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Abstract

Intraoperative hypotension (IOH) events warning plays a cru-
cial role in preventing postoperative complications, such as
postoperative delirium and mortality. Despite significant ef-
forts, two fundamental problems limit its wide clinical use.
The well-established IOH event warning systems are often
built on proprietary medical devices that may not be avail-
able in all hospitals. The warnings are also triggered mainly
through a predefined IOH event that might not be suitable for
all patients. This work proposes a composite multi-attention
(CMA) framework to tackle these problems by conducting
short-term predictions on user-definable IOH events using vi-
tal signals in a low sampling rate with demographic charac-
teristics. Our framework leverages a multi-modal fusion net-
work to make four vital signals and three demographic char-
acteristics as input modalities. For each modality, a multi-
attention mechanism is used for feature extraction for bet-
ter model training. Experiments on two large-scale real-world
datasets show that our method can achieve up to 94.1% accu-
racy on IOH events early warning while the signals sampling
rate is reduced by 3000 times. Our proposal CMA can achieve
a mean absolute error of 4.48 mm Hg in the most challenging
15-minute mean arterial pressure prediction task and the error
reduction by 42.9% compared to existing solutions.

Introduction
Intraoperative hypotension (IOH) events are closely associ-
ated with many postoperative complications, such as a sharp
increase in mortality, myocardial injury, acute kidney dam-
age, postoperative delirium, and other neurological compli-
cations (Salmasi et al. 2017). Early warning of IOH events
throughout the perioperative period is an effective means to
prevent postoperative complications. It enables clinicians to
act proactively from the usual reactive responses to hypoten-
sive events before the consequences are seen (Davies et al.
2020; Asai et al. 2019).

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many efforts have been devoted to developing artificial
intelligence solutions to provide IOH warnings throughout
the perioperative period. In (Lee et al. 2021), the authors
studied the performance of deep learning models on arterial
pressure prediction and IOH early warning using invasive
and non-invasive blood pressure readings. The results sug-
gest that invasive blood pressure readings better predict IOH
events via gaining continuous arterial pressure values (a.k.a.
beat-to-beat blood pressure) from arterial waveform analy-
sis. Invasive blood pressure monitoring is a well-developed
and widely used technology in the intensive care unit and
the operating rooms. The invasive monitoring involves the
insertion of a catheter into a suitable artery and then display-
ing the numerical readings of systolic, diastolic, and mean
arterial pressure (MAP) on a monitor. To our knowledge,
(Hatib et al. 2018; Wijnberge et al. 2020) developed the hy-
potension prediction index algorithm using invasive arterial
waveform and some other features to yield the best-known
IOH prediction results. It is a shame that multiple factors
in practice still limit the clinical use of invasive blood pres-
sure monitoring. The typical medical concerns of invasive
blood pressure monitoring include potential infection risk,
local thrombosis, and drugs entering the arterial line to form
crystals and thus causing catastrophic limb ischemia. In ad-
dition, the high cost of the monitoring equipment and its re-
placement parts, and stable electrical supply further ham-
per its appeal in many settings. Non-invasive and minimally
invasive blood pressure monitoring techniques have gained
increasing attention these days to serve as a viable alterna-
tive for patients. Limited by the techniques, the quality of
the blood pressure readings from these alternatives is not yet
comparable to the invasive solution.

Another challenge is that most existing early warning
studies on intraoperative hypotension are designed for a spe-
cific definition of IOH. Once the IOH is defined, the data
will be used to train the model according to this specific def-
inition. When a new IOH definition needs to be used, the
adoption cost is exceedingly high as the model is required to
be reconstructed again from scratch. In (Inada et al. 2021),
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the authors studied intraoperative hypotension using the def-
inition of systolic blood pressure below 80 mm Hg. They
trained a random forest and three boosting models using
preoperative lifestyle questionnaires, patient demographics,
and preoperative examination information. The random for-
est model achieved the best accuracy of 71.1% in the study.
In (Hatib et al. 2018), the authors used a machine learn-
ing method to construct an intraoperative hypotension index
system with a defined mean blood pressure represented by
mean arterial pressure below 65 mm Hg for at least 1 minute.
The accuracy of predicting hypotension 15 minutes ahead
was 87.5%. In (Kendale et al. 2018), the authors compared
the prediction models built by eight machine learning algo-
rithms using the definition of mean blood pressure below
55 mm Hg within 10 minutes of anesthetization. The gradi-
ent boosting machine algorithm performed best in all mod-
els with the AUROC of 0.76. The systematic review (Wes-
selink et al. 2018) further shows that IOH has multiple defi-
nitions according to MAP and the minimum duration of hy-
potension. Not a single definition was found to be gener-
ally accepted in the field. The elevated risks of using dif-
ferent IOH definitions were also reported. The end-organ
injury was reported for a more than 10 minutes exposure
to MAP<80 mm Hg or shorter durations with MAP<70
mm Hg. More health risks were reported with increased
durations for MAP<65–60 mm Hg or any exposure with
MAP<55–50 mm Hg.

