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Abstract- This paper presents a composite sliding mode control 

(CSMC) method for speed control of surface-mounted 

permanent magnet synchronous motors (SPMSMs). The 

proposed CSMC consists of a new sliding mode control (SMC) 

based on a novel hybrid reaching law and an extended sliding 

mode disturbance observer (ESMDO). The new hybrid reaching 

law is composed of two parts, a terminal reaching part and an 

exponential plus proportional reaching part. It can effectively 

suppress the chattering and reduce the reaching time, compared 

with the conventional constant plus proportional rate reaching 

law (CPRL). The ESMDO is designed based on CPRL. It can 

estimate the extra chattering produced by the drive system’s 
lumped disturbance and compensate for the controller’s output. 
Based on the proposed new SMC and ESMDO, an anti-

disturbance sliding mode speed controller is designed to improve 

the performance of SPMSM drive systems. The performance of 

the proposed method has been validated experimentally and 

compared with the CPRL-based SMC methods under different 

conditions. 

Keywords: Surface-mounted permanent magnet synchronous 

motors (SPMSM), sliding mode control, hybrid reaching law, 

disturbance observer.  

 

I.  INTRODUCTION 

Due to the inherent advantages of high efficiency, high 

torque-inertia ratio and excellent control performance, 

permanent magnet synchronous motors (PMSMs) have been 

widely employed in many industrial applications, such as 

traction systems and robots [1]-[5]. PMSMs produce smaller 

torque ripples and noise compared with switched reluctance 
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machines [6]-[9]. To achieve good dynamic performance, 

several control schemes have been used to PMSMs, like field-

oriented control (FOC) [10]-[11]. 

However, the high sensibility of the controller performance 

to motor parameters entails the main challenge of the FOC 

scheme [12]. Therefore, the linear control methods like 

conventional proportional-integral (PI) control strategy will be 

difficult to provide a satisfactory control performance. 

Although PI regulators have the inherent ability to 

automatically compensate for modeling errors compared to 

predictive control systems, such compensation may not occur 

properly. To improve the system’s robustness, nonlinear 
control methods have been investigated, such as robust control 

[13], adaptive control [14], predictive control [15],[16], state 

feedback control [17], [18], and sliding mode control (SMC). 

Among these nonlinear control schemes, the SMC strategy has 

been paid much attention. 

SMC is a variable-structure control strategy which adopts a 

switching control law to alter the drive system’s dynamics. It 
is insensitivity to parameter variations and holds fast dynamic 

response [19]-[21]. In [22], a fixed switching period SMC was 

proposed based on a decoupling method of the control actions, 

which could improve the PI-based FOC transient response. In 

[23], an improved direct instantaneous torque control based on 

adaptive terminal sliding mode control is proposed to suppress 

torque ripple and enhance the anti-interference ability for 

switched reluctance motors. In [24], a robust iterative learning 

control scheme was achieved by using an adaptive SMC 

technique, which could further reduce the torque ripples and 

improve the anti-disturbance ability of the motor servo system. 

An adaptive second order sliding mode observer with 

compensation of voltage source inverter (VSI) nonlinearity 

was applied to the sensorless servo system in [25]. The 

position estimation error can be reduced in wide-speed range 

while the voltage distortion can be compensated online to 

improve the model accuracy. 

Usually, a large switching control gain of switching 

function is used to ensure the robustness of the SMC. 

However, the large switching control gain often causes serious 

chattering phenomenon [26]. To reduce the chattering level, 

saturation function is applied to substitute the switching 

function in the control law. Even though the chattering is 

reduced by this method, it produces uncertain steady-state 

error subject to the choice of the boundary layer [27]. 

Furthermore, some novel methods based on SMC strategy 

have been proposed to overcome this drawback, including the 



 

 

complementary sliding mode method [28], high order sliding 

mode method [29], and reaching law method [30].  

