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Abstract—ARINC specification 653-2 describes the interface
between application software and underlying middleware in a
distributed real-time avionics system. The real-time workload in
this system comprises of partitions, where each partition consists
of one or more processes. Processes incur blocking and preemp-
tion overheads, and can communicate with other processes in
the system. In this work, we develop compositional techniques
for automated scheduling of such partitions and processes. At
present, system designers manually schedule partitions based on
interactions they have with the partition vendors. This approach
is not only time consuming, but can also result in under utilization
of resources.

I. INTRODUCTION

ARINC standards, developed and adopted by the Engineer-
ing Standards for Avionics and Cabin Systems committee,
deliver substantial benefits to airlines and aviation industry
by promoting competition, providing inter changeability, and
reducing life-cycle costs for avionics and cabin systems. In
particular, the 600 series ARINC specifications and reports
define enabling technologies that provide a design foundation
for digital avionics systems. Within the 600 series, this work
deals with ARINC specification 653-2, part I [3] (henceforth
referred to as ARINC-653), which defines a general-purpose
Application/Executive (APEX) software interface between the
operating system of an avionics computer and the application
software.

As described in ARINC-653, the real-time system of an
aircraft comprises of one or more core modules connected
with one another using switched Ethernet. Each core module
is a hardware platform that consists of one or more processors
among other things. They provide space and temporal par-
titioning for independent execution of avionics applications.
Each independent application is called a partition, and each
partition in turn is comprised of one or more processes
representing its real-time resource demand. The workload on a
single processor in a core module can therefore be described
as a two-level hierarchical real-time system. Each partition
comprises of one or more processes that are scheduled among
themselves using a (local) partition specific scheduler. All the
partitions that are allocated to the same processor are then
scheduled among themselves using a (global) partition level
scheduler. For example, Figure 1 shows two such systems,
where partitions P1 and P2 are scheduled together under

processor

global

local local

processor

global

local local

Communication chain (end−to−end latency bound)

Blocking (semaphore)
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Fig. 1. Scheduling hierarchy for partitions

a global scheduler on one processor, and partitions P3 and
P4 are scheduled together under a global scheduler on an-
other processor. Each partition Pi in turn is comprised of
processes τ i,1, . . . , τ i,mi , scheduled under a local scheduler1.
Processes are periodic tasks that communicate with each other.
Sequences of such communicating processes form dependency
chains, and designers can specify end-to-end latency bounds
for them. For example, Figure 1 shows one such chain between
tasks τ1,1, τ2,2, and τ3,2. Processes within a partition can
block each other using semaphores for access to shared data,
giving rise to blocking overhead (tasks τ4,2 and τ4,m4 in the
figure). Further, processes and partitions can also be preempted
by higher priority processes and partitions, respectively, result-
ing in preemption overheads.

There are several problems related to the hierarchical sys-
tem described above that must be addressed. For scheduling
partitions, it is desirable to abstract the communication de-
pendencies between processes using parameters like offsets,
jitter, and constrained deadlines. This simplifies a global
processor and network scheduling problem into several local
single processor scheduling problems. The process deadlines
must also guarantee satisfaction of end-to-end latency bounds

1The local scheduler can be different from the global scheduler and each
of the other local schedulers.



specified by the designer. Given such processes we must
then generate scheduling parameters for partitions, to be used
by the global scheduler. The resulting global schedule must
provide sufficient processor capacity to schedule processes
within partitions. Furthermore, these scheduling parameters
must also account for blocking and preemption overheads
incurred by processes and partitions.

This avionics system frequently interacts with the physical
world, and hence is subject to stringent government regu-
lations. Then, to help with system certification, it is desir-
able to develop schedulability analysis techniques for such
hierarchical systems. Furthermore, these analysis techniques
must account for resource overheads arising from preemptions,
blocking, and communication. In order to protect the intellec-
tual property rights of partition vendors, it is also desirable
to support partition isolation; only so much information about
partitions must be exposed as is required for global scheduling
and the corresponding analysis. We therefore consider compo-
sitional techniques for partition scheduling, i.e., we schedule
partitions and check their schedulability by composing in-
terfaces, which abstractly represent the resource demand of
processes within partitions.

Partition workloads can be abstracted into interfaces us-
ing existing compositional techniques [18], [12], [24], [9].
These techniques use resource models as interfaces, which
are models characterizing resource supply from higher level
schedulers. In the context of ARINC-653, these resource
model based interfaces can be viewed as abstract resource
supplies from the global scheduler to each partition. Various
resource models like periodic [18], [24], bounded-delay [12]
and Explicit Deadline Periodic (EDP) [9], have been proposed
in the past. However, before we can use these techniques, we
must modify them to handle ARINC-653 specific issues like
communication dependencies, and blocking and preemption
overheads. In this paper, we assume that communication
dependencies and end-to-end latency bounds are abstracted
using existing techniques into process parameters like offset,
jitter, and constrained deadline (see [25], [22]). Note that
although we do not present solutions to this problem, it
is however important, because it motivates the inclusion of
aforementioned process parameters.

Contributions. In this paper we model ARINC-653 as
a two-level hierarchical system, and develop compositional
analysis techniques for the same. This is a principled approach
for scheduling ARINC-653 partitions that provides separation
of concerns among different partition vendors, and therefore
should facilitate system integration. In particular, our contri-
butions can be summarized as follows:

1) We extend and improve existing periodic [18] and
EDP [9] resource model based compositional analysis
techniques to take into account (a) process communi-
cations modeled as offsets, jitter, and constrained dead-
lines, and (b) process preemption and blocking over-
heads. Section III presents this solution, and illustrates
its effectiveness using actual workloads from avionics
systems.

