A Compositional Framework for Hardware/Software
Co-Design *

A. Cau (cau@dmu.ac.uk), R. Hale (rhale@dmu.ac.uk), J. Dimitrov
(jordan@dmu.ac.uk), H. Zedan (zedan@dmu.ac.uk) and B.

Moszkowski (benm@dmu. ac.uk)
Software Technology Research Laboratory
SERCentre, De Montfort University, England

M. Manjunathaiah (manju@comlab.ox.ac.uk) and M. Spivey

(m.spivey@comlab.ox.ac.uk)
Programming Research Group
Computing Laboratory

Ozford University, England

Abstract. We describe a compositional framework, together with its supporting
toolset, for hardware/software co-design. Our framework is an integration of a formal
approach within a traditional design flow. The formal approach is based on Interval
Temporal Logic and its executable subset, Tempura. Refinement is the key element
in our framework because it will derive from a single formal specification of the
system the software and hardware parts of the implementation, while preserving all
properties of the system specification. During refinement simulation is used to choose
the appropriate refinement rules, which are applied automatically in the HOL sys-
tem. The framework is illustrated with two case studies. The work presented is part
of a UK collaborative research project between the Software Technology Research
Laboratory at the De Montfort University and the Oxford University Computing
Laboratory.

Keywords: HW/SW Co-Design, Refinement, Compositionality, Executable Speci-
fication, HDL

1. Introduction

Design and analysis of embedded, mixed hardware/software systems,
such as PC cards and associated software drivers, is hard. A major rea-
son for this is the ever increasing complexity of hardware and software
systems coupled with the historical divide between hardware and soft-

* Funded by the U.K. Engineering and Physical Sciences Research Council
(EPSRC) through Research Grants GR/M/32474 and GR/M/32481

';:‘ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

journal.tex; 15/04/2002; 14:50; p.1

2 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

ware design. Very often there are conflicting goals, and trade-offs have
to be made to find the best compromise between them. Some typical
aspects which have to be balanced are performance, cost, flexibility,
distribution, power consumption, size and fault tolerance.

An important issue for correct co-design is the search for a highly
compositional lean formal approach that crosses the hardware/software
boundary and enables us to keep up with the fast growth in the com-
plexity and variety of electronic devices and their associated software.
By compositional approach we include any method by which the prop-
erties of a system can be inferred from properties of its components,
without additional information about the internal structure of those
components [13]. And by lean formal approach, we take the view that
the method must be supported by automated tools that make the
method more widely accessible to users. Such tools should support
rapid prototyping, a compositional design process and formal verifica-
tion.

In the hardware industry, simulation has often been considered syn-
onymous with verification. The design process usually still consists of
developing an implementation from an informal specification without
the use of any formal design techniques. The hardware and software
are then simulated for a number of inputs, an approach known as co-
simulation [45, 1, 16]. Bugs discovered are removed and the simulation
process is repeated over again.

However, formal verification cannot completely replace the exist-
ing simulation approach. This is because simulation provides more
accessible tools for rapid prototyping and testing. What is needed is
an approach where the design process is soundly based upon formal
techniques, but includes integrated support for simulation. This com-
bination would bring more reliability within an environment which is
consistent with current practice. The provision of automated tools is
absolutely essential for making a formal theory accessible to a wider
audience. Such tools can assist even specialists who wish to develop
and verify specifications or who are dealing with large systems with
many details. Tools like Tempura [40, 24] and METATEM [3]) allow
restricted but useful classes of logical formulas to be executed, which
facilitates the debugging of specifications.

In this paper, we describe an integrated compositional framework,
together with its supporting toolset, for hardware/software co-design.
The co-design process is soundly based upon formal techniques, but also
supports simulation. A unique characteristic of our framework is that
it can validate and analyze system’s behaviors within a single logical
formalism, namely Interval Temporal Logic (ITL) and its executable
subset, Tempura. An integrated suite of tools supporting our develop-

journal.tex; 15/04/2002; 14:50; p.2

A Compositional Framework for Hardware/Software Co-Design 3

ment strategy is provided: For simulation and analysis, AnaTempura is
used while for formal verification and mechanical refinement we use an
embedding of ITL in HOL [20]. Note that refinement is an interactive
process and thus can’t be fully automated.

1.1. RELATED WORK

Our approach is inspired by existing co-design systems, such as SpecC
[18], Polis [2] and LYCOS [36]. The traditional design flow is that
a project starts with Informal Specification, also called requirement,
which defines the behavior and the functionality of the product. Imme-
diately after the specification, a designer should split the application
into hardware and software [17]. Our work integrates formal methods
into this design process. Our focus in this paper, however, is on refine-
ment from a formal specification into a formal hardware part and a
formal software part.

Many existing co-design systems, such as Polis [2], LYCOS [36],
include some formal verification capability, which is most often achieved
by use of an external tool, such as a model-checker. The model-checker
can only be used when the design is already quite concrete and such
an approach can not maintain the integrity of the whole design. In
contrast, our approach enforces correctness of the design process by
working entirely within a formal system.

There have been successful hardware/software verification efforts in
academia and more recently in industry. The majority have used model-
checking techniques [11, 34, 27|, but also for example functional calculi
[12, 30] and Abstract State Machines [5], and recently more powerful
tools such as HOL [20] have been gaining ground.

As well known, one can use several abstraction levels when devel-
oping a system in Verilog HDL [31]. The Verilog Formal Equivalence
project has been concentrating on different semantics for the different
abstraction levels in Verilog [19]. Sagdeo and Thomas in [44, 47] give
detailed design flows where the main stages are Behavioral design and
RTL design. In [44, 47], a third abstraction level is included called
Gate Level Verilog or Structural design. The reason we do not con-
sider structural descriptions is that there are commercially available
synthesis tools which transform RTL down to netlists and this step has
already been automated, via the Synopsys synthesizer for example. The
restrictions imposed on RTL specifications imply their synthesisability.
However, behavioral descriptions, including event controls and high
level language constructs, are generally not synthesisable.

According to the design flow given in [44], designers have to trans-
form the Behavioral description into RTL using high level synthesis

journal.tex; 15/04/2002; 14:50; p.3

4 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

tools. At every step of the design process, simulations and tests are
performed to check the correctness of the transformations with respect
to the requirements. Although these tests can be automated to a consid-
erable degree, there are many cases when testing only does not provide
the necessary level of correctness. More often than not, crucial test
cases are overlooked which, in the case of a critical system, may result
in human lives and/or money being lost.

We have given formal semantics to Verilog in both Denotational (in
the form of specification-oriented) and Operational terms [14, 15]. These
two reflect the duality of the usage of specification languages, i.e., we
need to both describe properties and machines which implement, or
compute, these properties. We have used these semantics for Verilog
to derive our refinement rules. We are building support for refinement
by embedding it in the HOL [20] system [23]. Several other work on
the semantics of Verilog exists namely at UNU/IIST [6, 33, 29, 28] and
Cambridge [19].

There is increasing industrial interest in I'TL, for example Verisity
has adopted concepts from ITL in their Temporal e language [26]. IBM
has introduced a temporal logic called Sugar [4] containing ITL-like
operators which are targeted at making the logic more usable to design
engineers.

1.2. PAPER ORGANISATION

In Section 2 we give an overview of our computational model which
serves as an architecture for hardware/software co-design. In Section 3
we describe our specification language. The semantics for the HDL of
choice Verilog is given in section 4. The refinement calculus will be
given in Section 5 and two case studies are given in Section 6.

2. Framework for Hardware/Software Co-design

In this section we outline our framework for hardware/software co-
design. Our framework is an integration of a formal approach with
a traditional design flow. This section gives a brief discussion of the
whole framework but the paper will give a detailed exposition of the
key element of our approach: refinement.

