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Abstract

Vector Space Models (VSMs) of Semantics

are useful tools for exploring the semantics of

single words, and the composition of words

to make phrasal meaning. While many meth-

ods can estimate the meaning (i.e. vector) of

a phrase, few do so in an interpretable way.

We introduce a new method (CNNSE) that al-

lows word and phrase vectors to adapt to the

notion of composition. Our method learns a

VSM that is both tailored to support a chosen

semantic composition operation, and whose

resulting features have an intuitive interpreta-

tion. Interpretability allows for the exploration

of phrasal semantics, which we leverage to an-

alyze performance on a behavioral task.

1 Introduction

Vector Space Models (VSMs) are models of word

semantics typically built with word usage statistics

derived from corpora. VSMs have been shown to

closely match human judgements of semantics (for

an overview see Sahlgren (2006), Chapter 5), and

can be used to study semantic composition (Mitchell

and Lapata, 2010; Baroni and Zamparelli, 2010;

Socher et al., 2012; Turney, 2012).

Composition has been explored with different

types of composition functions (Mitchell and La-

pata, 2010; Mikolov et al., 2013; Dinu et al.,

2013) including higher order functions (such as ma-

trices) (Baroni and Zamparelli, 2010), and some

have considered which corpus-derived information

is most useful for semantic composition (Turney,

2012; Fyshe et al., 2013). Still, many VSMs act

like a black box - it is unclear what VSM dimen-

sions represent (save for broad classes of corpus

statistic types) and what the application of a com-

position function to those dimensions entails. Neu-

ral network (NN) models are becoming increas-

ingly popular (Socher et al., 2012; Hashimoto et al.,

2014; Mikolov et al., 2013; Pennington et al., 2014),

and some model introspection has been attempted:

Levy and Goldberg (2014) examined connections

between layers, Mikolov et al. (2013) and Penning-

ton et al. (2014) explored how shifts in VSM space

encodes semantic relationships. Still, interpreting

NN VSM dimensions, or factors, remains elusive.

This paper introduces a new method, Composi-

tional Non-negative Sparse Embedding (CNNSE).

In contrast to many other VSMs, our method learns

an interpretable VSM that is tailored to suit the se-

mantic composition function. Such interpretability

allows for deeper exploration of semantic composi-

tion than previously possible. We will begin with an

overview of the CNNSE algorithm, and follow with

empirical results which show that CNNSE produces:

1. more interpretable dimensions than the typical

VSM,

2. composed representations that outperform pre-

vious methods on a phrase similarity task.

Compared to methods that do not consider composi-

tion when learning embeddings, CNNSE produces:

1. better approximations of phrasal semantics,

2. phrasal representations with dimensions that

more closely match phrase meaning.



2 Method

Typically, word usage statistics used to create a

VSM form a sparse matrix with many columns, too

unwieldy to be practical. Thus, most models use

some form of dimensionality reduction to compress

the full matrix. For example, Latent Semantic Anal-

ysis (LSA) (Deerwester et al., 1990) uses Singular

Value Decomposition (SVD) to create a compact

VSM. SVD often produces matrices where, for the

vast majority of the dimensions, it is difficult to in-

terpret what a high or low score entails for the se-

mantics of a given word. In addition, the SVD fac-

torization does not take into account the phrasal re-

lationships between the input words.

2.1 Non-negative Sparse Embeddings

Our method is inspired by Non-negative Sparse Em-

beddings (NNSEs) (Murphy et al., 2012). NNSE

promotes interpretability by including sparsity and

non-negativity constraints into a matrix factoriza-

tion algorithm. The result is a VSM with extremely

coherent dimensions, as quantified by a behavioral

task (Murphy et al., 2012). The output of NNSE

is a matrix with rows corresponding to words and

columns corresponding to latent dimensions.

To interpret a particular latent dimension, we can

examine the words with the highest numerical val-

ues in that dimension (i.e. identify rows with the

highest values for a particular column). Though the

representations in Table 1 were created with our new

method, CNNSE, we will use them to illustrate the

interpretability of both NNSE and CNNSE, as the

form of the learned representations is similar. One

of the dimensions in Table 1 has top scoring words

guidance, advice and assistance - words related to

help and support. We will refer to these word list

summaries as the dimension’s interpretable sum-

marization. To interpret the meaning of a particu-

lar word, we can select its highest scoring dimen-

sions (i.e. choose columns with maximum values

for a particular row). For example, the interpretable

summarizations for the top scoring dimensions of

the word military include both positions in the mil-

itary (e.g. commandos), and military groups (e.g.

paramilitary). More examples in Supplementary

Material (http://www.cs.cmu.edu/˜fmri/

papers/naacl2015/).

