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Abstract. Design of real-time MPSoC systems including multiple appli-
cations is challenging because temporal requirements of each application
must be respected throughout the entire design flow. Currently the de-
sign of different applications is often interdependent, making converge to
a solution for each application difficult. This paper proposes a composi-
tional method to design applications independently, and then to execute
them without interference. We define a formal modeling framework as a
suitable entry point for application design. The models are executable,
which enables early detection of specification errors, and include the for-
mal properties of the applications based on well-defined models of com-
putation. We combine this with a predictable MPSoC platform template
that has a supporting design flow but lacks a simulation front-end. The
structure and behavior of the application models are exported to an in-
termediate format via introspection which is iteratively adapted for the
backend flow. We identify the problems arising in this adaptation and
provide appropriate solutions. The design flow is demonstrated by a sys-
tem consisting of two streaming applications where less than half of the
design time is dedicated to operating on the integrated system model.

Keywords: System-level design languages, Automated design flow, Real-
time applications, Composable system, Time-predictable architectures

1 Introduction

Embedded system designers are required to integrate an increasing number of
complex applications running on a single system on chip. This calls for design
flows which first, start from abstract application models and implement them
in a fully automated fashion; and second, support designing each application
in isolation while preserving its behavior in the integrated system. The chal-
lenge becomes more harsh for embedded systems that have real-time constraints
where the design flows and the target platforms also need to preserve the timing
properties of each application throughout the entire design flow.
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Fig. 1. (a) The proposed system design flow. (b) Build iterations of the flow.

Code generator backends from model-based design tools for real-time proces-
sors have been proposed [16, 13] but complexities of a real-time MPSoC design
flow are not fully addressed in these works. Existing design flows that perform
real-time analysis for MPSoCs are presented in [7, 15, 19, 8] without expressing
the applications and components in an executable formal model and hence, a
potential bug in the specification will be detected late in the design flow and
makes it also harder to track it in the original specification. Additionally, run-
ning multiple applications on the same platform is not supported in these works.

We argue that proper design flows for real-time systems require to a) start
from abstract application models with formal semantics that are executable to
enable detection of specification bugs early in the design flow, avoiding long
design iterations; b) apply automated analysis and synthesis methods supported
by the applications’ formalisms; and c) target platforms which provide time-

predictable execution services to faithfully implement the application behavior;
and support composable system design by integrating isolated applications.

Building on a common formal base in form of Models of Computation (MoCs),
we introduce such a flow for multiple real-time streaming applications which
integrates Formal System Design (ForSyDe), as a modeling and simulation
framework, with CompSOC, a design flow and platform template for predictable
MPSoCs (Fig. 1a). However, our methods are applicable to any combination of
system-level design languages and target platforms which satisfy the above re-
quirements. In the SystemC implementation of ForSyDe [2] a formally defined
representation of the executable system models can be exported as an interme-
diate format. CompSOC is a network-on-chip based MPSoC platform template
which provides predictable and composable execution services to the applica-
tions. The platform currently has a design flow which performs automated map-
ping, compilation, and synthesis from a non-validatable implementation model,
where the structure (as XML files) and behavior of the application (as a set of
C files) are captured separately. By iterative adaptation of exported ForSyDe-
SystemC models, we integrate them with the CompSOC design flow and demon-



strate an automated flow starting from high-level simulate-able formal applica-
tion models, achieving a correct-by-construction design flow. Such an adaptation
involves annotating platform-specific memory and timing requirements of the
application elements which is obtained by rapid performance evaluation of the
application on the platform.

The contributions of this work are summarized as:
– an automated and composable design flow implementing abstract executable

models of multiple applications on predictable platforms (Section 3);
– adaptation of the specification models captured in the formal modeling

framework (Section 4) to the implementation models accepted by the pre-
dictable platform design flow (Section 5) which involves rapid performance
evaluation of the application models on the platform (Section 6);

– demonstration of the flow in action using two applications from the consumer
electronics domain (Section 7).

2 Related Work

Several tools and design flows have been proposed for real-time MPSoCs, but
none of them fully address different aspects of the problem.

The industrial tool Simulink can produce plain C code from executable real-
time models. In [9], a model-based design flow for cyber-physical systems is pre-
sented in ten design steps, but it is not fully automated. These approaches bring
interesting ideas in the field, however they do not consider real-time constraints
throughout the entire design-flow.