2) We develop techniques to schedule partitions using their
interfaces, taking into account preemption overheads
incurred by partitions. Specifically, in Section IV, we
present a technique to count the exact number of pre-
emptions incurred by partitions in the global schedule.

II. SYSTEM MODEL AND RELATED WORK

Partitions and processes. Each partition has an associated
period that identifies the frequency with which it executes,
i.e., it represents the partition interface period. Typically, this
period is derived from the periods of processes that form
the partition. In this work, we assume that partitions are
scheduled among themselves using deadline-monotonic (DM)
scheduler [17]. This enables us to generate a static partition
level schedule at design time (hyper-period schedule), as
required by the specification. Processes within a partition are
assumed to be periodic tasks2. ARINC-653 allows processes to
be scheduled using preemptive, fixed priority schedulers, and
hence we assume that each partition also uses DM to schedule
processes in its workload.

As discussed in the introduction, we assume that communi-
cation dependencies and end-to-end latency requirements are
modeled with process offsets, jitter, and constrained deadlines.
Hence, each process can be specified as a constrained deadline
periodic task τ = (O, J,T,C,D), where O is offset, J
is jitter, T is period, C is worst case execution time, and
D(≤ T) is deadline. Jobs of this process are dispatched at time
instants xT + O for every non-negative integer x, and each
job will be released for execution at any time in the interval
[xT + O, xT + O + J]. For such a process it is reasonable
to assume that O ≤ D [25]. Furthermore, we denote as
〈{τ1, . . . , τn}, DM〉, a partition P comprising of processes
τ1, . . . , τn and using scheduler DM. Without loss of generality
we assume that τ i has higher priority than τ j for all i < j
under DM.

In addition to the restrictions specified so far, we make the
following assumptions for the system described herein. These
assumptions have been verified to exist in avionics systems. (1)
The processes within a partition, and hence the partition itself,
cannot be distributed over multiple processors. (2) Periods
of partitions that are scheduled on the same processor are
harmonic3. This assumption has been verified to be true
in digital avionics systems. For example, see the avionics
workloads given in the appendix of this technical report [10].
Note that this assumption does not prevent processes from
having non-harmonic periods. (3) Processes in a partition
cannot block processes in another partition. This is because
mutual exclusion based on semaphores require use of shared
memory which can only happen within a partition.

Related work. Traditionally, the partition scheduling
problem has been addressed in an ad-hoc fashion based on
interactions between the system designer and vendors who

2Partitions with aperiodic processes also exist in avionics systems, but they
are scheduled as background workload. Hence, we ignore them.

3A set of numbers {T1, . . . ,Tn} is harmonic if and only if, for all i and
j, either Ti divides Tj or Tj divides Ti.



provide the partitions. Although many different ARINC-653
platforms exist (see [1], [2]), there is little work on automatic
scheduling of partitions [15], [16], [21]. Kinnan et. al. [15]
only provide preliminary heuristic guidance, and the other
studies [16], [21] use constraint-based approaches to look at
combined network and processor scheduling. In contrast to
this high-complexity holistic analysis, we present an efficient
compositional analysis technique that also protects intellectual
property through partition isolation.

Resource models based on periodic resource allocations,
and compositional analysis techniques using them, have been
developed in the past [24], [9], [18]. However, these studies do
not consider dependencies between and within partitions. But,
such dependencies in hierarchical systems have been addressed
in other studies [4], [7], [20], [8], [5], [13]. Almeida and
Pedreiras [4] have presented compositional analysis techniques
for the case when processes in partition workload have jitter
in their releases. Davis and Burns [7] have extended this
technique to consider release jitter as well as preemption
overheads. Various resource-sharing protocols (HSRP [8],
SIRAP [5], BROE [13]) that bound the maximum resource
blocking time for dependent partitions have also been proposed
in the past. However, all these approaches do not consider
process offsets, which are used to model communication
dependencies. Although these techniques can still be used for
processes being considered in this paper, the analysis will be
pessimistic in general. In this work, we address this issue by
developing exact schedulability conditions for processes with
offsets.

Matic and Henzinger [20] have also developed composi-
tional analysis techniques in the presence of partition depen-
dencies. They assume dependencies are modeled using one of
the following two semantics: Real-time workshop (RTW), and
Logical execution time. Although RTW semantics is similar to
the dependency constraints that we consider in our case study,
it is more restrictive in that periods of dependent processes
are required to be harmonic.

Mataix et. al. [6] compute the number of preemptions
when partitions are scheduled under a fixed priority scheduler.
However, unlike our technique which counts the preemptions
exactly, they only present an upper bound.

III. PARTITION INTERFACE GENERATION

In this section we propose techniques to compute a peri-
odic or EDP resource model based interface for a partition
P = 〈{τ1, . . . , τn}, DM〉. We assume that ΠP denotes the
interface period specified by system designer for P . We first
briefly discuss shortcomings of existing resource model based
analysis, and then develop techniques that overcome these
shortcomings.