NNSE is an algorithm which seeks a lower di-

mensional representation for w words using the c-
dimensional corpus statistics in a matrix X ∈ R

w×c.

The solution is two matrices: A ∈ R
w×ℓ that is

sparse, non-negative, and represents word semantics

in an ℓ-dimensional latent space, and D ∈ R
ℓ×c:

the encoding of corpus statistics in the latent space.

NNSE minimizes the following objective:

argmin
A,D

1

2

w
∑

i=1

∥

∥Xi,: −Ai,: ×D
∥

∥

2
+ λ1

∥

∥Ai,:

∥

∥

1

(1)

st: Di,:D
T
i,: ≤ 1, ∀ 1 ≤ i ≤ ℓ (2)

Ai,j ≥ 0, 1 ≤ i ≤ w, 1 ≤ j ≤ ℓ (3)

where Ai,j indicates the entry at the ith row and jth

column of matrix A, and Ai,: indicates the ith row

of the matrix. The L1 constraint encourages sparsity

in A; λ1 is a hyperparameter. Equation 2 constrains

D to eliminate solutions where the elements of A
are made arbitrarily small by making the norm of D
arbitrarily large. Equation 3 ensures that A is non-

negative. Together, A and D factor the original cor-

pus statistics matrix X to minimize reconstruction

error. One may tune ℓ and λ1 to vary the sparsity of

the final solution.

Murphy et al. (2012) solved this system of con-

straints using the Online Dictionary Learning algo-

rithm described in Mairal et al. (2010). Though

Equations 1-3 represent a non-convex system, when

solving for A with D fixed (and vice versa) the loss

function is convex. Mairal et al. break the prob-

lem into two alternating optimization steps (solv-

ing for A and D) and find the system converges

to a stationary solution. The solution for A is

found with a LARS implementation for lasso regres-

sion (Efron et al., 2004); D is found via gradient de-

scent. Though the final solution may not be globally

optimal, this method is capable of handling large

amounts of data and has been shown to produce use-

ful solutions in practice (Mairal et al., 2010; Murphy

et al., 2012).

2.2 Compositional NNSE

We add an additional constraint to the NNSE loss

function that allows us to learn a latent representa-

tion that respects the notion of semantic composi-

tion. As we will see, this change to the loss function

has a huge effect on the learned latent space. Just as
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Table 1: CNNSE interpretable summarizations for the top 3 dimensions of an adjective, noun and adjective-

noun phrase.

military aid military aid (observed)

servicemen, commandos, guidance, advice, assistance servicemen, commandos,

military intelligence military intelligence

guerrilla, paramilitary, anti-terrorist mentoring, tutoring, internships guidance, advice, assistance

conglomerate, giants, conglomerates award, awards, honors compliments, congratulations, replies

the L1 regularizer can have a large impact on spar-

sity, our composition constraint represents a consid-

erable change in composition compatibility.

Consider a phrase p made up of words i and j. In

the most general setting, the following composition

constraint could be applied to the rows of matrix A

corresponding to p, i and j:

A(p,:) = f(A(i,:), A(j,:)) (4)

where f is some composition function. The com-

position function constrains the space of learned la-

tent representations A ∈ R
w×ℓ to be those solutions

that are compatible with the composition function

defined by f . Incorporating f into Equation 1 we

have:

argmin
A,D,Ω

w
∑

i=1

1

2

∥

∥Xi,: −Ai,: ×D
∥

∥

2
+ λ1

∥

∥Ai,:

∥

∥

1
+

λc

2

∑

phrase p,
p=(i,j)

(

A(p,:) − f(A(i,:), A(j,:))
)2

(5)

Where each phrase p is comprised of words (i, j)
and Ω represents all parameters of f to be optimized.