The PTIDES flow [9] targets event-based applications described in a Pro-
gramming Model with discrete-event semantics. First the temporal behavior and
causality relations of the application model are analyzed and then actor and OS
code are generated. This code may be compiled and bound to three hardware
platforms, out of which one, namely the XMOS board, provides real-time ser-
vices. The flow simulates the application code bound on the platform to verify
and validate the design. The effects of the binding on the temporal behavior are
hence not formally analyzed, which may lead to run-time constraints violations.

Code generator backends for real-time processors has been proposed for ex-
ecutable Ptolemy [5] models, notably for JOP [16], which is a Java real-time
processor, and PRET [13] which aims at providing predictability in its archi-
tecture. However, complexities of a real-time MPSoC design flow are not fully
addressed in these works.

Existing design flows that perform real-time analysis for MPSoCs are pre-
sented in [7, 15, 19]. The approaches in [15, 19] target the streaming domain and
have as input an XML description of the application. The flow produces the
code of the application, and the information necessary to bind this application
on a predictable platform. Real-time constraints are guaranteed, as the temporal
behavior of application, the binding and the platform are formally verified. Note,
as mentioned before, we utilize the SDF3 tool for formal temporal analysis in
our flow. The SymTA/S [7] framework models an SoC as a set of inter-connected
components. Each component is modeled by an event stream. Classical formal
real-time analysis can be applied to individual components and a formalism for



composing streams is proposed to analyze an entire system. The distributed op-
eration layer (DOL) MPSoC software design flow [8] targets dataflow real-time
streaming applications and automatically creates an implementation as well as
formal performance analysis models for system validation. However in these ap-
proaches applications and components are not expressed in an executable formal
model, hence a potential bug in the specification will be detected late in the de-
sign flow and makes it also harder to track it in the original specification.

DeaedalusRT methodology [3] starts with a Static Affine Nested Loop Pro-
gram (SANLP) and uses the hard real-time multiprocessor scheduling techniques
to analyze the system from intermediate CSDF models and performs code gen-
eration via Polyhedral Process Networks (PPNs). In contrast, being based on
the ForSyDe framework, our input models have explicit parallelism and are eas-
ier to extend and interact with other MoCs for a heterogeneous system design.
On the platform side, CompSOC can run multiple applications based on re-
source reservation composably, reducing the run-time scheduling overhead for
admission control. Also, our flow ends with a full FPGA-based prototype while
Daedalus-based flows have reported simulation backends.

3 The Proposed Design Flow

In the high-level view of the proposed flow depicted in Fig. 1a, the designer uses
the Synchronous Data Flow (SDF) MoC library of ForSyDe-SystemC to create
formal executable system models. This model is used both for validation by sim-
ulation and also for automated generation of an intermediate representation of
the specification model as a set of XML and C++ files via introspection. Since
both ForSyDe and CompSOC are based on formally defined MoCs, they can be
interconnected in a correct-by-construction manner by adapting the specification
model to the target implementation model. We assume the hardware platform is
given as an architecture description and a communication description file and it
is not going to be explored in the design flow. To hand over ForSyDe-SystemC
models to the CompSOC flow, an automated adaptation step is needed to iter-
atively add the missing platform information to the model (Section 6).

The proposed flow supports multiple applications and runs in three stages
(Fig. 1b): 1) initial build, which performs the model transformation assum-
ing constant values for platform-dependent metrics and generates a binary file
for a single core mapping of each application; 2) measurement run, where the
generated binary and source files are analyzed to extract the actor memory re-
quirements and token sizes, then a multi-core mapping is done and applications
are run to measure the execution times of the actors; and 3) final build, in which
the SDF graphs of all applications with all the platform-dependent metrics back-
annotated are merged and then the final mapping and software synthesis is done
to generate the final binary. The first two phases are performed individually for
each applications, since CompSOC preserves composability [1].

4 The Modeling Framework

In ForSyDe-SystemC [2], a system model is structured as a hierarchical concur-
rent process network. Processes communicate and synchronize only using signals
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Fig. 2. (a) Example of a hierarchical system model in the SDF MoC of ForSyDe. Leaf
processes are built using process constructors. (b) Overview of the CompSOC platform
and its generation flow.

and there is no global state in the system. Hierarchy does not imply any seman-
tics and enables IP reuse. Fig. 2a is an example of a system model in which p1 is
a composite process formed by composition of leaf processes p1.1, p1.2, and p1.3.