We propose a composite multi-attention (CMA) frame-
work to address the mentioned challenges with a divide-
and-conquer metaphor for enabling short-term IOH events
prediction. The core idea of CMA is to use the machine
learning model to predict short-term MAP instead of IOH
events for better personalization of care. CMA consists of
two main components, blood pressure prediction and IOH
detection. In the blood pressure prediction component, we
use multiple hypotension biomarkers as a whole to reveal
the variation of MAP on time. This strategy enables our
framework to no longer solely rely on the collected qual-
ity data from arterial pressure monitoring and acquire the
ability to work with a wide range of blood pressure moni-
tors. In our proposal, the use of the IOH definition is only
involved in the IOH detection component, not the entire
framework. The IOH definition is thus not fully embed-
ded in the trained model but serves as a screening condi-
tion for event detection. This strategy creates a user-friendly
interface for anesthesiologists to customize intraoperative
hypotension treatment regimes based on the patient back-
ground that has been demonstrated with superior clinical ef-
fectiveness (Inada et al. 2021). In summary, our contribu-
tions are as follows:

• A composite multi-attention framework is proposed to is-
sue early warnings for intraoperative hypotension by us-
ing the latest monitoring of vital signs in low sampling
rates and demographic characteristics. Our proposal is
the first work adaptive to the low sampling rate on vi-
tal signs and shows strong potential incorporated with a
wide range of blood pressure monitors.

• The proposed framework fuses the low sampling se-

quences of the vital signals and demographic characteris-
tics into the four modalities to enrich the representations
of patient conditions. The multi-attention mechanism is
also employed to extract salient features from the modal-
ities for achieving high MAP prediction accuracy.

• Extensive experiments and ablation studies were con-
ducted on two real-world surgery datasets to demonstrate
the effectiveness of the proposed framework. One of the
datasets we used in the experiment is the world’s largest
gathering of surgical records, with 387,291 patients from
August 2015 to April 2021, which is at least 60 times
larger than any available ones.

Preliminaries
Static Indicator: Static indicators are those demographic
characteristics (Shimasaki 2020), such as age, sex, height,
and weight, to help determine the IOH risks for patients.

Dynamic Indicator or Sequence: The vital signals, mean
arterial pressure, diastolic blood pressure, body temperature,
and heart rate are referred to as dynamic indicators in this
work. These dynamic indicators have been instrumentally
recorded during the surgery and retrieved at a fixed sam-
pling rate to form dynamic sequences for close observation
of the patient conditions. A dynamic sequence

−→
Di is a series

of readings of a dynamic indicator generated from a monitor
from the beginning to the end of the surgery. A demonstra-
tive example is given in Figure 1.

Surgery Case: A patient can be admitted to the hospital
multiple times and has one or more surgeries in one admis-
sion. We denote a surgery case c by a tuple (p, v, o) for a
patient p, at the admission v to have the surgery o.

Observation Window: The observation window repre-
sents the duration of the collected vital signs required to
predict the arterial pressure in the following minutes. Please
note that it is a fixed value within the lifetime of the surgery
once it is decided. A demonstrative sample is given in Figure
1. As seen, we extract the latest sequence segment within the
length of the observation window. It can be mathematically
described as

−→
Do = {vt, vt+1, · · · , vt+n, 0 ≤ t < n}, where

vt represents a reading of the vital signal at time t. The ob-
servation window can move forward on a user-defined step.