A. Inadequacy of existing analysis
A periodic process such as the one described earlier, consists

of an infinite set of real-time jobs that are required to meet
temporal deadlines. The resource request bound function of a
process upper bounds the amount of computational resource
required to meet all its temporal deadlines (rbf : < → <).
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Fig. 2. Resource supply of model φ = 〈6, 3〉 corresponding to sbfφ(14)

Similarly, the request bound function of a partition is the
worst-case amount of resource requested by all the processes
in the partition. We denote by rbfP,i(t), the request bound
function of process τ i in partition P for a time interval length
t. Then, Equation (1) gives rbfP,i assuming that jitter and
offset for all processes is zero [24].

rbfP,i(t) =

iX
j=1

‰
t

Tj

ı
Cj (1)

When processes have non-zero jitter but zero offset, Tindell
and Clark have derived a critical arrival pattern which can be
used to compute rbf [26]. In this arrival pattern each higher
priority process is released simultaneously with the process
under consideration, incurring maximum possible jitter. All
future instances of these higher priority processes are released
as soon as possible, i.e., they incur zero jitter. Furthermore,
the process under consideration itself is assumed to incur
maximum possible jitter. Thus, for a process τ i with zero
offset but non-zero jitter, rbfP,i can be specified as

rbfP,i(t) =

iX
j=1

„‰
t+ Jj

Tj

ı
Cj

«
(2)

To satisfy the demand of a process or partition, the core
module processor must supply sufficient computational re-
sources. A resource model is a model for specifying the
timing properties of this resource supply. For example, a
resource supply that provides Θ units of resource every Π
units of time can be represented using the periodic resource
model φ = 〈Π,Θ〉 [24]. Similarly, a resource supply that
provides Θ units of resource within ∆ units of time, with
this pattern repeating every Π time units can be represented
using the explicit deadline periodic (EDP) resource model
η = 〈Π,Θ,∆〉 [9]. In both these models, Θ

Π represents
resource bandwidth; average processor supply used over time.
The supply bound function of a resource model lower bounds
the amount of resource that the model supplies (sbf : < → <).
Given a resource model R and time interval length t, sbfR(t)
gives the minimum amount of resource that R is guaranteed
to supply in any time interval of length t. sbf for peri-
odic (Equation (3)) and EDP (Equation (4)) resource models
are reproduced below. In these equations x1 = 2(Π−Θ),
y1 =

⌊
t−(Π−Θ)

Π

⌋
, x2 = Π + ∆−2 Θ, and y2 =

⌊
t−(∆−Θ)

Π

⌋
,

where x1 and x2 are called blackout intervals for periodic and
EDP models, respectively. These functions are also plotted in
Figure 3. As shown in the figure, after the blackout interval,
the models provide Θ units of resource in every Π time units.
Corresponding to the sbf value for each interval length, there
exists a resource supply pattern which generates that value.
For example, the resource supply pattern of a periodic model
φ = 〈6, 3〉 corresponding to sbfφ(14) is shown in Figure 2.
Resource supply in the first period (interval (0, 6]) is assumed
to be given as soon as possible, and all successive supplies
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Fig. 3. sbf for periodic and EDP models

are assumed to be given as late as possible.

sbfφ(t) =

(
max {0, t− x1 − y1 Π}+ y1 Θ t ≥ Π−Θ

0 Otherwise
(3)

sbfη(t) =

(
max {0, t− x2 − y2 Π}+ y2 Θ t ≥ ∆−Θ

0 Otherwise
(4)

When processes in a partition have zero offset and jitter
values, conditions for schedulability of the partition using a
periodic or EDP resource model have been proposed in the
past [24], [9]. These conditions can be easily extended for
processes with non-zero jitter, and is presented below.

Theorem 1: A partition P = 〈〈τ1 =
(0, J1,T1,C1,D1), . . . , τn = (0, Jn,Tn,Cn,Dn)〉, DM〉,
where τ j has higher priority than τk for all j < k, is
schedulable over a periodic or EDP resource model R iff

∀i, 1 ≤ i ≤ n,∃ti ∈ (0,Di− Ji] s.t. rbfP,i(ti) ≤ sbfR(ti),

where rbfP,i is as defined in Equation (2).
Periodic or EDP resource model based interface for partition

P can be generated using Theorem 1 as follows. We first set
the period of resource model R to be equal to ΠP . If R is
a periodic resource model, then techniques presented in [24]
can be used to develop a periodic model based interface. Since
we are interested in minimizing processor usage (and hence
resource bandwidth), we must compute the smallest Θ that
satisfies this theorem. Hence, for each process τ i, we solve for
different values of ti and choose the smallest Θ among them.
Note that the theorem needs to be evaluated only at those time
instants at which rbfP,i changes. Θ for model R is then given
by the largest value of Θ among all processes in P . Similarly,
if R is an EDP resource model then Easwaran et. al. [9]
have presented a technique that uses this theorem to compute
a resource model having smallest bandwidth. However, as
described in the introduction, processes can be more accurately
modeled using non-zero offset values. Then, a major drawback
in using the aforementioned techniques is that Theorem 1 only
gives sufficient schedulability conditions. This follows from
the fact that the critical arrival pattern used by Equation (2) is
pessimistic for processes with non-zero offset. Additionally,
these techniques do not take into account preemption and
blocking overheads incurred by processes.

In the following sections we extend Theorem 1 to accommo-
date processes with non-zero offsets, as well as to account for
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Fig. 4. Tasks with harmonic periods

blocking and preemption overheads. Recollect from Section II
that all the partitions scheduled on a processor are assumed
to have harmonic interface periods. This observation leads to
a tighter supply bound function for periodic resource models
when compared to the general case. Therefore, we first present
a new sbf for periodic resource models, and then extend
Theorem 1.

