
A Composi t ional Formal izat ion of Connector W r a p p e r s

Bridget Spitznagel
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
sprite@cs.cmu.edu

David Garlan
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213
garlan @cs.cmu.edu

Abstract

Increasingly systems are composed of parts: software

components, and the interaction mechanisms (connectors)

that enable them to communicate. When assembling sys-

tems from independently developed and potentially mis-

matched parts, wrappers may be used to overcome mis-

match as well as to remedy extra-functional de£ciencies.

Unfortunately the current practice of wrapper creation

and use is ad hoc, resulting in artifacts that are often hard to

reuse or compose, and whose impact is dif£cult to analyze.

What is needed is a more principled basis for creating, un-

derstanding, and applying wrappers. Focusing on the class

of connector wrappers (wrappers that address issues related

to communication and compatibility), we present a means of

characterizing connector wrappers as protocol transforma-

tions, modularizing them, and reasoning about their prop-

erties. Examples are drawn from commonly practiced de-

pendability enhancing techniques.

1. Introduction

Increasingly systems are implemented as compositions

of independently-developed components that must be in-

tegrated into working systems using various interaction

mechanisms, such as remote procedure call, event buses,

pipes, etc. For such systems a serious problem is dealing

with component mismatches that arise when the expecta-

tions of a component do not match those of other compo-

nents or of the environment into which it is placed [4].

For example, a component selected for use in some soft-

ware system may not use the same units of measurement or

the same data format as the rest of the system. Or, a COTS

component may not gracefully tolerate out-of-range input

data produced by other components.

In this setting the traditional approach of directly rewrit-

ing or modifying the software to solve the problem may not

be feasible, since components are often built by third par-

ties, or are suf£ciently complex that rewriting them is not

cost-effective.

One widely used technique to deal with this problem is to

use wrappers. Informally a wrapper is new code interposed

between component interfaces and communication mecha-

nisms. The intended effect is to moderate the behavior of

the component in a way that is largely transparent to the

component or the interaction mechanism.

For example, a unit conversion mismatch might be re-

solved by a data conversion wrapper that intercepts data en-

tering or leaving the offending component, and converts it to

the units expected by the rest of the system. Or, in the case

of a component that does not gracefully handle out-of-range

data, a wrapper might be constructed to harden the compo-

nent by rejecting illegal input, allowing only well-tolerated

inputs to reach the component, and thereby increasing the

reliability of the system as a whole [15].

Unfortunately the current practice of wrapper creation

and use is ad hoc and something of a black art. To over-

come a (perhaps unforeseen) dif£culty quickly, a one-off

wrapper is written speci£cally for that problem in that soft-

ware system. Consequently as somewhat random pieces of

code, wrappers are often hard to reuse elsewhere, analyze,

compose with one another, modify, and maintain.

As a result, many important questions that might arise

cannot be answered. For example: How does a speci£c

wrapper, interposed between a component and a connector,

affect the protocol of that connector? Are existing proper-

ties of the protocol maintained; does a desirable new prop-

erty emerge? Do two potential wrapping efforts interact in

bad ways? Does it matter in which order the wrappers are

applied? Does a wrapper violate the interface expected by

the component that is being wrapped? Does a wrapper re-

quire modi£cations to the source code of a component?

In principle, such questions could be answered in an

ad hoc fashion themselves, for example, by writing a for-

mal description of the affected part of the system as it would

stand after the incorporation of the wrapper. However this

0-7695-1877-X/03 $17.00 © 2003 IEEE 374

task would have to be repeated each time another wrapper is

added, and yields no general understanding. Moreover, the

wrappers themselves would still not enjoy the usual desired

properties of reusability, maintainability, and so on.

What is needed is a more principled basis for wrapper

creation and application, ideally providing three desirable

capabilities: First, we would like to be able to specify a

wrapper itself, independent of any particular context of use.

Second, we would like to use this speci£cation to under-

stand things such as impact of its use, its effects on the com-

munication protocol between components, compositional

properties, etc. Third, we would like to be able to relate

the wrapper speci£cation to an implementation using tools

and techniques that help enforce that the implementation

corresponds to the speci£cation.

In this paper we address the £rst two of these issues for

an important subclass of wrappers, namely connector wrap-

pers. 1 As we detail later, these wrappers are used to repak

or augment communication-related properties of a system,

such as the two examples above. As we will show, it is

possible to specify this class of wrappers as modularized

protocol transformations, whose properties can be reasoned

about using standard notations and tools. We give examples

drawn from commonly practiced dependability-enhancing

techniques, show the application of these example wrap-

pers to two connector speci£cations, demonstrate the ease

of composition of this kind of wrapper speci£cation, and il-

lustrate how analyses can be used to con£rm whether the

wrappers actually achieve their intended purpose.

2. Related Work

The widespread use of wrappers (which, in part, moti-

vates this work) has given rise to efforts directed at stan-

dardized support for wrapper insertion. System-level sup-

port mechanisms, usually called interceptors, have become

increasingly available for implementations of some com-

monly used connectors. Interceptors facilitate the insertion

of arbitrary application-level wrapper code. Such code may

be used to enhance fault tolerance [13] and security [3] of

COTS components, or to add instrumentation [8]. However,

by their nature these efforts are speci£c to a connector im-

plementation and/or set of system libraries; and, generally

speaking, do not address the questions posed in section 1,

which are concerned with what is going on in the wrapper

itself rather than the means of wrapper emplacement.

Our work builds on process algebras such as CSP and

CCS [6, 12]. In particular, it applies to FSP [11] some of

the structure of Wright [1] in order to describe protocols of

software connectors, and to describe connector wrappers as

transformations of these protocols. Wright's decomposition

lWe address the third issue in [20].

of connectors into interfaces (roles) and interactions (glue),

enables explicit identi£cation of the communicating parties

and their obligations, as well as compatibility checks. The

work described in this paper, however, goes beyond that of

previously published work on Wright by further decompos-

ing the connector and promoting reusability of "wrapper"

interaction elements.

We also make use of the idea, drawn from software ar-

chitecture, of treating a software connector as a separate

£rst-class entity [18], on a par with software components.

Building on the idea of £rst-class connectors, and with sim-

ilar goals to our work, Lopes, Wermelinger, and Fiadeiro

have investigated the notion of "higher-order" connectors

as a formal framework in which to create connectors com-

positionally. They base their work on CommUnity, a Unity-

like parallel program design language [9]. The categorical

semantic underpinnings of their work gives it a somewhat

different form of compositional framework, as compared to

the use of process algebras (as in our work).

