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Abstract

Background: Proprioception is the sense of the position and movement of our limbs, and is vital for executing
coordinated movements. Proprioceptive disorders are common following stroke, but clinical tests for measuring
impairments in proprioception are simple ordinal scales that are unreliable and relatively crude. We developed and
validated specific kinematic parameters to quantify proprioception and compared two common metrics, Euclidean
and Mahalanobis distances, to combine these parameters into an overall summary score of proprioception.

Methods: We used the KINARM robotic exoskeleton to assess proprioception of the upper limb in subjects with
stroke (N = 285. Mean days post-stroke = 12 ± 15). Two aspects of proprioception (position sense and kinesthetic
sense) were tested using two mirror-matching tasks without vision. The tasks produced 12 parameters to quantify
position sense and eight to quantify kinesthesia. The Euclidean and Mahalanobis distances of the z-scores for these
parameters were computed each for position sense, kinesthetic sense, and overall proprioceptive function (average
score of position and kinesthetic sense).

Results: A high proportion of stroke subjects were impaired on position matching (57%), kinesthetic matching
(65%), and overall proprioception (62%). Robotic tasks were significantly correlated with clinical measures of upper
extremity proprioception, motor impairment, and overall functional independence. Composite scores derived from
the Euclidean distance and Mahalanobis distance showed strong content validity as they were highly correlated
(r = 0.97–0.99).

Conclusions: We have outlined a composite measure of upper extremity proprioception to provide a single
continuous outcome measure of proprioceptive function for use in clinical trials of rehabilitation. Multiple aspects of
proprioception including sense of position, direction, speed, and amplitude of movement were incorporated into
this measure. Despite similarities in the scores obtained with these two distance metrics, the Mahalanobis distance
was preferred.
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Background

Stroke is heterogeneous, affecting sensory, motor, and

cognitive functions that are required for daily activities.

While there are well validated tools to assess motor and

speech functions (eg. Fugl-Meyer Assessment (FMA) [1],

the National Institute of Health Stroke Scale (NIHSS)

[2], Chedoke-McMaster Stroke Assessment Impairment

Inventory (CMSA) [3]) the use of high quality, validated

assessment tools for measuring sensory function post-

stroke (proprioception in particular) is limited [4], and

there is still a lack of a gold standard assessment. While

the FMA and NIHSS have sensory components to the

assessment, they are seldom used as a sole measure of

sensory impairment in research studies focused on sen-

sation as they are based on relatively coarse scales. Yet,

sensory and proprioceptive impairments have a signifi-

cant negative impact on functional recovery following

stroke [5–9]. Individuals with sensory and motor impair-

ments, compared to those with just motor impairments,

have longer lengths of hospitalization and fewer dis-

charges home [10–12]. Furthermore, it has recently been
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shown that motor and proprioceptive impairments can

occur independently after stroke [13].

Some commonly used clinical assessments of proprio-

ception post-stroke include: 1) simple passive limb

movement detection test [14] in which an examiner

moves a subject’s limb segment with their eyes closed,

and subjects are asked to say which direction the limb

was moved; 2) the Revised Nottingham Sensory Assess-

ment [15, 16] in which the subject is asked to mirror

match the movement of a passively moved limb by a

therapist; and 3) the Thumb Localizing Test [17] which

involves passive movement of a subject’s arm and hand

to a random position overhead, and is followed by sub-

jects reaching to grasp their thumb with the opposite

(less affected) hand. These assessments are scored

crudely as normal, slightly impaired, or absent, and lack

the sensitivity to detect smaller changes in propriocep-

tive function in part due to poor inter- and intrarater re-

liability [18, 19]. Therefore, establishing an objective and

reproducible method to assess proprioceptive impair-

ments post-stroke is vital to evaluating the efficacy of

different treatments.

Other more advanced methods to assess proprioception

have been developed [20–23], with many using robotic

technology to measure the kinematics of an individual’s

movements. Assessment devices can now measure pos-

ition sense and kinesthetic impairments after stroke using

arm contralateral matching [13, 24–26], in which a sub-

ject’s affected arm is passively moved by the robot to a

position, and the subject mirror-matches the movement/

position with their less affected limb. Another paradigm

involves passive movement of a subject’s limb to a speci-

fied position, returning the limb to the starting position,

and then having subjects actively move the same arm to

this remembered position [21, 26]. This method has an

advantage in that it does not require interhemispheric

transfer of information, but has limited value in assessing

people with concurrent motor deficits, or in assessing

kinematic aspects of proprioception, such movement

speed and amplitude perception. Further, results can be

confounded by problems with spatial working memory.

Threshold for detection of passive movement paradigms

have also been used to assess proprioception [27, 28]. This

paradigm eliminates confounds due to motor impairment

and interhemispheric transfer of information but again, lit-

tle information about the kinematics of movement per-

ception (e.g. speed or direction) are gained from this task,

and it typically takes much longer to complete than pos-

ition/movement matching. Lastly, Carey et al. [20] have

developed and validated a wrist position sense test, where

a subject’s wrist is moved to a position (wrist flexion or ex-

tension) and without vision of the wrist the subject has to

use their other arm to move a cursor to the direction the

wrist is pointing. This method minimizes confounds due

to interhemispheric information transfer and motor defi-

cits, but again does not provide information about

kinesthetic impairments.