Each leaf process in the process network belongs to a specific Model of
Computation (MoC) [12]. Several MoCs are supported for system modeling in
ForSyDe. This work addresses the synthesis of SDF models [11] which fits very
well to many streaming applications and is supported by analysis methods for
consistency checking, temporal scheduling and mapping to single- and multi-
processor systems.

Leaf processes are created using formally defined constructs chosen from
the ForSyDe library called process constructor which are provided with side-
effect-free functions and/or initial values. In Fig. 2a, a process is created using
the combSDF process constructor which is supplied with the firing function f

and two initial values representing the production and consumption rates rp
and rc to gain a process with the semantics of an actor in the SDF MoC. By
using the concept of process constructors the requirements for the computation
and communication semantics of the processes are satisfied by construction and
the designer is liberated from writing redundant code and focuses on the pure
functionality of the processes.

There are two key process constructors in the SDF MoC; 1) combSDFm,
which denotes an m-input combinational (i.e., stateless) process constructor in
the SDF MoC; and 2) delaySDFn which delays a signal by n elements. Because
processes in ForSyDe are formally defined as mathematical functions operating
on input signals and returning a single output signal, tuples of values are used
to model multiple signals. Such a signal can be converted into multiple signals
using special family of processes called unzip and created using zip processes.

A special feature of ForSyDe-SystemC models is that in addition to simula-
tion, the constructed executable models can export their internal structure and
behavior as an intermediate representation via introspection. The exported repre-



sentation can be used to feed the models to analysis and synthesis tools, without
developing a full-fledged compiler infrastructure. This intermediate representa-
tion contains the structure of the process network, the process constructors used
to build leaf processes, and the parameters passed to build the processes. These
parameters include both the initial values and also the source code of the func-
tions which describing the behavior of the processes [2].

5 The Execution Platform

CompSOC [6] provides predictable execution services to the applications and
can run multiple applications without interference in a composable manner [1].
Time-division multiplexing (TDM) is used to provide time-predictable execution,
communication, and memory access services while composability is achieved by
using arbiters which prevent indefinite locking of shared resources.

The hardware is a collection of processor and memory tiles interconnected
by a dAElite NoC [18]. The NoC consists of protocol shells, which serialize the
parallel protocol, network interfaces (NIs), which (de-)packetize the information
and inject/collect them to/from the network in a TDM fashion, and routers. The
processor tiles include a Microblaze softcore, local instruction and data memo-
ries, a set of communication memory blocks and direct memory access (DMA)
engines for inter-tile communication, and other peripherals. Memory tiles are
divided into two parts, namely front-end and back-end. The front-end contains
a number of blocks to achieve composability while the back-end guarantees the
predictability of the resource [1].

CompSOC runs a composable RTOS which uses two level scheduling for
applications [14]. The inter-application scheduler is a part of the minimalistic
RTOS implementation named CoMik, which uses the TDM technique to pro-
vides individual performance guarantees to multiple integrated applications. The
intra-application scheduler (task scheduler) supports executing application tasks
with different semantics, namely KPN, CSDF, and also time-triggered MoCs.

The supporting CompSOC design flow for SDF applications consists of three
sub-flows, hardware generation, mapping and software compilation flow. The
hardware generation flow takes in the communication and architecture models
of the platform and performs dimensioning, allocation, verification, instantiation
and synthesis of the hardware architecture. Based on the SDF graph of the
application and the architecture model of the platform, the mapping flow invokes
a mapping tool to explore the design space and generates a mapping and schedule
of the application onto the platform, and finally synthesizes the software for each
core. Consecutively, the compilation flow is invoked for each tile in the platform
and the generated binary ELF file is merged with the platform bit-stream file
generated by the hardware generation flow.

6 Adapting the Flows By Rapid Performance Evaluation

To enable full automation, the abstract untimed input model is adapted for
synthesis. The execution times and memory requirements of the actors and also
the token sizes are estimated using a rapid estimation technique. Helper processes
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Fig. 4. Automatic conversion of ForSyDe process networks to SDF graphs

in ForSyDe process networks are transformed to their equivalent SDF actors.
Additionally, the interface and API of the functions are different and conversion
between them is required. Fig. 3 is a simplified view of the adaptation stage
which transforms the models between the flows.