We have added a squared loss term for composition,

and a new regularization parameter λc to weight

the importance of respecting composition. We call

this new formulation Compositional Non-Negative

Sparse Embeddings (CNNSE). Some examples of

the interpretable representations learned by CNNSE

for adjectives, nouns and phrases appear in Table 1.

There are many choices for f : addition, multi-

plication, dilation, etc. (Mitchell and Lapata, 2010).

Here we choose f to be weighted addition because it

has has been shown to work well for adjective noun

composition (Mitchell and Lapata, 2010; Dinu et al.,

2013; Hashimoto et al., 2014), and because it lends

itself well to optimization. Weighted addition is:

f(A(i,:), A(j,:)) = αA(i,:) + βA(j,:) (6)

This choice of f requires that we simultaneously op-

timize for A,D, α and β. However, α and β are sim-

ply constant scaling factors for the vectors in A cor-

responding to adjectives and nouns. For adjective-

noun composition, the optimization of α and β can

be absorbed by the optimization of A. For models

that include noun-noun composition, if α and β are

assumed to be absorbed by the optimization of A,

this is equivalent to setting α = β.

We can further simplify the loss function by con-

structing a matrix B that imposes the composition

by addition constraint. B is constructed so that for

each phrase p = (i, j): B(p,p) = 1, B(p,i) = −α,

and B(p,j) = −β. For our models, we use α = β =
0.5, which serves to average the single word repre-

sentations. The matrix B allows us to reformulate

the loss function from Eq 5:

argmin
A,D

1

2

∥

∥X −AD
∥

∥

2

F
+ λ1

∥

∥A
∥

∥

1
+

λc

2

∥

∥BA
∥

∥

2

F

(7)

where F indicates the Frobenius norm. B acts as a

selector matrix, subtracting from the latent represen-

tation of the phrase the average latent representation

of the phrase’s constituent words.

We now have a loss function that is the sum of

several convex functions of A: squared reconstruc-

tion loss for A, L1 regularization and the composi-

tion constraint. This sum of sub-functions is the for-

mat required for the alternating direction method of

multipliers (ADMM) (Boyd, 2010). ADMM substi-

tutes a dummy variable z for A in the sub-functions:

argmin
A,D

1

2

∥

∥X −AD
∥

∥

2

F
+ λ1

∥

∥z1
∥

∥

1
+

λc

2

∥

∥Bzc
∥

∥

2

F

(8)

and, in addition to constraints in Eq 2 and 3, incor-

porates constraints A = z1 and A = zc to ensure

dummy variables match A. ADMM uses an aug-
3



mented Lagrangian to incorporate and relax these

new constraints. We optimize for A, z1 and zc sep-

arately, update the dual variables and repeat until

convergence (see Supplementary material for La-

grangian form, solutions and updates). We modi-

fied code for ADMM, which is available online1.

ADMM is used when solving for A in the Online

Dictionary Learning algorithm, solving for D re-

mains unchanged from the NNSE implementation

(see Algorithms 1 and 2 in Supplementary Material).

We use the weighted addition composition func-

tion because it performed well for adjective-noun

composition in previous work (Mitchell and Lap-

ata, 2010; Dinu et al., 2013; Hashimoto et al., 2014),

maintains the convexity of the loss function, and is

easy to optimize. In contrast, an element-wise mul-

tiplication, dilation or higher-order matrix compo-

sition function will lead to a non-convex optimiza-

tion problem which cannot be solved using ADMM.

Though not explored here, we hypothesize that A
could be molded to respect many different compo-

sition functions. However, if the chosen composi-

tion function does not maintain convexity, finding a

suitable solution for A may prove challenging. We

also hypothesize that even if the chosen composi-

tion function is not the “true” composition function

(whatever that may be), the fact that A can change

to suit the composition function may compensate for

this mismatch. This has the flavor of variational in-

ference for Bayesian methods: an approximation in

place of an intractable problem often yields better

results with limited data, in less time.