Among these SMC strategies, owing to the direct 

association with the reaching process, the reaching law 

method can suppress the chattering significantly through a 

reasonable design of the reaching law. In [31], an SMC 

method based on a novel reaching law was introduced to 

reduce chattering on control input and maintain high tracking 

performance of the controller. In [32], a new switching type of 

reaching law for SMC of discrete-time system was proposed 

to ensure fast convergence and good robustness of the control 

system without increasing the magnitude of the critical 

signals. However, the complexity of the controller design 

entails challenge for its application in dynamical systems. To 

obtain disturbance observation of the control system, some 

methods based on extended sliding mode observations have 

been proposed. In [33], an anti-disturbance sliding mode 

observer was proposed and combined with sliding mode speed 

controller, which effectively reduces the torque ripples of the 

direct torque control of a four-phase switched reluctance 

motor. In [34], an extended sliding-mode mechanical 

parameter observer was presented to track system disturbances 

in real time, which includes the information of mechanical 

parameters. Furthermore, the equivalent lowpass filtering in 

the observer can be used to control chattering, thereby extra 

lowpass filtering can be avoided, and the output signal can be 

directly used for the parameter estimation. In [35], an 

extended state observer was designed based on a nonlinear 

model of electronic throttle to estimate the change of throttle 

opening angle and total disturbance. The estimation accuracy 

can be guaranteed by adjusting the gains parameters to change 

the convergent speed. 

In this paper, a new SMC based on a novel hybrid reaching 

law (HRL) with disturbance observer is designed to suppress 

sliding chattering. It avoids the influence of switching function 

term in the constant plus proportional rate reaching law 

(CPRL) on system control performance. The hybrid reaching 

law contains two parts, a terminal reaching portion and 

exponential plus proportional rate reaching portion. In order to 

achieve real-time online estimation of system disturbance, a 

model-based extended sliding mode disturbance observer 

(ESMDO) is proposed to compensate the estimated 

perturbance to sliding mode speed control. Based on the 

analysis, a composite sliding mode control (CSMC) strategy 

consisting of the SMC and ESMDO is developed. The design 

of the controller combines the advantages of two reaching 

laws to realize global fast convergence. Furthermore, based on 

the mechanical equation, the observer can achieve fast-

tracking of global disturbance, which is effectively introduced 

in the structure of the control current to enhance the controller. 

The remainder of this paper is organized as follows. Section 

II illustrates the mathematical model of surface-mounted 

permanent magnet synchronous motors (SPMSMs) and 

presents the FOC scheme. In Section III, the proposed HRL is 

presented, and its performance is analyzed by comparing it 

with the CPRL. Additionally, the stability of the proposed 

reaching law is proved. The design of the speed controller is 

detailed. Section IV presents model-based ESMDO to 

compensate the estimated perturbance and the structure of the 

CSMC scheme. Experimental results are provided in Section 

V, followed by the conclusion.  
 

II. MATHEMATICAL MODEL AND FOC OF SPMSMS 

Assuming that the iron core of the SPMSMs is unsaturated 

and the eddy currents and hysteresis phenomenon are 

negligible, the mathematical model of the SPMSMs in the 

synchronous reference frame can be presented by 
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The flux linkage equation is described as 
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where ud, uq and id, iq are the stator voltages and currents in d-

q coordinates, respectively. R and L represent the armature 

winding resistance and synchronous inductance, respectively. 

ψf, J, and v are the permanent magnet flux linkage, rotor 

inertia and damping coefficient, respectively. ωm is the rotor 

mechanical speed, pn is the number of pole pairs, and ωe = 

pnωm is the rotor electrical speed. Te is the electromagnetic 

torque, and TL is the load torque.  

Fig. 1 shows a typical FOC block diagram for the control 

SPMSMs under no flux-weakening condition. The scheme 

adopts the structure of cascade control loops, including a 

speed loop and two current loops. 
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Fig. 1. FOC block diagram for SPMSMs under no flux-weakening condition. 

 

III.  SLIDING MODE SPEED CONTROLLER DESIGN  

3.1. SMC Design with Constant plus Proportional Rate 

Reaching Law (CPRL) 

Compared with the general sliding mode variable structure 

control, the reaching law requires that the control system 

approaches the sliding surface to achieve the stability 

condition. 

The basic form of the CPRL is expressed as follows 

 sign   0, 0s s s                     (4) 



 

 

where s and sign () are the error between estimated and actual 

state variables (i.e., sliding mode variable) and sign function, 

respectively. εsign(s) represents the isokinetic reaching term. 

