
A Composite of Multiple Signals Distinguishes 

Causal Variants in Regions of Positive Selection

Citation
Grossman, Sharon R., Ilya Shylakhter, Elinor K. Karlsson, Elizabeth H. Byrne, Shannon Morales, 
Gabriel Frieden, Elizabeth Hostetter, et al. 2010. A composite of multiple signals distinguishes 
causal variants in regions of positive selection. Science 327(5967): 883-886.

Published Version
doi:10.1126/science.1183863

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5125257

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:5125257
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Composite%20of%20Multiple%20Signals%20Distinguishes%20Causal%20Variants%20in%20Regions%20of%20Positive%20Selection&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=420ad683ecc4ee5a866f201e94207f38&departmentOrganismic%20and%20Evolutionary%20Biology
https://dash.harvard.edu/pages/accessibility


 1 

A composite of multiple signals distinguishes causal variants in regions of positive 

selection 

Sharon R. Grossman
1,2,6

, Ilya Shylakhter
1,2,6

, Elinor K. Karlsson
1,2

, Elizabeth H. Byrne
1,2

,
 

Shannon Morales
1,2,3

, Gabriel Frieden
1
, Elizabeth Hostetter

1,2
, Elaine Angelino

1,4
, Manuel 

Garber
2
, Or Zuk

2
, Eric S.Lander

2,4,5
, Stephen F. Schaffner

2
, Pardis C. Sabeti

1,2,4
 

1 Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, 

Cambridge, MA, USA  

2 Broad Institute of MIT and Harvard, Cambridge, MA, USA 

3 Mount Sinai School of Medicine, New York, NY, USA 

4 Department of Systems Biology, Harvard Medical School, Boston, MA, USA  

5 Department of Biology, MIT, Cambridge, MA, USA 

6 These authors contributed equally to this work.  

 

 

 



 2 

 

The human genome contains hundreds of regions whose patterns of genetic 

variation indicate recent positive natural selection, yet for most the underlying gene and the 

advantageous mutation remain unknown. We developed a method, Composite of Multiple 

Signals (CMS), that combines tests for multiple signals of selection and increases resolution 

by up to 100-fold. Applying CMS to candidate regions from the International Haplotype 

Map, we localized population-specific selective signals to 55 kb (median), identifying known 

and novel causal variants. CMS can identify not just individual loci but implicates precise 

variants selected by evolution. 

Numerous methods have been developed to exploit signatures left by positive 

natural selection to identify genomic regions in the human genome harboring recent local 

adaptations, presumably to such pressures as infectious disease, changes in diet, and new 

environments (1, 2) Hundreds of such regions have been identified, but they are typically 

large, 100s of kilobases to megabases, and contain many genes and thousands of 

polymorphisms. In only a handful has there been much progress in identifying the causal 

mutations and extracting these biological insights about their function. More powerful 

methods are needed to pinpoint the exact mutations driving evolution, especially as 

increasingly powerful sequencing technologies make it possible to sequence the genomes 

of humans and many other species. 

Initial surveys of selective events have relied on three patterns of variation caused 

by a new beneficial mutation rising quickly in prevalence in a population: (1) Long 

Haplotypes: An allele under positive selection increases in frequency so rapidly that 

long-range associations with neighboring polymorphisms – the “long-range haplotype” – 

are not disrupted by recombination. (2) High frequency derived alleles: A new (non-
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ancestral, or derived) allele rises to a frequency higher than expected under genetic drift, 

carrying neighboring derived alleles with it. (3) Highly differentiated alleles: Positive 

selection in one geographic region causes larger frequency differences between 

populations than for neutrally evolving alleles. In humans, these three signals are 

detectable back to between 30 to 80 thousand years ago (2).  

If each signature provides distinct information about selective sweeps, combining 

the signals should have greater power for localizing the source of selection than any 

single test.  As inputs to a composite statistic we chose two established metrics for 

haplotype length (iHS and XP-EHH) (3, 4) and one for population differentiation (FST) 

(5).  We also developed and incorporated two new tests. ΔDAF tests for derived alleles 

that are at high frequency relative to other populations; it is more sensitive for 

distinguishing selected alleles than the simple derived allele frequency (DAF, fig S1).  

ΔiHH measures the absolute rather than the relative length of haplotypes, and is 

particularly sensitive for identifying lower frequency selected alleles.  

To characterize each test’s ability to localize signals of recent local adaptation 

spatially and to distinguish causal variants from nearby neutral markers, we simulated  

neutrally-evolving regions and regions containing a positively selected allele by standard 

coalescent approaches (6). We tested a range of demographic models, including a 

standard neutral model, a calibrated model of European, East Asian, and West African 

populations and several more extreme models.  Regions under selection were modeled as 

containing a single, centrally located selected variant that appeared within the last 5000 – 

30,000 thousand years, was subject to a specified intensity of selection, and rose to 

present-day frequencies ranging from 20% to 100%  (table S1).  
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For each model set we generated 1500 replicates, each consisting of 1Mb of 

simulated sequence data (~10,000 polymorphisms) for 120 chromosomes from each 

populations. In addition, we generated a dataset that matched the frequency distribution 

and density of Phase II of the International Haplotype Map Project (HapMapII). (7). 