The process of modeling a system, albeit sequential or concurrent,
timed or untimed, needs a suitable computational model. We take
the view that a computation defines mathematically an abstract ar-
chitecture upon which applications will execute. A system is a collec-
tion of agents (which is our unit of computation), possibly executing

journal.tex; 15/04/2002; 14:50; p.4

A Compositional Framework for Hardware/Software Co-Design)

concurrently and communicating (a)synchronously via communication
links. Systems can themselves be viewed as single agents and composed
into larger systems. Systems may have timing constraints imposed at
three levels; system wide communication deadlines, agent deadlines and
sub-computation deadlines (within the computation of an individual
agent).

At any instant in time a system can be thought of as having a
unique state. The system state is defined by the state variables of the
system and, for concurrent system, by the values in the communication
links. Computation is defined as any process that results in a change
of system state. An agent is described by a computation which may
transform a private data-space and may read and write to communica-
tion links during execution. The computation may have both minimum
and maximum execution times imposed.

It is important to note that when we talk about system we do not
make any distinction between software or hardware. We simply talk of
a set of agents collaborating to achieve the desired behavior. Some of
those agents may be realized (or implemented) in software and some
in hardware.

Fundamental to our proposed investigation is that a synthesis and
design methodology should start with a high-level abstract specifi-
cation which describes the desired behavior(s) of the system under
consideration. The target system is derived via design decisions made
through correctness preserving refinement steps. Our proposed devel-
opment strategy is depicted in Fig. 1 below.

The design process begins with a high-level abstract specification
written in ITL. Properties of interest can be compositionally verified
using the ITL’s compositional proof rules in assumption/commitment
style [41]. At this level we make no distinction between software or
hardware. Using a sound refinement calculus, the I'TL specification can
then be refined into a set of Tempura modules (an executable subset
of ITL) and simulated and analyzed (using AnaTempura, a part of
the ITL Workbench). During this process, various design decisions are
made, e.g. synchronous/asynchronous, sequential /parallel, etc.

This is followed by a ‘module analysis’ phase in which a set of quanti-
tative and statistical data may be obtained (in [42] various techniques
are given which can be utilized). Using existing work on partition-
ing [22] we split this Tempura set into two sets of modules, namely
Tempura-H and Tempura-S. These are best realized in hardware and
software implementation, respectively. The interface between these sets
will depend on the target architecture and is formulated as, what we
call an interface theorem which in turn can be verified compositionally
using the I'TL proof rules.

journal.tex; 15/04/2002; 14:50; p.5

6 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

High—Level Specification

(ITL) ITL Workbench
Refinement
ITL-HOL Verification
Tempura (MONA/SPIN) | vajidation

Tempura Simulation

Module Analysidand Partitionin AnaTempura | Analysis

N

Tempura-H —+—" Tempura-S
Interface

Refinement
Refinement

Behavioural Specification C, C++, Java, Ada

TN

Handel Verilog/VHDL
c —
2 5
©
5 5
o) 4
(0]
a .
2 Register Transfer —
g (Verilog/VHDL-RTL)
Gate/Transistor

Existing Technologies

:

Layout —

Figure 1. The development strategy

As depicted in Fig. 1, the abstraction gaps existing between Behav-
ioral, RTL and Gate levels are bridged using sound refinement rules.
For this to be realized, a unifying semantics for the various notations
(used at each level) is needed. Such a unifying semantics is detailed in
section 4 for our chosen HDL Verilog.

Using sound refinement /transformation rules, the modules in the
Tempura-S set are transformed into software components written in
popular languages, such as Java, C or C++ [8, 7]. Similarly, modules
in the Tempura-H set are further refined into hardware description
languages such as Verilog, VHDL or Handel [9]. As depicted in Fig. 1,

journal.tex; 15/04/2002; 14:50; p.6

A Compositional Framework for Hardware/Software Co-Design 7

a refinement calculus is also used to bridge the gap between the various
abstraction levels in these technologies.

3. Specification Formalism

In this section we will introduce our specification formalism. As we
mentioned earlier, our proposed approach is based on a single logical
framework whose underlying logic is Interval Temporal Logic (ITL).
In this section we provide a short description of the logic but a more
detailed exposition may be found in [40].

ITL is a flexible notation for both propositional and first order
reasoning about intervals (behaviors) found in descriptions of hard-
ware and software systems. It can handle both sequential and parallel
composition unlike most temporal logics. It offers powerful and exten-
sible specification and proof techniques for reasoning about properties
involving safety, liveness and timeliness.

ITL is a linear-time temporal logic with a discrete model of time.
An interval o in general has a length |o| > 0 and a (in)finite, nonempty
sequence of |o| 4 1 states oo, ... ,0|o|- Thus the smallest intervals have
length 0 and one state. Each state o; for i < |o| maps variables
a,b,c, ..., A B,C,...todatavalues. Lower-case variables a, b, ¢,. . . are
called static and do not vary over time. Basic ITL contains conventional
propositional operators such as A and first-order ones such as V and
=. Normally expressions and formulas are evaluated relative to the
beginning of the interval. For example, the formula J = I + 1 is true
on an interval o iff the J’s value in ¢’s initial state is one more that I'’s
value in that state.

There are three primitive temporal operators skip, “;” (chop) and “*”
(chop-star). Here is their syntax, assuming that S and 7" are themselves
formulas:

skip S;T S .
The formula skip has no operands and is true on an interval iff the
interval has length 1 (i. e., exactly two states). Both chop and chop-star
permit evaluation within various subintervals. A formula S;T is true
on an interval o with states o0y, ..., 0|, iff the interval can be chopped
into two sequential parts sharing a single state oy, for some k < |o| and
in which the subformula S is true on the left part og,...,o0r and the
subformula 7" is true on the right part oy, ..., 0. For instance, the
formula skip; (J = I + 1) is true on an interval o iff o has at least two
states 0g,01,... and J = I + 1 is true in the second one o7. A formula
S* is true on an interval iff the interval can be chopped into zero or
more sequential parts and the subformula S is true on each. An empty

journal.tex; 15/04/2002; 14:50; p.7

8 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

interval (one having exactly one state) trivially satisfies any formula of
the form S* (including false™).

Figure 2 pictorially illustrates the semantics of skip, chop, and chop-
star. Some simple ITL formulas together with intervals which satisfy
them are shown in Fig. 3.

skip e
S, T . ° . . ° .
_A/
S T
S*
//_/
S S S

Figure 2. Informal illustration of ITL semantics

[:1 [] [] []
1 2 4
I=1nski ¢
nsp I 1 2
kip: T = 1
SKIPs 12 1 2 4
(OI=1) N~ —
skip I =1
t [1 [] [] [] [] [] []
Zﬁ#ﬁ) L1 1 1 3 1 1
W
true I+#1
‘\t 'I 1 [] [] [] [] [] []
((D;“i’lié) r1o1o1 o111

Figure 3. Some sample ITL formulas and satisfying intervals

We generally use w, v/, z, 2’ and so forth to denote state formulas
with no temporal operators in them. Expressions are denoted by e, €’
and so on.

In [41] we make use of the conventional logical notion of definite
descriptions of the form ww:.S where v is a variable and S is a formula.
These allow a uniform semantic and axiomatic treatment in ITL of
expressions such as Oe (e’s next value), fin e (e’s final value) and len
(the interval’s length). For example, Oe can be defined as follows:

Oe 1a:0(e =a)

journal.tex; 15/04/2002; 14:50; p.8

A Compositional Framework for Hardware/Software Co-Design 9

where a does not occur freely in e. Unit assignment is defined as follows:

de
e:=¢ = Qe=¢.

—

Here is a way to define temporal assignment using a fin term:

d
e—¢c = (fine)=¢ .