Many of these assessments are reliable, reproducible, ob-

jective, and provide quantitative measures of propriocep-

tive function in the upper limbs. Dukelow et al. [13, 24],

used a KINARM robot (BKIN Technologies, Kingston,

ON), and detailed a contralateral position-matching task

for the upper extremities that can measure various aspects

of an individual’s position sense including: absolute error,

variability in matching positions, systematic shifts in per-

ceived workspace, and perceived contraction or expansion

of the workspace. Similarly, Semrau et al. [25] recently de-

tailed a kinesthetic matching task using the KINARM

robot that can measure an individual’s ability to mirror-

match the speed, direction, and amplitude of a robotically

moved limb [8, 25]. These tasks are reliable [24], and pro-

vide numerous parameters that describe an individual’s

position or kinesthetic sense impairments and can be used

to guide a rehabilitation program tailored to the individual.

Furthermore, these studies have shown a strong relation-

ship between proprioceptive impairments and functional

independence post-stroke, yet proprioceptive impairments

are often not addressed in day-to-day therapy. Reliable and

quantitative assessment tools are therefore critical for test-

ing the efficacy of rehabilitation treatments, as in clinical

rehabilitation trials.

While multiple kinematic parameters can provide a

level of exactness around the nature of an individual’s

proprioceptive impairments and are helpful for rehabili-

tation planning, a summary measure is needed for clin-

ical therapeutic trials in rehabilitation. Thus, a single

continuous metric of upper limb proprioceptive function

that combines all parameters from the position and

kinesthetic matching robotic tasks was developed using

two common measures of distance, Euclidean distance

(EDist) and Mahalanobis distance (MDist) [29]. The

EDist was chosen as it is an easily interpretable calcula-

tion and considers each parameter independently. It is

the square root of the sum of squared distances between

data points (i.e. the straight-line distance between two

points in three-dimensional space). The MDist is the

next measure we used to compare with the EDist. It was

chosen because the calculation accounts for correlations

between parameters (by using the inverse of the

variance-covariance matrix of the data set of interest),

therefore preventing the overweighting of correlated pa-

rameters in the calculation. It is the distance between a

point and the center of a distribution, measured along

the major axes of variation (i.e. the standard deviation of

an object in more than one dimension) [30, 31].. Because

the kinematic parameters derived from the robotic tasks

may demonstrate some degree of correlation with one

another [13], the MDist can account for this auto-
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correlation. Theoretically, it should perform better at

identifying stroke subjects who perform abnormally on

the tasks and those who have atypical patterns of behav-

ior relative to controls. The MDist is generally preferred

over the EDist for multivariable data since it can cope

with different structures of data [31].

MDist (or variants of it) has recently been used in

other studies when examining reaching movements after

stroke [32].. Our primary aim was to examine differences

and similarities between two summary scores (EDist and

MDist) in their ability to differentiate proprioceptive im-

pairment in individuals with stroke from controls in a

large patient sample. We hypothesized that using a com-

posite proprioception score calculated from the Mahala-

nobis distance would more accurately identify impaired

proprioception in individuals with stroke compared to a

proprioception score calculated from the Euclidean

distance.

Methods

Subjects

Subjects with stroke were recruited from the Foothills

Medical Centre or Dr. Vernon Fanning Centre in Cal-

gary AB, Canada. Inclusion criteria were: Subjects

18 years and older with first reported ischemic or

hemorrhagic stroke. Exclusion criteria were: stroke af-

fecting both hemispheres of the brain, upper limb ortho-

pedic injury, neuropathy, evidence of apraxia [33], any

other neurological disease or injury (e.g. Parkinson’s Dis-

ease, Multiple Sclerosis), unable to follow task instruc-

tions due to aphasia or cognitive impairments or

significant fatigue which limited task performance. A

sample of healthy control subjects without history of

neurological injury or disease were also recruited from

the community. Subjects provided written informed con-

sent prior to study participation and this research was

approved by The University of Calgary Conjoint Health

Research Ethics Board (CHREB: #22123).

Robotic assessments

Assessment of proprioception was performed using a

KINARM robotic exoskeleton (BKIN, Kingston, ON,

Canada) (Fig. 1). Subjects were seated in the wheelchair

base with both arms supported against gravity by arm

troughs. The device was fitted to each subject by a

trained study physician or therapist. Subjects were then

wheeled into a virtual reality environment where vision

of the upper extremities was occluded with a screen and

bib fitted around the subject’s neck. The set-up of each

subject and calibration of the robot took between six

and eight minutes to complete. The position matching

task took on average three minutes to complete and the

kinesthetic matching task on average took five minutes

to complete.

Arm position matching

The position matching task required subjects to mirror-

match the position of a robotically moved arm (passive

arm) with their opposite arm (active arm) [13, 24, 34].

The robot passively moved a subject’s stroke-affected

arm to one of nine pre-determined positions in the

workspace in a pseudorandom order (Fig. 1b). Subjects

were then instructed to mirror-match the position of the

passive arm with the opposite limb, without using vision.