Its reaching velocity in the approach motion stage is isokinetic, 

and the approach velocity can be changed by adjusting 

parameter ε. The approach velocity increases with the increase 

of the parameter ε and vice verse. λs is the pure constant plus 

proportional rate term [36]. 

To illustrate the SMC theory, a second-order nonlinear 

system with the following state equation is considered as 
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where  1 2,x x x  the system state vector, d(x) represents the 

system disturbances, and f(x) and b(x) are the bounded 

nonlinear matrix functions of the system states, respectively. 

     The sliding mode surface function of the system is defined 

as  

1 2s x cx                                 (6) 

where parameter c is the coefficient of the selected sliding 

mode switching surface, which will affect the convergence 

rate of the state variable after the system trajectory enters the 

sliding mode. Such a system sliding surface function ensures 

the accessibility of the sliding surface and the stability of the 

sliding mode motion. And the reaching rate is directly affected 

by the coefficient c. 

     Substituting (6) into (4) yields 

 1 2 signx cx s s                        (7) 

According (5) and (7), the control input can be obtained as 

follows 
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Due to the sign function in control input, the chattering of 

the SMC is inevitable. And the chattering level is directly 

affected by the value of  . 

Considering that the system state trajectory moves from the 

s>0 side to the sliding mode surface, (4) can be simplified as 

s s                                 (9) 

The sliding mode variable function can be obtained by 

solving (9). 
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where s(0) represents the initial state of the sliding surface.  

When the system state reaches the sliding surface, it 

satisfies s(t)=0. The reaching time can be calculated by 

simplifying (10) as 
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According to the above formula, the reaching time of the 

constant plus proportional rate reaching law can be adjusted 

by the parameter λ. When the value of λ is increased, the 

system robustness is improved while the approach speed is 

increased, but the increase of the value λ will result in a 

corresponding increase in the chattering level of the control 

output. 

Therefore, the reaching speed and the chattering level are 

contradictory in terms of the constant plus proportional rate 

reaching law. In order to solve the essential contradiction, a 

new reaching law is proposed based on the constant plus 

proportional rate reaching law. 

3.2. Proposed Hybrid Reaching Law (HRL) 

The novel HRL based on terminal reaching part control is 

proposed to further suppress the sliding chattering, which can 

avoid the influence of switching function term in conventional 

control law on system control performance. The reaching law 

is expressed as 

 1
a k xq p b

s m x s e s
k

                          (12) 

where a>0, m>0, b>0, and 0<k<1. x is the system state 

variable. p and q are positive odd numbers and satisfy that p is 

greater than q. 
The hybrid reaching law consists of two parts, the terminal 

reaching part and the exponential plus proportional rate 

reaching part. The terminal reaching portion is represented by 

−m|x|asq/p, which combines the power function of the system 

state variable on the basis of the terminal sliding mode to form 

a variable terminal approaching manner. The exponential plus 

proportional rate reaching part is represented by  1
k xb

e s
k

  . 

This part introduces the exponential function of the system 

state variable based on the pure exponential reaching law, 

which produces a variable exponential reaching mode.  

Since the system state variable is introduced in the reaching 

law, the sliding mode reaching speed is associated with the 

system state. When the state variable |x| value is large (i.e., the 

SMC system trajectory is far away from the sliding mode 

switching surface). In the process of the system state 

approaching the sliding mode switching surface s, the terminal 

reaching part and the exponential plus proportional rate 

reaching part work simultaneously. The reaching coefficient is 

large enough to speed up the convergence process when the 

sliding mode switching surface is far away.  

On the other hand, when the state variable |x| is relatively 

small (i.e., the SMC system trajectory is close to the sliding 

mode switching surface), the reaching speed of the variable 

exponential plus proportional rate reaching portion approaches 

zero. Therefore, the system state approaches the sliding mode 

switching surface s with the variable terminal sliding mode. 

The state variable |x| enters the sliding mode switching surface 

and moves to the equilibrium point under the control output, 

which makes the reaching speed of the terminal reaching part 

decrease continuously. Thereby, the reaching speed is reduced 

when the system enters the sliding surface, and the chattering 

is effectively suppressed. 