—

The operator stable tests whether an expression’s value changes:

[N
=

stabee = Fa-0O(e=a) ,

where the static variable a is chosen so as not to occur freely in the ex-
pression e. The formula e gets €’ is true iff in every unit subinterval, the

initial value of the expression €’ equals the final value of the expression
e:

[oW
(=)

egetse = O(more D e:=¢) .

The concrete constructs choice and while are defined as follows:

if fo then fi else fo o

while f() do f1

(for f1) v (= fo A fo)
(fo r f1)* A fin(=fo)

The parallel construct can simply be expressed as conjunction:

def

[oW
[

€

foll i = forhi
Figure 4 shows examples of these operators.
I K L] L] L] L]
stable K4 4 4 4 4
K K 1 L] L] L] L]
TR K2 6 1 8 3
K gets K +1 e

K:4 5 6 7 8

Figure 4. Sample formulas illustrating stable, etc.

4. Verilog Semantics

One of the key strengths of our approach is that both development and
its formal verification are uniformly performed within a single logical

journal.tex; 15/04/2002; 14:50; p.9

10 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

framework. However, as we are utilizing some existing technologies for
hardware synthesis, namely Verilog HDL (see Fig. 1), it is paramount to
define a formal semantics for Verilog within the same logical framework.
This gives us also the added value of ensuring that the various abstrac-
tion gaps during the development, for example between Tempura-H and
Verilog’s behavioral specification (see Fig. 1), are ‘soundly’ bridged via
refinement (see Section 5).

4.1. VERILOG SYNTAX

Here we define the syntax of the language we consider. A richer set of
Verilog constructs is considered in [15] while here we simplify the lan-
guage for the sake of brevity. All constructs are given in BNF style de-
scription. Because of the specifics of Verilog we consider two syntactical
categories namely statement, and atom.

Table I. Syntax of statement and atom

statement ::= empty | 7 | block_assign | if | while | begin_end
empty =¢
7 = Q(e_exp) | #exp
block_assign ::= v = exp
if :=if (bool) statement else statement
while ::= while (bool) statement

begin_end ::= begin {statement; } end

atom ::= assign v = exp | always statement | initial statement

A statement is one of the sequential statements of Verilog. These
are all statements one may find in a begin_end block for example. All
statements are given in table I. There e_exp is a boolean expression over
event variables, exp is an expression, bool is a boolean and event is an
event variable normally declared as event e; in a Verilog program. Time
delays and event controls are denoted in a standard Verilog manner.

An atom is the smallest unit of parallelism in Verilog. These are the
continuous assignment, always and initial constructs. Both Behavioral
and RTL language constructs are included. Typically a Verilog pro-
gram is a collection of atoms with appropriate variable declarations.
All atoms run in parallel and share the variables as well as a common

journal.tex; 15/04/2002; 14:50; p.10

A Compositional Framework for Hardware/Software Co-Design 11
clock. A Verilog program is denoted as follows:

program ::= module name (x);
global variables;
atomsy ; ... atomy;
endmodule

4.2. TRANSLATING VERILOG INTO TEMPURA

We define a function that translates Verilog constructs into Tempura
equivalents, hence giving semantics for Verilog. The obtained semantics
follows a declarative style.

DEFINITION 1. If statement s a valid Verilog statement, then
|statement|| gives its Tempura equivalent.

We would like to introduce here a naming convention for all local
variables in an atom. Suppose M is an atom and V is a local variable
for M. Then we will write M.V instead of V only. For simplicity, we
will assume variables in our Tempura specifications unless we explicitly
specify the type of the variables in the context.

Suppose we now have a Verilog specification. It defines a set of
atoms. Our general idea is to translate all atoms into Tempura formulas
and combine them with Tempura’s A connective. Assuming the syntax
of a Verilog program is as the one given above, the semantics of it will
be given as

Iprogran| ;=
JAtom,.status, ..., Atom,.status,
global variables, Disable, Time -

{
global variables = L A clock(Disable) a
O(Disable = (Atom;.status = active v . ..

v Atom;.status = active)) A

llatomq || A ||atoma]|| A ... A ||atomy,]|

where global variables is a list of all global for the program and global
variables = L is a shortcut for the initialization to undefined value for
all such variables.

journal.tex; 15/04/2002; 14:50; p.11

12 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

4.2.1. Explicit clock

We will have an atom called clock which will keep the time in a global
variable Time. The rationale behind a global clock is that every piece
of digital hardware has a clock for synchronization.

clock(Disable) = Time = 0
[
while (Disable) do skip;
Time := Time + 1 ; skip
]*
The clock in our specification has one parameter namely the state
variable Disable which synchronizes all atoms. When Disable is true
then the clock is simply doing nothing. Once all atoms are suspended,
then Disable turns into false and the clock advances the time.
The full semantics for all atoms is given in [14] so we will only
mention the semantics of assign for illustrative purposes.

4.2.2. Assign

As shown in table I, the form of the assign statement is assign v =
exp(vi,...,v,). The Tempura equivalent for it has one free variable,
i.e. M.status, which synchronizes its atom with the global clock. L
denotes undefined value.

llassign v = exp(vy,...,v,)| ==
dAMwy, ..., M.y, « M.status = active A
Mvi=1LA...AMuv,=1LArv=_1L~n
[if (v1 = M.vy,. .., v, = M.,) then M.status := suspend
else (
v:=exp(vi,...,v,) A M.status := active A
Muvi:=viA... A Muv, =v,
]*)
Informally, we can see here an indefinite loop defined by [...]* in which
we check if the assignment is scheduled for the current time instance
or the triggering variables have changed. If neither of these occurs, we
simply suspend the assign atom. Otherwise, depending on the condi-
tion, we either activate the assignment or we reschedule it for a later
time instance.

journal.tex; 15/04/2002; 14:50; p.12

A Compositional Framework for Hardware/Software Co-Design 13

5. Formal Refinement and Analysis

5.1. REFINEMENT CALCULUS

Each step of the design process (see Fig 1) involves the application of
a single refinement rule in our calculus. The rules are applied automat-
ically (within the HOL system) but the choice of which rule to apply
at each step is not automated. So far, we have implemented a basic
library of refinement rules. These are very general but represent too
small steps for a real system and we envisage that these rules would be
combined into higher-level and application-specific design steps, per-
haps encompassing whole design strategies. More experience is needed
to implement such higher-level rules.

The refinement relation C is defined as follows: A system Sys is
refined by a more concrete system Sys’, denoted Sys E Sys’, if and only
if Sys’ O Sys. A set of sound refinement laws have been derived [§]
to transform an abstract system specification into concrete systems.
Furthermore a number of refinement rules were developed in HOL [25].

Two observations are in order:

1. Once we have completed the formal specification phase, various
properties could be proven about the specification itself. This can
provide an extra assurance that the final specification meets the
required informal requirements.

2. At each refinement step, we can simulate the resulting (sub)system.
This gives some guidelines on the choice of the subsequent refine-
ment rules.

We have implemented rules that are applicable in both control- and
data-dominated applications, though the examples in this paper con-
centrate on functional correctness. For an example of timing-specific
refinement, see for example [8].

The following are some useful refinement rules for refining I'TL spec-
ifications into Tempura code. This set of rules is by no means complete
but gives just a flavor of the type of rules. The conditional is introduced
with the following rule.

RULE 1 (If then else).
(If —1) (f() A fl) \Y (—|f0 A fg) C if fo then f1 else f

Chop has empty as a unit, is associative and distributes over nonde-
terministic choice and conditional

journal.tex; 15/04/2002; 14:50; p.13

14 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

RULE 2 (Chop).

[= [iempty
Ji5 (f25 f3)
(fisfa; fa) v (f15 f35 fa)
if fo then (f1; f3) else (f2; f3)

)

G—1) e

G—2) (1,f2)

G—3) flv(f2vf3) Ja
(;—4) (if fo then fi else f2); f3

b

The following rules introduce the while loop and the non-terminating
loop

RULE 3 (While).