B. sbf under harmonic interface periods

In the technique described in [24], a periodic interface φ =
〈Π,Θ〉 is transformed into a periodic task τφ = (Π,Θ,Π)4,
before it is presented to the global scheduler. Note that the
period of model φ and task τφ are identical, and period (Π) of
task τφ is identical to its relative deadline. For the ARINC-653
partitions, this means that partitions scheduled on a processor
are abstracted into periodic tasks with harmonic periods. When
such implicit deadline5 periodic tasks are scheduled under DM,
every job of a task is scheduled in the same time instants
within its execution window. This can be derived from the
following observations: 1) whenever a job of a task is released,
all the higher priority tasks also release a job at the same
time, and 2) each job always executes for its stated worst-
case execution time, in order to provide sufficient supply to
the underlying periodic resource model. For example, Figure 4
shows the schedule for a periodic task set {τ1 = (2, 1, 2), τ2 =
(4, 1, 4), τ3 = (4, 1, 4)}. It can be seen that every job of τ3 is
scheduled in an identical manner within its execution window.

Whenever task τφ is executing, the resource is available for
use by periodic model φ. This means that resource supply
allocations for φ also occur in an identical manner within
intervals (nΠ, (n + 1) Π], for all n ≥ 0. In other words, the
blackout interval x1 in sbfφ can never exceed Π−Θ. For the
example shown in Figure 4, assuming task τ3 is transformed
from a periodic resource model φ3 = 〈4, 1〉, the blackout
interval for φ3 can never exceed 3. Therefore, the general sbf
for periodic models given in Equation (3) is pessimistic for

4This task is similar to the constrained deadline periodic task defined in
Section II, except that it has zero jitter and offset.

5Tasks with D = T.



our case. Improved sbfφ is defined as follows.

sbfφ(t) =

—
t

Π

�
Θ + max


0, t− (Π−Θ)−

—
t

Π

�
Π

ff
(5)

For a EDP resource model η = 〈Π,Θ,∆〉, the blackout
interval in sbfη is Π + ∆−2 Θ [9]. Since ∆ ≥ Θ is a neces-
sary condition, this blackout interval can never be smaller than
Π−Θ. Then, there will be no advantage in using EDP models
for partition interfaces over periodic models. Therefore, we
focus on periodic models in the remainder of this paper.

C. Schedulability condition for partitions

Request function. When processes have non-zero offsets,
identifying the critical arrival pattern to compute rbf is a
non-trivial task. It has been shown that this arrival pattern
could occur anywhere in the interval [0,LCM], where LCM
denotes least common multiple of process periods (see [14]).
As a result, no closed form expression for rbf is known in
this case 6. Therefore, we now introduce the request function
(rf : < × < → <), which for a given time interval gives
the maximum possible amount of resource requested by the
partition in that interval. Since rf computes the resource
request for a specific time interval as opposed to an interval
length, it can be computed without knowledge of the critical
arrival pattern. When processes have non-zero jitter in addition
to non-zero offsets, we must compute rfP,i assuming an arrival
pattern that results in the maximum higher priority interference
for τ i. The following definition gives this arrival pattern for a
job of τ i with latest release time t, where t = Oi + Ji +xTi
for some non-negative integer x.

Definition 1 (Arrival pattern with jitter [25]): Recall that
a job of process τ = 〈O, J,T,C,D〉 is dispatched at
time instant xT + O for some non-negative integer x, and
can be released for execution at any time in the interval
[xT + O, xT + O + J]. Then, a job of τ i with latest release
time t, incurs maximum interference from higher priority
processes in P whenever, (1) all higher priority processes
with dispatch time before t are released at or before t with
maximum jitter, and (2) all higher priority processes with
dispatch time at or after t are released with zero jitter.
The request function for processes with non-zero offset and
jitter values is then given by the following equation.

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj (6)

Schedulability conditions. The following theorem presents
exact schedulability conditions for partition P under periodic
resource model φ. Due to lack of space, we refer the reader
to our technical report for proofs of all theorems presented in
this paper [10].

Theorem 2: Let T = {τ1, . . . , τn} denote a set of pro-
cesses, where for each i, τ i = (Oi, Ji,Ti,Ci,Di). Partition
P = 〈T , DM〉 is schedulable using a periodic resource model
φ = 〈Π,Θ〉 iff ∀i : 1 ≤ i ≤ n, ∀tx s.t. tx + Di−Oi− Ji <

6rbfP,i defined in Equation (2) is only an upper bound.

LCMP and tx = Oi + Ji +xTi for some non-negative integer
x, ∃t ∈ (tx, tx + Di−Oi− Ji] such that

rfP,i(0, t) ≤ sbfφ(t) and rfP,i(tx, t) ≤ sbfφ(t− tx) (7)

rfP,i is given by Equation (6) and sbfφ is given by Equa-
tion (5). Also, LCMP denotes the least common multiple of
process periods T1, . . . ,Tn.

Proof: To prove that these conditions are sufficient for
schedulability of P , we must validate the following statements:
(1) it is sufficient to check schedulability of all jobs whose
deadlines lie in the interval [0,LCMP ], and (2) Equation (7)
guarantees that the job of τ i with latest release time tx, is
schedulable using periodic resource model φ.

Since Di ≤ Ti and Oi ≤ Di for all i, no process released
before LCMP can execute beyond LCMP without violating
its deadline. Furthermore, dispatch pattern of processes in P
is periodic with period LCMP . Therefore, it is sufficient to
check the schedulability of all jobs in the interval [0,LCMP ].

