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Chapter 1�

Introduction

This thesis contributes to the field of multi-agent systems research. In this field,
software systems are analysed and designed as if they are societies of autonomous,
rational actors or agents. Section 1.1 defines multi-agent systems and discusses the
notion of an agent. Section 1.2 presents some potential benefits of multi-agent
systems. Section 1.3 discusses a number of issues that are encountered in the
current state of the art. Section 1.4 describes the specific research aim of this thesis.
Section 1.5 presents an outline of this thesis.

1.1� Multi-Agent Systems

A multi-agent system is defined as a system consisting of a number of agents that
share a common environment. The definition of an agent is more involved. During
the past years, quite a few researchers have attempted to define the notion of an
agent (see (Franklin & Graesser, 1997) for an overview). The most influential
definition is probably the ‘weak notion of agency’ defined by Wooldridge and
Jennings (1995b). This notion is presented in Section 1.1.1 below. Wooldridge and
Jennings have also defined, in the same paper, a stronger notion of agency, which
is presented in Section 1.1.2. A perspective on the various notions of agency is
presented in Section 1.1.3.

1.1.1� A Weak Notion of Agency

In their influential paper, Wooldridge and Jennings (1995b) propose two notions of
agency, called the weak notion and the strong notion of agency. The weak notion
of agency defines an agent as a hardware- or software-based computer system that
is autonomous, reactive, pro-active and has social ability. The most important property
is autonomy: an agent is able to set its own goals and to choose a way to achieve
those goals. Autonomy is only of interest for situated agents: agents that are
situated in an environment, possibly shared with other agents, and that are able to
observe their environment and carry out actions in the environment. (Wooldridge
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recently1 refined the weak notion of agency by defining an agent as an autonomous,

embodied hardware or software system, with reactivity, pro-activeness and social

ability as additional properties.) The properties reactivity, pro-activeness and social
ability together determine the flexibility of an agent:

�� Reactivity of an agent refers to its ability to react, presumably in a sensible
way, to unexpected situations arising in its environment;

�� An agent is, by its autonomy, not only able to set its own goals, its pro-
activeness ensures that it will actually do so. Thus, an agent takes the initiative

and creates opportunities to pursue its goals instead of merely reacting to its
environment;

�� An agent’s social ability enables it to co-operate with other agents in its
environment. Co-operation is almost always needed to achieve the goals an
agent has set.

The weak notion of agency of Wooldridge and Jennings raises a number of
interesting issues:

�� As the Latin stem of the word ‘agent’ (agere, to do) indicates, it is essential
that an agent is an active software or hardware system. Dictionary
definitions of an agent often put most emphasis on this property. (E.g., an
agent is ‘someone or something that acts’. Emphasis is also put on the social
ability of an agent by indicating that an agent is ‘someone or something that
acts on behalf of someone else’).

�� The adjective ‘active’ might appear to be superfluous, especially for software
systems. This adjective, however, emphasises that agents are not merely data
structures. Objects in object-oriented development are often seen as active
data structures: operations on data are encapsulated with the data itself.
However, not every object is an agent. The distinction between objects and
agents is best formulated by Wooldridge (1999) as follows. An object has no
control over the execution of the operations it encapsulates (usually called
its methods in object-oriented development). E.g., if object 1 invokes one of
object 2’s operations, this operation is executed regardless of the state of
object 2. An agent, by definition (an agent is autonomous), has complete
control over its own actions. Other agents may transfer requests to perform
specific actions to an agent, comparable to operation invocation in object-
oriented systems. The agent itself, however, decides whether the request
will be granted. A rational agent bases this decision on an evaluation of the
relation between the requests and its own goals, commitments and agenda.

�� Wooldridge and Jennings do not require an agent to be mobile. Especially in
the popular press, agents are depicted as software components that roam the

                                                          
1 In a lecture delivered at the SIKS Annual Meeting in Amsterdam, November 1, 1999.
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Internet, collecting information for their dispatchers on the go. According to
this concept of agency, mobility is essential. However, the notion of
autonomous, embodied (software) components, or agents for short, can be
applied to non-mobile systems as well, and this is also beneficial. Moreover,
the primary focus of much research in the field of mobile agents is on
implementation aspects of mobile agents, such as transportation, security,
operating system support, and APIs (Application Programmer’s Interfaces).
Although the properties of agency distinguished by Wooldridge and
Jennings are often mentioned (especially autonomy), the question how, on
the one hand, mobility, and, on the other hand, autonomy, reactivity, pro-
activeness and social ability interact is not addressed. Such research (Gray,
Cybenko, Kotz & Rus, 1997; Johansen, Renesse & Schneider, 1997) is closer
to research in the fields of object orientation or component based
development than to research in multi-agent systems.

�� It goes without saying that the weak notion of agency applies to human
beings to a large extent: humans are generally assumed to be autonomous,
situated in their society and socially able. This is of interest for agent-based
approaches to requirements engineering: the same concepts can be used
both for the analysis of (existing) human procedures and the analysis of
automated systems consisting of hardware or software agents.

1.1.2� A Strong Notion of Agency

Wooldridge and Jennings (1995b) also define a stronger, more specific notion of
agency. Literally, this stronger notion is defined as follows:

“… a computer system, that, in addition to having the properties identified above

[autonomy, reactivity, pro-activeness and social ability, PvE], is either conceptualised

or implemented using concepts that are more usually applied to humans. For

example, it is quite common in AI to characterise an agent using mentalistic notions,

such as knowledge, belief, intention, and obligation (Shoham, 1993).”

Under the strong notion of agency, an agent is ascribed a mental state, consisting
of e.g. belief, knowledge, intentions, goals, commitments and obligations. The
behaviour of the agent is described using these mentalistic notions.

According to McCarthy (1987), the use of notions more usually applied to
humans is both legitimate and often useful. It is legitimate if these notions express
the same information for both humans and agents. Seel (1989) argues that this is
possible for all kinds of automata. Using notions normally used for humans is
useful in the sense that it provides a high-level description of the behaviour of an
agent, instead of a description in terms of the actual mechanisms with which its
behaviour is generated. Often, a description in terms of mentalistic notion is the
only description available, or the only description simple enough to be
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comprehended. As an aside, the strong notion of agency only plays a minor role in
this thesis.

1.1.3� Other Notions of Agency

The notions of agency developed by Wooldridge and Jennings are not without
criticism. In fact, almost every introductory text on multi-agent systems proposes a
new definition for the notion of an agent. Franklin and Graesser (1997) survey ten
alternative definitions found in the agent literature and then propose their own
definition:

“An autonomous agent is a system situated within and a part of an environment that

senses that environment and acts on it, over time, in pursuit of its own agenda and so

as to effect what it senses in the future.”

Franklin and Graesser thus emphasise situatedness and continuity of an agent, and
require that there is some kind of feedback: the actions of an agent should affect
future observations of the agent. Both continuity as well as the feedback
requirement help to distinguish agents from, in Franklin’s and Graesser’s terms,
‘ordinary programs’.

The lack of one single accepted definition of the concept of an agent is a source
of much criticism from other research areas. It is not uncommon that central
notions in a newly established research field are subject to debate within the field
for a long time. Often, valuable research results are obtained as a side effect of
these debates. However, such debates should not hide the central focus of the field
of multi-agent systems: the creation of software systems that are designed for
flexibility. An agent is autonomous and is able to devise its own goals and pursue
them in a rational way, all by itself. Unexpected events in its environment should
not hinder the agent in the completion of its tasks. The central issue in the field of
multi-agent systems research is to answer the question how software with this
level of flexibility can be engineered.

1.2� The Promise of Multi-Agent Systems

In the field of multi-agent systems research, software systems are analysed and
designed as if they are societies of autonomous agents. The benefits of this focus
are twofold.

First, autonomous agents are a natural metaphor for today’s complex,
networked software systems. In such systems, there is no central authority to
which the software components are enslaved. In other words, such components are
autonomous. Network connections between the components enable them to co-
operate and to act upon other components, but the precise behaviour of other
components is beyond their control. The subject of multi-agent systems research
precisely matches this context: autonomous agents that are situated in an
environment in which they may influence, and are influenced themselves, by other
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agents. This metaphor naturally leads to decentralised systems, which, together
with the flexibility of an agent—its reactivity, pro-activeness and social ability—is
needed for robustness: the possibilities to cope with unexpected events in the
environment. It is possible to design decentralised, robust systems using
conventional approaches. However, in conventional approaches, there is no
inherent support for agent-like properties. In agent-oriented approaches, such
support is the norm.

Second, analysing and designing software systems as if they are societies of
autonomous agents paves the way for the application of theories from the Social
Sciences to software systems. A multi-agent system is a system that consists of a
number of agents that share a common environment. Just like humans and their
society, agents both have the potential to mutually benefit from co-operation and
are constrained by interdependence. The Social Sciences (e.g., Economics,
Management Science, Sociology, Political Science, and Social Psychology)
investigate how social functions (i.e., specific behaviour of a society as a whole,
such as, for instance, the occurrence of a pareto-optimal market equilibrium or a
traffic jam) relate to the individual behaviour of (human) agents. Results obtained
in the Social Sciences can be used to support the design of multi-agent systems, in
which the overall functionality of the multi-agent system emerges from the
individual behaviour of rational agents that pursue their own goals.

On the one hand, solutions inspired by the Social Sciences are implemented in
current-day multi-agent systems, the most well-know example being the contract
net protocol for delegation of tasks (Smith, 1980). On the other hand, it seems that
the Social Sciences themselves currently do not possess the definite answer to the
question of how social functions emerge from the behaviour of individual agents.
Moreover, it may be the case that, to obtain such an answer, the Social Sciences
need to rely on advances in the area of multi-agent systems. The relation between
the Social Sciences and multi-agent systems research thus seems to be a beneficial
one for both areas (Eck, 1998).

From an Artificial Intelligence point of view, the two promises together offer a
new level of abstraction for communication and co-ordination in knowledge-
intensive distributed systems comparable to the knowledge level (Newell, 1984):
the social level. The Social Sciences may become an additional source of inspiration
for Artificial Intelligence, complementing Psychology (Cognitive Science).

1.3� The Practise of Multi-Agent Systems

Practitioners in the area of multi-agent systems research currently face a number of
issues that need to be solved:

�� First of all, the notion of an agent is used both as a metaphor and as a
reference to a type of technology. This is a source of much confusion in the
field of multi-agent systems, and of even more confusion in related research
areas. In the field of agent technology, the main focus is on the development
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of software components that are agents. Such software components are
programmed to provide autonomy, reactivity, pro-activity, social ability and
(often) mobility. Software engineers who employ agent-based technology
only have to refine the components by adding task-specific functionality.
Agent technology is best viewed as an extension of object technology. Much
research in the area of multi-agent systems, however, is not directly
concerned with the development of software components that are agents.
Instead, the notion of an agent is used as a metaphor: software systems are
analysed and designed as if they consist of autonomous, rational agents.
Research topics include the development of theories about the behaviour of
such agents, about behaviour that emerges from the interplay between
agents in a multi-agent system, and generic architectures for such agents.
However, there is no commitment to a specific technology for implementing
multi-agent systems, although, of course agent technology is often the most
promising candidate.