(while —1) (fo A f1)* A fin = fo

(while f() do f1
(while —2) f7

C
C while truedo fi

The following rules are used in JPEG example in Section 6.2. The
"Split assignment’ rule splits an assignment into two sequentially com-
posed assignments.

RULE 4 (Split assignment).
Z—g(f(X)) E I Y [f(X);Z2<9()

The following rule, where X <y e denotes an assignment with program
variables V permits replacement of concurrent assignments.!

RULE 5 (Split concurrent assignment).
X1, Xg —vyer,ea O Xy —yver; Xog—vye

provided that X7 and X5 differ, X7 is not free in e5 and V' contains X3
and the free variables in es. A generalized version of this rule is mech-
anized in the tools integrated into the ITL workbench. The following
rule is used to introduce implementation details.

RULE 6 (Implementation details intro).

foE for f1

The following Verilog rules are used in the sorter application in Sec-
tion 6.1. They enable the transformation of Tempura constructs into
Verilog constructs.

! The program variables in V are stable (i-e. retain their values) if not explicitly
assigned, as in conventional programming languages, but unlike logical variables.

journal.tex; 15/04/2002; 14:50; p.14

A Compositional Framework for Hardware/Software Co-Design 15

RULE 7 (Verilog).

(Verilog — 1) while truedo f(X,Y)
C
‘alwaysQ(X) f;7
(Verilog —2) 3z « {x = Clock A while Clock < x + T do skip} ; f

c

é(#T f; 2
(Verilog—3) A=¢y nB=¢e;

C

“A<=eg; B<=¢ey;”

where X is only read by f, and Clock is a global clock, and A and B are
not the same variable. Note: we have used the “..” to indicate a Verilog
construct to avoid confusion because Verilog uses for example “always”
and “” but these have a different meaning than the ITL/Tempura
constructs with the same name.

5.2. RUNTIME ANALYSIS

A fundamental characteristic of our approach is the ability to capture a
possible partial behavior of a running (sub-)system. Once the behavior
is captured then we can assert if such behavior satisfies a given prop-
erty, i.e., runtime validation. We are not dealing here with the formal
verification of properties which requires that all possible behaviors of
system satisfy the properties but we are rather concerned with validat-
ing properties which requires that only interesting behaviors satisfy the
properties.

The importance of the AnaTempura tool in this context has two
aspects

— it integrates simulation in our framework

— we can use the approximate behavior acquired for selecting the
right refinement rule to be applied next [48].

The states of a (sub-)system to be analyzed are captured by inserting
assertion points at suitably chosen places. These divide the system into
several code-chunks. Properties of interests are then validated for this
behavior.

Our general framework for analysis can be described as follows.

1. Establish all desirable properties of the system under consideration
and express them in Tempura.

2. Identify suitable places in the code and insert assertional points.

journal.tex; 15/04/2002; 14:50; p.15

16 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

3. Using Tempura, check that the behavior satisfies the desired prop-
erties.

Obviously, some level of understanding of the (sub-)system under con-
sideration is assumed. These properties could be invariants that need
to be true at all levels of system’s abstraction.

The locations of assertion points could be chosen, for example, at the
entry and exit points of a procedure or function. In this case assertions
are in fact pre- and post- conditions, and what we are asserting is: If the
system starts at a state satisfying the pre- condition then it terminates
properly in a state satisfying the post- condition.

ANATempura

System to analyse ‘
3 —= Result

Properties Tempura

' Interpreter

Figure 5. Basic Functions

We have designed and implemented a tool, known as AnaTem-
pura [48], that support the approach described above. This was inte-
grated within the ITL Workbench. Figure 5 shows the general structure
of the tool. The inputs are the system description (either source code
plus assertion points or an ITL specification) and the properties we
want to check. The result of the analysis is whether the properties hold
for the system. Optionally the behavior of the system can be animated.
Currently the tool can analyze C, Verilog and Tempura programs. The
tool is available from [32].

6. Application

In this section we give two applications to illustrate our approach. The
first is a JPEG encoder and the second is a sorter system to demonstrate
migration policies of legacy software applications.

The sorter example will show how to migrate part of a C program
into a Verilog description using the refinement rules of Section 5. It also
shows how simulation can help in the migration process.

journal.tex; 15/04/2002; 14:50; p.16

A Compositional Framework for Hardware/Software Co-Design 17

Although the JPEG encoder is a stock item nowadays and there-
fore not a real-world design challenge, it has become something of a
benchmark example in the co-design literature. In this section, we look
at it from the point of view of the I'TL Workbench, as an illustration
of the application of formally-based design. We show how to derive a
synthesisable implementation completely formally in a way that pre-
serves functional correctness and is uniform across all levels of design.
At the higher levels of design, the choice of refinement rules is a matter
of judgment. When we arrive at a concrete hardware description, we
can synthesize a Tempura automaton automatically. We do not address
issues of timing or optimal partitioning in this section, although these
are of course very important parts of the overall design and may be
addressed in our framework.

6.1. LEGACY MIGRATION

This section discusses the migration of part of a software system into
hardware. The system that we want to migrate is used to sort first and
second class letters into trays. The system is depicted in Fig. 6.

classsensor solenoid 4 / ond
M
/

1st

letter sensor solenoid 3
Figure 6. Letter sorter

The sorter consists of 2 sensors for detecting respectively the class
of a letter and whether a new letter has arrived. Furthermore it has 2
solenoids for respectively holding up a letter temporarily (solenoid 4)
and switching the direction of the tray (solenoid 3). A fragment of the
C code is shown below.

scan_csensor (&class_sensor);
if (class_sensor < 2)
{
| assertion("class", 1); |
So0l0ff(4); Delay(delay4,1); SolOn(4); Delay(delayF,4);
scan_lsensor (&letter_sensor);

| assertion("lsens",letter_sensor);
if (!YellowSet)
{ Delay(delay3A,2); Sol0ff(3); Delay(delay3B,3); YellowSet = 1; }

else

| assertion("class",2); |
So0l0ff(4); Delay(delay4,1); SolOn(4); Delay(delayF,4);

journal.tex; 15/04/2002; 14:50; p.17

18 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

scan_lsensor (&letter_sensor);

| assertion("lsens",letter_sensor);

if (YellowSet)
{ Delay(delay3A,2); SolOn(3); Delay(delay3B,2); YellowSet = 0; }

}

The delays in the code are crucial in that they ensure that once a
first class letter has been detected it ends up in the first class tray.
The problem occurs when migrating the software to a new hardware
platform. As the delays are implemented in software using counters and
the speed of the new machine is different from the old one, our software
solution becomes invalid.

A test and change cycle was adopted to the delay till the sorter
worked again. The results of these change were also used to implement
the delays in hardware to avoid having the problem in the future.
For this test/change and the hardware implementation we inserted
assertion points in the code.

AnaTempura was used to check properties of the sorter, i.e., what
are the correct values of the delays in order for the sorter to work
correctly. A screen dump of the result is shown in Fig 7.

Activation Termination
Class Sensor 320

Dielayd 320 390
Solenoid 4 390

DelayF 330 640

L

[]
=}

Letter Sensor 640

e
Delay3a 640 710
Solenoid 3 Al
Delay3B 710 790

Znd Class

& iz
Dismiss | Step | start | Stop |

Figure 7. Screen dump

According to our formal framework, we first have to give an Tem-
pura (ITL) specification of our delay construct. The following is such
a specification where Clock is our global clock.

define delay(T) =
{ exists x : { x=Clock and while Clock < x+T do skip } }

Note: We could have started from the following I'TL specification:
delay(T") = 3z - x = Clock A fin Clock =z +T

journal.tex; 15/04/2002; 14:50; p.18

A Compositional Framework for Hardware/Software Co-Design 19

and use the refinement rules to derive above Tempura code.
The following program will create a test run of this delay construct.

define main() = {
define text(X) = { empty and format("%s\n",X)}
and
exists Clock : {
define delay(T) = {
exists x: {
x=Clock and while Clock < x+T do skip
}
}
and
Clock = 0 and Clock gets Clock + 1 and
always (format("Clock=/t \n",Clock)) and
{ skip;
text("start delay");
delay(5);
text("end delay");
skip; skip;
text ("start delay");
delay(10);
text("end delay");
skip
}
}
}.