We now prove statement (2). Consider the job of τ i with
latest release time tx. For this job to be schedulable under
resource model φ, higher priority interference encountered by
the job in interval [tx, tx + t) must be satisfied by resource
model φ. This higher priority interference arises from pro-
cesses released before tx, as well as from those released at
or after tx. Condition rfP,i(tx, t) ≤ sbfφ(t − tx) guarantees
that φ provides enough supply to satisfy the interference
from processes released at or after tx. To account for the
interference from processes released before tx, we have the
second condition, i.e., rfP,i(0, t) ≤ sbfφ(t). This condition
ensures that the minimum resource provided by φ in an interval
of length t, is at least as much as the total higher priority
interference up to time t. This proves that these conditions are
sufficient for schedulability of partition P .

We now prove that these conditions are also necessary
for schedulability of P . For this purpose, observe that
rfP,i(0, t) ≤ sbfφ(t) is a necessary condition to guarantee
that resource model φ satisfies the higher priority interference
in interval [0, t). Furthermore, this condition alone is not
sufficient, because it does not guarantee that φ will provide
enough resource in interval [tx, t). The second condition
ensures this property.

Periodic resource model based interface for partition P can
be generated using Theorem 2, employing techniques identical
to those described at the end of Section III-A. Note that, in
this case as well, the theorem needs to be evaluated only at
those time instants at which rfP,i changes. When compared
to Theorem 1, this theorem represents a computationally
expensive (exponential versus pseudo-polynomial), but more
accurate interface generation technique. In fact, for many
avionics systems we expect this technique to be computa-
tionally efficient as well. For instance, if process periods are
harmonic as in many avionics systems (see workloads in the
appendix of this technical report [10]), then LCMP is simply
the largest process period, and our technique has pseudo-
polynomial complexity in this case.
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Fig. 5. Illustrative example for BOP,l,i(t)

Although Theorem 2 presents an exact schedulability con-
dition for P , it ignores the preemption and blocking overheads
incurred by processes in P . Hence, in the following section,
we extend our definition of rf to account for these overheads.

Blocking and preemption overheads. Recollect that
processes incur blocking overhead because of mutual ex-
clusion requirements modeled using semaphores. Blocking
occurs when a lower priority process is executing in a critical
section, and a higher priority process cannot preempt this
lower priority process. In this case the higher priority process
is said to be blocked by the lower priority process, resulting
in blocking overheads. Assuming critical sections span entire
process executions, two properties of this overhead can be
derived immediately: (1) this overhead varies with each job of
a process, and (2) any job of a process can be blocked by at
most one lower priority process.

Consider a process set T = {τ1, . . . , τn} and partition
P = 〈T , DM〉. We now present an approach to bound the
blocking overhead for a job of process τ l released at time t.
Specifically, we compute the bound when this job is blocked
by some process having priority lower than that of τ i, for some
i ≥ l. We assume that all processes with priority lower than
τ i can potentially block this job of τ l. Our bound is given as

BOP,l,i(t) = max
k∈[i+1,...,n]

{min {Ik,Ck}} , (8)

where Ik is defined as

Ik =

8<:0
j

t
Tk

k
Tk + Ok ≥ t or

j
t

Tk

k
Tk + Dk ≤ tj

t
Tk

k
Tk + Dk −t Otherwise

For each process τk, we compute its largest interference on
the job of τ l released at time t, and then choose the maximum
over all τk that have priority lower than τ i. Any such τk
released at or before t can block this job of τ l, and this
blocking overhead is at most its worst case execution time.
Equation (8) uses this observation to compute the interference
from τk. Figure 5 gives an illustrative example for this block-
ing overhead. Let the worst case execution requirement of
processes τ i+1 and τ i+2, shown in the figure, be 5 time units.
Since the deadline of process τ i+1 is t + 8, its interference
on the job of τ l released at t is at most 8. However, its worst
case execution requirement is 5, and hence its interference is at

most 5 time units. On the other hand, the deadline of process
τ i+2 is t+ 3, and hence its maximum interference on this job
of τ l is 3 time units.

Note that Equation (8) only gives an upper bound, because
the execution of processes τ j , with j ≤ i, could be such that
no τk is able to execute before t. The following equation
presents a quantity BOP,l,i(t1, t2), which bounds the blocking
overhead incurred by all jobs of τ l released in the interval
[t1, t2).

BOP,l,i(t1, t2) =
X

t:t∈[t1,t2) and τl released at t
BOP,l,i(t) (9)

When a higher priority process preempts a lower priority
process, the context of the lower priority process must be
stored for later use. When the lower priority process resumes
its execution at some later time instant, this context must
be restored. Thus, every preemption results in an execution
overhead associated with storing and restoring of process con-
texts. Many different techniques for bounding this preemption
overhead have been proposed in the past (see [23], [11]).
Ramaprasad and Mueller [23] have proposed a preemption
upper bound for processes scheduled under Rate Monotonic
scheduler (RM), and their technique can be extended to
other fixed priority schedulers. However, they only present
an algorithm to bound the preemptions, but do not give any
closed form equations. Easwaran et. al. [11] have proposed an
analytical upper bound for the number of preemptions under
fixed priority schedulers. They presented these bounds for
processes with non-zero offset values and zero jitter. These
equations can be easily extended to account for jitter in process
releases, as well as for blocking overheads. We assume that an
upper bound on the number of preemptions is obtained using
one such existing technique. Furthermore, we let POP,i(t1, t2)
denote this upper bound in the interval [t1, t2), for preemptions
incurred by processes that have priority at least as much as
τ i. Assuming δp denotes the execution overhead incurred by
processes for each preemption, request function with blocking
and preemption overheads is given as

rfP,i(t1, t2) =

iX
j=1

„‰
t2 −Oj

Tj

ı
−
‰
t1 −Oj − Jj

Tj

ı«
Cj

+ δp × POP,i(t1, t2) +

iX
j=1

BOP,j,i(t1, t2) (10)