Summarily, in the case where the system state is relatively 

close to the sliding mode surface, the terminal reaching mode 

holds a fast reaching speed. The constant rate reaching mode 

approaches the sliding mode surface faster when the state 

trajectory is far away from the equilibrium point. The 

proposed hybrid reaching law combines the advantages of 

both to achieve global fast convergence. Furthermore, the 



 

 

power function of the system state variable is introduced in the 

reaching law, which suppresses the system chattering. 

Referring to the derivation process in [27], the reaching time 

can be calculated from 0 to t as 
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When the reaching speed of the hybrid reaching law is 

equal to the conventional exponential reaching law (i.e., t=t1), 

it can be obtained that 
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Define 
q

p
as ζ, which satisfies 0 1  The relationship of the 

parameters in the reaching laws can be simplified as 
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From (15), it can be further obtained that 
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Therefore, the reaching coefficient of variable exponential 

reaching part in the proposed HRL is larger than the CPRL, 

which indicates that the variable exponential reaching part in 

the hybrid reaching law has the greater reaching speed. 

Furthermore, the following inequality (18) can be obtained 

as 
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The terminal reaching part takes a major role when the 

system state is relatively close to the sliding surface, while the 

isokinetic reaching term is critical in the CPRL. It can be seen 

from (18) that the terminal reaching part in the proposed HRL 

takes smaller reaching speed compared with the isokinetic 

reaching term in the CPRL, which indicates the smaller 

chattering. 

3.3. Speed Control Law 

SMC aims to guarantee that the speed strictly follows its 

reference signal ω* 
m when the parameter changes in SPMSMs. 

Further, the basic idea of the sliding mode speed controller is 

to guide the state trajectory to progressively reach the sliding 

surface from any starting points by using the control law. 

Therefore, the state variables of the system can be defined 

as  
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where ω* 
m  is the reference mechanical speed, and ω  

m is the 

actual output speed.  

Substituting (2) into (19) yields 
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Derivation of (20) has the form as  
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Hence, the state equation of the system can be expressed as 
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Since the change of load disturbance LT  not considered, it 

satisfies 0C  . 

Select the linear sliding mode surface as follows. 

2 1s x x                                     (23)                                           

where η is a constant. 

Substituting (22) into the derivation of (23) yields 

  2+s A x Bu                             (24)                                                               

Since the speed tracking error is a significant system 

performance indicator, it is selected as the state variable 

related to the reaching speed. Therefore, x = x1 is substituted 

into (12), and the following equation can be obtained by 

combining (12) and (24). 
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Define =q p , then the output of the controller can be 

obtained from (25) as 
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Therefore, the reference q-axis current is written as 
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The flowchart of the variable structure of the system 

parameter i
ref 
q  is illustrated in Fig. 2. 
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Fig. 2. Flow chart of the variable structure of system parameter iref 
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IV. DESIGN OF SLIDING MODE DISTURBANCE OBSERVER 

4.1. Extended Sliding Mode Disturbance Observer (ESMDO) 

There are various disturbances in SPMSM drive systems 

under complex operating conditions. If these disturbances are 

not effectively suppressed, the system control performance 

will be affected. Therefore, to realize real-time online 

estimation of system disturbances, this paper proposes an 

ESMDO. 

When the system disturbances are taken into consideration, 

(19) can be rewritten as 
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where ΔJ, Δν and ΔTL represent the perturbance of the 

corresponding mechanical parameters, respectively. For the 

sake of simplicity, Δ1, Δ2, and Δ3 indicate the uncertainties. 

The disturbances of the SPMSM drive systems consisting of 

mechanical parameter disturbance and load disturbance, which 

can be expressed as 
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The comprehensive disturbance should satisfy the following 

constraints 
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where D  is the limit value of the comprehensive disturbance 

of the motor system and d represents the variation rate of the 

comprehensive disturbance. 

Taking the comprehensive perturbance into consideration, 

(22) is written as 
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Then, the reference q-axis current can be obtained as 
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From (32), it can be observed that the comprehensive 

disturbance is of significant effect on the control performance. 

If the system disturbance is negative and considered as 0, the 

parameters m and b may increase to generate the same control 

output i
ref 
q , which leads to severe system chattering. 