�� Currently, there is no solution to the problem of how the behaviour of a
complex multi-agent system can be predicted based on the goals of
individual agents. In terms of the Social Sciences, there is no middle ground

theory (Castelfranchi & Conte, 1996). The promise that multi-agent systems
research will enable the Social Sciences to develop such a theory has not yet
been met.

�� As stated in Section 1.1.1, autonomy is an essential property of an agent.
However, currently there is no philosophically satisfactory definition of
autonomy. (See (Dennett, 1984) for a contemporary philosophical treatment
of autonomy.) The field of multi-agent systems research is often criticised for
its reliance on such a vague notion. For practitioners, it is difficult to
determine if a specific software component is an agent, or “just a program”
(Franklin & Graesser, 1997).

�� A multi-agent system consists of agents that are active simultaneously.
Consequently, the analysis and design of multi-agent system also involves
the analysis and design of concurrent behaviour. The central focus in the
area of concurrent behaviour is how to relate the different time scales (or
clocks, or, in other words, behaviour) of the different simultaneous
processes. In multi-agent systems, this problem has to be solved without
making (implicit or explicit) assumptions about synchronicity that are not
compatible with the autonomy of agents. As explained in the next section,
this issue is closely related to the research aim of this thesis.

�� Only recently (Jennings, 1999) has the multi-agent systems research
community realised that the development of a multi-agent system not only
involves state-of-the-art Artificial Intelligence and results in agent theory,
but also complex software engineering. Software engineering aspects of
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multi-agent system development have therefore only recently been
addressed, and results are preliminary.

Wooldridge and Jennings (1998) present a list of many more, as they call it, pitfalls
of agent-oriented software development.

This thesis develops an approach for the representation of the behaviour of
agents and of multi-agent systems in a precise, mathematical way. This approach
facilitates the development of solutions for the issues listed above.

1.4� Research Aims, Method, Relevance, Context and Demarcation

This section discusses the aims of the research presented in this thesis, as well as
the relevance of the research aims and the method followed. The context in which
the research is placed is briefly discussed and a demarcation of the performed
research is sketched.

1.4.1� Research Aims

The research aim of this thesis is to develop a formal, compositional, semantic

structure for multi-agent systems dynamics. This research aim is characterised in more
detail as follows:

�� As indicated at the beginning of this chapter, agents are first and foremost
active entities. Therefore, the primary characteristic of a multi-agent system
is that different and simultaneous processes take place. These processes
result in a continuous change of properties of the agents in a multi-agent
system. The focus of this thesis is on these continuous processes of change,
or, in other words, on the dynamics of a multi-agent system. The activity of a
multi-agent system or of an individual agent is also called the behaviour of
the multi-agent system or agent. In this thesis, behaviour, activity and
dynamics are used as synonyms.

�� Design of a multi-agent system is based on a model in which different
aspects of the multi-agent system, e.g. the behaviour, knowledge, intentions
and goals of the agents, are explicitly distinguished. Which aspects of a
multi-agent system are covered by a model depend on a number of factors,
such as, for instance, the intended usage of the model and the level of
abstraction. A model of a multi-agent system is itself intangible. However, a
model can be given a tangible form by a description, or specification, of the
model. A description of aspects of the dynamics of a multi-agent system is
called a specification of multi-agent systems dynamics.

�� A specification is an expression formulated in a (natural or formal)
language, called the specification language. As such, a specification itself is
merely a syntactic entity, or, in other words, a string of symbols. The raison
d’être of the specification is its intended meaning: the model it denotes. Thus,
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the need arises to express the intended meaning of a specification. A
semantic structure provides a set of constructs and relations between these
constructs with which the intended meaning of a specification can be
defined.

�� The semantic structure is identified as a compositional semantic structure,
which indicates the two most important properties of the semantic structure.
First, the primary construct in the semantic structure is the component: the
basic building block for models of multi-agent systems. In this thesis, multi-
agent systems are assumed to be modelled as compositional systems. Second,
the semantic structure supports the principle of compositionality: the
dynamics of a system composed of a number of components is defined by a
composition relation in terms of the dynamics of these components.

�� The semantic structure is also identified as a formal semantic structure. The
constructs provided by the structure to define the meaning of a specification
are mathematical constructs. The use of mathematical constructs enables a
precise and unambiguous definition of the intended meaning of a
specification.

To summarise, the primary research aim of this thesis is to develop a set of

mathematical constructs and relations between these constructs that can be used to define

the intended meaning of a specification for a multi-agent system. Such a set of constructs
is called a semantic structure. As a specification is an expression formulated in a
specific language (the specification language), a semantic structure can also be used
to define the intended meaning (semantics) of the specification language. The
semantics of a language, by definition, consists of the semantics of expressions in
that language: the semantic structure serves as the semantic domain of the
specification language.

To illustrate possible applications of the semantic structure, in this thesis, two
example multi-agent systems are modelled. First, a model for co-ordinating
exclusive access to resources in a multi-agent system is presented in Chapter 10.
Second, in Chapter 11, a society of a relatively large number of relatively simple
agents is modelled, with the purpose of studying emergent social behaviour.

1.4.2� Method

The method employed in this thesis to develop the semantic structure consists of
the following steps:

�� The starting point for the development of a semantic structure consists of a
commitment to a set of constructs and relations between these constructs.
Together, the set of constructs and relations constitute the semantic
structure. To establish such a commitment, different possibilities for specific
sets of constructs and relations are identified. This commitment is made by
the developers of the semantic structure and is fixed for all applications of
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the semantic structure. The primary commitment in this thesis is the
commitment to components as the basic construct. This commitment
supports the basic assumption mentioned above: multi-agent systems are
modelled as compositional systems.

�� The specific set of constructs and relations between these constructs, which
is fixed for the semantic structure, is designed to be as general as possible.
As a consequence, for each application of the semantic structure, a number
of additional choices have to be made that determine how the semantic
structure is applied for the specific application. These choices are made by a
user of the semantic structure and are fixed for each specific application.
After establishing the set of constructs and relations between these
constructs, this thesis explores different choices for applications of the
semantic structure.

�� The set of constructs, properties and relations is described in a detailed,
mathematical way. (This constitutes the main part of this thesis.)

�� The semantic structure is applied to provide a semantic domain for the
compositional multi-agent systems development method DESIRE. (See
(Brazier, Jonker & Treur, 1998) for an overview of the principles behind
DESIRE. A generic agent model modelled in DESIRE is described in
(Brazier, Jonker & Treur, 2000). The generic agent model has been applied in
many domains including electricity transportation management (Brazier,
Dunin-Keplicz, Jennings & Treur, 1997), electricity load balance
management (Brazier, Cornelissen, Gustavsson, Jonker, Lindeberg, Polak &
Treur, 2000) and as a basis for the co-operative agent model which has been
applied, for example, in distributed call centre support (Brazier, Cornelissen,
Jonker & Treur, 2000). An earlier version of DESIRE is described in
(Langevelde, Philips & Treur, 1992)).

�� The last step consists of the analysis of two example multi-agent systems
modelled in DESIRE. The first system multi-agent system consists of agents
that have to co-operate to obtain mutually exclusive access to a shared
resource. The second multi-agent system represents a society of 30 simple
agents used for experimental Social Science research.

1.4.3� Relevance of the Research Aim

As explained above, dynamics are an important aspect of every multi-agent
system. The dynamics of a multi-agent system emerge from complex mutual
influence between concurrent processes in a system. Wooldridge (1996, Section 5)
acknowledges the importance of concurrency in multi-agent systems as follows:
“The issue of concurrency has scarcely been addressed in formal treatments of
DAI, and yet concurrency is at the very heart of the area.”
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The formal representation of concurrency has long been studied in mainstream
Theoretical Computer Science. However, the results obtained are not directly
applicable to concurrency in multi-agent systems due to several specific
characteristics of multi-agent systems and the individual agents of which a multi-
agent system is constituted. These special characteristics can be described in the
form of requirements for a semantic structure for multi-agent systems dynamics as
follows:

�� A multi-agent system consists of a number of agents and the environment
shared by these agents. The agents deliberately and mutually influence one
another by executing actions in the environment, observing the
environment, and by communicating with one another. Communication,
action execution, and observation are together called interaction. Individual
agents have to deliberate to evaluate information received from other agents
and to determine which actions to execute and information to exchange to
pursue their own goals. The dynamics of a multi-agent system thus consists
of deliberation and interaction. A semantic structure for multi-agent systems
dynamics should therefore provide a natural representation of deliberation
and interaction.

�� An important phenomenon of multi-agent systems is that a multi-agent
system is composed of a number of heterogeneous agents: e.g., agents may
have completely different structure and they may perform different tasks,
either collaboratively or in competition. A multi-agent system is often not
designed by a single designer. In general, agents in a multi-agent system are
themselves complex systems consisting of a number of components, such as
e.g. planning components and knowledge base components. Analysis and
design of such heterogeneous systems is greatly improved by the
compositionality principle. A semantic structure for agent dynamics should
support this compositionality principle.

�� In, for instance, the strong notion of agency put forward by Wooldridge and
Jennings mentioned at the beginning of this chapter, an agent is
characterised as an (active, computational) entity whose state is described by
mentalistic notions. This characterisation suggests that the dynamics of
multi-agent systems should be modelled in terms of states and state

transformations. This view may be contrasted with a number of common
semantic structures for dynamics in mainstream Theoretical Computer
Science, where dynamics is often modelled as partial or total orders of
named actions2 (also called events), without an explicit notion of state and

                                                          
2 There seems to be a difference between the notion of action in Theoretical Computer

Science and Multi-Agent Systems. In Theoretical Computer Science, any observable activity
of an agent is called an action, whether or not this activity influences any other part of the
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state transformations. (Nevertheless, Burkhard (1993) chooses to use events
as the basis for his semantic structure for multi-agent systems.) In this thesis,
the dynamics of a multi-agent system are defined in terms of state and state
transformation.

�� The semantic structure should model dynamics as a composition of local

behaviours of agents and agent components, together with
interrelationships between these local behaviours. This locality is motivated
by the following two phenomena. In the first place, as already mentioned,
most multi-agent systems consist of a heterogeneous collection of agents.
Therefore, a global view is difficult to obtain, while a collection of local
views with interrelationships is more natural. In the second place, the agents
in a multi-agent system are often widely separated. Due to this wide-area
distribution, communication is asynchronous and cannot be assumed to be
durationless. Under these conditions, as explained in Chapter 7, global time
is not available. Consequently, if a notion of global state is desired, it has to
be defined such that the existence of global time is not implied by the
definition. In this thesis, a notion of global state is defined using dependence
relations between local states (a form of locality). Most common semantic
structures for dynamics in Theoretical Computer Science (often implicitly)
assume that global time is available and thus do not support this form of
locality.