MAP Short-term Prediction: Short-term prediction of-
ten refers to predicting a variable for 0 to 6 hours. In this
work, we mean the prediction period is in between 0 to 15
minutes. As shown in Figure 1, MAP short-term prediction
means using the latest sequence segments of the vital sig-
nals from the observation window to predict the following
arterial pressure sequence segment. The predicted sequence
segment has the same length as the observation window and
contains the same amount of readings. This window refers
to as the prediction window.

IOH Event: An IOH event is defined as the MAP value is
lower than p mm Hg and lasts for at least d minutes. It can
be denoted as
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Figure 1: MAP (mean arterial pressure), SDP (diastolic
blood pressure), BT (body temperature), and HR (heart rate)
are four dynamic indicators used in our framework. Each
square block represents a numeric reading of a dynamic indi-
cator at a selected time point. The numeric readings obtained
from the monitors of these indicators constitute the dynamic
sequences. The observation window is used to continuously
extract an equal-length latest reading from the dynamic se-
quence during the surgery for further data processing. The
prediction window indicates the period of the dynamic se-
quence formed by the predicted values from our model, and
its length is equivalent to the observation window.

e =

{
1, ∀i ∈ S < p

0, ∃i ∈ S ≥ p
(1)

where S is a vector representing a partial sequence of the
predicted MAP values. The size of S is determined by the
number of samples found in d minutes.

User-definable IOH Event Warning: In clinical practice,
the warning is expected to be triggered at least 2 minutes
(Wijnberge et al. 2020) before IOH occurrence to create
chances for anesthesiologists to intervene as early as possi-
ble. As mentioned, our framework can incorporate different
IOH definitions. No matter what definition is used, it will
be used as the selection criteria to detect IOH events in the
prediction window. Supposing an IOH event will occur at te
minute, our early warning should be triggered no later than
the te−2 minute. Please note that the early warning function
becomes available only when te > wo + dr, where wo rep-
resents the size of the observation window and dr represents
the reserved duration for the reaction of anesthetists with a
general setting of at least 2 minutes.

Methodology
In this section, we introduce the technical details of our
proposed CMA framework to issue an early warning for
user-definable IOH events during surgery. The overview of
our framework design is shown in Figure 2. We first select
three static indicators, age, sex, and BMI (body mass index),
and four dynamic indicators, MAP (mean arterial pressure),
SDP (diastolic blood pressure), BT (body temperature), and
HR (heart rate) as the raw inputs for our framework. We
then develop a multi-modal representation module to com-
bine those static and dynamic indicators into four modalities
to enrich the representation of the raw inputs. Each modal-
ity is formed by one vital sign concatenated with three de-
mographic characteristics. A multi-attention mechanism is

employed to extract salient features and their intertwined de-
pendencies in each modality. After feeding the extracted fea-
tures into the convolutional neural network, we can predict
the MAP short-term results as time goes on. Combined with
the user-definable IOH, the framework can thus provide the
warning before the IOH event happens.

Composite Multi-modal Representation
As mentioned, we denote the dynamic sequence as a vector
−→
Di. Each vector is concatenated with all m static indicators,
in the form of vectors

−→
Si,j , into a matrix to be a modal rep-

resentation. The values in the matrix are normalized by Z-
score (Friedman and Komogortsev 2019) or one-hot encod-
ing based on whether the indicator is a continuous variable.
Once completed, a composite modality Mi is thus formed
with a dynamic sequence

−→
Di and three sequences containing

the repeated static indicators
−−→
Si,0 · · ·

−→
Si,j . All n modalities

M0 · · ·Mi, i ∈ {0 · · ·n} are turned into the below tensor
for further processing.

[
M0

· · ·
Mi

]
=


[−→
D0

−−→
S0,0

−→
S···

−−→
S0,j

]T
· · ·[−→

Di
−−→
Si,0

−→
S···

−→
Si,j

]T
 (2)

Modality Feature Extraction and Fusion
This section describes the multi-attention mechanism used
in our framework, which has shown high capability in
extracting the features and dependencies from modali-
ties (Zhang et al. 2022; Wang et al. 2020; Song et al. 2022).