Mismatch resolution, a problem that gives rise to some

wrappers, has also been tackled in software architecture.

When two mismatched components are unable to commu-

nicate via existing connectors, one alternative to wrappers

is to construct or modify a connector to resolve the mis-

match [19]. Another technique, Flexible Packaging [2],

separates the component's functionality (ware) from its as-

sumptions about the communication infrastructure (packag-

ing); mismatches in packaging can then be overcome by re-

placing the ware's packaging with one that is a better match

for the rest of the system. The ~:~exible packaging approach

is elegant, but lack of adoption by component providers

makes it unlikely to replace practitioners' use of wrappers

in the immediate future.

Also related to this work is protocol synthesis, which

deals with a protocol's composition from (or decomposi-

tion into) simpler protocols. Ensemble [21] enables the

construction of an adaptive protocol composed of stacked

micro-protocol modules. The z-Kernel [14] project has also

used micro-protocol composition to design and implement

a dynamic architecture for t:~exible protocols that take ad-

vantage of operating system support for ef£cient layering.

Conduits+ [7] also provides a framework for network pro-

tocol software, with a focus on reuse aided by design pat-

terns; layered protocols are composed from conduits (soft-

ware components with two distinct "sides") and information

chunks (which ~tow through the conduits). The work de-

scribed here has a somewhat different goal: to describe the

impact of application-level wrapper code on a pre-existing

protocol, rather than to construct a fresh protocol (and cor-

responding connector implementation) from scratch.

375

3. Overv iew o f Approach

Informally a wrapper is new code interposed between

component interfaces and infrastructure support (e.g., be-

tween application-level code and communication facilities

such as RPC). The intent of the code is to alter the behav-

ior of the component with respect to the other components

in the system, without actually modifying the component or

the infrastructure itself.

An important class of wrappers are those that are primar-

ily designed to affect the communication between compo-

nents. We refer to these as connector wrappers. Connector

wrappers encompass a wide range of behaviors, including

things such as changing the way data is represented during

communication, the protocols of interaction, the number of

parties that participate in the interaction, and the kind of

communication support that is offered for things like moni-

toring, error handling, security, and so on.

Moreover, since connector wrappers focus on modifying

the behavior of shared communication infrastructure, they

a r e not inherently speci£c to the particular components be-

ing wrapped. As a result, they have a greater potential for

reuse and generalization. For example, a connector wrapper

that adapts a communication to use encrypted data could be

reused between many components.

3.1. Goals

Our goal is to provide a more formal, disciplined ap-

proach to connector wrapper design (and indirectly imple-

mentation), so that we can understand their behavior and

other properties. Speci£cally, there are three important

classes of properties that we would like to analyze:

• Soundness: Having introduced a wrapper (or sequence

of wrappers), does the resulting communication mech-

anism still work? Does a wrapper introduce new dead-

locks, failure modes or race conditions?

• Transparency: Does a wrapper change the interface of

the communicating parties? Since the goal of wrappers

is to avoid directly modifying the components in a sys-

tem, transparency is an important feature to verify.

• Compositionality: What are the compositional and al-

gebraic properties of a set of wrappers? This includes

issues such as commutativity (can the ordering of two

wrappers be exchanged?), inverses (does one wrap-

per undo the effects of another?), idempotence (does

it matter if we apply the same wrapper twice?), and

other more speci£c properties of a composition of sev-

eral wrappers.

a ~ P Action Pre£x

a ~ P [b ~ Q Choice

P II O Parallel Composition

label: P Process Labelling

P/{new/old} Relabelling

P\{hidden} Hiding

when (n<T) a ~ P Guarded Action

P+ {a,b,e} Alphabet Extension

STOP, ERROR prede£ned processes

s e t S = {a, b, c} de£nes a set S

range R = 0..5 de£nes a range R

[v:S] binds variable v to a

value chosen from S

Table 1. FSP quick reference

3.2. Protocol Transformation

To address questions like these, our approach is to de£ne

a connector wrapper formally as a protocol transformation.

In effect, a wrapper converts the protocol de£ning one con-

nector into a new protocol de£ning the altered connector.

The basic operations that comprise a protocol transforma-

tion may include redirecting, recording and replaying, in-

serting, replacing, and discarding particular events.

Building on past work in this area, we adopt an approach

based on process algebras [6, 12]. Process algebras provide

a way to talk about patterns of events, and are supported by a

number of useful analysis tools. In particular, we use FSP 2.

(Other process algebras would have worked equally well:

we chose FSP because it is simple enough for non-experts

to use but can still provide a useful set of analyses, such

as whether a connector protocol will deadlock or whether a

safety or liveness property is violated.)

To describe a connector protocol in FSP, we use an ap-

proach similar to Wright [1]. A connector is de£ned as a

set of processes: there is one process for each interface or

"role" of the connector, plus one process for the "glue" that

describes how all the roles are bound together. These n + 1

processes are placed in parallel with the roles relabelled.

Checks are performed on the resulting composite processes

using tools such as model checkers.

Formally, for a connector with roles R 1 . . . ~ and glue

G, the semantics of the connector is given by Expression I.

Rzll - . . II R.II G (1)

2A quick reference for some FSP operators is given in Table 1; for

further information see [11]. Processes describe actions (events) that oc-

cur in sequence, and choices between event sequences. Each process has
an alphabet of the events that it is aware of (and either engages in or re-
fuses to engage in). When composed in parallel, processes synchronize on

shared events: if processes P and Q are composed in parallel as PII Q,
events that are in the alphabet of only one of the two processes can occur
independently of the other process, but an event that is in both processes'
alphabets cannot occur until both processes are willing to engage in it.

376

C a l l e r = (ca l l ~ re tu rn ~ Ca l le r) .

D e £ n e r = (ca l l ~ re tu rn ~ De£ne r) .

G l u e = (ca l le r .ca l l ~ d e £ n e r . c a l l ~ G l u e

I d e £ n e r . r e t u r n --~ ca l l e r . re tu rn -~ G lue) .

I IP rocCa l l = (ca l l e r :Ca l l e r II d e £ n e r : D e £ n e r II G lue) .