The use of dependence relations to define a notion of global state is inspired by the
true concurrency view on modelling distributed systems (see among others
Pratt, 1986; Schwarz & Mattern, 1994), as opposed to the atomic mutual exclusion, or
interleaving, view. Several authors (e.g., Pratt 1986) argue that truly concurrent
processes are not properly modelled in the atomic mutual exclusion view, and
point at disadvantages of this view. In the atomic mutual exclusion view,
concurrency is modelled as nondeterministic global choice between different
sequences of atomic actions of individual processors in a distributed system. The
atomic mutual exclusion view implicitly assumes that a notion of global time is
available, i.e., the notion of time implied by the (global) sequences of atomic
actions. As concurrency is modelled as nondeterministic choice, made by a
(sequential) global automaton representing an entire distributed system, the
atomic mutual exclusion view does not support the principle of locality. Moreover,
in the atomic mutual exclusion view, the behaviour of a multi-agent system may
possibly change if actions are refined. (In the atomic mutual exclusion view, the
sequences of atomic actions are not preserved under action refinement (Castellano
et al., 1987; Glabbeek & Goltz, 1989). For example, consider two actions a and b that
are performed concurrently. Seen as atomic actions, in the interleaving view either

                                                                                                                                                   
system. However, in the multi-agent systems discipline, usually only agent activities that
attempt to change the state of the environment are called actions.
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a preceeds b or b preceeds a. However, if a is refined to the sequence of actions a1a2,
a possible behaviour is a1ba2: neither a1a2 preceeds b nor the other way around.)

Consequently, when applying the atomic mutual exclusion view, the behaviour of
a multi-agent system always needs to be described at the most detailed level, or it
has to be accepted that behaviour is not preserved if later on, a more detailed
description is developed. The true concurrency view does not have these
drawbacks.

The relevance of the research aim can also be indicated by reference to the
literature. Wooldridge (1996, Section 5) acknowledges the special position of multi-
agent systems (which he refers to as Distributed AI or DAI systems): “… DAI
systems are not simply concurrent systems.” The development of a formal
semantic structure specifically designed for multi-agent systems dynamics should
help to remedy this situation.

1.4.4� Research Context

The research presented in this thesis is related to three disciplines: Artificial
Intelligence, Theoretical Computer Science and Multi-Agent Systems. More
specifically, the relations between these disciplines and the development of a
semantic structure for multi-agent systems dynamics is as follows:

�� In Artificial Intelligence, locality is identified as a concept in modelling
common-sense contextual reasoning, as witnessed by e.g.
(Giunchiglia, 1993).

�� Theoretical Computer Science is used as a source of concepts for the
representation of concurrency, e.g. (Lamport, 1978, 1986; Schwarz &
Mattern, 1994). As an aside, the work of Lamport, Schwarz and Mattern
referenced can also be classified in the area of Distributed Systems research.

�� In the area of Multi-Agent Systems, a number of formal specification
languages exist that have been specifically designed for this area. In Chapter
12, a comparison with a number of alternative approaches is provided.
Surveys of this area have been published by for example Wooldridge and
Jennings (1995b) and O’Hare and Jennings (1996).

1.4.5� Demarcation

With respect to the demarcation of the research presented in this thesis, please
note:

�� This thesis approaches the subject of multi-agent systems from an Artificial
Intelligence point of view. Artificial Intelligence is an engineering discipline:
the focus is on designing systems that exhibit intelligent behaviour.
Consequently, the subject of multi-agent systems is approached in this thesis
with the ultimate goal of contributing to the development of engineering
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methods that support the design of multi-agent systems. The thesis is not
pursuing to contribute to the development of Sociology or other branches of
the Social Sciences. However, the semantic structure developed in this thesis
can be used to model multi-agent systems that simulate social phenomena.
An example is provided in Chapter 11.

�� The semantic structure developed in this thesis is not biased towards
specific processes in a multi-agent system, such as e.g. goal adaptation or
emergence of norms. Instead, the semantic structure is general: it is
applicable to all processes in a multi-agent system. Specific processes such
as goal adaptation and emergence of norms may be studied in the context of
applications of the semantic structure. The multi-agent systems analysed in
Chapter 10 and Chapter 11 are examples of such studies.

�� As stated in Section 1.4.3, the semantic structure is state-based, which
conforms to the common approach of characterising agents in terms of their
(mentalistic) state. However, the semantic structure abstracts from the
contents of these states. In other words, questions of which (probably
mentalistic) concepts to use to describe an agent’s state are not addressed in
this thesis.

�� The semantic structure developed in this thesis can be compared to
formalisms developed to study concurrency. The semantic structure
developed in this thesis is specifically designed for the domain of dynamics
of multi-agent systems. More general applicability of the semantic structure
is not investigated.

�� Chapter 9 presents a formal language (based on temporal logic) for precisely
describing the intended dynamics of components. However, the thesis does
not aim at developing a logic for reasoning about (the dynamics of) multi-
agent systems. As a consequence, complexity, expressive power and
inference relations of the language presented in Chapter 9 are not discussed
in this thesis.

1.5� Outline of the Thesis

The structure of this thesis is as follows:

Chapter 2 introduces compositional systems and presents a number of
commitments with respect to specific properties of compositional systems that can
be represented by the semantic structure.

Chapter 3 discusses how multi-agent systems can be represented as compositional
systems. To apply the semantic structure in the area of multi-agent systems (which
is the main application of the semantic structure), it is necessary to represent a
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multi-agent system as a compositional system, because compositions of
components are the primary construct in the semantic structure.

Chapter 4 provides an overview of the semantic structure and introduces an
example that is used in Chapter 5 to Chapter 9. The overview of the semantic
structure summarises the central principles and the formal techniques employed in
the semantic structure.

Chapter 5 formally defines the main constructs in the semantic structure. First,
components and information transmission are formally described. After that, three
views on the behaviour of a compositional system are defined, and relations
between these views are discussed.

Chapter 6 discusses how different properties of information transmission, such as
lossless information transmission and order-preserving information transmission,
are formally represented in the semantic structure. The commitments made in
Chapter 2 are formally defined in this chapter.

Chapter 7 develops a notion of a global state of a compositional system. This
notion of global state does not assume that there is a global notion of time
accessible to all components. Moreover, a global state is derived from the three
views on the behaviour of a compositional system, which consist of local states.
Thus, in the semantic structure, global states are derived from local states, instead
of the other way around.

Chapter 8 develops additional constructs in the semantic structure for the
representation of control. In almost every multi-agent system, some agents exercise
control over other agents. The semantic structure presented in Chapter 5 and
Chapter 6 enables the representation of control. Chapter 8 develops a refinement of
the semantic structure that enables the representation of control in a separated,
domain-independent way that supports reuse and maintainability.

Chapter 9 shows an application of the semantic structure, in which semantics are
developed for the DESIRE modelling framework.

Chapter 10 presents the first example of a multi-agent system modelled with the
DESIRE modelling framework. The multi-agent system in this example consists of
agents that have to obtain mutually exclusive access to a shared resource.

Chapter 11 presents the second example of a multi-agent system modelled with the
DESIRE modelling framework. The multi-agent system in this example represents
a society of 30 simple agents. This society is used to replicate experimental Social
Science research (Cesta, Miceli & Rizzo, 1996a).

Chapter 12 compares the semantic structure with a number of similar approaches.
Additionally, conclusions and directions for further research are presented.

Discussions presented in Chapter 2, Chapter 8 and Chapter 9 of commitments
made in the semantic structure, as well as alternatives to these commitments and
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the modelling choices presented in Chapter 3 and Chapter 8, are adapted from
(Brazier, Eck & Treur, 1996). A strongly abridged version of Chapters 4 to 7 can be
found in (Brazier, Eck & Treur, 2001b). Details of the DESIRE modelling
framework presented in Chapter 9 are taken from various publications of the
DESIRE group at the Vrije Universiteit, Amsterdam. Figure 9.1 was designed by
Niek Wijngaards. Chapter 10 is an extended version of (Brazier, Eck &
Treur, 1997b). Chapter 11 is an extended version of (Brazier, Eck & Treur, 2001a),
which also appeared in a much shorter version as (Brazier, Eck & Treur, 1997a).
Figure 11.6 in Chapter 11 is taken from (Cesta, Micelli & Rizzo, 1996a). The author
thanks Amadeo Cesta, Maria Miceli and Paola Rizzo for providing the raw data
that is used in the experimentation. The description of OSL in Chapter 12 is taken
from (Eck, Engelfriet, Fensel, Harmelen, Venema & Willems, in press), which also
appeared in a much shorter version as (Eck, Engelfriet, Fensel, Harmelen,
Venema & Willems, 1998).
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Chapter 2�

Compositional Systems

The aim of this thesis is to develop a formal, compositional semantic structure for
multi-agent systems dynamics. The semantic structure consists of a set of
(mathematically defined) constructs together with relations between the
constructs. The first step in the development of the semantic structure consists of
the identification of possible commitments to a specific set of constructs and
relations. Such commitments are fixed for the semantic structure and are made by
its designers. After identification of possible commitments, in this chapter a
specific set of commitments is fixed for the rest of this thesis. The next chapter
discusses various ways in which multi-agent systems can be modelled within the
context of the commitments established in this chapter.

The basic assumption adopted in this thesis is that multi-agent systems are
modelled as compositional systems. Thus, in applications of the semantic
structure, the dynamics of a multi-agent system are described in terms of the
dynamics of a number of components that together form a compositional system.
The primary commitment in the development of the semantic structure is the
commitment to components as basic constructs. In other words, the semantic
structure developed in this thesis consists of, in the first place, components.
However, additional commitments have to be made to further establish the
semantic structure. The additional commitments determine properties of
components and determine which other constructs are provided by the semantic
structure and which relations exist between the constructs. This chapter discusses
possibilities for such additional commitments, and fixes a specific set of
commitments to establish an informal description of the semantic structure
developed in this thesis.

The semantic structure established in this chapter provides constructs
specifically designed for modelling multi-agent systems as compositional systems.
Consequentially, an application of the semantic structure is itself a compositional
system and the discussion of possible additional commitments in this chapter is a
discussion of different views of what a compositional system is (hence the title of
this chapter). In Section 2.1, compositional systems are introduced. An important
aspect of compositional systems, information exchange, is discussed in Section 2.2.
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2.1� Compositional Systems

As stated in the previous chapter, the basic assumption adopted in this thesis is
that multi-agent systems are modelled as compositional systems. Therefore, the
basic construct provided by the semantic structure is the component, the building
block of a compositional system. In Section 2.1.1, properties of the component
construct provided by the semantic structure are discussed. Section 2.1.2 discusses
components from the point of view of related areas of research.

Components in a compositional system are related with one another, for
instance by information exchange between components. In other words,
information exchange is the glue that holds together the building blocks of a
compositional system. This section assumes that the semantic structure provides a
construct for information exchange. The next section, Section 2.2, presents an
extensive discussion of different properties of such a construct.

2.1.1� Components and Compositional Systems

A component is a locus of information and computation. A component is related to
other components in two ways: by information exchange and by composition,
which together determine the structure of a compositional system. Three aspects of
a component are distinguished: its state, its interfaces and its composition structure.