Positional Encoding The multi-attention mechanism is
treated as a feed-forward layer that reads the sequence in the
observation window at once. Since attention is computed in-
dependently on every data point in the sequence, the order
between data points is ignored. The value embedded in the
order could be further ignored in the later modules if we
do not explicitly reveal it. Inspired by the work of (Vaswani
et al. 2017), we adopt and apply the idea of positional en-
coding in our design to address this issue. We position the
data points in the sequence and record their orders explicitly
as a vector. More specifically, let t be the relative order of a
data point in a sequence,

−→
Pt ∈ Rd will be its corresponding

encoding. It is defined as follow:

−−→
P

(i)
t = f(t)(i) :=

{
sin(ωk · t), if i = 2k

cos(ωk · t), if i = 2k + 1
(3)

ωk can be further defined as

ωk =
1

100002k/d
(4)

where d represents the encoding dimension (in here, d ≡ 7).
The positional encoding

−→
Pt in the form of a vector contain-

ing multiple pairs of sines and cosines for the sequence is
then in conjunction with the sequence itself for the follow-
ing modules for further processing.
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Figure 2: Overview of the CMA composite multi-attention framework. Three static indicators, age, sex, and BMI, are repeatedly
concatenated to the four dynamic sequences to form four modalities. The multi-attention mechanism acts on each modality,
extracting features and feeding them into the following convolutional neural network to perform MAP sequence prediction.
By integrating the short-term blood pressure prediction with the IOH definition, the framework can give early warning for the
user-definable IOH events.

Feature Extraction and Fusion The multi-attention
mechanism used in our framework has eight heads and eight
dimensions. Positional encoded sequences are delivered in
Key − V alue pairs, thus n groups of inputs can be repre-
sented as (K,V ) = [(k1, v1), (k2, v2), ..., (kn, vn)], where
Key is used to calculate the attention distribution ϵi and
V alue is used to calculate the aggregation. Here both Key
and V alue for each group are the same, a segment of po-
sitional encoded sequences. For a Query representing a fu-
ture input from a modality to match a Key, we are not to
ensure the consistency of Key and Query but the similar-
ity between them. The similarity is the weight of the value.
The weighted sum of all values is the attention. The detailed
steps are the following:

Step 1: Calculate the similarity of Key and Query. The
attention value si can be calculated using an additive model,
dot product model, or cosine similarity. In our framework,
we use cosine similarity according to our practice.

si = F (Q, ki) (5)

Step 2: Normalize attention values using Softmax func-
tion. The weights of significant values can be emphasized.

αi = softmax(si) =
exp(si)∑N
j=1 exp(sj)

(6)

Step 3: Sum up values with weights:

Attention((K,V ), Q) =
N∑
i=1

αiυi (7)

Finally, the attention value can be summarized as:

att((K,V ), q) =
N∑
i=1

αiυi

=

N∑
i=1

exp(s(Ki, q))∑
j exp(s(Kj , q))

(8)

IOH Warning by Short-term MAP Prediciton
Network Configuration for MAP Prediction The
attention-weighted features are fed into a lightweight
convolutional neural network. The network contains two
convolutional layers, a max-pooling layer using the ELU
activation function, and three dense layers. The first con-
volutional layer has a kernel of (nindicators + nP.E.)/2 to
reduce the dimension by half, where nindicotors is the total
amount of dynamic and static indicators and nP.E. is to
match the size of the positional encoding for all sequences.
The second convolutional layer reduces the kernel size by
half with a kernel size of (nindicators + nP.E.)/4. The
output of the convolutional layers and the max pooling
layer is concatenated, reshaped, and fed into the following
dense layers. Layer normalization is applied to stabilize the
learning process before the last dense layer generates the
MAP sequence.

User-definable IOH-event Prediction With the short-
term arterial pressure prediction sequence, we can set up an
IOH definition to search IOH events on the sequence and is-
sue the warning once found. Since the IOH definition in our
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design is only used for searching the hypotension events, the
anesthesiologists can make any setting based on their expe-
rience before the surgery. We also simplify the IOH event
detection under different IOH definitions by two key vari-
ables, IOH risk threshold, and duration, for a better user ex-
perience. As shown in Algorithm 1, the IOH event detection
can be easily customized by adjusting the duration t and the
IOH risk threshold l as needed.