3 Data and Experiments

We use the semantic vectors made available by

Fyshe et al. (2013), which were compiled from a 16

billion word subset of ClueWeb09 (Callan and Hoy,

2009). We used the 1000 dependency SVD dimen-

sions, which were shown to perform well for compo-

sition tasks. Dependency features are tuples consist-

ing of two POS tagged words and their dependency

relationship in a sentence; the feature value is the

pointwise positive mutual information (PPMI) for

the tuple. The dataset is comprised of 54,454 words

and phrases. We randomly split the approximately

14,000 adjective noun phrases into a train (2/3) and

1http://www.stanford.edu/˜boyd/papers/

admm/

Table 2: Median rank, mean reciprocal rank (MRR)

and percentage of test phrases ranked perfectly (i.e.

first in a sorted list of approx. 4,600 test phrases)

for four methods of estimating the test phrase vec-

tors. w.addSVD is weighted addition of SVD vectors,

w.addNNSE is weighted addition of NNSE vectors.

Model Med. Rank MRR Perfect

w.addSVD 99.89 35.26 20%

w.addNNSE 99.80 28.17 16%

Lexfunc 99.65 28.96 20%

CNNSE 99.91 40.65 26%

test (1/3) set. From the test set we removed 200 ran-

domly selected phrases as a development set for pa-

rameter tuning. We did not lexically split the train

and test sets, so many words appearing in training

phrases also appear in test phrases. For this reason

we cannot make specific claims about the generaliz-

ability of our methods to unseen words.

NNSE has one parameter to tune (λ1); CNNSE

has two: λ1 and λc. In general, these methods are

not overly sensitive to parameter tuning, and search-

ing over orders of magnitude will suffice. We found

the optimal settings for NNSE were λ1 = 0.05, and

for CNNSE λ1 = 0.05, λc = 0.5. Too large λ1

leads to overly sparse solutions, too small reduces

interpretability. We set ℓ = 1000 for both NNSE

and CNNSE and altered sparsity by tuning only λ1.

3.1 Phrase Vector Estimation

To test the ability of each model to estimate phrase

semantics we trained models on the training set, and

used the learned model and the composition function

to estimate vectors of held out phrases. We sort the

vectors for the test phrases, Xtest, by their cosine

distance to the predicted phrase vector X̂(p,:).

We report two measures of accuracy. The first is

median rank accuracy. Rank accuracy is: 100×(1−
r
P
), where r is the position of the correct phrase

in the sorted list of test phrases, and P = |Xtest|
(the number of test phrases). The second measure

is mean reciprocal rank (MRR), which is often used

to evaluate information retrieval tasks (Kantor and

Voorhees, 2000). MRR is

100× (
1

P

P
∑

i=1

(
1

r
)). (9)
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For both rank accuracy and MRR, a perfect score is

100. However, MRR places more emphasis on rank-

ing items close to the top of the list, and less on dif-

ferences in ranking lower in the list. For example,

if the correct phrase is always ranked 2, 50 or 100

out of list of 4600, median rank accuracy would be

99.95, 98.91 or 97.83. In contrast, MRR would be

50, 2 or 1. Note that rank accuracy and reciprocal

rank produce identical orderings of methods. That

is, whatever method performs best in terms of rank

accuracy will also perform best in terms of recip-

rocal rank. MRR simply allows us to discriminate

between very accurate models. As we will see, the

rank accuracy of all models is very high (> 99%),

approaching the rank accuracy ceiling.

3.1.1 Estimation Methods

We will compare to two other previously

studied composition methods: weighted addition

(w.addSVD), and lexfunc (Baroni and Zamparelli,

2010). Weighted addition finds α, β to optimize

(X(p,:) − (αX(i,:) + βX(j,:)))
2

Note that this optimization is performed over the

SVD matrix X , rather than on A. To estimate X
for a new phrase p = (i, j) we compute

X̂(p,:) = αX(i,:) + βX(j,:)

Lexfunc finds an adjective-specific matrix Mi that

solves

X(p,:) = MiX(j,:)

for all phrases p = (i, j) for adjective i. We solved

each adjective-specific problem with Matlab’s par-

tial least squares implementation, which uses the

SIMPLS algorithm (Dejong, 1993). To estimate X
for a new phrase p = (i, j) we compute

X̂(p,:) = MiX(j,:)

We also optimized the weighted addition compo-

sition function over NNSE vectors, which we call

w.addNNSE. After optimizing α and β using the

training set, we compose the latent word vectors to

estimate the held out phrase:

Â(p,:) = αA(i,:) + βA(j,:)

For CNNSE, as in the loss function, α = β = 0.5
so that the average of the word vectors approximates

the phrase.