First, transforming ForSyDe process networks to SDF graphs involves a) flat-
tening their static non-recursive hierarchy; b) removing zip, unzip, and fanout

processes by integrating them with multi-input/output actors; c) converting
source and constant state-full processes to actors with self-edges; and d) con-
verting delay elements to initial tokens on the graph edges . Fig. 4a shows the
structure of a process network as described in the SDF MoC of ForSyDe and
how it should be exported to the CompSOC backend as an SDF graph. Note
that while removing zips and unzips, all actor-to-actor paths are considered and
the production and consumption rates are adapted using a traversal algorithm.
Conversions are realized using XSL tranformations [10].

During the measurement run, the DWARF [4] data from the binary files are
analyzed to extract the data token sizes after initial software compilation for the
target platform. Together with the information retrieved about the memory sizes
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Fig. 5. The considered application models.

of the functions by the GNU tools, the call-graphs generated using the LLVM
and Clang tool chains are analyzed to obtain the memory requirements of the
actor functions. Also, the execution times of individual actors are measured by
inspecting the execution log of each application running on hardware.

Generating code for the SDF actors not only needs adaptations between the
API’s for the two flows, but also requires extracting and matching information
such as the initial token values from the ForSyDe intermediate representation,
generating code for constant processes, and generating the required header func-
tions and initialization code.

7 Case Study

To demonstrate the feasibility of the proposed design flow, we apply it to two
applications from the multimedia domain, namely SUSAN edge detection and
JPEG decoder. Smallest Univalue Segment Assimilating Nucleus (SUSAN) [17]
includes three signal processing algorithms, out of which the edge detection
algorithm is considered here. The image is partitioned into smaller blocks and
the following steps are applied to each pixel: 1) a mask is applied to an area
(called USAN) centered around each pixel of interest; 2) the direction of the edge
is detected by calculating the momentums of the USAN area; and 3) thinning
is applied on the edges to clarify the pixels. JPEG decoding of an image in
performed in five steps by: 1) parsing the image headers and decompressing
the input as a series of 8×8 pixel blocks; 2) inverse quantization and reordering
of blocks; 3) combining pixel blocks into RGB pixel values; and 4) putting the
pixel values in the final image.

In the first step of the flow, a model of each applications is developed using
the SDF MoC. Fig. 5a and Fig. 5b illustrate their process networks as captured
by ForSyDe-SystemC. These models are verified by simulation with the same
testbench that is used later in the measurement run by checking the produced
output against a reference considered correct. The design flow is invoked from the
command line using a make command. The first two main stages of the design



Table 1. Execution times of different parts of the flow (in seconds)

Simulate & Introspect Individual Flow Combined Flow

SUSAN 0.16 549
1056

JPEG 0.01 509

Table 2. Execution times of the actors and the mapped application

SUSAN
getImage USAN Direction Thin putImage App.
20077 1177105 833912 35843 15866 1356352

JPEG
VLD IQZZ IDCT CC Raster App.

626884 4294 15505 21284 1327 61618352

flow, namely the initial build and the measurement run stages are executed
for the two applications separately. After the back annotation of the execution
times, the applications are merged and the final mapping is obtained. Table 1
summarizes the execution times of each part of the flow. 1 The final phase which
is executed for both applications (1056 Sec) is less than half of the total execution
time of the flow (2114 Sec). After producing the bit-stream file, the system is
run and both of the applications are verified to produce the correct output. The
maximum measured execution times of each actor and the mapped application
are presented in Table 2. These times remain constant while the applications
run individually and both together on the platform.

8 Conclusion and Future Work

We have proposed a fully automated design flow for multiple real-time signal
processing applications which compiles formal executable specifications to a pre-
dictable MPSoC template. The design flow a) moves the design entry to a higher
level of abstraction since functional models can be simulated efficiently in Sys-
temC; b) provides an automated path to synthesis using the introspection feature
of ForSyDe and the CompSoC tool suite; and c) uses rapid performance estima-
tion of the applications on the target platform to estimate platform-specific met-
rics of the applications. Only half of the execution time of the flow is consumed
for the combined application model since the platform ensures the composability
of the individually analyzed applications.

We plan to enrich the flow by supporting additional MoCs such as the Syn-
chronous (SY) MoC for control-oriented behavior and also aim at a mixed-
criticality design flow.
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