Experiments
We evaluated the performance of the CMA framework in a
set of experiments on two real-world datasets to answer the
following four questions:
• Q1: How is the MAP short-term prediction performance

of CMA compared to various baselines?
• Q2: How is the IOH events warning performance of

CMA compared to state-of-the-arts solution?
• Q3: How do the composite modalities contribute to the

model performance?
• Q4: How is the performance of CMA is affected by the

vital signs sampling rate?

DataSets In the experiments, we employed two real-world
datasets, Tongji dataset from Tongji Hospital and an open-
access real-world dataset. The Tongji dataset consists of
387,291 patient records collected between October 2015 and
April 2021. The Institutional Review Board (IRB) of Tongji
Hospital approved this study and waived the requirement
for patient informed consent as part of the study approval
(IRB number: 20210304). The other dataset, VitalDB (Lee
and Jung 2018), consists of 6,388 patient records. Our ex-
perimental datasets were built on exacting the mentioned
dynamic and static indicators from these two datasets. The
dynamic sequences in Tongji dataset are collected every 30
seconds. The sampling rate of the dynamic sequences in Vi-
talDB is between 500Hz and 100Hz. We used the sampling
rate at 30 seconds per value on both datasets in our experi-
ments to allow perfect data alignment. In this case, our sam-
pling rate is 3000 times lower than those works (Lee et al.
2021; Davies et al. 2020; Lee et al. 2022) using 100Hz data
sampling rate. After removing those records with a missing
rate above 20%, we have 21,011 patient records from Tongji
dataset and 1,560 patient records from VitalDB. We divided
these records into training, validation, and test instances in a
proportion of 70%, 20%, and 10%, respectively.

Experimental Environment Setting The network used in
our CMA framework is implemented by Keras using the
Tensorflow 2 backend with the default setting except for the
following ones. In the training phase, we use an Adam op-
timizer with a batch size of 256, and the early stopping is
enabled with the patience of 256. The embedding dimension
size d and the depth convolutional neural layers L are set as
64 and 2, respectively. The size of the observation window
was 15 minutes. The predicted sequence lengths were set
to 3, 5, 10, or 15 minutes unless otherwise stated. We used
the IOH definition of MAP staying below 65mm Hg for at
least 1 minute unless otherwise stated. We used the same
model and parameter settings for both Tongji and VitalDB

Figure 3: As a clinical trial, our CMA framework has been
deployed in the intelligent operating room at Tongji Hospi-
tal. The display screen is divided into three sections: pre-
operative assessment, MAP short-term prediction, and IOH
real-time early warning. All related information has been
blurred to protect patient privacy.

Algorithm 1: Intraoperative Hypotensive Events Detection
Input: ypred: a prediction output sequence of MAP val-

ues for dIOH minutes in form of a list, t: the IOH minimum
lasting duration, MAPmax: the maximum MAP value from
the dataset, and MAPmin: the minimum MAP value from
the dataset, l: the IOH risk threshold.

Output:h: a boolean representing the ocurrence of an
IOH event.

1: y = MAPmin

2: for i in range(0, dIOH − t+ 1) do
3: y1 = max(ypred[i : i+ t])
4: y = min(y, y1)
5: end for
6: p = 1− (y −MAPmin)/(MAPmax −MAPmin)
7: h = p > l
8: return h

datasets. All experiments were conducted on a machine with
Intel Xeon Gold CPU x2, 512 GB DDR4 memory, and AMD
Radeon Instinct MI50 with 32GB GPU memory. Some test-
ing tasks of Tongji dataset were run as a clinical trial, as
shown in Figure 3, in Tongji Hospital with ethical approval.

Performance Benchmarks To better evaluate the perfor-
mance of CMA on IOH events early warning, we chose the
below algorithms as performance benchmarks in our experi-
ments. Note that most performance benchmarks do not have
enough technical details to reproduce. We thus adopted their
best results for a fair comparison. We also indicated those
missing results as N/A.