Â(p,:) = 0.5× (A(i,:) +A(j,:))

Crucially, w.addNNSE estimates α, β after learning

the latent space A, whereas CNNSE simultaneously

learns the latent space A, while taking the compo-

sition function into account. Once we have an esti-

mate Â(p,:) we can use the NNSE and CNNSE solu-

tions for D to estimate the corpus statistics X.

X̂(p,:) = Â(p,:)D

Results for the four methods appear in Table 2.

Median rank accuracies were all within half a per-

centage point of each other. However, MRR shows

a striking difference in performance. CNNSE has

MRR of 40.64, more than 5 points higher than the

second highest MRR score belonging to w.addSVD

(35.26). CNNSE ranks the correct phrase in the

first position for 26% of phrases, compared to 20%
for w.addSVD. Lexfunc ranks the correct phrase

first for 20% of the test phrases, w.addNNSE 16%.

So, while all models perform quite well in terms

of rank accuracy, when we use the more discrim-

inative MRR, CNNSE is the clear winner. Note

that the performance of w.addNNSE is much lower

than CNNSE. Incorporating a composition con-

straint into the learning algorithm has produced a la-

tent space that surpasses all methods tested for this

task.

We were surprised to find that lexfunc performed

relatively poorly in our experiments. Dinu et al.

(2013) used simple unregularized regression to es-

timate M . We also replicated that formulation, and

found phrase ranking to be worse when compared

to the Partial Least Squares method described in Ba-

roni and Zamparelli (2010). In addition, Baroni and

Zamparelli use 300 SVD dimensions to estimate M .

We found that, for our dataset, using all 1000 dimen-

sions performed slightly better.

We hypothesize that our difference in perfor-

mance could be due to the difference in input cor-

pus statistics (in particular the thresholding of infre-

quent words and phrases), or due to the fact that we

did not specifically create the training and tests sets

to evenly distribute the phrases for each adjective.

If an adjective i appears only in phrases in the test

set, lexfunc cannot estimate Mi using training data

(a hindrance not present for other methods, which
5



require only that the adjective appear in the train-

ing data). To compensate for this possibly unfair

train/test split, the results in Table 2 are calculated

over only those adjectives which could be estimated

using the training set.

Though the results reported here are not as high

as previously reported, lexfunc was found to be

only slightly better than w.addSVD for adjective noun

composition (Dinu et al., 2013). CNNSE outper-

forms w.addSVD by a large margin, so even if Lex-

func could be tuned to perform at previous levels on

this dataset, CNNSE would likely still dominate.

3.1.2 Phrase Estimation Errors

None of the models explored here are perfect.

Even the top scoring model, CNNSE, only identi-

fies the correct phrase for 26% of the test phrases.

When a model makes a “mistake”, it is possible that

the top-ranked phrase is a synonym of, or closely

related to, the actual phrase. To evaluate mistakes,

we chose test phrases for which all 4 models are in-

correct and produce a different top ranked phrase

(likely these are the most difficult phrases to es-

timate). We then asked Mechanical Turk (Mturk

http://mturk.com) users to evaluate the mis-

takes. We presented the 4 mistakenly top-ranked

phrases to Mturk users, who were asked to choose

the one phrase most related to the actual test phrase.

We randomly selected 200 such phrases and asked

5 Mturk users to evaluate each, paying $0.01 per an-

swer. We report here the results for questions where

a majority (3) of users chose the same answer (82%

of questions). For all Mturk experiments described

in this paper, a screen shot of the question appears in

the Supplementary Material.

Table 3 shows the Mturk evaluation of model mis-

takes. CNNSE and lexfunc make the most reason-

able mistakes, having their top-ranked phrase cho-

sen as the most related phrase 35.4% and 31.7% of

the time, respectively. This makes us slightly more

comfortable with our phrase estimation results (Ta-

ble 2); though lexfunc does not reliably predict the

correct phrase, it often chooses a close approxima-

tion. The mistakes from CNNSE are chosen slightly

more often than lexfunc, indicating that CNNSE

also has the ability to reliably predict the correct

phrase, or a phrase deemed more related than those

chosen by other methods.

Table 3: A comparison of mistakes in phrase rank-

ing across 4 composition methods. To evaluate mis-

takes, we chose phrases for which all 4 models rank

a different (incorrect) phrase first. Mturk users were

asked to identify the phrase that was semantically

closest to the target phrase.