Using AnaTempura to execute above program we get the following
output:

Tempura 4>
State 0: Clock=0

State 1: Clock=1
State 1: start delay
State 2: Clock=2
State 3: Clock=3
State 4: Clock=4
State 5: Clock=b
State 6: Clock=6
State 6: end delay
State 7: Clock=7
State 8: Clock=8
State 8: start delay
State 9: Clock=9

State 10: Clock=10
State 11: Clock=11
State 12: Clock=12
State 13: Clock=13
State 14: Clock=14
State 15: Clock=15
State 16: Clock=16
State 17: Clock=17
State 18: Clock=18
State 18: end delay
State 19: Clock=19

journal.tex; 15/04/2002; 14:50; p.19

20 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

Done! Computation length: 19. Total Passes: 21.
Total reductions: 514 (510 successful).

Maximum reduction depth: 12.

Tempura 5>

We will now refine this Tempura specification into Verilog. First
we must determine how the software system “communicates” with the
hardware, i.e., we have to determine the interface.

— at hardware level: delay(T, Setdelay, Enddelay) where

input 7" indicates how long the delay should be.
input Setdelay, if set the delay will start.

e output Enddelay, if set the end of the required delay has been
reached.

— at software level we have two functions:

1. start_delay(Tdelay): this will start the delay with a value of

Tdelay units.
2. wait(): this will wait until the delay has elapsed.

This means that the software and hardware run in parallel (true con-
currency) but the Tempura specification was such that software and
hardware run in interleaving mode. So this means we must have an-
other Tempura implementation. Using the refinement rules of Sect. 5
we derive the following Tempura implementation:

define delay(T,Setdelay,Enddelay) = {
if Setdelay=1 then {
exists x : {
x=Clock and Enddelay=0 and
{ while Clock < x+T do { skip and Enddelay=0};{ skip and Enddelay=1}}
}
} else { Enddelay=0 and skip }

The test program changes accordingly, i.e., the hardware runs now in
parallel and it has the above discussed interface between software and
hardware:

define main() = {
exists Clock,T,Setdelay,Enddelay : {
define text(X) = { empty and format(")s\n",X)} and
define delay(T,Setdelay,Enddelay) = {
if Setdelay=1 then {
exists x: {
x=Clock and Enddelay=0 and
{ while Clock < x+T do { skip and Enddelay=0};{ skip and Enddelay=1}}
}
} else { Enddelay=0 and skip }

journal.tex; 15/04/2002; 14:50; p.20

A Compositional Framework for Hardware/Software Co-Design 21

}
and
define start_delay(Tdelay) = { T=Tdelay and Setdelay=1 and empty } and
define wait() = { while Enddelay=0 do {
skip and stable T and stable Setdelay} } and
Clock = 0 and Clock gets Clock + 1 and
always (format("Clock=Yt T=)t Setdelay=/it Enddelay=/t\n",
Clock,T,Setdelay,Enddelay)) and
while true do delay(T,Setdelay,Enddelay) and
{ { skip and T=0 and Setdelay=0};
text ("start delay");
start_delay(5);
wait();
text("end delay");
skip;{ skip and T=0 and Setdelay=0};
text ("start delay");
start_delay(10);
wait();
text("end delay");
skip;{ skip and T=0 and Setdelay=0};
}
}
}.

Using AnaTempura to execute above test program we get the following
output:

Tempura 7>
State 0: Clock=0 T=0 Setdelay=0 Enddelay=0

State 1: start delay

State 1: Clock=1 T=5 Setdelay=1 Enddelay=0
State 2: Clock=2 T=b Setdelay=1 Enddelay=0
State 3: Clock=3 T=5 Setdelay=1 Enddelay=0
State 4: Clock=4 T=5 Setdelay=1 Enddelay=0
State 5: Clock=b5 T=5 Setdelay=1 Enddelay=0
State 6: Clock=6 T=5 Setdelay=1 Enddelay=1
State 6: end delay

State 7: Clock=7 T=0 Setdelay=0 Enddelay=0
State 8: start delay

State 8: Clock=8 T=10 Setdelay=1 Enddelay=0

State 9: Clock=9 T=10 Setdelay=1 Enddelay=0
State 10: Clock=10 T=10 Setdelay=1 Enddelay=0
State 11: Clock=11 T=10 Setdelay=1 Enddelay=0
State 12: Clock=12 T=10 Setdelay=1 Enddelay=0
State 13: Clock=13 T=10 Setdelay=1 Enddelay=0
State 14: Clock=14 T=10 Setdelay=1 Enddelay=0
State 15: Clock=15 T=10 Setdelay=1 Enddelay=0
State 16: Clock=16 T=10 Setdelay=1 Enddelay=0
State 17: Clock=17 T=10 Setdelay=1 Enddelay=0
State 18: Clock=18 T=10 Setdelay=1 Enddelay=1
State 18: end delay

State 19: Clock=19 T=0 Setdelay=0 Enddelay=0

Next step is to transform the Tempura description into a Verilog
description. We will use the Verilog refinement rules Verilog-1,2,3. The
resulting Verilog description is as follows:

journal.tex; 15/04/2002; 14:50; p.21

22 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

module delay(T,Setdelay,Enddelay);
input [7:0] T;

input Setdelay;
output Enddelay;
reg Enddelay;

always @(T or Setdelay)
begin
if (Setdelay==1)
begin
if (T==0) Enddelay=1;
else begin Enddelay=0; #T Enddelay=1; end
end
else Enddelay=0;
end
endmodule

We also use the refinement rules to translate the Tempura test program
into a Verilog test program:

module test;
reg [7:0] T;
reg Setdelay;
delay delayhw(T,Setdelay,Enddelay);
initial
begin
T<=0;Setdelay<=0;
#1 T<=5; Setdelay<=1;
while (Enddelay==0) #1;
T<=0; Setdelay<=0;
#1 T<=10; Setdelay<=1;
while (Enddelay==0) #1;
T<=0; Setdelay<=0;
#2 $finish;
end
always
#1 $display($time-1," T=)d Setdelay=/d Enddelay=%d",T,Setdelay,Enddelay);
endmodule

Using a Verilog simulator this will generate the following output:

0 T= 0 Setdelay=0 Enddelay=0
1 T= b5 Setdelay=1 Enddelay=0
2 T= b5 Setdelay=1 Enddelay=0
3 T= b5 Setdelay=1 Enddelay=0
4 T= b5 Setdelay=1 Enddelay=0
5 T= b5 Setdelay=1 Enddelay=0
6 T= b5 Setdelay=1 Enddelay=1
7 T= 0 Setdelay=0 Enddelay=0
8 T= 10 Setdelay=1 Enddelay=0

©
—
[}
[ure
o

Setdelay=1 Enddelay=0
10 T= 10 Setdelay=1 Enddelay=0
11 T= 10 Setdelay=1 Enddelay=0
12 T= 10 Setdelay=1 Enddelay=0
13 T= 10 Setdelay=1 Enddelay=0
14 T= 10 Setdelay=1 Enddelay=0
15 T= 10 Setdelay=1 Enddelay=0

journal.tex; 15/04/2002; 14:50; p.22

A Compositional Framework for Hardware/Software Co-Design 23

16 T= 10 Setdelay=1 Enddelay=0

17 T= 10 Setdelay=1 Enddelay=0

18 T= 10 Setdelay=1 Enddelay=1

19 T= 0 Setdelay=0 Enddelay=0
Exiting VeriWell for SPARC at time 21
0 Errors, O Warnings, Memory Used: 39282
Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

6.2. JPEG ENCODER

JPEG is a standard method for image compression based on the dis-
crete cosine transform (DCT). The key feature of the DCT is that it
produces many small or zero valued entries in the transformed data
which are subsequently quantized (to 0) and compressed by run-length
encoding. The structure of a JPEG encoder? is illustrated in Figure 8.