Under all scenarios, each of the five statistics had easily distinguishable 

distributions for causal and for neutral variants (including neutral variants in selected 

regions).  The FST and XP-EHH signals peaked more narrowly around the causal variant, 

making them useful for spatial localization, but poorly distinguished the precise causal 

variant (Fig. 1, fig S2). In contrast, iHS, ΔiHH and ΔDAF contributed little to spatial 

resolution, but better distinguished causal variants. The five tests were nearly 

uncorrelated in neutral regions, and only weakly correlated for neutral variants within 

selected regions (fig. S3). In the latter case, correlation was appreciable only immediately 

around the causal variant. 

As each of the five tests had power to distinguish selected from non-selected 

variants, and were only weakly correlated for neutral variants, we combined them in a 

composite likelihood statistic, termed the Composite of Multiple Signals (CMS). For 

each test i, we estimated from simulation the probability P of a score si if selected and if 

unselected. Assuming a uniform prior probability of selection π, the CMS score is the 

approximate posterior probability that the variant is selected: 

     Equation 1 

We calculate the CMS score and significance (based on the genome-wide distribution of 

scores) for every variant. To localize a signal, the distribution of CMS scores across the 
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entire region is used to estimate a posterior probability curve for the position of the causal 

variant and determine 90% credible intervals (SOM). 

In simulations, CMS showed power both to localize the selection signal spatially 

and distinguish the causal variant (Fig. 1K-L). While single tests provided weak 

localization (~1 Mb), CMS localized the signal to average 89kb (for full sequence data) 

and contained the causal variant in 90% of cases (Fig. 3A-B). With sparser genotype data 

(corresponding to HapMapII), CMS localized to 104 kb, even when the causal variant 

was absent from the dataset. CMS also showed greater specificity for the causal variant. 

At score thresholds giving 90% power to detect the true causal variant, the individual 

tests identified ~500-1500 candidate causal variants per region, while CMS narrowed the 

signal to ~100 (table S2). The causal variant was among the top twenty variants in half of 

cases and was the highest scoring variant in a quarter of cases, remarkable power given 

that we included sweeps to frequencies as low as 20%. The power for sweeps where the 

causal allele is at high frequency (>50%) is even greater, with the causal variant among 

the top ten variants in half of cases (table S3). 

The CMS results were robust under all demographic scenarios tested (constant 

population size and bottlenecks of varying strengths), even though the test was optimized 

for a single model (6) (fig. S4). The most extreme bottleneck scenarios did increase the 

number of high scoring variants in neutral regions, but the false positive rate remained 

below 0.004% in all cases (SOM, (8). These false positives occurred as isolated points, 

easily distinguishable from the clearly-defined peaks found in selected regions (table S4).  

We then applied CMS to empirical human data for 185 candidate regions 

identified as under recent positive selection in HapMapII data.  The dataset includes 3.1 
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million variants genotyped in three populations: Northern Europeans, West Africans 

(Yoruba from Nigeria), and East Asians (Chinese and Japanese) (7).  

As positive controls, we examined several well-characterized regions under 

positive selection (Fig. 2, 3). In three regions (containing, respectively, SLC24A5, LCT, 

and EDAR), a putative causative variant has been previously identified and genotyped in 

HapMapII (2, 3).  In each region, the variant was within the top ten CMS scores, out of 

1000 - 1500 variants in the region.  We also examined four regions (350kb-1MB) 

containing pigmentation-related genes (MATP, TYRP1, OCA2 and HERC2, and KITLG) 

that are suggested targets of recent selection, but where no candidate variant has been 

proposed (1, 9, 10). CMS improved the spatial resolution by 3-80 fold, and, in each case, 

the narrowed region contains a single pigmentation-related gene. In each case, a strong 

CMS signal is found at a variant known to be associated in the human population with 

eye color or skin pigmentation (9) 

We then examined the remaining 178 candidate HapMapII regions, containing 

~1500 genes, for which the selected locus and variant are unknown. After application of 

CMS, 64 regions contained a single gene, 35 contained multiple genes, and 79 contained 

no genes at all. CMS suggested numerous intriguing coding and regulatory functional 

candidates (fig. S5, S6; table S5).  

Many regions include striking amino acid changes (table S6). For example, CMS 

localized a region on chromosome 10 with evidence for selection in East Asians, to the 

protocadherin gene PCDH15. The third highest ranking variant is an acidic-to-nonpolar 

(Asp-435-Ala) mutation altering a highly conserved residue predicted to lie in the Ca
2+

-

binding site at the interface of cadherin repeats in the protein’s extracellular domain 
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(SOM, Fig. 4A, fig. S7, S8, (11)). PCDH15 plays a role in development of inner ear hair 

cells and maintaining retinal photoreceptors (12, 13). Another signal in East Asians 

localized to the leptin receptor, LEPR.  The highest-scoring variant is a Lys-109-Arg 

change in LEPR associated with blood pressure, glucose response, and body mass index 

(14). 