Six trials were performed for each of the nine target lo-

cations for a total of 54 trials.

The following parameters were used to quantify task

performance after completion of all trials. Absolute error:

the mean absolute distance error in the X (AbsX), Y

(AbsY), and XY directions (AbsXY) across all trials be-

tween the active arm and the ideal target position:

AbsXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Abs2X þ Abs2Y

q

Variability: the trial-to-trial variability in matching to

the same target position. Variability was calculated as

the standard deviation of the active hand for each target

position, and then averaged across all target positions

for the X (VarX), Y (VarY), and XY combined (VarXY)

directions:

VarXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var2X þ Var2Y

q

Contraction/ Expansion Ratio: a measure of whether a

subject perceived contraction or expansion of the work-

space. It was calculated as the matched area of the active

arm, relative to the area of the passive arm (Fig. 1b).

Contraction/ Expansion Ratio was also calculated in the

X (Contr/expx), Y (Contr/expY), and combined XY

(Contr/expXY) directions:

Contr= expX ¼
rangexactive
rangexpassive

Systematic Shift: the mean perceived translation of the

workspace. The mean error between passive and active

hands was calculated for each target position, followed

by taking the mean of means across target locations.

These were computed for the X (ShiftX), Y (Shifty), and

XY (ShiftXY) directions:

ShiftXY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Shift2x þ Shift2y

q

Each of these four parameters, taken in three direc-

tions (X, Y, and XY), provided a total of 12 parameters

for the position matching task.

Arm kinesthetic matching

Kinesthetic matching measured a subject’s ability to

mirror-match the movement of a robotically moved arm
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(passive arm) with the opposite arm (active arm), with-

out using vision (Fig. 1c,d). This task has been previously

described [8, 25, 35]. The passive arm was always the

stroke-affected arm in our sample. Prior to the start of

each trial, both arms were positioned at mirrored start-

ing positions in the workspace. During this ‘positioning’

phase, the robot moved the passive arm to one of three

positions in the workspace. Then two circular dots were

illuminated on the projection screen, a white dot repre-

senting the active arm’s index finger, and a red dot

representing the mirrored starting position. Subjects

were instructed to place the white dot in the red dot.

The targets were then extinguished, and after a random

delay (1500 ± 25 ms) the passive arm was moved with a

bell-shaped velocity profile (peak speed = 0.28 m/s)

(Fig. 1d) between two pre-set target locations (20 cm)

(Fig. 1d). Subjects were instructed to mirror-match

the speed, direction, and amplitude of the passive arm with

their active arm as soon as they felt the robot move their

arm. Six movement directions were tested in a pseudoran-

dom format to each of the three targets, with each direc-

tion being tested six times for a total of 36 trials. Kinematic

data was filtered using 6th double-pass Butterworth filter

with an overall 3 dB cutoff frequency of 10 Hz.

We quantified active arm movement (mirror match-

ing) using the following parameters. Response Latency

(RL): the time between the onset of passive and active

arm movements. Initial Direction Error (IDE): the angu-

lar deviation from subjects’ hand path at peak hand

speed compared to the ideal hand movement path. Peak

Speed Ratio (PSR): the ratio of the maximum speed of

the passive arm to the active arm. Ratios greater than

one indicated a maximum speed of the active arm that

was greater than the passive arm. Path Length Ratio

(PLR): the ratio of the distance travelled by the active

arm relative to the distance travelled by the passive arm.

Ratios greater than one indicated an active arm move-

ment longer than the passive arm. The mean and stand-

ard deviation (variability) across the 36 trials for each of

these four parameters were calculated as separate pa-

rameters (e.g. RL: mean response latency, RLv: response

latency variability). Thus, a total of eight parameters

were derived from the kinesthetic matching task [25].

Development of composite score

The parameters chosen to be included in the composite

score were based on early observations of patterns of behav-

ior that individuals showed post-stroke. These parameters

have been reported in previous studies and we wanted to be

consistent with our previous work [8, 13, 24, 25, 35–37].

Conversion of parameter scores in native units to z-scores

Scoring systems were developed that captured subject

performance relative to that observed for neurologically

Fig. 1 a KINARM robotic exoskeleton (BKIN Technologies, Kingston, ON, Canda). Subjects are seated in the wheelchair base with arms supported

by the arm troughs. b Top-down view of the position matching task. The stroke affected arm was positioned by the robot (black targets, green
lines) and subjects were required to mirror-match the target positions with their opposite hand (open targets, blue lines). Nine targets were
matched to six times each for a total of 54 trials, presented in pseudorandom order. c Top-down view of an exemplar subject performing one trial

of the kinesthetic matching task. The stroke affected arm was moved by the robot between two targets (green lines) and subjects were required to
mirror match the speed, direction, and amplitude of movement as soon as they felt the robot move their arm (blue lines). The speed versus time
profile represents the temporal aspects of the task, by measuring the response latency (time to initiation of the active arm movement) and peak speed

ratio (difference between peak speeds of the passive (green) and active (blue) hands)
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intact subjects. The first step was to convert the task pa-

rameters from their native units to normalized z-scores

based on a large sample of neurologically intact control

subjects (n = 160, tested on both arms = 319 data points,

median age = 54 (range = 18–93), female = 84, right

handed = 147, left handed = 13). Performance metrics

for this sample of healthy subjects were transformed to a

normal distribution, using a Box-Cox power transform-

ation [38–40]. Linear regressions were then used to con-

sider the influence of age for each parameter, and then

verified that the data was normally distributed. If neces-

sary, the Box-Cox transformations were adjusted to

achieve normality. Data points ± 3.29 standard devia-

tions from the mean were considered outliers and were

removed from the control dataset (maximum <4% of

subjects per parameter, average < 1% per parameter).