S—s| 88 |—| dct —| quant |— huff |— C

Figure 8. JPEG Encoding

There are four components, repeatedly executed in sequence on the
original m x n image. The image is broken into 8 x 8 blocks, then each
block is passed through the DCT, quantized and finally a compressed
using Huffman encoding. The corresponding specification for an m x n
image is given in the following ITL/Tempura formula:

jpeg(S,C) = 3X,Y.Z -
fori < (n+17)/8do

for j < (m+17)/8 do {
Vk <81<8- Xk,l — Smaz(iJrk,n),max(jJrl,m);
det(X,Y);
quant(Y, Z);
huff(2,C)

}

The most computationally intensive part of the JPEG algorithm is the
DCT and we focus on that below. The quantization component rounds
the transformed data to integer values

quant(Y,Z) = Vi <8,j <8+ Z; ; — round(Y; ;/qi ;)

for given quantization table ¢, reducing many values to zero. This loses
information but aids compression. The Huffman encoding treats the so-
called DC coefficient, Zj o, separately from the other 63, so-called AC,

2 Strictly speaking, we consider only sequential DCT-mode, which is the most
common.

journal.tex; 15/04/2002; 14:50; p.23

24 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

coefficients. The main reason is that the DC coefficient is a measure of
the average value of the image samples and DC coefficients are likely
to be closely related between adjacent image blocks, permitting a more
efficient encoding. Also, the AC coefficients are encoded in a “zigzag”
order, Zy 1, 21,0, Z2,0, 21,2, 20,2, 20,3, - - -, because those near the begin-
ning of this order are the most significant and those further down the
order are more likely to be zero, which improves compression.

huff(Z,C) = 3Fzz - zigzag(Z, 22);
encode DC(zzp, C);
encodeAC (zz,C)

Our method involves mechanical refinement of this specification into
an implementation using tools available in the ITL workbench (see
Fig. 1). We will develop two different designs for the DCT component:
a) parallel and b) pipelined and describe their integration into the
complete design.

6.2.1. DCT Refinement: parallel
The steps involved in the refinement of our DCT component are de-
scribed below. These steps were performed in our refinement tool, based
on HOL’s Window Inference package [21].

The standard definition of the DCT is expressed in ITL as follows:

a(i)a(j) <~ v
det(X,Y) = Vi,j - Y, « — 1 Z Z Xy (i,m)y(5,n)

m=0n=0

where

1
a(i) = if(i = 0) then \/; else 1

. (25 + 1)mi
= cos—————
16

V(i 7)
This is computationally inefficient (O(N%)) and can be improved us-
ing standard row-column decomposition techniques to the following
O(2N3) algorithm:

det(X,Y) C Y « AXAT

where A, ,, = w This refinement can most easily be performed
in a single step by postulating the result and proving the corresponding
refinement rule by expansion of the formulae.

The refined specification Y «— AXAT is further decomposed into
two identical steps using the sequential refinement rule 4 and the fact

journal.tex; 15/04/2002; 14:50; p.24

A Compositional Framework for Hardware/Software Co-Design 25

that A(AXT)T = AX AT, giving

det(X,Y) C 32« Z — AXT ;Y «— AZT

Each part of the sequential composition is then decomposed into par-
allel 1-D DCTs using the theorem Y «— AXT C Vi < 8 « detl(X;,Y;),
where

detl(X,Y) =2 YV — AXT

to give

det(X,Y) T 3Z « (Vi < 8« detl(X;, Z;)) : (Vi < 8 « detl(ZE,Y;))

The resulting architecture is shown in figure 9.

X .— dctl > = dctl |—= Y,

zizT

|

X7—> dctl L dctl — Y7

Figure 9. Parallel 1-D DCT Architecture

The 1-D DCT can be refined in many ways and there are numerous
published algorithms. Generally, the aim is to reduce the number of
multiplications by exploiting symmetries of the cosine function. Here,
we choose an algorithm due to Chen [10] which reduces the problem
to two 4 x 4 matrix multiplications and requires 4 steps with a total of
16 multiplications. The algorithm is captured in the ITL specification

journal.tex; 15/04/2002; 14:50; p.25

26 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

below

Ch‘en(X?Y) = YE)>Y17Y727Y33>Y4)Y57Y76>Y7 =

(Xo + X7)/2, (X1 + Xp)/2, (X2 + X5)/2,

(X34 X4)/2,(X3 — X4)/2, (X2 — X5)/2,

(X1 — X6)/2, (X0 — X7)/2;
%7Y17E7%7Y47Y57}/6ay7 =

Yo+ Y3, Y1 +Ys, Y1 — Yo, Yy — Vs,

Yy,d.(Yo — Y5),d.(Ys + Y5), Y7;
%7Y17E7%7Y47Y57}/6ay7 =

d.(Yo +Y1),d.(Yo — Y1), f.Y2 + b.Y3, f.Y3 — b.Y2,

Yo+ Y5, Yy — Y5, Y7 — Y, Y7 + Y5
Yo,Yy, Yo, Ye, Y1, Y5, Y3, Y7 =

Yo, Y1, Y2, Y3,

g.Yi+aYr cYs+eYs,cYs—eYs59.Yr —aYy

where a,b, c,d, e, f and g are cosine coefficients.

It is not really feasible to derive an algorithm like Chen’s by pure top-
down refinement. Instead, we find the algorithm by other means and
verify the refinement step, dct1(X,Y) C chen(X,Y'), mechanically by
expansion. The architecture specification chen(X,Y) is also executable
and the development of such an algorithm can be assisted by testing and
simulation in the Tempura system before attempting the refinement.

6.2.2. Partitioning

Once the architecture has been refined, the components must be allo-
cated to hardware and software based on conventional methods, such as
co-simulation. The method used is not an issue here and does not im-
pact on the correctness of the final implementation (though may affect
it’s performance). The formal refinement steps we use are guaranteed
to preserve correctness. In the JPEG example the DCT is the most
computationally demanding part and is therefore the function most
naturally assigned to hardware (see for example [2]).

We are targeting a co-processor implementation, with the DCT im-
plemented on special-purpose hardware and the rest of the system in
software. The hardware and software parts of the system communicate
asynchronously via a bus, so communication timing is not an issue.

In order to refine the communication between the software part and
the DCT co-processor, we introduce send and receive predicates for bus
communication. These predicates have the following properties.

snd(B,X) nrcu(B,Y)

C
C rev(B,X)

stb(B) ; rev(B, X)

journal.tex; 15/04/2002; 14:50; p.26

A Compositional Framework for Hardware/Software Co-Design 27

Based on these primitives, we obtain a co-processor refinement rule,

Y — f(X) C (snd(B,X);rcv(B,Y)) A
(3Z - rev(B,Z); Z «— f(Z);snd(B, Z))

under suitable conditions on f. The same rule will hold for many
different bus designs. The refined specification has now become

detl(X,Y) C 3B -« bus(B) A sw(B, X,Y) A hw(B)
where hw and sw refer to the hardware and software parts of the DCT.

sw(B,X,Y) = snd(B,X);rcv(B,Y)
hw(B) = 3Z « rcv(B,Z) ;chen(Z,Z) ; snd(B, Z)

The refined architecture is illustrated in Figure 10.