• HPI (Hatib et al. 2018; Davies et al. 2020): A commer-
cial system with proprietary monitors and machine learn-
ing algorithms was developed and used HPI (Hypoten-
sion Prediction Index) to predict IOH events. We used
both the most well-known 2018 results (HPI-2018) and
the latest 2020 results (HPI-2020).

• BRNN (Jeong et al. 2019): It is a bidirectional recurrent
neural network followed by dense layers. It uses vital
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Figure 4: Mean absolute error of the predicted mean arterial pressure measured by mm Hg

Method Dataset Time AUC Accuracy Precision Recall Specificity

CMA

The Tongji low frequency
dataset

5min 0.963 94.10% 80.00% 82.80% 96.10%
10min 0.93 91.30% 72.00% 73.60% 94.60%
15min 0.912 90.50% 70.50% 68.40% 94.60%

The external low frequency
dataset (VitalDB)

5min 0.93 90.60% 65.50% 75.00% 93.30%
10min 0.858 86.10% 50.90% 60.50% 90.30%
15min 0.834 86.00% 50.00% 52.50% 91.40%

HPI-2018 The high frequency
dataset (Arterial waveform)

5min 0.97 N/A N/A 91.80% 92.20%
10min 0.95 N/A N/A 89.30% 89.50%
15min 0.95 N/A N/A 87.50% 87.30%

HPI-2020 The high frequency
dataset (Arterial waveform)

5min 0.926 N/A N/A 85.8% 85.8%
10min 0.895 N/A N/A 81.7% 81.7%
15min 0.879 N/A N/A 80.6% 80.6%

MC-CNN The high frequency
dataset (VitalDB)

5min 0.932 N/A N/A 85.8% 85.8%
10min 0.912 N/A N/A 835.% 83.4%
15min 0.897 N/A N/A 81.4% 81.4%

RFM-IBP The high frequency
dataset (Arterial waveform) 5min N/A 98.90% 65.20% 44.10% N/A

Table 1: IOH event classification performance

signs and the anesthesia-related data from the induction
phase of anesthesia to predict IOH events.

• MAP-NE (Tang et al. 2019): A least-squares and
reduced-order model uses combined MAP and nore-
pinephrine (NE) to predict the mean arterial blood pres-
sure of the sepsis patients who received NE.

• RFM-IBP (Lee et al. 2022): A random forest model
predicts hypotension 5 minutes ahead of its occurrence
throughout the entire period of anesthesia.

• MC-CNN (Lee et al. 2021): A 1-D convolutional neural
network predicts MAP and detects IOH events.

• GRU (Xiuyun et al. 2018): A gated recurrent unit net-
work is commonly used machine learning model for time
series data processing.

• Transformer (Yang et al. 2022): A popular deep learning
architecture is good at processing text sequence data.

Evaluation Metrics We used a commonly-used metric
Mean Absolute Error (MAE) for prediction performance
evaluation, which is defined below:

MAE =
1

T

n∑
t=1

|yt − ŷt| (9)

MAE measures the deviation between the estimates and
ground truth of MAP. The lower the value, the more minor
deviation between estimates and ground truth generated by
the model. The IOH event warning as a classification task
was evaluated by accuracy, precision, recall, specificity and
area under ROC (AUC) in our experiments.

MAP Prediction Performance Comparison (Q1)
The results of MAP short-term prediction tests are shown
in Table 2. We can observe that CMA consistently has the
best performance in all tests demonstrating its effectiveness
in short-term MAP prediction. The transformer algorithm
could barely keep up with CMA when the time horizon was
small. When the time horizon increased to 10, the perfor-
mance of the transformer algorithm fell far behind CMA.
Figure 4 visualizes the MAP prediction of CMA and the top-
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3 performance benchmarks on Tongji and external datasets
by MAE, where the brighter yellow means better perfor-
mance on the test. It is not surprising that the prediction per-
formance of CMA outperformed all benchmarks on every
time horizon.

IOH Warning Comparison (Q2)
IOH Early Warning Performance The test results of is-
suing IOH early warning are shown in Table 1. It is interest-
ing to observe that the performance of CMA ranked either 1
or 2 in every aspect of all tests. Note that our solution is the
only one that uses low sampling rate data, while the other
benchmarks rely on high sampling rates to achieve the best
performance. Besides, CMA had better accuracy and AUC
on the Tongji dataset than the external one. We believe this
result is likely caused by CMA can better capture the proce-
dural and implicit nature of IOH events early warning from
more patient records.