In general, a component stores information, which can change over time
because of new information becoming available due to computation or information
exchange. The information contents of a component determines its information state,
or state for short. All computation performed by a component is based on its
information contents. Information exchange in a compositional system is aimed at
changing the state of the components that exchange information. Components in a
compositional system can be active concurrently or sequentially, and thus state
changes in a compositional system can occur concurrently or sequentially.

The information state of a component is only accessible via the interface of the
component. As a consequence, a component can (only) exchange information with
another component via the interfaces of the two components. A property of the
component structure provided by the semantic structure developed in this thesis is
that the interface of each component consists of two parts: the input and output

interface. The input interface is that part of a component’s state that is used as input
for the computations of the component. Thus, the input interface can be used to
provide information to a component. The output interface is the part of a
component’s state that contains the output of the component. This interface can be
used to make results of computations performed by the component accessible to
other components. Changes in the output part of a component’s state are visible to
other components.

The third aspect of a component is its composition structure: a component may
itself be composed of other components. Thus, the composition structure is
recursive: a component in a compositional system may consist of other
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components, so the component is itself a compositional system. A component that
is composed of other components is called a composed component, and the
components of which it consists are called the component’s subcomponents. The
component of which a specific other component is a subcomponent is called the
subcomponent’s parent component. (In this thesis, the term ‘subcomponent’ is
exclusively used for direct subcomponents, or children of a parent component, and
not transitively. Thus, the ‘grandchildren’ of a specific parent component are not
called subcomponents of the parent component.)

2.1.2� Some Perspectives on Components

The previous subsection characterised a component as a locus of information and
computation. Different perspectives on the concept of a component can be found in
related areas.

�� In Software Engineering, there is currently much interest in component based

software development. The central idea in component based software
development is that software is constructed by connecting ready-made
software components. D’Souza and Wills (1998, p. xvii) call such
components ‘plugable software’ and compare component based
development with earlier approaches to modularization of software:
“People have always divided programs into modules, but the original
reasons were meant to divide work across a team and to reduce
recompilation. With plugable software, the idea is that you can combine
components in different ways to make different software products.” As
D’Souza and Wills indicate, component based development in Software
Engineering is focused on providing technology that supports the division
of programs in program modules. Earlier technologies are, for instance, the
module construct provided by CLU (Liskov, Moss, Schaffert, Scheifler &
Snyder, 1981) and Modula-2 (Wirth, 1982), and object orientation. The main
difference between component based software development on the one
hand and more traditional technology on the other hand is that component
based development not only provides design-time technology, but also
runtime support for ‘plugable software’. With the traditional technologies,
after compilation of all modules, at run time only a large, monolithic
composed system remains. Component based software is also at runtime
distinguishable as a collection of components that can only exchange
information via well-defined interfaces, and new components can be added
dynamically. So, also at run time a component is distinguishable as a
concrete locus of information and computation.

�� A component is a locus of information and computation. A compositional
system thus consists of a number of loci of information where processes of
computation take place. As stated in the previous subsection, these
processes may take place simultaneously. Therefore, a compositional system
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can be studied from the perspective of the Distributed Systems area.
However, this area usually abstracts from the concept of a component with
its properties such as e.g. interfaces and focuses on the processes that take
place simultaneously and exchange information. Concepts used in the
theoretical analysis of Distributed Systems are employed in Chapter 7.

�� The concept of a component is also of importance in a number of
coordination languages The coordination paradigm views programming
distributed systems as “the combination of two distinct activities: the actual
computing part comprising a number of processes involved in manipulating
data and a coordination part responsible for the communication and
cooperation between the processes.” (Papadopoulos & Arbab, 1998). Most
coordination languages completely abstract from the computing part by
only distinguishing a number of components that together contain all
computational processes. The coordination part abstracts from the
computations that take place within components and focuses on
coordination between components.

�� A compositional system is a system in which the dynamics of a system
composed of a number of components is defined by a composition relation.
The composition relation itself defines the dynamics of a system composed
of a number of components in terms of the dynamics of those components.
This compositionality principle gives rise to the study of compositional

reasoning about compositional systems: assertions about a compositional
system are proved solely on the basis of assertions about the components of
the compositional system and a composition relation, without additional
knowledge about the internal structure of those components (Roever, 1998).
Thus, the concept of a component is central in the study of compositional
reasoning. However, the precise properties of a component are usually left
abstract.

2.2� Constructs for Information Exchange

The previous section identified information exchange as the glue that holds
together the building blocks of a compositional system: components. This section
discusses constructs provided by the semantic structure that support information
exchange, properties of these constructs and relations with other constructs and
properties, such as components, interfaces and information states.

Both the terms communication and information exchange (which may be
considered to be synonyms3) have a connotation of mutual influence: if a
component A exchanges information with a component B, (different) information
is transferred from A to B and from B to A. However, a number of forms of

                                                          
3 Merriam-Webster WWWebster Dictionary.
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communication, such as e.g. television broadcasts, are better characterised as
unilateral: information is not exchanged between two agents, but is transmitted
from one agent to another. Information transmission seems to be a more basic
concept than communication or information exchange (which can be seen as bi-
directional information transmission). Therefore, in the rest of this chapter the term
information transmission is used. (If, however, in a certain context focus is on
mutual influence, both of the terms communication or information exchange may
be used.)

As information transmission is assumed to be directed, it is important to
distinguish between the component from which an information transmission
departs and the component to which the transmission is directed. The component
that initiates a transmission is called the source component, while the component to
which the transmission is directed is called the destination component.

There is a multitude of choices with respect to which constructs, properties of
constructs and relations between constructs a semantic structure may provide to
facilitate information exchange. Consequentially, this section presents an extensive
discussion of the concept of information transmission. As a starting point, the
following are the eight most important commitments made for the semantic
structure, each of which is discussed in a separate subsection, together with
alternative commitments:

�� Information transmission is restricted to components that are
subcomponents of the same parent component or between a parent
component and its subcomponents (Section 2.2.1);

�� The semantic structure only provides constructs and relations between
constructs for point-to-point information transmission (Section 2.2.2);

�� The semantic structure provides a construct that represents a
communication channel between components (Section 2.2.3);

�� To transmit information from one component to another, the source
component composes a message that consists of the information to be
transmitted. This message is volatile: it cannot exist before or after the
transmission. (Section 2.2.4);

�� Information transmission may have an effect on the component that
initiated the transmission (Section 2.2.5);

�� A component has the ability to dynamically enable or disable receipt of
information (Section 2.2.6);

�� Information transmission is asynchronous (Section 2.2.7);

�� State changes are logically instantaneous (they do not seem to have any
duration at all) and exclusive with respect to transmissions (a number of
consecutive transmissions results in the same number of state changes per
agent) (Section 2.2.8).
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Some commitments give rise to additional choices with respect to properties of
new constructs introduced or the details of relations with other constructs. All
commitments are summarised in Section 2.2.9.

2.2.1� Restriction on Direct Information Transmission

A property of the component construct provided by the semantic structure
developed in this thesis is that in a compositional system, (only) six kinds of
information transmission are allowed. Direct information transmission (without
relay by intermediate components) between arbitrary components is not allowed,
except for the following six cases:

�� Information transmission between components that are subcomponents of
the same component (called private information transmission),

�� Transmission from the input interface of a component to the input interface
of one of its subcomponents (called import mediating information
transmission),

�� Transmission from the output interface of a subcomponent to the output
interface of its parent component (called export mediating information
transmission),

�� Transmission from the input interface of a component to the output
interface of the same component (called cross-mediating information
transmission),

�� Transmission from a component to an information link between two other
components that are all subcomponents of the same component (called link
modifier information transmission), and

�� Transmission from an information link between two other components that
are all subcomponents of the same component to a third component (called
link monitoring information transmission).

The role of link modifier and monitoring information transmissions is discussed in
Section 2.2.3.2 and in Chapter 8.

Results of computations carried out by a component can only influence other
components via information transmission, which is restricted as explained in this
section. In other words, side effects of computations can only be used outside the
component where they originate if the information produced as a side effects is
transmitted via information links. The semantic structure does not support other
side effects.

The pictorial representation of a component in this thesis is provided in Figure
2.1 below. This figure shows three components, one of which is a composed
component that consists of two subcomponents. All six allowed forms of
information transmission are shown, represented by arrows. The information
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transmission from one of the primitive components at the left-hand side to the
composed component is called private because there is an implicit component of
which all depicted components are subcomponents.

Figure 2.1: Compositional system.

2.2.2� Point-to-point Transmissions, Multicast or Broadcast

The semantic structure (only) provides a construct for information transmission
from one component to a single other component (or possibly the same
component). This is called point-to-point transmission or sometimes unicast
transmission. The semantic structure does not provide constructs for multicast or
broadcast transmissions. In a multicast transmission, information is transmitted to
a subset of all components in a compositional system. Several forms of multicast
are possible, differing in the flexibility provided with respect to how the subset of
agents involved is determined. In a broadcast transmission, information is
transmitted to all components in a compositional system.

Whether or not constructs for multicast and broadcast transmission are
provided is primarily a matter of demarcation. Multicast and broadcast
transmissions can also be realised as a set of point-to-point transmissions. An
application of the semantic structure can thus introduce multicast and broadcast
transmissions and define these forms of transmission in terms of point-to-point
transmissions.

2.2.3� The Information Transmission Channel

The semantic structure provides a construct that represents communication
channels between components. This construct is called an information link, or link

for short. The commitment to a construct that represents communication channels
enables more details of information transmission to be defined in applications of
the semantic structure. (It is not strictly necessary to provide a construct for
representing communications channels. If it is not provided, information
transmission is defined directly in terms of the components involved.)
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A number of additional commitments can be distinguished with respect to how
a communications channel, and information transmission, are represented in the
semantic structure. Each additional commitment is discussed in a separate
subsection below. The additional commitments distinguished are:

�� An information link is explicitly coupled to two named components.
(Section 2.2.3.1);

�� The state of a communications channel is represented by the information
link construct (Section 2.2.3.2);

�� An information transmission process results in two changes of the state of an
information link (Section 2.2.3.3).

2.2.3.1� Anonymous or Named Transmission

In the semantic structure presented in this thesis, for each link two fixed
components are named as its source and destination, respectively. As a
consequence, for each information transmission, the destination of the
transmission (the component that receives the information transmitted) is
determined by the link and is fixed as soon as the source component initiates the
transmission.