This entire process was performed again after any outlier

removal.

The next stage involved transforming these z-scores so

that a score of 0 was equal to the best possible perform-

ance and higher scores indicated worse performance.

This is because some of the task parameters were one-

sided in which negative z-scores indicated better per-

formance (e.g. initial direction error for kinesthetic

matching), whereas others were two-sided in which both

positive and negative z-scores of increasing value indi-

cated worse performance (e.g. contraction/expansion ra-

tio for position matching). Therefore, z-scores for the

one-sided parameters (e.g. Position matching: Abs, Var,

Shift. Kinesthetic matching: RL and IDE), were trans-

formed such that negative infinity was equal to zero and

positive infinity remained the same (henceforth referred

to as zeta-scores). The zeta-scores for the two-sided pa-

rameters were simply equal to the z-scores. These zeta-

scores were used in the subsequent composite score cal-

culations. For the arm position matching task, these

values were computed using automated analysis tools

from KINARM Standard Tests (BKIN Technologies).

For the kinesthetic task, values were computed in

MATLAB (v2014b, MathWorks, Natick, MA) using cus-

tom routines from BKIN Technologies.

Composite score 1: E-score based on Euclidean distance

The Euclidean Distance (EDist) was computed from the

healthy control subjects for a given task.. This EDist is

simply the root mean square (RMS) of the zeta-scores

for all parameters associated with a task:

EDist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að Þ2 þ bð Þ2 þ…

q

where a, b, etc. represent the zeta-scores for a subject.

EDist increases in size with the number of parameters.

In order to compare scores across tasks, the Box-Cox

equations were used to convert the EDist scores for the

healthy control population into a normal distribution

(followed by testing for normality). These scores were

again transformed to all positive values and scores ≥3.29

were considered outliers and were removed. This process

was repeated until no outliers remained in the distribution

(~1% of subjects removed). Similar to the zeta-scores, a

final E-Score of 0 signifies best performance and increas-

ing positive values signifies poorer performance. The units

follow the same percentiles as ±1SD of a normal distribu-

tion (i.e. 1 = 68.3%, 2 = 95.4%, etc.).

Composite score 2: M-score based on Mahalanobis distance

The Mahalanobis Distance is similar to the Euclidean

Distance measure above, except that the covariance

matrix was used to consider correlations between parame-

ters [29]. As in the E-Score processing, the z scores were

first transformed into positive values with 0 reflecting best

performance and increasing values reflecting poorer per-

formance (zeta scores). This MDist is computed using the

zeta-scores of all parameters from a task using:

MDist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð ÞC−1
x xð ÞT

q

Where x is the row vector of zeta scores for an indi-

vidual subject, and Cx is the covariance matrix computed

from the healthy control population dataset [30]. MDist

values were converted into an M-Score following the

same procedures used to convert EDist to E-Score.

E- and M-Scores were generated for position matching

and kinesthetic matching separately. Subjects were consid-

ered ‘impaired’ on the task if they received a score greater

than 1.96, indicating their performance was more than

95% from the mean of neurologically intact control sub-

jects. The overall proprioception score was the average be-

tween the position and kinesthetic matching scores. All

statistical analyses and calculations were performed in

MATLAB (v2014b, MathWorks, Natick, MA) using both

custom scripts and scripts from BKIN Technologies. The

BKIN Dexterit-E User Guide refers to the E-Score as the

‘Task Score’ while the M-Score is the M-Score.

Clinical Assessments

A battery of clinical assessments was performed on sub-

jects with stroke by a trained study physician or therap-

ist. The Chedoke McMaster Stroke Assessment (CMSA)

for the Upper Extremities was performed to evaluate

upper limb motor function [3]. The Functional Inde-

pendence Measure (FIM) was used as a metric for inde-

pendence within activities of daily living [41]. The

conventional subtests of the Behavioral Inattention Test

(BIT) was used to evaluate visuospatial neglect [42]. We

included this clinical assessment of visuospatial neglect

because we have previously noted that there can be a

high co-occurrence of visuospatial neglect and sensory
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loss [35]. Handedness was measured using the Modified

Edinburg Handedness Inventory (performed on healthy

controls as well) [43]. Lastly, the Thumb Localizing Test

(TLT) was used to evaluate upper limb proprioceptive

function [17]. For this test, the subject’s eyes were closed

and the subject’s stroke-affected limb was placed some-

where in space above eye level by a therapist. Subjects

were then instructed to grasp this thumb with their op-

posite (i.e. less affected) hand. Performance was scored

on an ordinal scale from zero (no difficulty locating

thumb) to three (unable to locate thumb). We choose

this assessment because it was easy to administer and

uses both limbs to test proprioception, akin to our ro-

botic tasks. There is currently no gold standard for the

assessment of upper limb proprioception post-stroke.