Using D as the extended state variable of the system, 

combined with (30) and (31), the extended state equation of 

the system can be obtained as 
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The sliding mode disturbance observer is constructed as 

ˆˆ ˆ= + + +

ˆ =

L
m m q

T
D Bi y

J J

D ry

   




                  (34)                                        

where ˆ
m and D̂ represent the estimations of the speed and 

perturbance, respectively, r is the control law gain coefficient, 

and y is the observer function to ensure that speed error 

converges to 0. The schematic diagram of the ESMDO is 

shown in Fig. 3. 

According to (33) and (34), the error equation of the 

observer can be written as 

= +

=

D

D

e e e y
J

e d ry

 
  


 

                           (35)                                                        

where eω and eD are the errors of speed and disturbance 

observation, respectively. 

The CPRL is employed to ensure that the sliding mode 

surface is chosen as sω = eω. Therefore, it can be obtained as 

= sign( )s e s s                       (36)                                                

Substituting (36) into (35) yields 

sign( )Dy e e s s
J

  
                    (37)                                              

Therefore, the observer with the control law y can reach the 

sliding mode surface in finite time. Then, the following 

equations can be obtained as 

= =0

= =0

s

e e

s 

 





                                    (38)                                                               

Substituting (38) into the error (35) yields 

0D

D

e y

d ry e

 
  

                               (39)                                                           

From (39), the differential equation is obtained as follows 

=D De re d                                  (40)                                            

Solving (40), the disturbance estimation error can be 

obtained as 

 = +rt rt
De e K d e dt                        (41)                                                        

where K is a constant. Similarly, to ensure that the disturbance 

error converges to 0, it must be satisfied that 

>0r                                          (42) 

Furthermore, the convergence speed of sliding mode 

disturbance observer is directly determined by the value of r. 
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Fig. 3. Schematic diagram of the ESMDO. 

4.2. Proof of Stability 

In order to verify the stability of the control system with the 

proposed observer, the Lyapunov function V=s2/2 is selected. 



 

 

When the inequality (42) is established, the sliding mode 

reaching condition is satisfied, and the system is stable. 

0V ss                                      (43)                                                             

Substituting (31) into (43) yields 
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              (44)                                             

Since the parameter p+q is even, the first and second terms 

in (44) are negative. It can be obtained that (43) is satisfied, 

which indicates the proposed HRL can ensure that the system 

motion reaches the sliding mode switching surface. Once the 

system state reaches and remains on the sliding mode 

switching surface, it enters the sliding mode. 

4.3. Anti-disturbance Sliding Mode Speed Controller 

In order to improve the performance of the SMC system 

under disturbances, the ESMDO is employed to estimate 

lumped disturbance. The disturbance term D in the sliding 

mode speed control law is substituted as D̂ . Fig. 4 illustrates a 

structure of the anti-disturbance sliding mode controller based 

on the proposed ESMDO. Fig. 5 shows a block diagram of the 

CSMC strategy for SPMSM based on FOC. It consists of the 

SMC based on the HRL and the ESMDO. 
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Fig. 4. Structure of the sliding mode controller based on the proposed 

ESMDO. 
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Fig. 5. Block diagram of the composite SMC strategy (CSMC) for SPMSM 

based on the FOC scheme. 

As shown, the entire control system adopts a vector control 

series double closed-loop structure. The outer loop of velocity 

adopts a sliding mode velocity controller structure based on 

the novel SMC method. It combines the ESMDO to update the 

disturbance amount in real-time to form a CSMC strategy. The 

ESMDO observes the disturbance in real-time and inputs the 

observation feedforward into the sliding mode speed controller 

to compensate the system disturbance, thereby improving the 

system’s anti-disturbance capability. 

V. EXPERIMENTAL RESULTS 

To verify the system’s control performance based on the 

proposed CSMC method, experiments have been conducted at 

a laboratory platform. The experimental setup consists of an 

SPMSM, a torque sensor, and a magnetic powder brake, as 

shown in Fig. 6. The proposed control strategy is carried out in 

a dSPACE 1401 test bench, through which the experimental 

measurements can be exported to MATLAB and plotted. 

Table I lists the main system parameters. 

 A: Host computer           B: dSPACE             C: Inverter  

 D: PMSM         E: Torque sensor      F: Magnetic powder brake

A

B

C

D
E F

 
Fig. 6. Experimental setup. 