D. Interface generation for sample workloads

We now demonstrate the effectiveness of our proposed
technique using sanitized data sets obtained from an avionics
system. These data sets are specified in the appendix in the
technical report [10]. There are 7 workloads, where each
workload represents a set of partitions scheduled on a single
processor. We consider two types of workloads; workloads in
which tasks have non-zero offsets but zero jitter (workloads 1
and 2), and workloads in which tasks have non-zero jitter but
zero offsets (workloads 3 thru 7). For workloads 1 and 2,
Table I in Section III-D1 specifies the total resource utilization
of individual partitions (

∑
C
T ). For workloads 3 thru 7, Table II

in Section III-D2 specifies the resource bandwidth reservations
for individual partitions, in addition to total resource utiliza-
tion. These reservations, currently used by system designers
to allocate resources, are computed using the vmips parameter
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Fig. 6. Interfaces for partitions P1, . . . , P5

of the workload specifications (see the appendix of technical
report [10]).

We have developed a tool set that takes as input the
aforementioned avionics hierarchical systems, and generates
as output resource model based interfaces for them. In the
following two sections we present the results generated using
this tool set.

Partition Utilization Partition Utilization
P1 0.134 P6 0.12
P2 0.056 P7 0.1345
P3 0.028 P8 0.165
P4 0.1265 P9 0.006
P5 0.0335 P10 0.038

P11 0.048

TABLE I
WORKLOADS 1 AND 2

1) Workloads with non-zero offsets: In this section, we
consider workloads 1 and 2. Firstly, we compare our proposed
approach with the existing well known compositional analysis
technique based on periodic resource models [24]. We assume
that this technique uses Theorem 1 to generate periodic re-
source model based partition interfaces, and therefore ignores
process offsets. This approach does not account for preemption
and blocking overheads incurred by processes. Hence to ensure
a fair comparison, we ignore these overheads when computing
interfaces using our approach as well. In Figures 6(a) and 7(a),
we have plotted the resource bandwidths of interfaces obtained
using our approach (Theorem 2). We have plotted these
bandwidths for period values 1 and multiples of 5 up to
50. Note that since sbfφ defined in Equation (5) is a linear
function of capacity Θ, there is no need to use a linear lower
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Fig. 7. Interfaces for partitions P6, . . . , P11

bound like the one used in [24]. Similarly, we also obtained
partition interfaces using Theorem 1 as discussed above, and
their resource bandwidths are plotted in Figures 6(b) and 7(b).

As can be seen from these plots, interfaces obtained using
our approach have a much smaller resource bandwidth when
compared to those obtained using the existing technique. This
gain in efficiency is because of two reasons: (1) we use a
tighter sbf in Theorem 2 when compared to existing approach,
and (2) existing approach ignores process offsets, and hence
generates pessimistic interfaces. Although this is only an
illustrative example, it is easy to see that the advantages of
our interface generation technique hold in general. From the
plots in Figures 6(a) and 7(a) we can also see that for some
period values, bandwidths of our periodic resource models
are equal to the utilization of corresponding partitions. Since
utilization of a partition is the minimum possible bandwidth of
a resource model that can schedule the partition, our approach
generates optimal resource models for these periods. In these
plots it can also be observed that the bandwidth increases
sharply beyond a certain period. For interfaces φ1, φ4, and φ8

corresponding to partitions P1,P4, and P8, respectively, the
bandwidth increases sharply beyond period 25. This increase
can be attributed to the fact that in these partitions the smallest
process period is also 25. In our examples, since smallest pro-
cess period corresponds to the earliest deadline in a partition,
resource models with periods greater than this smallest value
require larger bandwidth to schedule the partition.

Finally, we also generated partition interfaces using Theo-
rem 2, taking into account preemption and blocking overheads.
The resource bandwidth of these interfaces are plotted in
Figures 8(a) and 8(b). For preemption overhead we assumed
that the overhead for each preemption δp is 0.1, and that
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every job of a process preempts some lower priority process.
Blocking overhead was computed using the upper bound given
in Equation (9). As expected, resource bandwidths of these
interfaces are significantly higher in comparison to the band-
widths in Figures 6(a) and 7(a) 7. Since our preemption and
blocking overheads are only upper bounds and not necessarily
tight, the minimum bandwidths of resource models that can
schedule these partitions lie somewhere in between the two
plots.

2) Workloads with non-zero jitter: In this section, we
consider workloads 3 thru 7. Since these workloads have zero
offsets, we used Theorem 1 to generate periodic resource
model based partition interfaces. In this theorem, we used sbf
given by Equation (5), and interface periods are as specified
by the min-period and max-period fields of component tags 8.
For preemption overheads we assumed that the overhead for
each preemption δp is 0.1, and that every job of a process
preempts some lower priority process. For blocking overheads
we assumed that every lower priority process can block the
process under consideration, up to its worst case execution
time. Consider the process set T = {τ1, . . . , τn} and partition
P = 〈T , DM〉. Then, for a process τ l ∈ T , its blocking
overhead is equal to maxk>l{Ck}.