Figure 1. Simple procedure call

To illustrate, Figure 1 shows a simple procedure-call

connector. The connector has two roles, Caller and De£ner.

Each engages in a call event followed by a return event.

In the parallel process ProcCall, the role processes exe-

cute concurrently with the Glue process, synchronizing on

shared events; here the event labels in each role process

have been pre£xed with a label unique to that role (caller or

de£ner), so each role shares events only with the glue, not

directly with other roles. The glue describes the interaction

of the roles: a call event at the Caller role is followed by a

call at the De£ner role, and a return event at the De£ner role

is followed by a return at the Caller role. ProeCall can then

be checked for deadlock, without needing any speci£ca-

tion of the components whose communication it describes.

(Later, the protocol of the component interfaces should be

checked for conformance to the role speci£cations, which

are effectively standing in for these future components.)

Our protocol transformation takes a connector of the

form given in Equation 1 and, by adding and modifying pro-

cesses in that connector, produces a new connector with the

same general form. The chosen approach (outlined in the

next section) makes it easy to compose, or chain together,

several such transformations, to achieve a complex result

from several simpler modular wrappers.

4. Connector Wrapp ing

The core of this wrapper-description technique is the in-

terposition of a new process between a role process R and

a glue process G. In an implementation this would corre-

spond informally to the interposition of a new piece of code,

the wrapper.

First, we decouple R and G from one another; formally

this is done by renaming. Next, we add a new process W

that synchronizes with both _R and G. This wrapper process

W re-links the two decoupled processes by intermediating

between the original and the renamed events. W has the

opportunity to redirect, record/replay, insert, replace, or dis-

card the events communicated between _R and G. W may

be parameterized to facilitate reuse in a broader range of

contexts.

Let ARG = a(R)Na(G) be the set of events shared by R

and G. The £rst step is performed by renaming these events

in one of the two processes, ensuring that the two processes

no longer synchronize directly. For the second step, a new

process W is placed in parallel with the role processes and

glue process. W translates between the events in ARC, in

the alphabet of R, and their counterparts in the renamed

alphabet of G. W in parallel with G can be thought of as a

new composite glue process, Gw.
We can derive the semantics of the newly wrapped con-

nector, given in Equation 2, by taking the original equa-

tion 1, adding W (a wrapper for one of the roles R1 . . . Pea),

and replacing G with f(G), where f(G) is the relabelled

version of G.

Rill . . . tl Rnll Wll f(C) (2)

Some classes of wrappers may also increase the num-

ber of roles; this is done by introducing additional new pro-

cesses with which W synchronizes:

Rill . . . II R.II WII f(G)ll R . + i . . . II R~+k

4.1. Bene£ t s

(3)

This approach isolates the wrapper from the rest of the

original connector; though the core concept is not dif£cult

to grasp, the technique can be powerful when used consis-

tently and yields several bene£ts including composability,

traceability, and reusability.

These wrapper speci£cations are readily composable; we

can treat Wll ff(G) as a new composite glue, and apply a

new wrapper W2 to the W-wrapped connector:

Rill . . . II P~II w211/2(Wll f(G)) (4)

Traceability is facilitated by the decompositional struc-

ture of the transformed speci£cation, which separates the

effects of a sequence of changes to the protocol so that a

problem detected by a model checker can more easily be

traced back to the change responsible for introducing the

problem. Pinpointing the source of such a problem would

be more dif£cult with a monolithic speci£cation of the pro-

tocol. Furthermore, the structure in the speci£cation is not

arbitrary but corresponds readily to the structure of the im-

plementation, facilitating traceability of a problem detected

in one of several wrapper processes by a model checker

to the one of several wrappers in the implementation that

would contain a corresponding bug. This correspondence

between wrapper processes and wrapper implementations

can be enforced by implementation generation tools.

Parametedzation techniques enable the construction of

reusable wrapper speci£cations, applicable to a range of

connector speci£cations. Generalization can be taken fur-

ther 3, describing patterns or templates for types of wrap-

pers in terms of their actions (redirect, record/replay, insert,

3Owing to space considerations, this technique will not be covered in
this paper.

377

Cal ler = (call ~ return ~ Caller).

De£ner = (call ---~ return ~ De£ne0.

Glue = (cal ler.cal l ~ d e £ n e r . c a l l ~ Glue

I de£ner . return ~ cal ler.return ~ Glue).

Wrap = (cal ler.cal l ~ wrap.cal ler.cal l ~ Wrap

I wrap.cal ler . return ---~ cal ler.return ~ Wrap).

I IWrapPC = (ca l ler :Cal ler II de£ner :De£ner

II G lue / {wrap.ca l le r /ca l le r } II Wrap).

Figure 2. "No Effect" wrapper

replace, or discard) on events; this enables automatic gener-

ation of instances of some kinds of wrapper speci£cations

given a connector speci£cation and a set of inputs includ-

ing the wrapper template and the affected elements of the

connector.

We will illustrate the basic structure of wrapper applica-

tion with three brief examples. These examples will then be

used to show composition of wrappers (section 6). Then we

will demonstrate parameterization of a wrapper and apply it

to a different connector protocol (section 7).

5. Examples

We begin with a trivial wrapper to illustrate the ba-

sic structure of its application to a connector speci£cation.

Then we introduce a connector with two classes of faults

and describe two fault-tolerance wrappers.

5.1. First Wrapper: "No Effect"

Figure 2 shows the representation of a wrapper that does

nothing. Such wrappers can be generated automatically

from the FSP representation of a connector. Though trivial,

this example provides a starting point for the construction

of more complex wrappers.

The intermediary process, Wrap, simply relays events

from the Caller role to the Glue role and vice versa. The

new Wrap is added to the composite process WrapPC, and

all events in the glue that begin with the label caller are re-

labelled to begin with wrap.caller so that the glue and the

caller no longer synchronize directly.

If the wrap events in WrapPC are hidden from observers

by means of the hiding operator, and the labelled transi-

tion system drawn by LTSA (Labelled Transition System

Analyzer, a tool provided with FSP) is compared to the de-

piction of the original connector, it becomes apparent by

inspection that the two are equivalent. Equivalence can be

checked more formally by treating one version as a safety

property of the other version.

Cal ler = (call -~ TryCall),

TryCall = (return -~ Cal ler I err --, Cal ler).

De£ner = (call ~ return ~ De£ne r I crash ~ END) \ { c r a s h } .