An alternative possibility enabled by the commitment to provide a construct
that represents communication channels (the information link), is to determine the
destination at a later time. This possibility amounts to a form of anonymous
information transmission, in which the source component for the transmission
does not have to know the identity of the receiver. Instead, the source component
just places the information to be transmitted on the channel. Once information is
placed on the channel, the (copy of the) information on the channel is independent
from the component that placed it on the channel. It is assumed that all
components have access to the channel and each component may, independently
of the source, try to take information from the channel. This form of information
transmission is similar to the blackboard architecture used in distributed
knowledge based systems (Nii, 1986a, 1986b). As all components in principle have
access to the channel, this form of transmission can be seen as a form between
multicast and broadcast. Both anonymous transmission and independence of the
source component are key principles of the generative communications paradigm
originally proposed by Carriero & Gelernter (1992). Generative communication is
the defining feature of one class of coordination languages, called data-driven
coordination languages (Papadopoulos & Arbab, 1998). Gaspari (1998, p. 7) lists
anonymous communication as a possible way to abstract from symbol level
addressing issues in knowledge-level models of multi-agent systems. A necessary
(but not sufficient) condition for generative communications is that the semantic
structure represents the state of an information link.
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2.2.3.2� The State of an Information Link

The semantic structure not only distinguishes the state of components, but also of
information links. In the semantic structure, the state of an information link may
depend on both (or either of) the contents of the channel it represents at a particular
point in time and on the activity of the channel at a particular point in time. As an
example, consider a TCP/IP network connection. The contents of the connection at
a particular point in time is, for instance, a set of TCP messages. A TCP/IP
connection may be open, closed, busy or idle, which describes the state of the
transmission as an activity.

Like the state of a component, the state of a link changes over time. For
example, suppose the state of a link is determined by the contents of the link
represented as a set of messages. At the beginning of a transmission, the
information to be transmitted is, in the form of a message, added to the set of
messages in transit. Thus, the state of the link changes from a state for which the
set did not contain the new message to a state for which it does. After some time,
the message is delivered, ending the transmission. The state of the link changes
again, from a state for which the set of messages in transit contains the message
that is delivered, to a state for which the set of messages in transit no longer
contains this message. The following commitment further supports such detailed
representation of information transmission, enabled by the decision to represent
the state of an information link. The state of an information link is accessible by
other components for control purposes via link control information transmission
(see Section 2.2.1).

2.2.3.3� Information Transmission and Link State Changes

The commitment to distinguish the state of information links opens up possibilities
for further commitments with respect to how the state aspect of an information
link can be used. In fact, the semantic structure developed in this thesis supports
detailed representation of information transmission. This support is enabled by the
commitment to distinguish link state changes for each information transmission.
More specific, for each information transmission, two state changes are
distinguished. With this commitment, it is possible to model information
transmission, for example, in the following way. Suppose that the state of an
information link reflects both whether the link is enabled (ready to transmit
information) and the contents of a queue of messages in transit. Information
transmission can, in this example, only take place if, according to the current state
of the link, the link is enabled. If this is the case, the state of the link changes to a
new state in which the message to be transmitted is added to the queue of
messages in transit. After some time, the message is delivered and the state of the
link changes again to a state in which the message just delivered is no longer on



2.2: Constructs for Information Exchange

26

the queue of messages in transit. Additional state changes may occur in between
the two state changes associated with the transmission in this example.

Several relations between decisions presented in Section 2.2.3 are indicated in
the text above. An overview of these relations is depicted in Figure 2.2 below.
Similar figures are provided for Sections 2.2.4 to 2.2.6, and in Section 2.2.9
(summary), the figures from Section 2.2.3 to 2.2.6 are collated to provide an
overview of all relations between the commitments. In these figures, the
commitments set for the semantic structure are listed in italics. Alternative
possibilities for these commitments are grouped with the commitments in boxes,
one for each issue. Solid arrows indicate that a specific possibility gives rise to an
additional issue. These solid arrows always start from a specific possibility (upper
or lower part of a box) and end at an issue (middle of a box).

Figure 2.2: Relations between commitments in Section 2.2.3.

2.2.4� Relationship between Transmission and Transmitted Information

The primary goal of information transmission is to change the state of another
component (and not merely to send a message). However, in a number of
examples, the information transmitted (the message) is mentioned explicitly, while
the different states of the components are not mentioned at all. This suggests that
messages themselves can be important as well.

The semantic structure is committed to volatile messages: messages cannot exist
before or after transmission. This commitment is based on a distinction between a
message and its content information. As stated above, a component transmits
information to change the state of another component. To this end, the component
prepares some information that is to be transmitted to the other component. This
information, the content information, is then encapsulated in a unit that can be
transmitted. The encapsulated content information is called a message. A specific
piece of content information can be encapsulated in different kinds of units,
depending on the kind of transmission unit used. As an example, consider the
following situation. An agent, called A, wants to change the state of another agent,
B, such that B comes to believe that a resource is available. Agent A knows that
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agent B only believes that information is true if the source is explicitly mentioned.
Therefore, agent A prepares specific information for B. After this preparation
phase, agent A reaches a state in which it has available content information saying:
“According to our local newspaper, the resource is available.” This information is
only available inside agent A. If agent A wants to transmit this information by
postal mail, he or she puts it in an envelope. In other words, the content
information is encapsulated in a specific unit (the envelope) to form a mail
message. If agent A wants to transmit this information by telephone, he or she calls
B. The same content information is encapsulated in a completely different (and
more volatile) unit (the phone conversation) to form a different message. However,
the effect on the state of B is the same: in both cases, B reaches a state in which he
or she knows that A transmitted content information stating that “According to
our local newspaper, the resource is available.”

In the example given above, the two messages differ in their volatility. On the
one hand, a telephone conversation is not normally received, and it only exists as
long as the conversation lasts. On the other hand, a postal message stays in
existence after the conversation until it is deliberately deleted. In the semantic
structure, all messages are volatile. This means that after a transmission ends, only
the content information is available, in one or both of the agents involved in the
transmission. The content information is available as part of the information
present in an agent, and thus partially determines the state of the agent. Thus,
there is a tight coupling between information transmission and the states of
components. During the transmission, the message can exist in the source
component, the link and/or the destination component. As a consequence of the
commitment to volatile messages, there is no need for the semantic structure to
provide an independent message construct.

The primary advantage of this decision is as follows. The commitment to a tight
coupling between messages and states emphasises the goal of an information
transmission: to change the state of the destination component. To achieve this
goal, the independent existence of a message is not important or possibly incorrect.
For example, consider a human agent A who wants to inform another agent B of
the availability of a certain resource. The goal of agent A is to change the state of B
such that B knows that the resource is available. To achieve this goal, A can make a
telephone call or send an email message. In the case of an email message, it is
relatively simple to distinguish a message that exists independent of the states of
both A and B, but in many applications of the semantic structure, it is not
important to distinguish this message as such. However, in the case of a telephone
call, the telephone is used to deliver a message on the availability of the resource.
This message only exists in the minds of A and B, and not independently in the
telephone system.

Applications of the semantic structure in which the independent existence of a
message cannot be avoided are still supported. Such applications are, for instance,
applications in which generative communications are analysed (see Section 2.2.3.1),



2.2: Constructs for Information Exchange

28

models of multi-agent systems based on speech act theory (Chaib-draa &
Vanderveken, to appear)4 and protocol specifications, such as, for instance, the
HTTP protocol. Such applications are supported because, as explained in
Section 2.2.3.2, the semantic structure not only distinguishes the state of
components, but also the state of information links. In the applications mentioned,
messages that exist independent of the state of a component appear in the state of
an information link.

Figure 2.3: Relations between commitments in Section 2.2.4.

2.2.5� State Changes in Information Transmission

Information transmission is performed by one component. This component
initiates the transmission to attempt to change the state of another component.
Thus, if the transmission succeeds, the state of the other component changes. As
stated in the previous subsection, the semantic structure is committed to defining
information transmission as a relation between the states of the components
involved, without assuming independent existence of messages. This relation is an
aspect of the link construct provided by the semantic structure. This subsection
and the next subsection further discuss this relation.

The semantic structure defines the transmission relation in terms of two states of
the source component for each transmission. The first state is the state in which the
transmission is initiated. The second state is a new state that is determined by the
result of the transmission. This state reflects that the transmission has been
initiated, but for specific applications of the semantic structure, it may also reflect
the result of the transmission.

In the semantic structure, the second state need not be the immediate successor
state of the first state in the dynamics of the source component. In other words,
initiating a transmission is similar to executing a non-blocking send operation

provided by operating systems or (agent) programming languages. This
commitment is made to support applications in which the second state is used to
reflect the result of a transmission. Consider the point in time at which a
component initiates a transmission. From that moment on, each state of the

                                                          
4 Speech act theory forms the foundation of a number of agent communication languages

such as KQML (Finin, Labrou & Mayfield, 1997) and the FIPA Agent Communication
Language (ACL), ([FIPA]). The agent programming languages Agent0 (Shoham, 1993) and
PLACA (Rebecca-Thomas, 1995) are based on Speech Act Theory. Applications of these
languages are examples of multi-agent systems in which information transmission is
defined in terms of messages.
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component should reflect the fact that a transmission has been initiated. However,
if these new states also reflect success of the transmission, between the moment the
transmission was initiated and the moment at which information on success of the
transmission is available, additional state changes may take place. If the second
state needs to be the immediate successor of the first state, such additional changes
would not be allowed and the source component would be inactive until
information on the success of the transmission is available (blocking send operation).

As an aside, the relation that defines information transmission only defines how
information transmission affects the component (or, more precisely, the states of
the components involved). The relation does not specify that the state changes
defined by the relation should occur, nor does it specify anything about at which
time the state changes should occur. Extending the example from Section 2.2.4,
consider the relation that defines the information transmission from A to B. Such a
relation would, in the easiest case, only express that if, at a certain point in time,
agent A is in a state in which he or she knows that a certain resource is available,
then agent A should arrange that agent B reaches a state in which agent B also
knows that this resource is available.

Figure 2.4: Relations between commitments in Section 2.2.5.

2.2.6� Conditions for Enabling Information Transmission

As explained at the beginning of Section 2.2, a component transmits information
with the aim of changing the state of another agent. This implies that because of
information transmission directed at a specific component, the state of this specific
component changes. Such a state change differs from state changes caused by the
activity of the component itself. State changes caused by a component’s activity
originate within that component, and are thus fully controlled by the component.
However, a state change resulting from information transmission directed at a
component originates from another component and is not controlled by the
component to which it is directed. However, the semantic structure supports
defining information transmission in such a way that a destination component
dynamically decides whether it allows state changes originating outside it. In other
words, at some moments in time, the component is not ready to receive
transmissions, while at other moments it is.

This commitment has both global consequences and local consequences. The
global consequences are consequences for the component that initiated the
transmission, and are discussed in Section 2.2.7. The local consequences are
consequences for the component to which the transmission is directed. An obvious
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consequence is that the relation that defines information transmission in terms of
the states of the components involved, needs to define the transmission using two

states for the destination component. First, there is the state that results from the
transmission and is its aim. Second, there is the state that determines whether a
state change leading to the first state is allowed.

In the context of software components, the issue of how state changes
originating outside the component are interleaved with state changes inside the
component is related to the availability and semantics of a ‘receive’ operation. Such
an operation may be provided by the operating system, a programming language,
or a model specification language. In some frameworks, these operations are
implicit: the semantics of the framework ensures that at certain moments in time,
the component allows state changes originating outside it, without explicit
reference in the specification of the component.

Figure 2.5: Relations between commitments in Section 2.2.6.