We now compare the bandwidth of generated interfaces
with the reserved bandwidth of partitions. Table II lists the
following four parameters for each partition in workloads 3
thru 7: (1) Total utilization of the partition (

∑
C
T ), (2)

Reserved bandwidth, (3) Interface bandwidth computed as

7Y-axis in Figures 8(a) and 8(b) ranges from 0 to 1, whereas in Figures 6(a)
and 7(a) it ranges from 0 to 0.45.

8Note that min-period = max-period in all the component tags in work-
loads 3 thru 7.

Partition name Utilization Reserved Computed % Increase
Workload 3

PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART29 ID=29 0.199415 0.37669 0.3735 0.9%
PART35 ID=35 0.05168 0.22185 0.0717 209.4%
PART20 ID=20 0.035125 0.09798 0.0589 66.3%
PART32 ID=32 0.033315 0.08164 0.0781 4.5%
PART36 ID=36 0.045 0.11036 0.12 −8%
PART33 ID=33 0.0379 0.09178 0.0579 58.5%
PART34 ID=34 0.04764 0.10755 0.0676 59.1%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART31 ID=31 0.00684 0.01689 0.0137 23.3%

Workload 4
PART30 ID=30 0.11225 0.23086 0.169 36.6%
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART20 ID=20 0.035125 0.09797 0.0589 66.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%
PART26 ID=26 0.13496 0.44932 0.2538 77%
PART27 ID=27 0.02784 0.06869 0.0478 43.7%
PART28 ID=28 0.0552 0.12106 0.0752 61%

Workload 5
PART15 ID=15 0.5208 0 0.5224
PART13 ID=13 0.01126 0.03378 0.0163 107.2%
PART12 ID=12 0.0050 0.01126 0.02 −43.7%

Workload 6
PART16 ID=16 0.01965 0.04505 0.0246 83.1%
PART19 ID=19 0.14008 0.32939 0.2284 44.2%
PART21 ID=21 0.12751 0.30011 0.2667 12.5%
PART22 ID=22 0.13477 0.31137 0.2631 18.3%
PART17 ID=17 0.00408 0.01126 0.0082 37.3%

Workload 7
PART45 ID=45 0.00325 0.02815 0.01 181.5%

TABLE II
BANDWIDTHS FOR WORKLOADS 3 THRU 7

described above, and (4) Percentage increase in bandwidth
( reserved − computed

computed × 100). As can be seen from this
table, bandwidths of partition interfaces generated using our
technique are significantly smaller than reserved bandwidths
of partitions. However, when generating partition interfaces,
we ignore the resource requirements of aperiodic processes
in partitions. These aperiodic processes are identified by a
period value of zero in the workload specifications in the
technical report. For example, they are present in partition
”PART26 ID=26” of workload 4 and partition ”PART22
ID=22” of workload 6. Since the workloads do not specify
any deadlines for these processes (they execute as background
processes in ARINC-653), we cannot determine the resource
utilization of these processes. Then, one may argue that the
difference in reserved bandwidth and bandwidth computed by
our technique, is in fact used by aperiodic processes. Although
this can be true, our results show that even for partitions with
no aperiodic processes, there are significant savings using our
technique.

IV. PARTITION SCHEDULING

Let the partition set P1, . . . ,Pn be scheduled on an unipro-
cessor platform under DM scheduler. Furthermore, let each
partition Pi be represented by a periodic resource model
based interface φi = 〈Πi,Θi〉 as described in Section III.
Without loss of generality we assume that Π1 ≤ . . . ≤ Πn.
To schedule these interfaces on the uniprocessor platform,
we must transform each resource model into a task that the
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higher level DM scheduler can use. For this purpose, we
use the transformation which for interface φi generates the
process τ i = (0, 0,Πi,Θi,Πi). It has been shown that this
transformation is both necessary and sufficient w.r.t. resource
requirements of φi [24].

If each partition interface is transformed as above, then pro-
cesses in the resulting set (τ1, . . . , τn) have implicit deadlines,
zero offset values, and harmonic periods (partition periods are
harmonic). Liu and Layland have shown that DM is an optimal
scheduler for such processes [19]. In the following section
we present a technique to count the number of preemptions
incurred by this process set. The partition level schedule can
then be generated after adjusting execution requirements of
τ1, . . . , τn to account for preemption overheads.

A. Partition level preemption overhead

Preemption overhead for partitions represented as processes,
can be computed using the upper bounds described in Sec-
tion III. However, as described in the previous section, these
processes are scheduled under DM, and have harmonic periods,
implicit deadlines, and zero offset and jitter values. For such
a process set, it is easy to see that every job of each process
executes in the same time instants relative to its release
time (see Figure 4). Therefore, every job of a process is
preempted an identical number of times. For this case, we now
develop an analytical technique to compute the exact number
of preemptions.

Consider the process set τ1, . . . , τn defined in the previous
section. For each i, let Ni denote the number of preemptions
incurred by each job of τ i. We first give an upper bound
for Ni, and later show how to tighten this bound. For this
upper bound, we assume that the number of preemptions
N1, . . . , Ni−1 for processes τ1, . . . , τ i−1, respectively, are
known. We also assume that the worst case execution re-
quirements of these processes are adjusted to account for
preemption overheads. Then, the following iterative equation
gives an upper bound for Ni.

N
(k)
i =

2666 Θ
(k)
i

Πi−1−
Pi−1
j=1

Πi−1
Πj

Θj

3777
 

Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj
Nj

!
− 1

(11)
In this equation we assume Θ(0)

i = Θi and Θ(k)
i =

Θi +N (k−1)
i δp+ δp, where δp denotes the execution overhead

for each preemption. N (k)
i ignores the preemption incurred

by process τ i at the start of its execution, and hence the
additional δp in capacity adjustment (see Figure 9). Then, the
upper bound for Ni is given by that value of N (k)

i for which
N

(k)
i = N

(k−1)
i .