Glue = (caller.call ~ TryCall

I de£ner. return ~ cal ler . return ~ Glue),

TryCall = (de£ner.cal l - , G lue I cal ler .err ~ Glue) .

I [FaultyRPC = (cal ler :Cal ler II de£ner:De£ner II Glue).

Figure 3. Procedure call with timeouts

5.2. Another Connector

The remaining examples of wrappers will embody com-

mon dependability enhancements. In order to illustrate their

application, we introduce a connector in which the caller

occasionally receives errors (Figure 3).

The FaultyRPC connector is subject to timeout errors that

can occur whenever the caller is attempting to contact the

de£ner. 4 The timeouts are represented by the glue's choice

of the caller.err event. These timeouts may be transient

in nature, perhaps due to problems in the communications

channel, or may be due to the permanent silent failure of the

de£ner component.5

The task of a dependability-enhancing wrapper for this

connector is to hide the errors from the caller: it must be

possible for a err-unaware caller not merely to avoid dead-

lock but also to make progress.

We will apply two wrappers to this connector: one that

hides transient faults, and one that hides the failure of the

de£ner. Transient faults can be masked by re-sending the

request that had timed out. (This technique is in common

practice; examples, such as retransmission in TCP [16],

abound.) To mask the component failure, one possible tech-

nique is to provide a more reliable 6 backup, to be used when

a failure is diagnosed. (This technique is a stripped-down

instance of a general well-known method for introducing

redundancy, which includes recovery blocks and N-version

programming [10].)

5.3. Second Wrapper: "Retry"

We begin with a wrapper that will retry inde£nitely, and

then show how it may be revised to retry only a £nite num-

ber of times. The wrapper intercepts any timeout error sent

4Timeouts when the de£ner is replying to the caller can also be mod-
elled by adding another choice branch to the glue.

5The possibility of subsequent recovery of the failed component can be
modelled, but is not included in this example for simplicity. Also, although
a non-transient failure could also be due to a failure in the communications
channel (such as being severed by a backhoe), for this example we will
model only the failure of the component.

61t may be lacking in other key qualifies such as performance, for which
the primary may be generally preferred, as in [17].

378

to the client, and send out a new call event to the glue (to be

relayed to the de£ner) instead: see Figure 4.

The structure of the composite RetryRPC is essentially

identical to that of the WrapPC already seen (Figure 2).

The RetryAII process is very similar to the previous no-effect

Wrap process, with the addition of a new choice branch trig-

gered by the retry.caller.err sent by the glue. 7

This wrapper illustrates interception and replacement of

events without change to the interfaces of the connector s .

Wrappers can also enable the addition of new participants

(roles) to the communication, as shown in a subsequent ex-

ample.

5.3.1 Checking Results

Having applied this wrapper to our faulty connector, we

would like to know several things: Is the result sound, or

will it deadlock? Is the wrapper transparent to the caller

role, or has it changed the interface? Have errors been hid-

den from the caller role? Does the caller role always make

progress, or (as we expect) can the system become wedged:

unable to make progress? We can use the LTSA model

checker to con£rm that RetryRPC is deadlock-free as well

as to answer the remaining questions.

FSP allows us to de£ne "safety properties" that constrain

event ordering of legal events and prohibit illegal events.

The £rst part of a safety property is a p r o c e s s de£ning the

legal event ordering; the second part of a safety property is a

se t of any events that should be considered illegal. FSP also

allows us to de£ne "progress properties"; a progress prop-

erty speci£es a se t of desirable events, and the system is

considered to be making progress when at least one of these

events occurs in£nitely often. Safety and progress proper-

ties can be checked with LTSA.

To con£rm that the caller 's interface need not change, we

restate the original caller role as an FSP safety property. The

"process" part of this safety property would be the caller

role; we ' l l leave empty the "set" part of this safety property.

LTSA will show a safety violation and event trace, i f the

legal event ordering is not followed.

To con£rm that errors will not reach the caller role, we

write another safety property: the NoErrors property shown

in Figure 5. Here, event ordering is unconstrained (the "pro-

cess" part of the property is simply STOP), and there is one

7Wrapper processes such as this one may also be generated automati-
cally using tools that we are developing; £rst by generating the no-effect
wrapper particular to the desired connector and then by modifying the no-
effect wrapper according to a connector-independent template, e.g. adding
a choice branch as seen here.

Sin the case of in£nite Retry, one might choose to replace the orig-
inal role Ro with a more speci£c interface R1 that does not engage in
error events; in£nite Retry is nevertheless a transparent addition for our
purposes, because the event traces accepted by R1 are a subset of those
that Ro accepts, so a component that was compatible with Ro will still be
compatible with R1.

Caller = (call ---~ return ~ Caller).

De£ner = (call --, return --~ De£ner

I crash - , END) \ { c r a s h } .

Glue = (caller.call - , TryCal l

I de£ner.return --, cal ler . return ~ Glue),

TryCal l = (de£ner.cal l --, G lue I cal ler.err --, Glue).

RetryAII = (caller.call ~ retry.cal ler.cal l --, RetryAII

I retry.caller.return ~ cal ler . return -~ RetryAII

I retry.caller.err - , retry.cal ler.cal l ~ RetryAII).

IIRetryRPC = (cal ler :Cal ler II de£ner :De£ner

II Glue/ { re t ry .ca l ler /ca l ler } II RetryAII).

Figure 4. Apply ing RetryAII

property NoErrors = STOP + {ca l ler .err } .

progress Cal lerOk = {ca l ler . re turn}

I IRetryRPC = (cal ler:Cal ler II de£ner :De£ner

II Glue/{ ret ry .ca l ler /ca l ler } II Retry

I1 NoErrors).

Figure 5. Safety and progress

Caller = (call ~ return ~ Caller).

De£ner = (call -~ return ~ De£ner I crash -~ END) \ { c rash } .

Glue = (caller.call ~ TryCal l

I de£ner.return ~ cal ler . return ~ Glue),

TryCall = (de£ner.cal l ~ G lue I cal ler.err ~ Glue).

const T = 3
Retry = Retry[0],

Retry[n:O..T] = (caller.call ~ retry.caller.call ~ Retry[0]

I retry.caller.return ---, cal ler . return -~ Retry[0]

I when (n<T) retry.caller.err ~ retry.caller.caU ~ Retry[n+1]

I when (n==T) retry.caller.err -~ cal ler.err ~ Retry[O]).