The level of agreement between the TLT and robotic as-

sessments in classifying subjects as having impaired pro-

prioception (TLT > 0, robotic score > 1.96) was

calculated using Cohen’s Kappa [44]. Comparisons be-

tween robotic and clinical measures were performed

using Pearson or Spearman correlations, where appro-

priate, with Bonferroni corrections for multiple compari-

sons. The strength of association was classified as either

very weak (r = 0.00–0.19), weak (r = 0.20–0.39), moder-

ate (r = 0.40–0.59), strong (r = 0.60–0.79), or very strong

(r = 0.80–1.0) [45].

Results

Subjects

A total of 285 stroke subjects (Female = 92) were re-

cruited and assessed on the position matching and

kinesthetic matching tasks (Table 1).

E- and M-scores

The composite E- and M-Scores were highly correlated

with one another (Fig. 2a and b). There were strong

positive, linear relationships between E- and M-Scores

on the position matching (r = 0.99, p < 0.001) and

kinesthetic matching (r = 0.97, p < 0.001) tasks. E- and

M-Scores on the position matching and kinesthesia tasks

were also positively correlated with one another

(r = 0.80, p < 0.001). Despite these high correlations,

there were instances in the overall proprioception score

where subjects were considered ‘impaired’ (score > 1.96)

based on the E-Score and not the M-Score (n = 11), and

vice versa (n = 6). However, these discrepancies were

rarely larger than ± one standard deviation.

Comparing performance between tasks revealed that per-

formance on position matching was not always indicative

of performance on kinesthetic matching (Fig. 2c and d).

More subjects had impaired kinesthetic matching with un-

impaired position matching (n = 45 using E-Score; n = 44

using M-Score) than subjects who demonstrated impaired

position matching with unimpaired kinesthetic matching

(n = 24 using E-Score; n = 23 using M-Score). More sub-

jects with right hemisphere stroke were abnormal on the

position matching task (E-Score = 73.4%, M-

Score = 69.8%), kinesthetic matching task (E-Score = 74.6%,

M-Score = 74.0%), and overall (E-Score = 75.1%, M-

Score = 73.4%), relative to subjects with left hemisphere

stroke (Position match: E-Score = 35.3%, M-Score = 38.8%;

Kinesthesia: E-Score = 51.7%, M-Score = 50.9%; Overall: E-

Score = 47.4%, M-Score = 45.7%). Overall, more subjects

were abnormal on the kinesthetic matching task (E-

Score = 65.3%, M-Score = 64.6%) relative to the position

matching task (E-Score = 57.9%, M-Score = 57.2%).

Table 2 shows Pearson correlations between z-scores

for each of the position and kinesthetic matching param-

eters. The E- and M-Scores for position and kinesthetic

matching were positively correlated with one another

(E-Scores, r = 0.80, p < 0.001. M-Scores, r = 0.80,

p < 0.001). The overall proprioception score was

Table 1 Demographic and clinical information for sample of 285 subjects with stroke. Values are presented as mean ± standard
deviation, or a count of the number of subjects in each category

Left Hemisphere Stroke (n = 115) Right Hemisphere Stroke (n = 170) Total (n = 285)

Age 59.5 ± 14.7 61.2 ± 14.6 60.6 ± 14.6

Sex (F, M) 41, 74 51, 119 92, 193

Handedness (R, L, Mixed) 104, 10, 1 160, 8, 2 264, 18, 3

Days post-stroke 12 ± 18 12 ± 12 12 ± 15

CMSAa (1,2,3,4,5,6,7) 10,6,15,7,20,15,40 14,19,18,6,37,24,51 24,25,33,13,57,39,91

FIM 115.1 ± 17.5 112.1 ± 18.5 113.3 ± 19.6

TLT (0,1,2,3) 60,31,17,5 82,52,25,11 142,83,42,16

BIT 138.1 ± 16.3 130.1 ± 21 133.3 ± 19.6

Arterial Territory (MCA, PCA, ACA, VA)b 73,18,7,21 124,28,4, 24 197,46,11,45

F: Female, M: Male, R: Right, L: Left, CMSA: Chedoke McMaster Stroke Assessment for the Upper Extremities, FIM: Functional Independence Measure, TLT: Thumb

Localizing Test, BIT: Behavioral Inattention Test, MCA: Middle Cerebral Artery, PCA: Posterior Cerebral Artery, ACA: Anterior Cerebral Artery, VA: Vertebral Artery
aValues are for the stroke-affected limb
bVertebral artery territory includes any artery supplied by the vertebral artery, before branching into the posterior cerebral arteries (i.e. posterior inferior cerebellar

artery, anterior inferior cerebellar artery, basilar artery). Thirteen subjects were classified as having strokes in more than one arterial territory
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Fig. 2 Scatter plots of robotics scores for individual stroke subjects (N = 285). Greater scores indicate worse proprioception a The relationship
between position matching performance calculated using subjects’ E-Scores (Euclidean distance of an individual subject’s robotic scores from the
mean healthy control scores) versus M-Scores (Mahalanobis distance of an individual subject’s robotic scores from the mean healthy control scores). b