The parameter selection of the proposed sliding mode 

controller includes the following principles. The parameters a 

and k should be selected based on the principle of chatter 

suppression while taking into account the reaching time; The 

parameter η is the coefficient of the selected sliding mode 

switching surface, which will affect the convergence rate of 

the state variable after the system trajectory enters the sliding 

mode. The parameters m and b are the coefficients of terminal 

approaching mode and exponential plus proportional 

approaching mode, respectively. Meanwhile, the parameters 

should not be too large; otherwise, sliding mode chattering 

will occur. Thus, The parameters p and q will affect the 

convergence time of the terminal reaching law. The 

parameters of the CPRL-based SMC are: c = 20, ε = 2, λ = 

1300. The parameters of the CSMC strategy are: m = 1000, a 

= 0.2, q = 1, p = 3, b = 950, k = 1, η=c= 20. 
Table I. System Parameters of the SPMSM 

Parameters Symbol Value 

Number of pole pairs Pn 22 
Stator resistance R 0.08 Ω 
Stator inductance L 4.2 mH 

Permanent-magnet flux linkage ψf 0.625 Wb 
Inertia J 0.004 kgm2 

Viscous friction coefficient ν 0.0006 N·m·s 
Rated speed N 360 rpm 
Rated power PN 30 kW 

DC-link voltage udc 420 V 

 

5.1. Performance Comparison under a Step Increase of Load 

Torque 

Fig. 7 shows the dynamic responses of three control 

schemes under a step increase of load torque TL for the 



 

 

SPMSM drive system. The reference speed is 360 rpm, and 

the sampling time is set as 0.1 ms. A step change of the load 

torque from 0 to 10 Nm is applied to the control system at t 
=0.5 s. Compared with the CPRL-based SMC control method, 

the proposed HRL method maintains better dynamic 

performance. It can be observed that the HRL method 

produces smaller speed overshoot when the load torque 

changes. Meanwhile, the HRL method produces smaller 

fluctuation than the CPRL method. Furthermore, the proposed 

CSMC with extended disturbance observer shows better 

performance in terms of speed tracking and torque. The 

specific comparative results of these three control schemes are 

listed in Table II. 

 7N m/diveT 

 100rpm/divm

 7N m/diveT 
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 7N m/diveT 

 100rpm/divm

(a) (b)

(c)  
Fig. 7. Experimental performance under load torque step increase, (a) 

conventional CPRL-based method, (b) proposed HRL-based SMC method, 
and (c) the proposed CSMC method. 

 
 Table II. Performance Parameters of the Three Control Schemes under an 

Increase of Load Torque 

 
CPRL 
method 

HRL 
method 

CSMC 
(CPRL+ESMDO) 

Speed 
fluctuation (rpm) 

10 7.8 5.4 

Torque 

fluctuation (Nm) 
1.05 0.83 0.72 

Settling time (s) 0.013 0.011 0.010 

 

Fig. 8 shows the performance of the proposed ESMDO 

under load torque increase condition. As shown, with the 

increase of the load torque at t=0.5 s, the SMC law y produces 

a fluctuation of -1700 rad/s-2. The disturbance estimation value 

D̂ changes stepwise to about -2300 rad/s-2, which is mainly 

caused by load change. From Figs. 8(c) and (d), the error of 

the speed observation is small. Its maximum is -1.6 rad/s when 

the step load torque is applied to the system. Therefore, the 

proposed ESMDO performs well in the presence of 

disturbance and speed observation, which contributes to the 

anti-disturbance sliding mode speed control. 
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Fig. 8. ESMDO performance under load torque step increase condition: (a) 
SMC law of the ESMDO, (b) disturbance estimation value, (c) mechanical 
speed estimation value, and (c) speed observation error.  
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Fig. 9. Experimental performance under load torque step decrease condition: 

(a) CPRL-based SMC method, (b) proposed HRL-based SMC method, and (c) 

proposed CSMC method. 

 

5.2. Performance Comparison under a Step Decrease of Load 

Torque   

Fig. 9 illustrates the dynamic responses of three control 

schemes under a step decrease of load torque TL for the 

SPMSM drive system. A step-change in the reference torque 

from 10 to 0 Nm is applied to the control system at t=0.5 s. 