I IRetryRPC = (cal ler:Cal ler II de£ner :De£ner

II Glue/{retry.cal ler /caUer} II Retry).

Figure 6. App ly ingRet ry

i l legal event, caller.err. L T S A will show a safety violation

and event trace, if an il legal event can occur.

To con£rm that the caller will m a k e p rogres s in the case

of a failed de£ner, we de£ne the progress property CallerOk.

Its set of desirable events contains simply caller.return. In

this example, just as we expect, LTSA reports a progress

violation and the trace shows the failure of the de£ner.

5.3.2 Revising the Wrapper

Figure 6 shows a revised wrapper that re-sends at most 3

times in a row, using a parameter ized local process that is

incremented on each retry (and is reset on each non-error

branch). It can be substituted for the RetryAII wrapper pre-

viously shown.

379

Caller = (call --~ return -~ Cal le0.

De£ner = (call ~ return ~ De£ner t crash ~ END) \ { c rash } .

Glue = (caller.call --, TryCal l

I de£ner.return --~ cal ler.return ~ Glue),

TryCall = (de£ner.cal l ~ Glue I caller.err -~ Glue).

Backup = (call -~ return ~ Backup).

BGlue = caller.call ~ de£ner.cal l ~ BGlue

I de£ner. return ~ cal ler.return --, BGlue).

Fai lover = (caller.call ~ pri .cal ler.cal l ~ Failover

t pr i .cal ler.return -~ cal ler.return -~ Failover

I pr i .cal ler.err ~ bk.caller.call -~ ToBk),

ToBk = (caller.call ~ bk.cal ler.cal l ~ ToBk

I bk.cal ler.return ~ cal ler.return ~ ToBk).

I IFai loverRPC = (cal ler :Cal ler II pr i .de£ner :De£ner II pr i :Glue

II bk.de£ner:Backup II bk:BGlue II Failover).

Figure 7. Applying Failover

Retransmission masks one of the two kinds of errors to

which the FaultyRPC connector is subject. The £nite-retry

wrapper produces a wrapped connector that is subject only

to errors that are (probably) symptoms of a failed de£ner.

We show later how this connector can be wrapped in turn

to mask de£ner failure. Such chaining is common practice

in fault tolerance, to achieve a greater coverage of possible

failure situations by using a combination of several tech-

niques drawn from broad classes (such as detection, diag-

nosis, containment, masking, compensation, and repair [5];

classi£cations vary but in general are ordered from the less

drastic, lighter weight to the last-ditch, heavier weight tech-

niques and are used in that order). This practice further mo-

tivates our compositional approach.

5.4. Third Wrapper: "Failover"

In order to mask the potential failure of the de£ner, we

introduce component redundancy, which requires adding

a new participant in the communication. The wrapper in

this example (Figure 7) triggers the switch from primary

to backup and performs the subsequent redirection of calls

from the caller component to the backup. The local process

ToBk, de£ned within the Failover process, redirects calls to

the backup. 9

9Note that we have modeled the simple case in which the primary never
recovers. Slight modi£cation of Failover would be required to handle the
case in which the primary may eventually recover: just as the Failover pro-
cess has a trigger to switch to ToBk, ToBk could be given a trigger to switch
back to the primary, or if the primary's recovery is also silent, ToBk could
employ a counter (similar to the Retry process) and periodically attempt
use of the primary.

I IReOver = (cal ler :Cal ler II pr i .de£ner :De£ner

II pri:(Glue/{ ret ry.eal ler /eal ler} II Ret~)
II bk.de£ner:Backup II bk:BGlue II Failover).

Figure 8. Composing Retry and Failover

property NoErrors = STOP + {cal ler .err } .

progress Cal lerOk = {ca l ler . re turn}

I1ReOver = (cal ler:Cal ler It p r i .de£ner :De£ner

It pri:(Glue/{ ret ry.cal ler /cal ler} 11 Retry)

II bk .de£ner :Backup I[bk :BGlue

II Failover II NoErrors).

Figure 9. Safety and progress, revisited

I lReReOver = (cal ler :Cal ler II pri.de£ner:De£ner
II pri:(Gluel{retry.callerlcaller} II Retry)

II bk .de£ner :Backup

II bk:(Glue/{retry.caller/caner} II RetryAU)

II Failove0.

Figure 10. Retry and RetryAII and Failover

6. Composition

Now we have wrappers that embody two reliability-

enhancing techniques, each suited to one of the failure

modes of the original faulty connector. Naturally we wish

to compose the two wrappers. Our incremental approach

makes this straightforward. Had we taken another approach

to specifying wrapped connectors, such as simply modify-

ing the existing glue processes rather than placing a new

intermediary process beside them, the results of applying a

single wrapper might have appeared simpler, but composi-

tion of wrappers would be quite dif£cult.

To compose these two wrappers, the reference to the

Glue process in FailoverRPC is replaced with the enhanced

"glue" of RetryRPC, as in Figure 8 (the elements that came

from RetryRPC's "glue" are shown in bold font).

These two wrappers are not commutative (readily evident

as the replacement of the Glue in RetryRPC with the en-

hanced "glue" of FailoverRPC yields a non-equivalent state

machine in LTSA), thus it is important to get the order of

application right; fortunately it is fairly intuitive to translate

the desired effect "try x; if that's not enough, try y" into the

right order "wrap with x, then wrap the composite with y".

Consider again the questions posed in section 5.3.1. By

reusing the NoErrors and CallerOk safety and progress prop-

erties, as shown in Figure 9, we con£rm that errors are still

hidden from the caller role, and furthermore that the caller

will now make progress.

Finally, this example assumes no transmission dropouts

between the caller and the backup de£ner (BGlue will not

380

set C = {ca~let}
set D = {de£ner}
set COut = {can}
set CIn = {return}

set N e w L a b e l = {wrap}
Wrap = ([r :C] . [e:COut] ~ [NewLabel] . [r] . [e] ~ Wrap

I [NewLabel] . [r :C] . [e :CIn] --, [r].[e] ~ Wrap).

[IWrapPC = (ca/ler:Callcr II de£ner:De£ner

I1Glue/{[NewLabel].[r:C]/[r]} II Wrap).