As the relation with read operations in a software component context suggests,
there are additional choices with respect to how a component deals with state
changes beyond its control. Consider the point in time at which a component,
possibly as the result of some deliberation, decides to allow state changes to occur
that originate outside the agent. There are two possibilities with respect to which
state changes can occur after this point. The first possibility is to allow any state
change, both state changes that originate outside the component and state changes
that results from the component’s own activity. In other words, after this point in
time, the agent is able to continue with its own activities. This possibility is similar
to the semantics of so-called non-blocking receive operations provided by operating
systems or programming languages. The second possibility is to only allow state
changes originating outside the component. In this case, after allowing state
changes that originate outside the component, the component cannot continue
with its own activities and has to wait for a state change originating outside it. (It is
assumed that after such a change has occurred, the component regains its ability to
carry out its own activities.) This possibility is similar to the semantics of blocking

receive operations. With respect to the second possibility, an additional division is
possible: either state changes originating at a specific component are allowed, or
state changes originating from any other component, or it is possible to
dynamically choose between these two possibilities. The constructs provided by
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the semantic structure allow maximum flexibility and therefore allow any state
change, both state changes originating outside the component and state changes
that results from the component’s own activity.

2.2.7� Synchronous or Asynchronous Transmission

To illustrate the difference between synchronous and asynchronous information
transmission, consider the following examples from everyday life. Suppose a
human agent A needs to transmit some information to another human agent B.
Suppose A considers a telephone call to be the appropriate means of transmission.
If B is available at the time of the call, the information can be transmitted and after
transmission, A considers the transmission to have been successful. This is an
example of synchronous transmission. A characterising property for synchronous
transmission is that an arbitrary event in the life of A or B happened before A

started the transmission if and only if it happened before B answered the phone.
Similarly, an arbitrary event in the life of A or B happened after A ended the
transmission if and only if it happened after B ended the conversation. (It is not
necessary to assume that there is a global clock that determines whether an event
happened before another event. This is further explained in Chapter 7.) If agent A,
however, considered sending a (postal or electronic) mail message as the
appropriate means of transmission, the situation differs. After A composed the
message and either dropped it in a mail box or hit the ‘send’ button in his or her
email program, agent A can continue with other activities and probably considers
the transmission to have been successful. As a consequence, while the message is
in transit, events may happen. Events that happen while the message is in transit
necessarily happen after A sent the message, but before B receives the message.
Thus, the characterisation of synchronous transmission does not apply in the case
of sending mail. Sending mail is an example of asynchronous transmission. (As an
aside, also if agent A only considers the transmission to have been successful after
receiving acknowledgement of receipt from B, the transmission is still
asynchronous, because it is assumed that other events may happen while either the
message from A to B or the acknowledgement from B to A is in transit. If,
somehow, A were to be completely inactive until acknowledgement was received,
then the transmission would be synchronous. Moreover, the example would then
show how a synchronous transmission can be the result of two asynchronous
transmissions.)

The reason for committing to asynchronous transmission in the semantic
structure is to create independence between the source and destination
components of a transmission. In the previous subsection, the commitment to
dynamically allow or disallow state changes that originate outside a component
was discussed. If such changes are disallowed for some period of time, and during
this period another component initiates a transmission, with synchronous
transmission the initiating component has to remain inactive for some time, which
is not the case if asynchronous transmission is assumed. (A third possibility would
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be to assume that under these circumstances, transmission fails.) This interference
constitutes the global consequences mentioned in the previous subsection.

Committing to asynchronous transmission still supports applications of the
semantic structure based on synchronous transmission, as synchronous and
asynchronous transmission can each be defined in terms of one another. On the
one hand, synchronous transmission can be achieved using asynchronous
transmission by first asynchronously transmitting information and then remain
passive until acknowledgement of receipt is sent back asynchronously. (As an
aside, there are more sophisticated schemes for achieving synchronous
transmission, see for instance (Soneoka & Ibaraki, 1994)). On the other hand,
asynchronous transmission can be achieved using synchronous transmission by
introducing a separate entity, possibly the communications channel itself, that is
connected to both components involved in the transmission. One of the
components synchronously transmits information to this separate entity, which in
turn synchronously transmits it to the other component. The combined effect is an
asynchronous transmission from one component to the other.

2.2.8� Exclusive, Logically Instantaneous State Changes

The final commitment listed at the beginning of Section 2.2 is the commitment to
provide state changes that are logically instantaneous (they do not seem to have
any duration at all) and exclusive with respect to transmissions (a number of
consecutive transmissions results in the same number of state changes per agent).
This commitment is related to the issue of state changes in information
transmission (Section 2.2.5) and the issue of enabling conditions for information
transmission (Section 2.2.6). As explained in those sections, information
transmission results in state changes in both the source and destination
components. These state changes reflect the arrival of new information in the input
interface of the destination component and, possibly, information on the result of
the transmission becoming available in the source component.

Consider a compositional system in which two components, C1 and C2, both

transmit information to a third component, D, at the same time. According to
Section 2.2.5, each transmission results in two state changes for D. Each of these
four state changes is exclusive, i.e. each state change only reflects the effect of one
transmission, and is logically instantaneous, i.e. the state change does not seem to
have a duration. In other words, state changes are not combined, and they cannot
be interrupted. As state changes cannot be combined, even though two
transmissions may happen at the same time, four states in the behaviour of D can
be distinguished that are related to the two transmissions. However, the order in
which these states occur is not fixed.

If state changes were not exclusive with respect to transmissions and logically
instantaneous, then the following situation could possibly arise. Assume that C1 is
the first to start transmitting information to D. During C1’s transmission, C2 also
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starts a transmission, and assume that C2’s transmission finishes at the same time
as C1’s transmission. In this case, the state of D that results from information

transmission has to reflect the combined effect of both transmissions. Two
situations can arise. The combined effect of both transmissions can be inconsistent.
In this situation, the new state of D has to represent inconsistent information.
Alternatively, the effect of one transmission may cancel the effect of the other, in
which case, the state determined by the combined effect equals the state just prior
to the two transmission. From the point of view of D, nothing seems to have
happened. These situations can be avoided by the commitment presented in this
section.

2.2.9� Summary

The previous sections presented a number of commitments with respect to
information transmission made in the development of the semantic structure. In
this section, all commitments are summarised in two ways. First, the figures
presented in Sections 2.2.3 to 2.2.6 are collated in Figure 2.6. In this figure, the
dashed arrow indicates that the commitment from which it departs is required by
the commitment to which it is directed.

Second, the commitments are summarised by depicting an instance of
information transmission (see Figure 2.7). This figure depicts the behaviour of two
components, A and B, and of an information link L from A to B. The behaviour is
depicted in the form of time lines. Each time line depicts a sequence of states
(represented by rectangles) and state transitions (represented by straight arrows).
The instance of information transmission depicted consists of the eight states �A,i,
�A,j, �L,i”, �L,j”, �L,k, �L,l, �B,i’  and �B,j’. State �A,i is the state of component A in
which the transmission starts. State �B,j’ is the state of component B that is the

result of the transmission, or, in other words, the state that reflects that information
present in A in state �A,i is also present in B. As explained in Section 2.2.5, the

semantic structure distinguishes a second state for each information transmission
in the source component. This is state �A,j. This state can be used by applications of

the semantic structure to mark the end of the transmission. Furthermore, it can be
used to represent the receipt of an acknowledgement sent by B. Independent of the
usage of state �A,j, according to Section 2.2.5, state �A,j may be the immediate
successor of state �A,i. (indicated by the curved arrows labelled ‘1’ that show how

the figure would be if this were the case). However, as stated in Section 2.2.5, state
�A,j need not be the immediate successor of state �A,i (commitment to non-blocking
send). Consequently, there may be other states between �A,j and �A,i (indicated by

the arrows labelled ‘2’).
Likewise, as explained in Section 2.2.6, the semantic structure distinguishes a

second state for each information transmission in the destination component. This
is state �B,i’. This state can be used by applications of the semantic structure to

reflect that component B is ready for state changes that originate outside the
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component (in other words, B is ready to receive information). Independent of the
usage of state �B,i’, according to Section 2.2.6, �B,j’ may be the immediate successor
of state �B,i’. (indicated by the arrows labelled ‘3’). However, as stated in
Section 2.2.6, state �B,j’ need not be the immediate successor of state �B,i’

(commitment to non-blocking receive). Consequently, there may be other states
between �B,j’ and �B,i’ (indicated by the arrows labelled ‘4’).

Figure 2.6: Overview of commitments.

Finally, Figure 2.7 also shows that the behaviour of information links is
explicitly represented in the semantic structure (Section 2.2.3.2). State �L,i” is the

first state in the behaviour of L associated with the transmission. Applications of
the semantic structure can choose to require the link to be enabled before
transmission can take place. In this case, state �L,i” must be an enabling state.

Furthermore, applications can choose to represent messages in transit in the state
of L. In this case, the transition from �L.i” to �L,j” can be used to represent addition

of a message to the queue of messages in transit. Later on in the behaviour of L, the
transition from �L.k to �L,l can be used to represent removal of the message from

the queue of messages in transit.
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Figure 2.7: Information transmission.
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Chapter 3�

Multi-Agent Systems as
Compositional Systems

The previous chapter presented a number of commitments with respect to the
constructs and relations that together constitute the semantic structure for
compositional systems developed in this thesis. The commitments, which are not
specific to multi-agent systems, are fixed for the semantic structure, and
consequently, all applications of the semantic structure necessarily use the
constructs committed to in the previous chapter.

As stated in Chapter 1, the aim of this thesis is to develop a compositional,
formal semantic structure that can be used for multi-agent systems dynamics.
Thus, the semantic structure is intended to be applied in the domain of multi-agent

systems. More specifically, the intended use of the semantics structure is to provide
semantics for models of multi-agent systems, (in particular their dynamics), or for
specification languages. As the basic assumption, stated in Chapter 1, is that multi-
agent systems are modelled as compositional systems, the semantic structure
presented in the previous chapter provides constructs for building compositional
systems. The most important issue for applications of the semantic structure is
thus: how can multi-agent systems be modelled as compositional systems. This is the
topic of this chapter.

The previous chapter discussed different possibilities for commitments to
specific constructs and relations between constructs, and explicitly fixed a set of
commitments. As the commitments discussed in the previous chapter determine
the contents of the semantic structure, it was necessary to commit to a specific set
of constructs. However, in this chapter, different possibilities for modelling multi-
agent systems are discussed, without committing to specific choices. There is no
need to commit to a specific way of modelling multi-agent systems, because for
each application, different choices can be made.

The discussion of modelling multi-agent systems is organised as follows. First,
the basic principle of modelling multi-agent systems as compositional systems is
explained in Section 3.1. Section 3.2 provides further guidelines for modelling
multi-agent systems as compositional systems by presenting a generic
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compositional agent model. Section 3.3 discusses possible ways to model various
phenomena of multi-agent systems, which should be regarded an illustration of
the application of compositionality in the area of multi-agent systems. Moreover,
some issues that are treated in more detail in later chapters, are also raised in this
section.