Relationship between kinesthetic matching performance calculated using the E-Scores and M-Scores. c Relationship between the position matching
and kinesthetic matching tasks based on the E-Scores. d Relationship between the position matching and kinesthetic matching tasks based on the M-
Scores. E and M-Scores represent standard deviations from the mean of neurologically intact control performance. Grey dashed lines indicate 1.96

standard deviations. Data points beyond 1.96 indicate impaired performance. Black dotted lines on each plot indicate unity between scores, black solid
lines on each plot indicate least squares fit between scores. Pearson correlation coefficients (r) and associated p-values (p) are presented in each plot

Table 2 Pearson correlation coefficients between position matching and kinesthetic matching parameters for subjects with stroke
(n = 285). Comparisons were made between z-scores for each task parameter. Z-scores were calculated based on distributions of
neurologically intact control subject scores (n = 319 data points)

Position Matching Parameters

Absolute Error Variability Contr/Exp Shift E M

Kinesthetic Matching Parameters X Y XY X Y XY X Y XY X Y XY

IDE 0.65 0.65 0.69 0.65 0.63 0.67 0.58 0.57 0.60 0.24 0.38 0.38 0.80 0.80

IDEv 0.59 0.50 0.60 0.57 0.56 0.59 0.49 0.45 0.49 0.22 0.22 0.31 0.67 0.66

PLR 0.34 0.40 0.39 0.40 0.35 0.40 0.31 0.44 0.36 0.09 0.29 0.20 0.47 0.48

PLRv 0.56 0.55 0.61 0.60 0.58 0.61 0.40 0.46 0.41 0.26 0.29 0.36 0.65 0.64

RL 0.43 0.43 0.45 0.46 0.46 0.47 0.37 0.32 0.38 0.10 0.18 0.18 0.50 0.49

RLv 0.12 0.11 0.12 0.13 0.18 0.14 0.15 0.14 0.14 −0.06 −0.09 −0.02 0.18 0.17

PSR 0.25 0.36 0.30 0.22 0.27 0.24 0.39 0.39 0.40 0.12 0.24 0.19 0.44 0.47

PSRv 0.17 0.09 0.16 0.23 0.21 0.23 −0.05 −0.03 −0.03 0.11 0.05 0.15 0.08 0.05

E 0.63 0.66 0.69 0.66 0.64 0.68 0.57 0.60 0.60 0.23 0.38 0.37 0.80 0.80

M 0.61 0.66 0.66 0.64 0.63 0.66 0.57 0.60 0.59 0.21 0.40 0.36 0.79 0.80

All bold values are significant at p < 0.00036 (Bonferonni corrected, p < 0.05, n = 140 comparisons)
IDE(v): Initial Direction Error (variability), PLR(v): Path Length Ratio (variability), RL(v): Response Latency (variability), PSR(v): Peak Speed Ratio (variability). Contr/Exp:
contraction/ expansion ratio. E: ‘E -score’ calculated from Euclidean distance of z-scores. M: ‘M -score’ calculated from Mahalanobis distance of z-scores
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calculated as the average of the position matching and

kinesthetic matching scores. The average E-Scores iden-

tified 63.9% of subjects as abnormal (score > 1.96) while

the average M-Scores identified 62.1% of subjects as

abnormal.

Comparison with clinical measures

The robotic proprioception measures showed moderate

correlation with the clinical measures of proprioception,

upper extremity arm function, and overall functional in-

dependence (Table 3). We also calculated the agreement

between the thumb localizing test (TLT) and our robotic

scores in classifying subjects as having ‘normal’ or ‘ab-

normal’ proprioception using Cohen’s Kappa [44]. Ab-

normal proprioception based on the TLT was any score

greater than or equal to one, and abnormal propriocep-

tion on the robotic tasks was an E- or M-Score greater

than 1.96. Table 3 shows the agreement between clinical

and robotic classification of proprioceptive impairments.

Exemplar subjects

Figure 3 describes four individuals who performed differ-

ently on the position and kinesthetic matching tasks.

Starting with the position matching task, a healthy control

subject (Fig. 3a) mirror-matched the target positions ac-

curately and consistently (denoted by the small ellipse

sizes which indicate one standard deviation of error) (pos-

ition matching E-Score = 0.03, M-Score = 0.02). A subject

with stroke in Fig. 3b also demonstrated normal perform-

ance on the position matching task (E-Score = 0.6, M-

Score = 0.6), while the subject with stroke in Fig. 3c dem-

onstrated abnormal performance (E-Score = 2.1, M-

Score = 2.1) resulting primarily from increased absolute

error (AbsY z = 2.1), variability (VarY z = 3.4), and system-

atic shift (ShiftY z = −2.4). Lastly, Fig. 3d presents a subject

who was significantly impaired on the position matching

task (E-Score = 5.3, M-Score = 5.4).