Figure 11. Parameterized "No Effect"

generate errors on its own). To eliminate the unrealistic

BGlue, we can replace it with an unreliable glue that has

been wrapped with the RetryAII wrapper (Figure 10; the el-

ements that came from RetryAIl's "glue" are shown in bold

font).

7. Parameterizing for Reuse

The wrapper processes in the preceding examples are

hardcoded for the speci£c connector that they wrap. It is

preferable to write more generalized and reusable wrapper

processes via parameterization, so that they can be applied

in a different context to a different connector type. We now

see how to generalize the earlier examples to accomplish

this in a straightforward way, and apply the result to a dif-

ferent connector.

7.1. Revisiting "No Effect"

Figure 11 shows how generalization can be performed

for the simple "no effect" wrapper. To apply the wrapper to

a connector, we must £11 in the italicized regions, de£ning

several global variables: the set C of "caller" roles, the set

COut of events that callers may initiate, the events CIn that

callers may receive, and a one-element set NewLabel con-

taining the label to tag the glue and the wrapper with. In the

Wrap process, values of variables are drawn from these sets

and are bound within a sequence.

For example in the £rst line of Wrap, for the £rst event,

any value of r drawn from C is acceptable, and any value of

e drawn from COut. In this application, each set has only

one element, so the only corresponding event is caller.call.

The next event in the sequence will pre£x the [r].[e] event

(bound to caller.call) with a label drawn from the one-

element set NewLabel. The result is wrap.caller.call.

Similarly, in the composite process WrapPC, the re-

labelling of the Glue can be parameterized to ensure it

matches the labels used in the Wrap process; the label drawn

from NewLabel will be added to the beginning of each event

pre£xed with any label in C. The £nal lines of the £gure

set C = {ca~Jet}
set C O u t = {ca/] }

set CIn = {return}
set CErr = {er r }

set L = { re t ry }

set Clnit = {ca~l}
const T = 3

Ret ry = h ide[e:Cln i t] - , Retry[O][e],

Retry [n :O. .T] [o lde:COut] =

([r :C] . [e:COut] ~ [L].[r].[e] - , Retry[O][e]

[L] . [r :C]. [e:CIn] --, [r].[e] -~ Retry [O] [o lde]

when (n<T) [L] . [r :C]. [e:CErr]

-~ [L].[r] . [olde] ~ R e t r y [n + l] [o l d e]

w h e n (n==T) [L] . [r :C] . [e:CErr]

[r].[e] ~ Re t r y [O] [o lde]) \ { h i de } .

II RetryRPC = (ca~let:Ca~let II dc£ner:Dc£ncr

II G lue/ { [L] . [r :C] / t r] } II Retry) .

Figure 12. Parameterized Retry)

show the pattern for the composite process of a wrapped

connector that uses this wrapper; the italicized roles should

be £11ed in with the names of the actual roles.

7.2. Revisiting "Retry"

Parameterization of the Retry wrapper, shown in Fig-

ure 12, is similar. This wrapper must remember which

event the caller attempted to transmit, so that that speci£c

event can be repeated. Note the set Clnit, used to ini-

tialize the cached event. Due to limitations of FSP syn-

tax, a hidden event (hide) is used to select an element of

Clnit to provide the initial value for the second parame-

ter of Retry[O..T] [COut] since non-numeric values cannot be

expressed directly in this circumstance. This value is not

used unless an error is received before the caller has sent

an event (which cannot happen in the example connectors

shown here).

7.3. Applying to a New Connector

Figure 13 shows a new example connector. Here oper-

ation must begin with an open event, and end with a close
event. During normal operation the client makes requests,

and the server responds with a range of numeric values.

Only the server can choose the returned value, and only the

client can choose when to close. Timeouts (shown in bold

font) may occur when the client is attempting to send re-

quests or to close the connection. This connector will dead-

lock, since the client role is not expecting an error. The

deadlock is eliminated when we apply the parameterized

retry wrapper of Figure 12.

381

r ange M = 0. .5

C l ien t = (o p e n ~ Run) ,

Run = (reques t ~ resu l t [v :M] ~ Run I h ide ~ C lose) ,

C l o s e = (c lose ~ END) \ { h i d e } .

S e r v e r = (open -~ Run) ,

Run = (r eques t ---, h ide [e :M] ~ resu l t [e] -- , Run

I c lose ~ E N D) \ { h i d e } .

G lue = (c l i en t .open -- , se r ve r . open ~ G lue

I c l i en t . r eques t ~ se r ve r . r eques t ~ G lue

] se rve r . resu l t [v :M] - , c l ien t . resu l t [v] --, G lue

I c l i en t . c lose ~ se rve r . c lose ~ END) .

I client.request ~ client.err ~ Glue

J client.close ~ client.err ~ Glue

IIConn = (c l ien t :C l ien t I[s e r v e r : S e r v e r II Glue) .

Figure 13. Another connector

se t C = {client}
set COut = {open, request, close}
set CIn = {result[v:M]}
set C E r r = {err}

set L = {retry}

set Cln i t = {open}
1] RetryRPC = (client:Client [I server:Server

II Glue/{[L].[r:Cy[d} II Retry).

Figure 14. Applying parameterized Retry

Figure 14 shows the elements that must be £11ed in to

apply the Figure 12 wrapper to the Figure 13 connector.

The Retry pattern can also be applied to connectors with

more than two roles, such as a client-server connector with

multiple client roles. However, if the glue process con-

strains the behavior of the role processes (perhaps by al-

lowing or disallowing nesting of calls), the wrapper process

must cooperate in enforcing this constraint. In the approach

we have been using this is achieved by patterning the wrap-

per on the results of exposing only a subset of events (those

engaged in by the roles that will be adjacent to the wrapper)

in the glue process, similar to the "no effect" wrapper.

7 . 4 . D e t e c t i n g E r r o r s

Mistakes in the construction and application of param-

eterized wrappers can still be caught by the safety and

progress analyses described earlier. This becomes increas-

ingly useful as wrappers are composed and the speci£cation

size increases.

For example, Figure 15 shows a plausible mistake in

the application of a parameterized Fai lover . The event er r

(shown in bold font) is listed in the set of events that are ac-

ceptable as input to the caller; this would allow some error

events to be relayed to the caller, at the whim of the FaUover

set C = {caner}
set C O u t = {call}
set CIn = {return, err}
set CEr r = { e r r }

Ca l l e r

D e £ n e r = (cal l -~ re tu rn - , D e £ n e r I c rash -~ E N D) \ { c r a s h } .