3.1� Multi-Agent Systems as Compositional Systems

In Chapter 1, a multi-agent system is defined as a group of agents together with
their common, shared environment. The basic assumption adopted in this thesis is
that multi-agent systems are modelled as compositional systems. Thus, an
application of the semantic structure has to identify entities within a multi-agent
system that are represented by components in the application of the semantic
structure. This section discusses a guideline that can be followed in constructing a
model of a multi-agent system as a compositional system.

The starting point is to focus on a multi-agent system as a system. A system is
often defined as a connected collection of parts (see e.g., Oxford Concise
Dictionary, and Wieringa, 1995). As the semantic structure focuses on multi-agent
systems dynamics, in this thesis, a system is seen as a coherent collection of processes

and entities that execute processes (agents and the environment). (This perspective,
which includes explicit focus on processes, may be considered to be a dynamic
variation of the definition cited above.) It is understood that any pattern of change
within a system constitutes a process. In addition, the interpretation of coherence is
deliberately left vague: it merely indicates that some relationship between the
processes in a system must exist. The guideline consists of the following four steps:

�� First, in a multi-agent system that has to be modelled, processes are
identified. Moreover, these processes can either be classified as deliberation
processes or environmental processes (Section 3.1.1);

�� Then, (active) entities are identified (the agents and the environment) that
execute the processes. An agent or the environment can execute more than
one process simultaneously (Section 3.1.2);

�� After that, a multi-agent system is modelled as a compositional system (see
Chapter 1), which is achieved by representing each process as a component.
This component encapsulates both the information used by the process and
the process (computation) itself (Section 3.1.3);

�� Finally, relations between processes and between processes and the agents
or the environment have been identified (Section 3.1.4).

3.1.1� Deliberation Processes and Environmental Processes

It is assumed that processes can be classified as either deliberation processes or
environmental processes. Deliberation processes, which are always internal to an
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agent, comprise the main activity of an agent. Deliberation is needed (1) to acquire
information by communication with other agents or by observing the environment,
(2) to process information, and (3) to initiate actions or transmit information to
other agents. Deliberation processes identified in the multi-agent system are
represented by components in a compositional system that models the multi-agent
system. As stated in Chapter 2, a component is a locus of information and
computation. Deliberation processes are thus modelled as computational
processes.

Environmental processes are processes that are executed by the environment. In
other words, environmental processes are the processes identified in a multi-agent
system that are not internal to an agent. Similar to deliberation processes,
environmental processes are represented by computations in a compositional
system that models a multi-agent system.

It is assumed that interaction is not identified as separate processes, but as
“mutual or reciprocal action or influence5”, thus as a relation between processes
(relations between processes are discussed in Section 3.1.4). Moreover, interaction
is not a basic concept. Three forms of interaction are distinguished:
communication, action execution and observation. (Which instances of interaction
are viewed as communication, action execution or observation differs from
application to application and is discussed as a modelling choice in Section 3.3.3.)
In addition, interaction is viewed as consisting of two (or more) instances of
unilateral influence from which “mutual or reciprocal influence” emerges. Thus,
like information exchange (see beginning of Section 2.2), interaction is viewed as
inherently composed.

Exactly which processes are distinguished as deliberation processes and which
as environmental processes is subject to modelling choices discussed in Section 3.3
below.

3.1.2� Agents and the Environment

It is assumed that specific entities in a multi-agent system can be identified as
agents and others as the environment. How this identification is to be performed is
viewed as a process akin to traditional knowledge acquisition or requirements
engineering and is outside the scope of this thesis. (Compared to traditional
knowledge acquisition or requirements engineering, there is much more emphasis
on acquiring knowledge that supports the autonomy and social ability of an agent
compared to knowledge of the agents’ specific tasks. An approach to agent-based
knowledge acquisition is presented in (Iglesias, Garijo, González & Velasco, 1998).
See (Iglesias, Garijo & González, 1999) for a survey of such approaches.) However,
it is assumed that entities identified as agents in the multi-agent system exhibit the
agent characteristics presented in Chapter 1: autonomy, reactivity, pro-activeness
and social ability (Wooldridge & Jennings, 1995b).

                                                          
5 Merriam-Webster WWWebster Dictionary (http://www.m-w.com/).
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It is also possible that specific entities in a multi-agent system are identified as
subagents of another agent. In this case, it is assumed that subagents are
themselves agents: a subagent must also be autonomous, reactive, pro-active and
socially able. Only subprocesses of an agent for which these properties are
important should be distinguished as subagents. On the one hand, subprocesses
for which these properties are not important should not be considered agents. As
stated above, a subagent is assumed to be an agent itself, and therefore, such
subprocesses should not be distinguished as subagents. On the other hand,
processes for which the properties mentioned above are important, are assumed to
be to be distinguished as agents. As these processes are subprocesses of another
agent, they should be distinguished as subagents to explicitly represent the
hierarchical relation between agents in the multi-agent system. Often, processes
can be distinguished that co-ordinate the activities of the (autonomous) subagents.
These processes themselves may be associated with some of the subagents, as is
indicated by the following example. Consider a team of agents. At a specific level
of analysis, the team members are abstracted from and the team itself can be
viewed as an agent: it is autonomous, reactive, pro-active, socially able and can be
ascribed a mental state. (E.g., one can identify the intention of the team.) At
another level of abstraction, the individual team members are identified and
viewed as (autonomous) agents. Team members may exercise their autonomy to
leave the team or to pursue goals that are incompatible with the team’s intentions.
Specific team members may adopt the goal of keeping the team together and
establishing the team’s intention as the joint intention of each member. A more
detailed investigation of the relationship between mental attitudes of a team and of
its members can be found in (Singh, 1998).

3.1.3� Processes and Components

Each process distinguished in a multi-agent system is represented by a component
in the compositional system that models the multi-agent system. Processes
identified in the multi-agent system are classified as either deliberation processes
or environmental processes. A component that collates all deliberation processes of
a specific agent in fact represents this agent in the compositional system. However,
the guideline presented in this chapter does not define which components are
agents and which are not. Instead, the guideline assumes that, as a starting point,
an analysis of the multi-agent system has already identified which entities in the
system are agents, and, as explained in the previous section, it is assumed that
these agents exhibit agent characteristics such as autonomy, reactivity, pro-
activeness and social ability (Wooldridge & Jennings, 1995b; see also Chapter 1).
As a consequence, not only the agents in the modelled system exhibit agent
characteristics, also the components that represent the agents do. However, these
characteristics are not explicitly represented characteristics of the component
construct or any other construct provided by the semantic structure.
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3.1.4� Relations between Processes and between Processes and Agents or the
Environment

It is assumed that three different types of relations can be identified in a multi-
agent system, each of which is represented in a different way:

�� There is a hierarchical relation between processes: a process may consist of
other processes (the subprocesses of the process), which themselves may
consist of other processes, and so on. The level of (process) abstraction
determines which processes are considered to be primitive (no subprocesses
are distinguished). Process composition is studied extensively in the area of
Process Algebras (Bergstra & Klop, 1985; Milner, 1980; Hoare, 1978). Many
languages for the specification of dynamics distinguish composition
operators taken from the area of Process Algebra (Eck, Engelfriet, Fensel,
Harmelen, Venema & Willems, in press). The hierarchical subprocess
relation is identified with the subcomponent relation in the compositional
system that models a specific multi-agent system.

�� As stated before, a multi-agent system consists of a group of agents together
with their common, shared environment. Processes in a multi-agent system
either take place in the environment, or in one of the agents. The second
relationship associates processes with the agent or the environment in which
they take place. This relation is represented in a compositional system that
models a multi-agent system as follows. At the highest level of abstraction, a
compositional system that models a multi-agent system consists (solely) of
one component for each agent and one component for the environment. At
lower levels of abstraction, all subprocesses distinguished in the multi-agent
system are represented as subcomponents of either one of the agent’s
components or of the environment component, according to whether they
are associated with that agent or with the environment in the multi-agent
system. As a consequence, the structure of a multi-agent system (different
agents and the environment) is thus also represented in the compositional
system.

�� A process consumes information provided and produces new information,
which can, in turn, be consumed by other processes. By providing
information to another process, a process can influence the other process.
This influence establishes the third relation between processes. In a
compositional model of a multi-agent system, this relation is represented by
information links between components. Interaction, which is characterised
as mutual influence, is an important example of this relation.

As stated in Section 3.1.1, interaction is viewed as a relation between processes.
With respect to interaction, two different aspects are distinguished. First, an agent
performs deliberation processes that determine when and how to communicate,
initiate actions or perform observations. These deliberation processes are modelled
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as discussed above. The second aspect is the interaction proper, which is modelled
by information exchange between components in the compositional system that
models a multi-agent system.

Three forms of interaction can be distinguished: communication (information
transmission from one agent to another), action execution, and observation.
Information transmission from one agent to another resembles the information
transmission construct presented in Section 2.2. Consequently, information
transmission from one agent to another (communication) is represented by
information transmission from one component to another in a straightforward
manner.

In a compositional system model of a multi-agent system, action execution and
observation of the environment are also represented by the information
transmission construct presented in Section 2.2. This is possible because not only
processes associated with agents are represented by components, but also
processes associated with the environment. According to Pednault (1987), the
effect of an action is “to cause the world to jump from one state to another”. Thus,
actions are executed because of their effect on the state of the environment. In a
compositional model of a multi-agent system, action execution is assumed to be
modelled in terms of the effect on the state of the environment. Under this
assumption, the information transmission construct presented in Section 2.2 is
applicable, as this construct represents information transmission in terms of the
effect on the states of the components involved in the transmission. In other words,
action execution is viewed as a form of information transmission to a process in the
environment that carries out the effects of the action in the environment.
Observation is viewed as information transmission from the environment to the
agents. (In some domains, also so-called active observations are distinguished. An
active observation is an observation that is explicitly initiated by an agent and thus
comprises information transmission from the agent to the environment as well as
information transmission from the environment to the agent).

In Chapter 9, the semantic structure developed in this thesis is applied to
provide a semantics for the multi-agent modelling framework DESIRE. In DESIRE,
knowledge structures used in components are explicitly represented, and
composition relations for knowledge structures are defined. As a result, additional
relations on processes are identified, such as a relation that determines which
knowledge structures are used by which components (Brazier, Jonker &
Treur, 1998).

3.1.5� An Example

The guideline is illustrated in Figure 3.1. The left half of Figure 3.1 depicts two
agents in their environment (the world). The agent on the left transmits
information to the agent on the right by means of a telephone call. The agent on the
right interacts with the world (depicted by the large arrow). The gearwheels
represent processes distinguished in the multi-agent system, some of which are
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associated with the agents and another with the environment. In this figure, some
processes associated with the agents are recognised as subprocesses (small
gearwheels inside larger gearwheels). The right half of Figure 3.1 depicts a
compositional model of the multi-agent system on the left. The top component
represents the process associated with the environment. The two components
below the top component represent the processes of both agents and contain
subcomponents that represent the subprocesses depicted on the left half. Arrows to
and from (the component that represents) the environment represent interaction
between one agent and the environment. The arrow between the two agents
(components) represents information transmission between the two agents. This
figure depicts a possible way of representing agents and the environment. A
discussion of different ways to represent interaction between agents and the
environment is presented in Section 3.3.1.