SwW
8x8 > snd rev > | quant
A
v HW
rcv |—| dct |— snd

Figure 10. Co-processor Architecture

The software parts of the system are refined into sequential Tem-
pura. This is achieved by mapping parallel to sequential structures.
For example, restricted universal quantifiers are transformed to loops,
existential quantifiers are transformed to local variable declarations,
concurrent assignments are transformed to sequential.

Using these transformations together with some facts about round-
ing, the quantization component may be refined to the following se-
quential Tempura:

quant(Y,Z) £ fori<8,j <8
if0<Y;;
then Z; ; := (Yi; +4ij/2)/4i;
else Z; j .= (Yi; — 4i/2)/aqi;

journal.tex; 15/04/2002; 14:50; p.27

28 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

6.2.3. Implementation

Tempura is not an implementation language but may be converted
into an implementation. The sequential part of Tempura is already
very close to a conventional sequential language and may readily be
translated, however Tempura can also be automatically refined to an
automaton from which an implementation can be synthesized. The idea
is to translate a Tempura program p (in suitable form) to an automaton
A(p, Rst, Rdy) such that

p C (Rst A while (wRdy) do A(p, Rst, Rdy))

The program starts on the Rst signal, then the loop executes one state
transition of the automaton per cycle until the Rdy flag is set, indicating
termination (Rdy is equivalent to empty). The translation is defined
recursively over Tempura constructs and the resulting automaton is a
Tempura program that can be simulated.

The refined DCT hardware block has been automatically refined to
a Tempura automaton in this way. This can then be refined to Verilog
(or Handel) and synthesized to produce an FPGA implementation.

6.2.4. Pipelined systolic array implementation

We use transformational methods for implementing algorithms in hard-
ware which provide alternative implementation schemes. Two such me-
thods are:

1. Regular array synthesis — deriving regular array architectures from
high-level specifications [35, 39]. In this scheme concurrency is im-
plicit and the design process allows us to systematically introduce
concurrency while taking into account the geometry of intercon-
nection of the designs. This method can deliver architectures with
local interconnection pattern. Although only a certain class of inter-
connection patterns can be realized in this method the advantages
are a) automatic derivation of pipelined design b) formal basis, i.e.,
designs are correct by construction.

2. Hardware compilation — implementing concurrent programs as
hardware circuits [46, 43]. In this method the concurrency is made
explicit through programming language features and this provides a
degree of freedom to explicitly control the communication patterns
of a design and therefore explore a wider design space. However,
the correctness criteria has to be established explicitly.

Regularity in computations is a feature of the DCT algorithm and
it is for this reason that we will be able to apply regular array syn-
thesis techniques to design suitable hardware components with local

journal.tex; 15/04/2002; 14:50; p.28

A Compositional Framework for Hardware/Software Co-Design 29

interconnection. These transformations when applied to an initial high-
level specification can progressively refined it into a specification for a
regular array. The array description can then be directly translated into
formats for hardware synthesis. One possible route to implementation
is through the Handel compilation scheme as the Handel language pro-
vides the appropriate abstraction for describing computations in a syn-
chronous array of processors and pipelining of data over synchronized
channels.

Let us consider the derivation of a pipelined architecture for the
DCT. The steps involved in the refinement are as follows. We start
with the O(N3) algorithm:

det(X,Y) C Y — AXAT
and decompose the specification Y «— AX AT into two components:
detl(X,G) = G+ XAT and det2(G,Y) = Y « AG

so that regular array designs for each multiplication can be developed
separately and the separately evolved designs are composed to obtain
the global regular array design with the desired characteristics by a
suitable composition scheme (1)):

array(X,Y) = Y(arrayl,array?2)
detl
dct2

C arrayl

C array2

The dctl component is refined into a regular array using the following
refinement steps

Specification: In the specification step we convert a mathematical
specification into a system of recurrence equations (SRE) — a specifi-
cation format for analysis and synthesis of regular arrays [35]. An SRE
for multiplying two matrices can be directly expressed as follows:

det{ = ((Vi,j - 1<i,j <N)Gred(X,A"))
Gred(X,AT) = G[i,j] = reduce(+, (i, 4§,k — k), X[i, k] «* AT[k, j])
where the reduce operation corresponds to the reduction operation
(summation of partial products) in a matrix multiplication.

Regularisation: dct{ is next refined into a System of Uniform Recur-
rence Equations (SURE) [38] dct} where

dett = 3G, X1, Al « reduce(G, X1, A1) a pipe(X1, X) A pipe(Al, A)

Although dect? is depicted as concurrent evaluation of variables G, X
and A, the evaluation is not fully parallel but is constrained by the
dependences that are defined by the equations.

journal.tex; 15/04/2002; 14:50; p.29

30 Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

The order of evaluation (schedule) and the structure of the processor

array in which the computations are carried out (allocation) are derived
by space-time transformation [35].
Space-time transformation: The spatio-temporal attributes of a
design are defined in this step. The particular form of this transforma-
tion determines the pipelined nature of execution. The transformation
is carried out by computing a transformation function 7 which is a
matrix of dimension 3 x 3 and applying it to dct?. This then gives a
specification of a regular array arrayl which is a refinement of dct}. In
this array the inputs are pipelined at the boundary processors and each
processor computes and stores one element of the result matrix G;;. The
important aspect of the design to note is that all communications are
between neighboring processors and therefore this architecture avoids
global communications.

For the second multiplication dct2 we can (re-)use the det? derived
above. Details of this transformation can be found in [35, 37].

We now compose these two designs to obtain the global design for
the DCT using composition scheme 1. The effect of this composition
is to produce a composite array in which the computations of dct; and
dcto are pipelined. By cascading the result in this pipelined fashion
the architecture not only avoids transposition that are needed in other
DCT designs but also improves upon the latency of the design.

The architectural specification for each multiplication can be trans-
lated into Handel programs and therefore can be synthesized into hard-
ware circuits. This final bridging with hardware synthesis is currently
not automatic although it is feasible to bridge the gap between design
and synthesis tools.

The interaction between hardware and software part is structurally
equivalent to the one described in section 6.2.2. We can continue to
retain the bus strategy for communicating between the two parts and
hence the co-processor refinement rule remains unaltered.

References

1. Allara, A., C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto: 1998,
‘System-Level Performance Estimation Strategy for Sw and Hw’. In: Pro-
ceedings of the International Conference on Computer Design 1998.

2. Balarin, F., M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C.
Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tab-
bara: 1997, Hardware-Software Co-Design of Embedded Systems: The Polis
Approach. Kluwer Academic Publishers.

3. Barringer, H., M. Fisher, G. Gough, D. Gabbay, and R.Owens: 1995, ‘Metatem:
A framework for programming in temporal logic’. In: Stepwise Refinement of
Distributed Systems: Models, Formalisms, Correctness.

journal.tex; 15/04/2002; 14:50; p.30

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A Compositional Framework for Hardware/Software Co-Design 31

Beer, 1., S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.:
2001, ‘The temporal logic Sugar’. In: Proceedings of CAV 2001.

Borger, E. and G. D. Castillo: 1995, ‘A formal method for provably correct
composition of a real-life processor out of basic components’. In: Proceedings
of the 1st ICECCS’95. pp. 145-148.

Bowen, J., H. Jifeng, and X. Qiwen: 2000, ‘An Animatable Operational Se-
mantics of the VERILOG Hardware Description Language’. In: Proc. of
ICFEMZ2000: 3rd Int. Conf. on Formal Engineering Methods. pp. 199-207.
Cau, A., C. Czarnecki, and H. Zedan: 1998, ‘Designing a Provably Correct
Robot Control System using a ‘Lean’ Formal Method’. In: A. P. Ravn and H.
Rischel (eds.): Proceedings 5th International Symposium on Formal Techniques
in Real-Time and Fault Tolerant Systems (FTRTFT’98), Vol. 1486 of LNCS.
pp. 123-132.