G lue = (ca l ler .ca l l ~ TryCa l l

I d e £ n e r . r e t u r n --~ ca l le r . re tu rn - , G lue) ,

T ryCa l l = (de£ner . ca l l ~ G l u e I ca l le r .e r r ~ G lue) .

Backup = (cal l ---~ re tu rn ~ Backup) .

BG lue = (ca l le r .ca l l ~ de£ne r . ca l l ~ B G l u e

I d e £ n e r . r e t u r n ~ ca l le r . re tu rn ---~ BGlue) .

Fa i lover = ([r :C] . [e :COut] ~ pr i . [r] . [e] ~ Fa i lover

I pr i . [r :C] . [e :C In] ~ [r] . [e] ~ Fa i lover

I p r i . [r :C] . [CEr r] ~ bk . [r] .ca l l - , ToBk) ,

ToBk = ([r :C] . [e :COut] ~ bk. [r] . [e] -~ ToBk

I bk . [r :C] . [e :C In] ~ [r] . [e] ~ ToBk).

I IFa i loverRPC = (ca l l e r :Ca l l e r II p r i . d e £ n e r : D e £ n e r II p r i : G l u e

II b k . d e £ n e r : B a c k u p II b k : B G l u e II Fai lover) .

Figure 15. Parameterized Failover

process. This mistake is caught by the NoErrors property

(used to check that the wrapper does its intended job, as

seen earlier in Figure 5), no matter whether the caller pro-

cess accepts err, as in Figure 3, or ignores err, as in Figure 7.

Once diagnosed, the problem can be resolved by removing

err from Gin.

7.5. I n R e v i e w

The initial examples of wrappers were hard-wired and

could only be used for one particular connector speci£ca-

tion. In implementation, this would correspond to particu-

lar pieces of code that could be applied in systems where a

particular connector implementation is used (such as a Java

RMI connector, an example of an RPC-style connector), but

could not be applied to some other arbitrary connector im-

plementation (such as a Unix pipe, or even a different im-

plementation of RPC).

Here in section 7 we have shown how to write parame-

terized wrappers that are applicable to, and reusable across,

multiple connector types. This generalization is straight-

forward to accomplish. The parameterized wrappers are

not dif£cult to apply to connector speci£cations. Further-

more, even if a mistake is made, it can be readily detected

(as shown in 7.4).

In implementation, this generalization into parameter-

ized wrapper patterns, which are then applied to particu-

lar connector types, could correspond to the use of a tool

or "wizard" that is prompted with a wrapper pattern plus a

small amount of information about a connector, This tool

would then generate an instance of a wrapper implemen-

382

tation suitable for that particular connector implementation

(which may be a CORBA connector, a Java Message Ser-

vice connector, etc.). We use this approach in [20].

8. Discussion

An important consideration when producing a formal

speci£cation, or a family of formal speci£cations (as we

have proposed), is the resulting engineering properties of

the formal artifact. Our approach has two important proper-

ties: compositionality and traceability. Here composition-

ality refers to the ability to combine wrappers to create a

more complex composite wrapper, as in Figure 8. Trace-

ability refers to the ability to determine where something

"came from", so that if a problem is discovered, its source

can be located in a particular section of the model, and the

corresponding affected section of the implementation can

be determined, and vice versa.

As we have demonstrated in the example of section 6,

this wrapper speci£cation technique exhibits ease of com-

position. The effects of event redirection, insertion, replace-

ment, deletion, etc., are achieved by interposing a new pro-

cess, rather than by actually editing an existing process. As

a result composition of the wrappers is straightforward. To

apply an existing wrapper it is only necessary to classify

events into a small number of sets and to perform a renam-

ing on the glue. (It is naturally also easy to remove a wrap-

per.) If layers of enhancement were added instead by, for

example, performing directives that state how to mutate the

glue process into a monolithic enhanced glue process (such

as, after each event e of type T, add a new event f(e)),
either automatically or by hand, the result would become

increasingly dif£cult to modify further, and removal of an

arbitrary enhancement would not be straightforward.

Traceability between the protocol speci£cation and the

implementation is promoted by the essential similarity of

their respective structures. When wrappers are actually im-

plemented, it is generally as a layer of enhancements inter-

posed between the component interface and the communi-

cation infrastructure; this interposition may be supported by

interceptors or system-level trickery, but in any case leaves

the component and the infrastructure essentially undigested

and unchanged. By using a similar wrapping technique in

the protocol speci£cation, its structure remains similar to

the structure of the implementation (implementation wrap-

pers correspond to wrapper processes in the speci£cation),

enabling the tracing of attributes from a substructure of one

to the corresponding substructure of the other.

It is worth noting that, while there are many contexts in

which wrappers must ideally achieve a transparent effect,

in other cases it is desirable for information available to one
wrapper to be exposed to a subsequent wrapper (when or-

dinarily this information would deliberately be concealed).

Often this can be achieved, without adversely impacting

any intervening wrappers, by using parametefization that is

already in place. For example 1°, consider a system with

three high-performance De£ner components and one slow

but reliable Backup component. We apply the parameter-

ized Retry and Failover wrappers to each of three FaullyRPC

connectors. Now we wish to apply a new t_oadBalancer

wrapper which, given a caller.call event, redirects it to one
of the three wrapped connectors and thus, ultimately, to ei-

ther the corresponding DeEner or the single Backup com-

ponent. Clearly it would be wise to expose the failure of a

component to koadBalancer so that it has the opportunity

to refrain from using it. This can be done by adding a tag

to [r].[e] in the Failover process, and extending the set CIn of

any wrappers between Failover and LoadBalancer to include

these tagged events.

Finally, one important question is, can this formalism

correspond to implementation as hinted at in section 7.5?

To what extent can it be related back to the "real world"?

To answer this question is beyond the scope of this paper,

but in other work [20], transformation patterns are encoded

as operations on stub generation tools. For example we have

shown how to create and apply transformation patterns that

are very similar to the kinds of wrappers described here.

Using the stub generation tools, implementations of these

transformations have been generated for Java RMI, a com-

monly used RPC-style connector implementation, and this

work has been extended to Java Message Service, an event-

style connector.