Compared with the CPRL method, the proposed HRL method 

performs better in dynamic performance as well.  
Fig. 10 shows the performance of the proposed ESMDO in 

this scenario. As shown, the step change of disturbance 

estimation value D̂ is from -2300 to 0 rad/s-2, which is mainly 

determined by the second term 2

1
LT

J

    
 

of the lumped 

disturbance. Therefore, the observation can estimate the 

disturbance exactly and quickly with small chattering, and the 

observation error of the rotational speed further verifies the 

performance of the observer. 



 

 

(a) (b)

(c) (d)

0

-2250

2250

-750

750

0 0.2 0.4 0.6 0.8 1.0
Time/s

2
ra

d
/

y
s

-1500

-500

0.2 0.4 0.6 0.8 1.0
Time/s

0
500

-2500
0

2
ˆ

ra
d

/
D

s

16

32

0.2 0.4 0.6 0.8 1.0
Time/s

48

0
0

ˆ
ra

d
/s

m
 -0.8

0

0.8

0.2 0.4 0.6 0.8 1.0
Time/s

2.4

-2.4
0

ra
d
/s

m


 
Fig. 10. ESMDO performance under load torque step decrease condition: (a) 

SMC law of the ESMDO, (b) disturbance estimation value, (c) mechanical 

speed estimation value, and (d) speed observation error.  
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Fig. 11. Experimental performance under reference speed step-change 

condition: (a) CPRL-based SMC method, (b) proposed HRL-based SMC 

method, and (c) proposed CSMC method. 

 

5.3. Performance Comparison Under Step Changes to the 

Reference Speed 

Fig. 11 illustrates the dynamic responses of three control 

methods when step changes are applied to the reference 

mechanical speed. Two step-changes, 320 to 400 rpm and 400 

to 360 rpm, are applied to the system at the time instants 

t1=0.4 s and t2=0.7 s, respectively. The load torque is set to 10 

Nm. As shown, the proposed HRL-based SMC method 

presents better dynamic performance than the SMC scheme 

based CPRL. The fluctuation in the mechanical speed ωm and 

load torque TL is reduced with the HRL method. Furthermore, 

the HRL method shows a faster response in speed tracking.  

As shown in Fig. 12, the ESMDO performs well in 

disturbance estimation, and the CSMC scheme presents the 

ability of disturbance suppression compared with CPRL 

method. The oscillations in the estimated disturbance D̂  

converge to zero in 0.02 s, and the transient-state error of the 

mechanical speed is kept within 0.5 rad/s. 
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Fig. 12. ESMDO performance under reference speed step-change condition: 

(a) SMC law of the ESMDO, (b) disturbance estimation value, (c) mechanical 
speed estimation value, and (c) speed observation error.  

 

VI. CONCLUSION 

A CSMC method composed of a novel HRL and an 

ESMDO was presented in this paper. The chattering of the 

sliding mode speed controller can be significantly suppressed 

by introducing a hybrid reaching law into the SMC. Compared 

with the CPRL, it was verified that the new reaching law 

yields smaller chattering and performs better dynamic 

response. In order to estimate system disturbance online, the 

ESMDO based on constant plus proportional rate reaching law 

was introduced. Furthermore, considering the uncertainty of 

motor parameters, the stability of the ESMDO was proved by 

solving the differential equation when the state variable of 

disturbance reaches the sliding mode surface. It can be 

concluded that the proposed ESMDO performs well in the 

presence of disturbance and speed observation, which 

contributes to the anti-disturbance sliding mode speed control.  

The composite sliding mode speed controller has the 

advantages of reducing the speed and torque fluctuation under 

various conditions. Therefore the CSMC scheme presents the 

ability of disturbance suppression compared with CPRL 

method and the oscillations in the estimated disturbance 

converge to zero quickly. Due to the complexity of the new 

reaching law, the design of the sliding mode controller is more 

complicated than the traditional constant plus proportional law. 

The computation load of the whole control system will 

increase as well due to the introduction of the disturbance 

observer. In addition, for the sliding mode observer, the 

performance of the observer needs to be further studied for 

more accurate and fast observations. 
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