Cau, A. and H. Zedan: 1997, ‘Refining Interval Temporal Logic specifications’.
In: M. Bertran and T. Rus (eds.): Transformation-Based Reactive Systems
Development, Vol. 1231 of LNCS. pp. 79-94.

Celoxica Ltd., ‘Handel-C Language Reference Manual’.

Chen, W.-H., C. H. Smith, and S. C. Fralick: 1977, ‘A fast computational algo-
rithm for the discrete cosine transform’. IEEFE Transaction on Communications
25(9), 1004-1009.

Clarke, E. M., E. Emerson, and A. Sistla: 1986, ‘Automatic Verification of
finite-state concurrent systems using temporal logic specifications’. ACM
TOPLAS 8(2).

D.Borrione, P. Camurati, J. Piallet, and P. Prinetto: 1988, ‘A functional
approach to formal hardware verification’. In: Proc. of ICCD-88. pp. 592-595.
de Roever, W.-P., F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers: 2001, Concurrency Verification: Introduction to
Compositional and Noncompositional Methods. Cambridge University Press.
Dimitrov, J.: 2000, ‘Interval Temporal Logic (ITL) Semantics for Verilog’. Proc.
of IEE event on Hardware-Software Co-Design.

Dimitrov, J.: 2001, ‘Operational Semantics for Verilog’. In proceedings of
APSEC’2001.

Dreike, P. and J. McCoy: 1997, ‘Cosimulating Hardware and Software in Em-
bedded Systems’. In: Proceedings Embedded Systems Programming Europe. pp.
12-27.

Ernst, R.: 1998, ‘Codesign of Embedded Systems: Status and Trends’. IEEE
Design & Test of Computers pp. 45-54.

Gajski, D. D., J. Zhu, and R. Domer: 1997, ‘Essential Issues in Codesign’.
Technical Report ICS-TR-97-26, University of California, Irvine, Department
of Information and Computer Science.

Gordon, M.: 1995, ‘The Semantic Challenge of Verilog HDL’. In: Proc. 10th
Annual IEEE Symposium on Logic in Computer Science. pp. 136-145.
Gordon, M. J. C. and T. F. Melham: 1993, Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press.
Grundy, J.: 1991, ‘Window Inference in the HOL System’. In: P. J. Windley,
M. Archer, K. N. Levitt, and J. J. Joyce (eds.): The Proceedings of the Inter-
national Tutorial and Workshop on the HOL Theorem Proving System and its
Applications.

Gupta, R. K. (ed.): 1997, Special Issue on Hardware/Software Partitioning of
Design Automation for Embedded Systems Journal, Vol. 2. Kluwer Academic
Publishers.

journal.tex; 15/04/2002; 14:50; p.31

32

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Cau Hale Dimitrov Zedan Moszkowski Manjunathaiah Spivey

Hale, R.: 2001, ‘Using ITL for Co-Design’. In: Proc. of the Verification
Workshop VERIFY’01.

Hale, R. W. S.: 1988, ‘Programming in Temporal Logic’. Ph.D. thesis, Com-
puter Laboratory, Cambridge University, Cambridge, England. Appeared as
technical report 173 in year 1989.

Hale, R. W. S. and H. Jifeng: 1994, ‘A real-time programming language’. In:
J. Bowen (ed.): Towards verified systems. Elsevie, pp. 115-130.

Hollander, Y., M. Morley, and A. Noy: 2001, ‘The e language: A fresh
separation of concerns.’. In: Proceedings of TOOLS Europe 2001.

Holzmann, G.: 1990, Design and Validation of Computer Protocols. Prentice-
Hall.

Huibiao, Z., J. Bowen, and H. Jifeng: 2001, ‘From Operational Semantics to
Denotational Semantics for Verilog’. In: Proc. of CHARME2001: the 11th
Advanced Research Working Conference on Correct Hardware Design and
Verification Methods.

Huibiao, Z. and H. Jifeng: 2000, ‘A Semantics of Verilog using Duration
Calculus’. In: Proc. Intl. Conf. on Software: Theory and Practice. pp. 421-432.
Hunt, W.: 1986, ‘FM8501: A verified microprocessor’. In: Proc of IFIP WG
10.2 Workshop: From HDL To Guaranteed Correct Circuit Designs. pp. 85-114.
IEEE: 1995, ‘IEEE Standard Hardware Description Language based on the
Verilog((©) Hardware Description Language’. IEEE Standard 1364-1995.

ITL homepage, ‘http://www.cse.dmu.ac.uk/ cau/itlhomepage/’.

Jifeng, H. and Z. Huibiao: 2000, ‘Formalising Verilog’. In: Proc. IEEE Intl.
Conf. on Electronics, Clircuits and Systems. pp. 412-415.

Kurshan, R. P.: 1994, Computer-aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press.

Lavenier, D., P. Quinton, and S. Rajopadhye: 1999, ‘Advanced Systolic Design’.
In: Chapter 5, Digital Signal Processing for MultiMedia Systems. Eds. Parhi
and Hishitani.

Madsen, J., J. Grode, P. Knudsen, M. Petersen, and A. Haxthausen: 1997,
‘LYCOS: the Lyngby Co-Synthesis System’. Design Automation for Embedded
Systems 2(2), 195-235.

Manjunathaiah, M. and G. Megson: 1999, ‘Design of Multi-phase Regular
Arrays’. Technical Report RUCS/1999/TR/016/A, Computer Science, The
University of Reading, U.K.

Manjunathaiah, M., G. Megson, S. Rajopadhaye, and T. Risset: 2001, ‘Uni-
formization of Affine Dependance Programs for Parallel Embedded System De-
sign’. In: Proceedings of 2001 International Conference on Parallel Processing
(80th ICPP’01). U. Politec. de Valencia, Spain.

Megson, G.: 1992, An Introduction to systolic algorithm design. Oxford
University Press.

Moszkowski, B.: 1986, Ezecuting Temporal Logic Programs. Cambridge,
England: Cambridge University Press.

Moszkowski, B.: 1994, ‘Some very compositional temporal properties’. In: E.-
R. Olderog (ed.): Programming Concepts, Methods and Calculi, Vol. A-56 of
IFIP Transactions. pp. 307-326.

Nielson, F., H. Nielson, and C. Hankin: 1999, Principles of Program Analysis.
Springer-Verlag.

Page, 1.: 1996, ‘Constructing hardware-software systems from a single descrip-
tion’. Journal of VLSI signal processing 12, 87-107.

Sagdeo, V.: 1998, The Complete Verilog Book. Kluwer Academic Publishers.

journal.tex; 15/04/2002; 14:50; p.32

45.

46.

47.

48.

A Compositional Framework for Hardware/Software Co-Design 33

Soininen, J.-P., T. Huttunen, K. Tiensyrja, and H. Heusala: 1996, ‘Cosimu-
lation of real-time control systems’. In: Proceedings of the Furopean Design
Automation Conference with EURO-VHDL ’95.

Spivey, J.: 1997, ‘Deriving a Hardware Compiler from operational semantics’.
Technical report, Oxford University Computing Laboratory.

Thomas, D. and P. Moorby: 1998, The Verilog Hardware Description Language.
Kluwer Academic Publishers.

Zhou, S., H. Zedan, and A. Cau.: 1999, ‘A Framework For Analysing The Effect
of ‘Change’ In Legacy Code’. In: IEEE Proc. of ICSM’99.

Address for Offprints:

Software Technology Research Laboratory
SERCentre, De Montfort University,

The Gateway, Leicester LE1 9BH, England
Tel.: +44(0) 116 257 7937

Fax.: +44(0) 116 257 7936

journal.tex; 15/04/2002; 14:50; p.33

journal.tex; 15/04/2002; 14:50; p.34