For the kinesthetic matching task (Fig. 3a), the control

subject made smooth, straight movements in line with the

ideal trajectory and demonstrated a consistent response

latency and movement speed (E-Score = 0.03, M-

Score = 0.1). The subject with stroke presented in Fig. 3b

performed well on matching the direction (IDE z = −1.8)

and amplitude (PLR z = 1.4) of passive movements, but

poorly on response latency (RL z = 2.4) and response la-

tency variability (RLv z = 2.3) (E-Score = 1.6, M-

Score = 1.7). In comparison, the subject with stroke in Fig.

3d had difficulties in matching the direction (IDE z = 3.0)

and length (PLRv z = 2.7) of passive movements, but per-

formed well in matching speed (PSR z = −0.88) with nor-

mal and consistent response latency (RL z = 1.1, RLv

z = 0.6) (E-Score = 2.6, M-Score = 2.6). Finally, the stroke

subject in Fig. 3d was significantly impaired on all aspects

of the kinesthetic matching task (E-Score = 7.3, M-

Score = 8.4).

Discussion

We have developed a composite measure of upper limb

proprioception using the KINARM robotic exoskeleton

that can be used as an outcome measure for tracking pro-

prioceptive impairment over time and across subjects

[24]. Despite the significant correlation between position

sense and kinesthetic sense impairments, individuals after

stroke were often impaired on different aspects of position

sense and kinesthetic sense (Fig. 3), with some individuals

demonstrating impairments in one sense and not the

other (Fig. 2). Our robotic scores also identified more

stroke subjects as having proprioceptive impairments

(~62%) compared with standard clinical measures (50%).

Contrary to our hypothesis, the Mahalanobis distance

score identified slightly fewer subjects as impaired (62.1%)

compared to the Euclidean distance score (63.9%).

There is currently no gold standard for assessing pro-

prioceptive impairment after stroke, despite proprioceptive

impairments being common (over 50%) [8, 10, 20, 24, 25]

Table 3 Spearman correlations between clinical and robotic assessment scores and the agreement between clinical and robotic
classification of proprioceptive impairment in subjects with stroke. Values presented are Spearman’s rho for correlations and Cohen’s
Kappa for level of agreement. Subjects were considered impaired on the robotic tasks if they scored >1.96, and impaired on the
Thumb Localizing Task if they scored >0

Robotic Assessments

Clinical Assessments
(ρ(283)=)

PM_E PM_M KIN_E KIN_M Overall E-Score Overall M-Score

TLT 0.48 0.49 0.47 0.48 0.50 0.51

CMSA −0.50 −0.50 −0.56 −0.58 −0.57 −0.57

FIM −0.40 −0.40 −0.44 −0.44 −0.44 −0.45

Agreement, (k=) TLT 0.27 0.28 0.29 0.33 0.32 0.33

All values (correlations and agreement) are significant at p < 0.001

TLT: Thumb Localizing Task (scored from 0 = no impairment to 3 = unable to locate thumb). CMSA: Chedoke McMaster Stroke Assessment for the Upper

Extremities (scored from 7 = normal movement to 1 = flaccid paralysis). FIM: Functional Independence Measure (scored from 126 = complete independence with

daily activities to 18 = complete dependence/total assistance). PM_E: E-Score for the position matching task. PM_M: M-Score for the position matching task. KIN_E:

E-Score for the kinesthesia task. KIN_M: M-Score for the kinesthesia task. Overall E- and M-Scores indicate the average score between the position matching and

kinesthesia tasks
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Fig. 3 Exemplar subjects’ performance on the position (left panel) and kinesthetic (middle and right panel) matching tasks. For the position

matching task, the subject’s matched hand positions (open targets, blue lines) are mirrored across the vertical centre line and displayed on top of
the passive robotically moved hand positions (black filled targets, green lines). For the kinesthetic matching task, both hand movements are displayed

where solid green lines indicate passive robotic movements, dotted green lines indicate the optimal movement path of the opposite arm, and solid
blue lines indicate active subject movements. Light blue lines indicate individual trials and dark blue lines indicate the average between all completed
trials in the given movement direction. Note that for the position matching task, the blue and green lines simply connect the target positions for

display purposes and do not represent the hand movements between targets. E: ‘E-Score’ indicates the subject’s composite score calculated from the
Euclidean distance. M: ‘M-Score’ indicates the subject’s composite score calculated from the Mahalanobis distance. a Control exemplar. Intact position

matching performance is indicated by low variability (small ellipse size), with minimal shift or contraction/expansion of the workspace (blue dotted
lines). Intact kinesthetic matching performance is indicated by alignment in movement direction to the ideal movement path, and a short response
latency (onset of active arm movement) with similar peak speeds between passive (green lines) and active hands (blue lines). b Stroke subject with

intact performance on the position matching task. This subject also performed well on the spatial aspects of kinesthesia (middle panel) but performed
poorly on the temporal aspects of kinesthesia (right panel). c Stroke subject who performed poorly on the position matching task (increased variability

and shift of workspace). This subject demonstrated impairments on the spatial aspects of kinesthesia but normal performance on the temporal
parameters (short and consistent response latency and peak speeds). d Stroke subject who was severely impaired on both position and kinesthetic
matching tasks
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and having a strong relationship with functional recovery