Predicted phrase deemed

Model closest match to actual phrase

w.addSVD 21.3%

w.addNNSE 11.6%

Lexfunc 31.7%

CNNSE 35.4%

3.2 Interpretability

Though our improvement in MRR for phrase vec-

tor estimation is compelling, we seek to explore the

meaning encoded in the word space features. We

turn now to the interpretation of phrasal semantics

and semantic composition.

3.2.1 Interpretability of Latent Dimensions

Due to the sparsity and non-negativity constraints,

NNSE produces dimensions with very coherent se-

mantic groupings (Murphy et al., 2012). Murphy

et al. used an intruder task to quantify the inter-

pretability of semantic dimensions. The intruder

task presents a human user with a list of words, and

they are to choose the one word that does not belong

in the list (Chang et al., 2009). For example, from

the list (red, green, desk, pink, purple, blue), it is

clear to see that the word “desk” does not belong in

the list of colors.

To create questions for the intruder task, we se-

lected the top 5 scoring words in a particular di-

mension, as well as a low scoring word from that

same dimension such that the low scoring word is

also in the top 10th percentile of another dimen-

sion. Like the word “desk” in the example above,

this low scoring word is called the intruder, and the

human subject’s task is to select the intruder from a

shuffled list of 6 words. Five Mturk users answered

each question, each paid $0.01 per answer. If Mturk

users identify a high percentage of intruders, this in-

dicates that the latent representation groups words in

a human-interpretable way. We chose 100 questions

for each of the NNSE, CNNSE and SVD represen-

tations. Because the output of lexfunc is the SVD
6
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Table 4: Quantifying the interpretability of learned

semantic representations via the intruder task. In-

truders detected: % of questions for which the ma-

jority response was the intruder. Mturk agreement:

the % of questions for which a majority of users

chose the same response.

Method Intruders Detected Mturk Agreement

SVD 17.6% 74%

NNSE 86.2% 94%

CNNSE 88.9% 90%

representation X , SVD interpretability is a proxy for

lexfunc interpretability.

Results for the intruder task appear in Table 4.

Consistent with previous studies, NNSE provides a

much more interpretable latent representation than

SVD. We find that the additional composition con-

straint used in CNNSE has maintained the inter-

pretability of the learned latent space. Because in-

truders detected is higher for CNNSE, but agreement

amongst Mturk users is higher for NNSE, we con-

sider the interpretability results for the two methods

to be equivalent. Note that SVD interpretability is

close to chance (1/6 = 16.7%).

3.2.2 Coherence of Phrase Representations

The dimensions of NNSE and CNNSE are com-

parably interpretable. But, has the composition con-

straint in CNNSE resulted in better phrasal repre-

sentations? To test this, we randomly selected 200

phrases, and then identified the top scoring dimen-

sion for each phrase in both the NNSE and CNNSE

models. We presented Mturk users with the inter-

pretable summarizations for these top scoring di-

mensions. Users were asked to select the list of

words (interpretable summarization) most closely

related to the target phrase. Mturk users could

also select that neither list was related, or that the

lists were equally related to the target phrase. We

paid $0.01 per answer and had 5 users answer each

question. In Table 5 we report results for phrases

where the majority of users selected the same an-

swer (78% questions). CNNSE phrasal represen-

tations are found to be much more consistent, re-

ceiving a positive evaluation almost twice as often

as NNSE.

Together, these results show that CNNSE repre-

sentations maintain the interpretability of NNSE di-

Table 5: Comparing the coherence of phrase rep-

resentations from CNNSE and NNSE. Mturk users

were shown the interpretable summarization for the

top scoring dimension of target phrases. Represen-

tations from CNNSE and NNSE were shown side by

side and users were asked to choose the list (summa-

rization) most related to the phrase, or that the lists

were equally good or bad.

Model representation deemed

Model most consistent with phrase

CNNSE 54.5%

NNSE 29.5%

Both 4.5%

Neither 11.5%

mensions, while improving the coherence of phrase

representations.