9. Conclusion

This work provides a formal framework for reasoning

about wrappers and their effect on interaction mechanisms

via protocol enhancement. We have illustrated the use

of this technique for dependability-oriented wrappers and

shown how compositionality is achieved, and how analyses

may be used to con£rm desired attributes, such as whether

a wrapper preserves existing interfaces while also masking

communication errors. This approach allows practitioners

to break a complex modi£cation into incremental, more eas-

ily understood parts, and reason about wrappers' effects in

advance of their implementation.

More generally, this work also provides an example of a

formal abstraction or model that has a good engineering ba-

sis, providing not just a means of principled reasoning, but

one that also has an increased degree of compositionality,

checkability, traceability, and maintainability.

An additional contribution of this work is to demonstrate

usefulness of the Wright approach, which separates a con-

nector into interfaces and their interactions.

l°Thanks are due to an anonymous reader of an earlier draft who sug-
gested this scenario

383

Several questions were posed in section 3. We have ad-

dressed a number of them, showing how to answer them for

at least the speci£c examples shown.

* Soundness: Given a connector and a wrapper, we

have shown how to construct a wrapped connector,

on which a model checker can be used to determine

whether the wrapper introduces new deadlocks.

• Transparency: The interfaces of a wrapped connector

can be checked to ensure conformance.

• Compositionality: We show how to compose several

types of wrappers and reason about that composition,

including determination of noncommutativity. Check-

ing other algebraic properties, such as idempotence

and inverses, can be addressed in a manner similar to

transparency conformance checks.

Work is ongoing to complete a set of genericized pro-

tocol transformation patterns comparable, and complemen-

tary, to the common patterns of connector implementation

enhancement described in other work [20]. The examples

given here illustrate the rudiments of the approach, giving

semantics for a subset of the enhancement patterns, and thus

supporting increased understanding of the results of their

application and composition. Our other wrapper speci£-

cations (not included here due to space) include compres-

sion, encryption, logging, authorization, and voting wrap-

pers, dynamic protocol selection and a limited set of proto-

col mismatch-repair wrappers.

10. Acknowledgments

This research has been supported by NSF under grant

CCR-0113810, by DARPA under contract F30602-00-2-

0616, and by NASA under the High Dependability Com-

puting Program from NASA Ames cooperative agreement

NCC-2-1298. The views and conclusions contained in this

document are those of the authors and should not be inter-

preted as representing the of£cial policies, either expressed

or implied, of NSF, DARPA, NASA, or the U.S. govern-

ment. We would like to thank Philip Koopman, Mary Shaw,

Jeannette Wing, and the members of the ABLE group.

References

[1] R. Allen and D. Garlan. A formal basis for architectural con-

nection. ACM Transactions on Software Engineering and

Methodology, July 1997.

[2] R. DeLine. Resolving Packaging Mismatch. PhD thesis,

Carnegie Mellon, School of Computer Science, 1999. Issued

as CMU Technical Report CMU-CS-99-141.

[3] T. Fraser, L. Badger, and M. Feldman. Hardening COTS

software with generic software wrappers. In IEEE Sympo-

sium on Security and Privacy, pages 2-16, 1999.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-

match, or, why it's hard to build systems out of existing

parts. In Proceedings of the 17th International Conference

on Software Engineering, Seattle, Washington, April 1995.
[5] W. L. Heimerdinger and C. B. Weinstock. A conceptual

framework for system fault tolerance. Technical Report

CMU/SEI-92-TR-33, Carnegie Mellon University, 1992.
[6] C. Hoare. Communicating Sequential Processes. Prentice

Hall, 1985.
[7] H. Hueni, R. E. Johnson, and R. Engel. A framework for net-

work protocol software. Proceedings ofOOPSLA'95, pages

358-369, 1995.
[8] G. Hunt and D. Brubacher. Detours: Binary interception

of win32 functions. In Proceedings of the 3rd USENIX

Windows NT Symposium, pages 135-143, Seattle, WA, July

1999.
[9] A. Lopes, M. Wermelinger, and J. L. Fiadeiro. A composi-

tional approach to connector construction. In Recent Trends

in Algebraic Development Techniques, volume LNCS 2267,

pages 201-220. Springer-Verlag, 2001.
[10] M. R. Lyu. Software Fault Tolerance. John Wiley and Sons,

1995.
[11] J. Magee and J. Kramer. Concurrency: State Models and

Java Programs. John Wiley and Sons, 1999.
[12] R. Milner. Communication and Concurrency. Prentice Hall,

1989.
[13] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Ex-

ploiting the interact inter-ORB protocol interface to provide

CORBA with fault tolerance. In Proceedings of the 3rd

USEN1X Conference on Object-Oriented Technologies and

Systems (COOTS). USENIX, 1997.
[14] S. W. O'Malley and L. L. Peterson. A dynamic network

architecture. ACM Transactions on Computer Systems,

10(2):110-143, May 1992.
[15] J. Pan, P. Koopman, D. Siewiorek, Y. Huang, R. Gmber,

and M. L. Jiang. Robustness testing and hardening of

CORBA ORB implementations. In Proceedings of the Inter-

national Conference on Dependable Systems and Networks

(ICDSN/FTCS), pages 141-150, July 2001.
[16] J. Postel. Transmission control protocol. Technical report,

RFC-793, 1981.
[17] L. Sha, J. Goodenough, and B. Pollack. Simplex archi-

tecture: Meeting the challenges of using COTS in high-

reliabifity systems. Crosstalk, April 1998.
[18] M. Shaw. Procedure calls are the assembly language of sys-

tem interconnection: Connectors deserve £rst-class status.

In Proceedings of the Workshop on Studies of Soj2ware De-

sign, May 1993.
[19] M. Shaw. Architectural issues in software reuse: It's not just

the functionality, it's the packaging. In Proceedings of the

Symposium on Software Reuse (SSR'95), April 1995.
[20] B. Spitznagel and D. Gadan. A compositional approach for

constructing connectors. In The Working IEEE/IFIP Confer-

ence on Software Architecture (WICSA'01), pages 148-157,

Royal Netherlands Academy of Arts and Sciences Amster-

dam, The Netherlands, August 2001.
[21] R. van Renesse, K. Birrnan, M. Hayden, A. Vaysburd, and

D. Karr. Building adaptive systems using Ensemble. Tech-

nical report, Cornell/TR97-1638, 1997.

384