post-stroke [11, 12]. In order for clinical rehabilitation trials

to identify appropriate treatments for improving proprio-

ceptive function post-stroke, a sensitive and reliable out-

come measure of proprioception is needed [19]. The level

of agreement (k = 0.32–0.33, p < 0.001) between our ro-

botic measures of proprioception and a commonly used

clinical measure of proprioception (the Thumb Localizing

Test) demonstrates some discrepancy between these tests

in classifying subjects as normal or abnormal. Based on

previous studies we expected fair agreement between these

assessments [24, 25]. These results are not surprising given

the known limitations with these clinical tests and their

low reliability [18]. Unfortunately, there is currently no

gold standard for assessing upper limb proprioception

post-stroke. Our proprioception score, utilizing the

KINARM and Mahalanobis distance, provides an overall

indicator of proprioceptive impairment that considers mul-

tiple kinematic and spatial parameters. This score is suit-

able as a primary outcome measure of proprioception for

use in clinical rehabilitation trials targeting upper limb

function.

The Euclidean and Mahalanobis distances have been

used for decades as general distance metrics, for outlier

detection [46, 47], and in various classification algo-

rithms [48–51]. The Mahalanobis distance was preferred

over the Euclidean distance in summarizing our robotic

parameters, because it takes into consideration correla-

tions between parameters. Theoretically, it is more sensi-

tive in identifying abnormal patterns of behavior

compared to the Euclidean distance. It can also account

for impaired performance that is in line with the normal

variation in task performance, thus producing a lower

overall score (i.e. more normal). This is likely why fewer

subjects were identified as abnormal based on the M-

Score compared with the E-Score, since impairments on

parameters that were in line with normal variations in

task performance had less of an impact on the overall

score. Based on our data, EDist and MDist performed

similarly in calculating a composite score from the ro-

botic parameters, and neither method produced drastic-

ally inflated results compared to the other for any one

subject. Recently, Kitago et al. (2015) used functional

principal component analysis along with the Mahalano-

bis distance to create a single variable to measure reach-

ing performance during a visually guided reaching

paradigm in chronic stroke survivors. This type of data

driven approach is useful for capturing kinematic as-

pects of movement (or impairments in movement) that

may not be immediately apparent. However, we chose to

use the Mahalanobis distance on previously defined

kinematic parameters for two reasons. One was to main-

tain consistency with our previous work and that of

others. The second reason was to ensure that the

parameters used to construct the M-Score were behav-

iorally meaningful.

Some limitations exist with this study and with using

composite scores. First, a composite score may not fully

describe the nature of an individual’s impairment. Figure

3 shows that individuals post-stroke can be impaired on

different aspects of proprioceptive sensation. There are

also subjects who have difficulties with specific aspects

of proprioception but are classified as normal based on

the composite score. Thus, while a single task score

might be necessary for planning and reporting clinical

trials, it may not be informative enough when deciding

on what an individual should be working on in a therapy

intervention. Second, deciding on what the minimal

clinically important difference is for the M-Score of pro-

prioception requires further analysis comparing changes

in M-Score with changes in an individual’s functional

ability. Third, there is the possibility that fatigue may

have contributed to the difference in performance be-

tween the position-matching and kinesthesia tasks, since

the position-matching task was always assessed before

the kinesthesia task in our protocol. However, we did

not observe any decrease in performance over the

course of the kinesthesia task across all subjects after

visual inspection of the data. Additionally, given the pos-

ition matching task takes only three minutes and the

kinesthesia task takes five minutes, we suspect any fa-

tigue in our subjects, if present at all, was minimal.

Lastly, our composite score does not include the assess-

ment of distal joints (e.g. wrist, thumb, and fingers). As-

sessment tools have been designed for proprioception at

the distal joints (e.g. Wrist Position Sense Test) [20] but

our focus here was on the shoulder and elbow joints.

Proprioceptive impairments at the shoulder and elbow

are related to functional independence [24, 25], however,

future studies could examine the impact of better quan-

tifying proprioception throughout the upper limb and

the cumulative impact on prognosis and treatment

planning.

Having tangible and easily interpreted outcome variables

enables the translation of someone’s specific impairments

directly to therapy, where a rehabilitation program can be

tailored to these impairments. Somatosensory and pro-

prioceptive impairments are becoming well known as sig-

nificant factors in the recovery of function post-stroke.

However, sensory retraining is still in its infancy with

regards to high-quality clinical trials. There is a great need

for improved outcome measures for proprioceptive im-

pairments post-stroke and improved evidence for proprio-

ceptive interventions [9, 19, 52, 53].

Conclusions

We have developed a quantitative and reproducible out-

come measure for upper limb proprioception that takes
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into consideration both position and kinesthetic senses.

In a large sample of subjects with recent stroke

(n = 285), over 60% had abnormal proprioception rela-

tive to a neurologically intact control population. The

outcome measure presented here for proprioception will

be important in measuring the efficacy of clinical stroke

rehabilitation trials for improving proprioceptive

function.
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