To evaluate how CMA adopted the change of IOH defini-
tions, we used two IOH definitions to investigate its perfor-
mance variation. The IOH definition was set to the MAP val-
ues staying below 65 mm Hg lasting for 1 minute or below
65 mm Hg lasting for 2 minutes. The test results are shown
in Figure 5 (a). The results show that CMA can achieve an
AUC of 0.912 and 0.941 for issuing IOH event early warning
when using different IOH definitions on the Tongji dataset.
The results of CMA on the VitalDB dataset were not as good
as the Tongji dataset but still kept acceptable on IOH early
warning. Overall, CMA demonstrated a competent adapta-
tion to different IOH definitions while maintaining reliable
performance. Please note that these results were achieved
without involving any model reconstruction or retraining.
This feature allows CMA has a low dependency on com-
puting resources during the run time.

Modality Effects (Q3)
We performed ablation experiments to analyze the effects
of multiple modalities in CMA. We constructed three tasks
to predict MAP with all seven indicators (CMA), four in-
dicators (MAP, age, sex, and BMI, named CMA-4f), and
four dynamic indicators (Dynamic). These algorithms were
tested on Tongji and VitalDB datasets to examine how the
performance could be affected. As shown in Figure 5(b), the
MAE of CMA-4f was 5.8 mm Hg, slightly better than the
performance of the transformer algorithm listed in Table 2.

Impact of Sampling Rate (Q4)
We studied the impact of using different sampling rates on
our framework. The tested sampling rates were set to 30 sec-
onds, 1 minute, and 2 minutes. The test results are shown in
Figure 5 (b), (c), and (d). CMA at 30s interval achieved the
best prediction performance. When the data frequency is re-
duced from 30 seconds to 1 minute, the MAE of CMA and
GRU does not increase significantly. At this time, the MAE
of CMA using only dynamic indicators (Dynamic) has risen
by 6%. When the frequency is further reduced to 2 minutes,
the MAE values of all methods increase significantly. Even
the MAE of CMA using all indicators (CMA) increased by

Time 3min 10min 15min

Our Tongji validation dataset
CMA 2.56 3.95 4.50
CMA-Dynamic Only 2.61 3.982 4.54
GRU 2.64 4.00 4.55
Transformer 2.68 5.715 7.50

Our external validation dataset (VitalDB)
CMA 4.11 5.97 6.59
CMA-Dynamic Only 4.31 6.12 6.74
GRU 4.34 6.23 6.89
Transformer 4.41 8.51 11.42

Other validation datasets
BRNN 8.7 N/A N/A
MC-CNN N/A 7.5 7.88
MAP-NE 3 5.5 N/A

Table 2: Mean absolute error of MAP short-term prediction
methods on different time horizons

Figure 5: Simple tests for user-defined IOH definition,
modalities, and different sampling rates

12.9% compared to the 30-second frequency. CMA at 2 min-
utes interval still shows acceptable performance on arterial
pressure prediction, but the long gap between two consec-
utive readings severely limits its performance and has no
practical value. CMA-30 and CMA-1 were both acceptable
solutions, but CMA-30 has the most desirable performance.

User-definable IOH Event Prediction

Conclusion and Outlook
We proposed a composite multi-attention framework to issue
an early warning for intraoperative hypotension events. The
proposal is the first attempt to use only four vital signals with
a low sampling rate and three common demographic charac-
teristics as model input. We use this framework to predict the
short-term mean arterial pressure instead of the intraopera-
tive hypotension event. This strategy enables us not directly
to involve the intraoperative hypotension definition in the
model training, thus saving computational cost when adopt-
ing a new definition in the model for different patients. The
experimental results showed that CMA outperformed state-
of-the-art models on short-term arterial pressure prediction
and intraoperative hypotension event early warning.

In the future, we aim to complete our clinical trial in the
Tongji Hospital. According to the trial results, we will fur-
ther adjust the algorithm to improve its performance and
make it applicable to more medical devices. We will also
plan to share the deidentified and approved Tongji dataset
with the public.
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