 

corresponding to the single-digit addends and with sums 

stored at the intersections of  nodal values, the product struc- 

tural variable presumes a table that is square, symmetric, and 

has equally spaced nodal values. The latter three properties 

are desirable for their simplicity and parsimony, yet Ashcraft 

and Battaglia (1978) were forced to drop the property of  equal 

spacing of nodal values as inconsistent with the sum squared 

structural variable. As detailed earlier, the sum squared struc- 

tural variable is also inconsistent with the remaining two 

properties, squareness and symmetry. The second conceptual 

model that may be conformable with the product structural 

variable is the nontabular"distribution of  associations" model 

(Siegler & Shrager, 1984), if the value of  the product structural 

variable is inversely related to the peakedness of  the distribu- 

tions of associations for addition problems. Both of the pre- 

ceding conceptual models entail processes involving time- 

consuming search for and retrieval of addition facts from 

long-term memory storage, in contrast to models invoking 

analog or digital processes. In sum, considering both empirical 

and theoretical advantages, the product structural variable 

and its associated conceptual models appear preferable to 

alternatives proposed to date. 

The results based on Type IV problems have implications 

for theories about the mental representations on which the 

memory retrieval process operates. For Type IV problems, 

the best fitting model implied that subjects first obtained a 

provisional sum of the two largest addends, via the very fast 

and efficient memory network retrieval process, and then 

incremented the smallest addend onto the provisional sum. 

This finding has at least three important implications. First, 

the existence of  a three-dimensional memory network, a 



918 WIDAMAN, GEARY, CORMIER, AND LITTLE 

logical extension of  previous models presuming a two-dimen- 

sional network, does not appear to be a reasonable hypothesis 

because the fit of  the best three-sum model was far worse than 

the most acceptable model. Second, the failure of  subjects to 

search for the sum of the provisional sum and the smallest 

addend provides unique support for the position that the 

memory network is bounded by nodal values from 0 through 

9 and does not include larger nodal values. Third, the simi- 

larity of  the estimated temporal operating characteristics of  

the process for incrementing onto the provisional sum with 

the findings by Landauer (1962) is consistent with the hy- 

pothesis that the incrementing in Type IV problems was 

effected by use of  implicit or subvocal speech processes. 

Response Constant 

A parameter common to all equations representing RT to 

addition problems was the intercept, or response constant. 

The intercept represents a conglomerate estimate of the time 

taken to execute all processes not explicitly modeled by struc- 

tural variables in the equation and includes such processes as 

encoding problem type, decision time, and selection and 

execution of  a response. The invariance of the intercept 

parameter estimate across all problem types is of  signal im- 

portance because this stability implies that all sources of 

variance among the four types of  problem are captured ade- 

quately by the structural variables included in the equations. 

Thus, the processes encompassed by the intercept require a 

constant amount of  time regardless of  problem type. Further, 

the large, systematic differences in RT across problem type 

are accounted for by structural variables currently included 

in the equations, and no additional structural variables appear 

to be required to represent more accurately these differences. 

Additional Elementary Components 

The importance of  several additional elementary informa- 

tion processes for mental addition was supported by the 

reported results. The importance of  the carry operation rep- 

licates results in the studies by Ashcraft and Stazyk (1981) 

and Hamann and Ashcraft (1985). The results with regard to 

the carry operation in the present study are buttressed by the 

placement of  the carry operation within a general model for 

mental addition. Given the inclusion of  structural variables 

for other processes underlying mental addition, the estimate 

of  210-220 ms for execution of  a carry, based on combined 

set analyses, is likely a more accurate, less biased estimate of  

the temporal duration of  a carry operation than are estimates 

from previous studies. 

A second elementary component isolated in analyses was 

the encoding of digits in an addition problem. Following 

previous studies assessing encoding of terms in analogy prob- 

lems (e.g., Sternberg, 1977) or of  access to name codes of  

letters (e.g., Posner et al., 1969), we assumed that encoding a 

digit would include retrieval of  the cardinal value of  the digit 

and may also include activation of  the nodal value corre- 

sponding to the digit. The basic digit encoding parameter 

estimated from RT to simple addition problems was in the 

same range as that for access to name codes of  letters (Posner 

et al., 1969; Hunt et al., 1975), 50-80 ms per digit. This is 

quite interesting because letters and digits are the two sets of  

highly overlearned symbols for persons in our culture. 

Analyses of the combined sets of  problems indicated that 

encoding time per digit increased from Type I to Type II and 

IV problems and then increased again for Type III problems. 

One explanation for this finding is that encoding time is 

lengthened as a function of  the number of  digits in the 

addends of  a problem and, thus, to the visual "clutter" from 

which the addend digits must be extracted. An alternative 

explanation is that different types of  processes are causing the 

increased digit encoding times in Type II and IV problems. 

Thus, digit encoding time may be increased when having to 

extract the units digit from a two-digit addend; this would 

lead to a linear increase from Type I problems to Type II 

problems and then again to Type III problems because the 

number of  two-digit addends increases linearly across these 

problem types. The increased time for digit encoding in Type 

IV problems might be due to a different cause: the need to 

determine which two of  the addends were larger while keeping 

track mentally of  the ordinal position and value of  the smaller 

addend. The increased load on short-term memory processes 

may then lead to slower encoding of  digits in the Type IV 

problems. Further research should be pursued to offer tests of  

these alternatives because the unexplained nature of  this effect 

represents a potential challenge to the validity of  our theoret- 

ical and empirical analyses. 

The third, and last, elementary process identified was the 

reencoding of incorrect digits in stated sums. As noted earlier, 

this effect may, in fact, be due to interference between the 

true and stated sums (cf. Campbell, 1987b). Presuming that 

this effect is related to encoding processes, the estimate of 

temporal duration for this process appeared reasonable and 

interpretable; only further research will allow a determination 

of  the replicability of the effect and its true basis. 

Finally, we trust that the general model, presented in Figure 

3, will be an impetus for further research on mental addition, 

requiring modification as a broader scope of  effects on mental 

addition is studied. Topics that merit investigation include (a) 

the manner in which the componential model could be mod- 

ified to allow the representation of  the use of rule-based, 

procedural processes to solve addition problems, (b) the basis 

of  the increase in encoding time per digit across problem 

types, (c) whether the so-called reencoding of incorrect stated 

sums is the result of  interference or some other effects, (d) 

how to incorporate and test production-task data within the 

context of  the general verification-task model presented in 

Figure 3, and (e) how to incorporate important, recently stated 

concerns by Siegler (1987) regarding effects of  inter- and 

intrapersonal variation in strategy choice across problems. 

More broadly, the general model provides a framework for 

the investigation of  other types of  simple numerical opera- 

tions, such as multiplication and subtraction. We hope, there- 

fore, that our general model will be one more step in the 

direction of  the development of  a comprehensive model for 

numerical facility and, more generally, mathematical ability. 
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