Many signals, however, are localized to intergenic regions or regulatory changes 

in gene regions, suggesting that selected variants may lie in regulatory elements (which 

also harbor many variants affected in complex diseases). For example, a signal of 

selection in West Africans localized to a single gene, PAWR. Several high-scoring 

variants show strong association with PAWR expression uniquely in West Africans, and 

with no other genes in the region (fig. S9).  Another signal in West Africans localized to 

a 22 kb region containing two genes, USF1 and ARHGAP30. Several high-scoring SNPs 

in USF1 show strong association with USF1 expression uniquely in West Africans. One 

variant lies within an experimentally determined transcription factor binding site (15).  

Beyond identifying individual gene and polymorphism targets, by reducing the 

number of genes within each region from ~8 to ~1 the method reveals more clearly 

instances of multiple genes in the same pathway showing signs of selection.  For 

example, in addition to PCDH15, four genes linked to cochlear function or Usher 

syndrome (1, 16) show evidence for selection in East Asia.  We used the PANTHER 

Gene Ontology database to test for this enrichment on all CMS-localized regions from 

HapMapII (SOM) (17).  We found statistically significant enrichment for several 

categories (table S7): sensory perception genes (including PCDH15) are strongly 
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enriched for selection in East Asia, immune-related genes in West Africa, and genes 

related to homeostasis and metabolism in all three populations.   

We have shown that CMS dramatically narrows candidate regions for recent local 

adaptation in humans and identifies small numbers of candidate polymorphisms. For this 

kind of event, we may already be close to the limit on localization based on population 

signals alone. According to our simulations, each causal variant has on average 20 perfect 

proxies (fig. S10), all essentially indistinguishable from the causal variant. Identifying 

specific causal variants may thus require functional characterization of small sets of 

candidates.  

The CMS method can be adapted to a wider range of selective regimes, including 

detecting (i) older selection occurring any time after the divergence of human populations 

(50-75,000 years) (FST and ΔDAF would here become the predominant CMS signals) and 

(ii) selection on standing variation or very old selection (by incorporating additional 

population-based tests). It can also be applied to non-human species as population 

samples of dense genotype or sequence data increasingly become available; the details of 

the appropriate CMS test would depend on the demographic history and population 

structure of the species.  

Within human genetics, the research community is currently generating 

extraordinary datasets of human variation in many populations, through initiatives such 

as the 1000 Genomes Project (18). With continuing improvements in sequencing 

technology, it will be possible to examine nearly every variant in the genome in many 

individuals and populations. With such data emerging for humans and numerous species, 
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it may be possible to observe much of evolution’s most recent handiwork and identify 

many of the functional adaptations that shaped our species and many others. 
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Figure Legends 

Figure 1. CMS localizes selection and identifies causal variants better than single tests. Left: 

top (red) and bottom (black) 5% of scores and mean score (black, dashed) in 1MB surrounding 

causal mutation (located at red dashed line). Right: distribution of scores for the causal variant 

(red), nearby unselected variants (blue) and variants in regions without selection (grey, below 

axis). The composite test (CMS), outperforms individual tests for K) localizing the selective 

signal and L) distinguishing the causal variant.  

 

Figure 2. Localizing selection at MATP. Scores of six individual tests (A-F) and CMS (G) for a 

region containing MATP. A non-synonymous SNP (rs16891982, F374L, red dotted line) 

associated with pigmentation is believed to be the mutation under selection.  

 

Figure 3. CMS localizes selection and identifies causal variants in simulated and empirical 

data. CMS analysis of: A) simulated full sequence and HapMapII-density genotype datasets; and 

HapMapII selective sweeps at the genes  B) EDAR, C) LCT, D) SLC24A5, E) OCA2/HERC2, F) 

TYRP1, G) KITLG.  Bars on x-axis indicate genes, red bar indicates putative selected gene, blue 

dots show CMS values, red stars indicate putative causal alleles, red circle on LCT is a variant in 

a conserved transcription factor-binding motif.  

 

Figure 4. Coding and regulatory mutations identified by CMS. A) CMS scores 

around PCDH15 (HapMapII data). (Red circle: non-synonymous mutation (D435A).) B) 

Homology modeling of the PCDH15 cadherin-4 domain (red) predicts that D435A (red 

rods) is among the residues (blue) coordinating calcium ions (green) essential to cell-cell 
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adhesion. C-D) Variants identified by CMS involved in gene regulation. Upper: CMS 

scores for each HapMapII SNP within region originally identified as under selection. 

Lower: strength of association in West African samples between genotype and gene 

expression level for PAWR (C) and USF1 (D).   
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