Theorem 3: Let N∗i denote the value of N (k)
i in Equa-

tion (11) such that N (k)
i = N

(k−1)
i . Then N∗i ≥ Ni.

In the kth iteration, given Θ(k)
i , Equation (11) computes the

number of dispatches of process τ i−1 that occur before the
execution of Θ(k)

i units of τ i. We then determine the number
of preemptions incurred by τ i within the execution window of
each these dispatches of τ i−1. Use of ceiling function in the
equation gives an upper bound to this number. To determine
the number of preemptions within each execution window of
τ i−1, Equation (11) computes the number of execution chunks
of τ i in each window. Each set of consecutive execution
units of a process in a schedule is a single execution chunk
9. The maximum possible number of chunks is given by
Πi−1
Π1

. However, since higher priority processes also execute
in this window, τ i need not have so many execution chunks.
Therefore, we subtract the execution chunks of higher priority
processes from this maximum possible number. We use Nj ,
an upper bound, for the number of execution chunks of higher
priority process τ j . See proof of Theorem 3 in the technical
report for a full explanation of Equation (11).

Since Θ(k)
i is non-decreasing and cannot be greater than

Πi, this iterative computation must terminate and has pseudo-
polynomial complexity. This computation only gives an upper
bound for Ni due to two reasons: (1) the ceiling function,
and (2) use of Nj as the count for execution chunks of
process τ j . In fact, Equation (11) cannot be used to upper
bound Ni, because it assumes knowledge of preemption counts
N1, . . . , Ni−1. We now present a technique that overcomes
these shortcomings. In particular, we modify Equation (11) as
follows:

• We replace ceiling with the floor function, and add a
separate expression that counts preemptions in the last
execution window of τ i−1.

• We replace Nj in the equation with a quantity Ij , which
is either Nj+1 or Nj , depending on whether the response
time of τ j coincides with a release of τ1.

Let N (k)′

i denote the preemption count for τ i in the last execu-
tion window of τ i−1, when Θ(k)

i is the execution requirement
of τ i. Then, Ni is given by the following iterative equation.

N
(k)
i =

66664 Θ
(k)
i

Πi−1−
Pi−1

j=1
Πi−1

Πj
Θj

77775
0@ Πi−1

Π1
−

i−1X
j=1

Πi−1

Πj

Ij

1A +N
(k)′
i − 1

(12)

In this equation we assume Θ(0)
i = Θi and Θ(k)

i =
Θi +N (k−1)

i δp+δp. Also, Ni is given by that value of N (k)
i for

which N (k)
i = N

(k−1)
i . We now give equations to compute the

9Note that the number of execution chunks is always one more than the
number of preemptions encountered by the process.



two unknown quantities, Ij and N (k)′

i in the above equation.

Ij =

(
Nj + 1

l
Rj

Π1

m
=
j

Rj

Π1

k
Nj Otherwise

Here Rj denotes the worst case response time of process τ j .
Since j ∈ [1, . . . , i − 1], Nj is known and therefore Rj can
be computed. N (k)′

i is given by the following equation.

N
(k)′

i =

&
R

(k)
i −T

(k)
i−1

Π1

’
−

i−1X
j=2

&
R

(k)
i −T

(k)
i−1

Πj

’
Ij (13)

In this equation R(k)
i denotes the response time of τ i with

execution requirement Θ(k)
i , and T

(k)
i−1 is the time of last

dispatch of τ i−1. R(k)
i −T (k)

i−1 gives the total time taken by
τ i to execute in the last execution window of τ i−1. This,
along with the higher priority interference in the window,
gives N

(k)′

i . The following theorem then observes that the
preemption count generated using Equation (12) is equal to
Ni.

Theorem 4: Let N∗i denote the value of N (k)
i in Equa-

tion (12) such that N (k)
i = N

(k−1)
i . Then N∗i = Ni.

In this iterative procedure as well, Θ(k)
i is non-decreasing

and cannot be greater than Πi. Therefore, the computation is
of pseudo-polynomial complexity in the worst case. One may
argue that the exact preemption count can also be obtained by
simulating the execution of processes. Since process periods
are harmonic, LCM is simply the largest process period, and
therefore the simulation also runs in pseudo-polynomial time.
However, in safety critical systems such as avionics, it is often
required that we provide analytical guarantees for correctness.
The iterative computation presented here serves this purpose.

Thus, each process τ i can be modified to account for pre-
emption overhead and is specified as τ i = (0, 0,Πi,Θi +(Ni+
1)δp,Πi). If the resulting process set {τ1, . . . , τn} is schedula-
ble10, then using Theorems 2 and 4 we get that the underlying
partitions can schedule their workloads.

V. CONCLUSIONS

In this paper we presented ARINC-653 standards for avion-
ics real-time OS, and modeled it as a two level hierarchical
system. We extended existing resource model based techniques
to handle processes with non-zero offset values. We then
used these techniques to generate partition level schedules.
Design of real-time systems in modern day air-crafts is done
manually through interactions between application vendors
and system designers. Techniques presented in this paper serve
as a platform for principled design of partition level schedules.
They also provide analytical correctness guarantees, which can
be used in system certification.

10Liu and Layland have given response time based schedulability conditions
for this case [19].
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