3.3 Evaluation on Behavioral Data

We now compare the performance of various com-

position methods on an adjective-noun phrase sim-

ilarity dataset (Mitchell and Lapata, 2010). This

dataset is comprised of 108 adjective-noun phrase

pairs split into high, medium and low similarity

groups. Similarity scores from 18 human subjects

are averaged to create one similarity score per phrase

pair. We then compute the cosine similarity between

the composed phrasal representations of each phrase

pair under each compositional model. As in Mitchell

and Lapata (2010), we report the correlation of the

cosine similarity measures to the behavioral scores.

We withheld 12 of the 108 questions for parame-

ter tuning, four randomly selected from each of the

high, medium and low similarity groups.

Table 6 shows the correlation of each model’s

similarity scores to behavioral similarity scores.

Again, Lexfunc performs poorly. This is proba-

bly attributable to the fact that there are, on aver-

age, only 39 phrases available for training each ad-

jective in the dataset, whereas the original Lexfunc

study had at least 50 per adjective (Baroni and Zam-

parelli, 2010). CNNSE is the top performer, fol-

lowed closely by weighted addition. Interestingly,

weighted NNSE correlation is lower than CNNSE

by nearly 0.15, which shows the value of allowing

the learned latent space to conform to the desired

composition function.
7



3.3.1 Interpretability and Phrase Similarity

CNNSE has the additional advantage of inter-

pretability. To illustrate, we created a web page

to explore the dataset under the CNNSE model.

The page http://www.cs.cmu.edu/˜fmri/

papers/naacl2015/cnnse_mitchell_

lapata_all.html displays phrase pairs sorted

by average similarity score. For each phrase

in the pair we show a summary of the CNNSE

composed phrase meaning. The scores of the 10

top dimensions are displayed in descending order.

Each dimension is described by its interpretable

summarization. As one scrolls down the page, the

similarity scores increase, and the number of dimen-

sions shared between the phrase pairs (highlighted

in red) increases. Some phrase pairs with high

similarity scores share no top scoring dimensions.

Because we can interpret the dimensions, we can

begin to understand how the CNNSE model is

failing, and how it might be improved.

For example, the phrase pair judged most similar

by the human subjects, but that shares none of the

top 10 dimensions in common, is “large number”

and “great majority” (behavioral similarity score

5.61/7). Upon exploration of CNNSE phrasal repre-

sentations, we see that the representation for “great

majority” suffers from the multiple word senses of

majority. Majority is often used in political settings

to describe the party or group with larger member-

ship. We see that the top scoring dimension for

“great majority” has top scoring words “candidacy,

candidate, caucus”, a politically-themed dimension.

Though the CNNSE representation is not incorrect

for the word, the common theme between the two

test phrases is not political.

The second highest scoring dimension for “large

number” is “First name, address, complete address”.

Here we see another case of the collision of multiple

word senses, as this dimension is related to identify-

ing numbers, rather than the quantity-related sense

of number. While it is satisfying that the word senses

for majority and number have been separated out

into different dimensions for each word, it is clear

that both the composition and similarity functions

used for this task are not gracefully handling multi-

ple word senses. To address this issue, we could par-

tition the dimensions of A into sense-related groups

Table 6: Correlation of phrase similarity judgements

(Mitchell and Lapata, 2010) to pairwise distances in

several adjective-noun composition models.

Correlation to

Model behavioral data

w.addSVD 0.5377

w.addNNSE 0.4469

Lexfunc 0.1347

CNNSE 0.5923

and use the maximally correlated groups to score

phrase pairs. CNNSE interpretability allows us to

perform these analyses, and will also allow us to it-

erate and improve future compositional models.

4 Conclusion

We explored a new method to create an interpretable

VSMs that respects the notion of semantic compo-

sition. We found that our technique for incorporat-

ing phrasal relationship constraints produced a VSM

that is more consistent with observed phrasal repre-

sentations and with behavioral data.

We found that, compared to NNSE, human eval-

uators judged CNNSE phrasal representations to be

a better match to phrase meaning. We leveraged this

improved interpretability to explore composition in

the context of a previously published compositional

task. We note that the collision of word senses of-

ten hinders performance on the behavioral data from

Mitchell and Lapata (2010).

More generally, we have shown that incorporat-

ing constraints to represent the task of interest can

improve a model’s performance on that task. Ad-

ditionally, incorporating such constraints into an in-

terpretable model allows for a deeper exploration of

performance in the context of evaluation tasks.
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