Figure 3.1: A multi-agent system modelled as a compositional system.

3.2� A Generic Compositional Agent Model

This section presents further guidelines for modelling a multi-agent system as a
composition system. The guidelines are based on the concept of a generic agent
model, which is introduced in Section 3.2.1. In Section 3.2.2, a specific generic agent
model is described.

3.2.1� The Concept of a Generic Agent Model

As stated in the previous section, the main activity of an agent is deliberation,
which is needed to acquire information by communication with other agents or by
observation of the environment, to process information, and to perform actions or
transmit the results to other agents. An agent’s deliberation determine its
autonomy, reactive and pro-active behaviour and its social abilities, the
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characteristics that define an agent according to the weak notion of agents
originally proposed by Wooldridge and Jennings (1995b) and discussed in Chapter
1.

This general characterisation may serve as a guideline for the identification of
processes in a multi-agent system. For each agent in a multi-agent system,
processes can be distinguished that perform the deliberation necessary for
interaction with the environment, communication and processing information. A
number of these processes are independent of the specific characteristics of a
specific agent in a multi-agent system. This enables the use of a generic agent model

as a starting point for modelling a specific multi-agent system. A generic agent
model consists of components that represents top-level, generic processes that
usually can be distinguished for an agent in a multi-agent system. Modelling a
specific multi-agent system consists of refining the generic model. Refinement of a
generic model involves specialisation and instantiation. Specialisation of a generic
agent model entails identification of additional subprocesses of the processes
identified in the generic model. These subprocesses are represented by additional
subcomponents in the generic agent model. Instantiation of the generic agent
model entails determination of further, specific characteristics of the processes
identified in the generic model. By instantiation and specialisation, the generic
agent model is transformed into a compositional model of an agent that can be
used in a model of the complete multi-agent system. Results of these efforts, i.e.
specific models, differ in the refinement and relative importance of the
subcomponents.

3.2.2� Description of a Generic Agent Model

The current section presents a generic agent model called GAM. The generic agent
model consists of processes that are not specific to an individual agent in a multi-
agent system, but are, in principle, performed by each agent to manage
communication, action execution and observation. In the current section, these
generic agent processes are distinguished and described in more detail, leading to
a compositional model of an individual agent.

The generic agent processes are related to the four characteristics required for
the weak notion of agency described by Wooldridge and Jennings (1995b) and
introduced in Chapter 1. In accordance with this notion, agents must (1) maintain
interaction with their environment like observing and performing actions in the
world: reactivity; (2) be able to take the initiative: pro-activeness; (3) be able to
perform social actions like communication and co-operation: social ability; and (4)
operate without the direct intervention of other (possibly human) agents:
autonomy. In the generic agent model GAM depicted in Figure 3.2, these processes
are each represented by a different component. Eight subcomponents are
distinguished: Own Process Control (OPC), Maintenance of History (MH), Agent
Specific Processes (ASP), Co-operation Management (CM), Agent Interaction
Management (AIM), Maintenance of Agent Information (MAI), World Interaction
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Management (WIM) and Maintain World Information (MWI). The names of the
components are the same as in e.g. (Brazier, Jonker & Treur, 2000), with one
exception: the component Agent Specific Processes was formerly known as Agent
Specific Tasks. The term ‘world’ in the component names is synonymous with
‘environment’. The term ‘interaction’ is qualified with either ‘agent’ or ‘world’ to
indicate communication or action execution/observation, respectively.

Figure 3.2: Top-level composition of the generic agent model GAM, from (Brazier,
Jonker & Treur, 2000).

The following three points provide some background on the generic agent model:

�� The correspondence with the four characteristics described above is as
follows. Action execution and observation are performed by World
Interaction Management, also using Maintain World Information. Social
actions are managed by the processes Agent Interaction Management,
Maintenance of Agent Information and Co-operation Management.
Performing the agent’s processes is co-ordinated by the component Own
Process Control. This enables the agent to act autonomously and take the
initiative if required. Most often, the eight subcomponents are further
refined. This is illustrated in e.g. Chapter 10 and Chapter 11, in (Brazier,
Dunin-Keplicz, Treur & Verbrugge, 1999), which presents a model of BDI
agents designed as a refinement of GAM, and in (Brazier, Jonker &
Treur, 1997), which presents a model for co-operation based on GAM.
However, it is also possible that in specific agents, one or more of the
generic components are not used.
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�� As stated in Section 3.1.2, knowledge acquisition is required to identify
deliberation processes and environmental processes in a multi-agent system.
The subprocesses distinguished guide agent-based knowledge acquisition,
as the processes determine the various types of agent-specific knowledge
required in addition to knowledge of the specific tasks an agent has been
delegated. This includes (1) knowledge of an agent’s priorities with respect
to controlling its processes, (2) knowledge of which and how information is
exchanged with other agents and the environment, (3) knowledge of how
information received from the environment and other agents is to be
analysed and (4) knowledge of how co-operative an agent is in given
situations in relation to other agents.

�� The compositional model depicted in Figure 3.2 is based on analysis (e.g., in
the ARCHON project, see (Cockburn & Jennings, 1996; Brazier, Dunin-
Keplicz, Jennings & Treur, 1997)) and considerations regarding the
properties an agent should have as described above. This compositional
model is the starting point for the models presented in Chapter 10 and
Chapter 11. Moreover, for instance in (Brazier, Dunin-Keplicz, Jennings &
Treur, 1997), the same model is applied to agents performing a process
diagnosis and control task, with a minor shift in relative importance of the
subprocesses.

3.3� Modelling Choices

As stated in the introduction of this chapter, the guideline for modelling a multi-
agent system provides a considerable degree of freedom with respect to exactly
how a multi-agent system is modelled. This section presents a number of issues
deliberately left open by the guidelines presented in Section 3.1 and Section 3.2 and
discusses various alternative ways of resolving these issues. As stated in the
introduction, no commitment to specific alternatives is made. Such commitments
are neither necessary for the further development of the semantic structure nor
desirable, as the best alternative likely depends on the requirements imposed by a
specific application.

3.3.1� The Environment and Interaction

As stated in Section 3.1.4, action execution and observation are represented by
information transmission between a component that represents an agent and a
component that represents the environment. This is possible because not only
processes associated with agents are represented by components, but also
processes associated with the environment. Section 3.1 assumes that processes
identified in a multi-agent system can be classified as deliberation processes
(which are internal to agents) and environmental processes. This classification is
expected to be straightforward for most processes. However, depending on
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properties of a specific multi-agent system and on the goal of the modelling effort,
for some processes the classification may be more difficult. This holds in particular
for processes that execute actions that affect other agents.

From the perspective of an agent, all other agents appear as entities in the
environment it shares with the other agents. Consequently, it is, in principle,
possible to observe other agents and to initiate actions that (directly) affect other
agents. (E.g., hitting other agents.) In many multi-agent systems, however, this
aspect of other agents can be abstracted from, because in such a multi-agent
system, agents only communicate with each other and are not interested in
executing actions upon one another or observing each other. In this case, agents are
not represented in the environment. Instead, only non-agent entities are
represented in the environment.

From the perspective of a single agent, also specific aspects of the agent itself
are present in the environment, as an agent is not only a collection of mental
deliberation processes (the mind), but also matter that constitutes the location of
the mind. In many multi-agent systems, it is also possible to abstract from these
material aspects. However, in some cases it is necessary to represent actions
executed upon the agent, such as e.g. being hit by another agent (or the agent
itself). In these cases, the material aspects of an agent and its mind may influence
each other (e.g., brain damage and psychosomatic diseases).

Whether material aspects of agents are modelled depends on properties of a
specific multi-agent system, together with the goal of the modelling effort. In this
section, architectures for two alternatives are sketched. The most complex
alternative presented covers mutual influence of an agent’s mind and matter. This
alternative is taken from (Jonker & Treur, 1997), which studies the interaction
between an agent’s mind and matter in great detail.

The first alternative, depicted in Figure 3.3, is adopted from Figure 10 in
(Jonker & Treur, 1997). The left half of Figure 3.3 depicts an environment with one
agent (Agent A) and one non-agent object (a car). Processes relating to material
aspects of Agent A as well as its mental processes are distinguished. The processes
relating to material aspects of Agent A are considered to be subprocesses of a
process that collates all processes associated with the environment. Other
subprocesses of this process are e.g. the processes executed by the car. The multi-
agent system is represented by the compositional system depicted on the right half.
The component labelled Agent A represents the mental processes of Agent A. The
component labelled Environment represents the process that collates all processes
associated with the environment. Two subcomponents are distinguished in the
environment. The component labelled C represents the processes relating to the
car. The component labelled A represents the processes relating to the material
aspects of Agent A. The link labelled 1 is used to represent the influence of the
material processes of A on its mind. The link labelled 2 transmits observation
results from the environment to Agent A. The mediating link connected to this link
and starting at component C can be used for observations of the car. (E.g.,
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information on the speed of the car can be transmitted via this mediating link and
link 2 to Agent A.) Link 3 is used by Agent A to initiate actions in the environment.
The link is connected by a mediating link to component C. This mediating link can
be used to execute actions upon the car (e.g., starting it). The link labelled 4
represents the influence of Agent A’s mental processes on its material aspects.

Figure 3.3: Modelling mind and matter.

The second alternative, which is more common, is a less detailed version of the
model depicted in Figure 3.3. If the properties of the multi-agent system nor the
goals of the modelling effort require explicit modelling of Agent A’s material
processes, the component labelled A as well as the links labelled 1 and 4 can be
omitted from the model.

3.3.2� Observability of Actions and Processes

A common connotation of environmental processes is that these processes are, in
principle, observable (and deliberation processes are not). This does not imply,
however, that all processes in the environment are unconditionally observable for
all agents in a multi-agent system. (As an example of a multi-agent system in
observability of processes in the environment, consider the multi-agent system
modelled in Chapter 11. This system consists of a society of 30 relatively simple
agents that wander about in search of food, and, depending on their character,
may choose to help other agents in finding food. Each agent has a limited range of
vision. Processes that take place in a part of the environment too far away cannot
be observed.) Whether all processes are observable for all agents in the
environment is a property of a specific multi-agent system and thus varies between
models.

As explained in Section 3.1.4, action execution and observation are represented
in a compositional model by the construct for information transmission provided
by the semantic structure. This construct only supports point-to-point information
transmission (the commitment presented in Section 2.2.2). Therefore, action
execution and processes are only observable for components for which there is an
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information link that connects them to these processes. Thus, by carefully choosing
which components in the environment to connect to which agent components, it is
possible to model e.g. some processes as observable to specific agents and other
components as observable to other agents. (Another possibility is to connect all
agent components to the environment component, using the state of links to
dynamically determine which processes are observable to specific agents.) As
processes in the environment are affected by action execution, the same flexibility
can be applied to choose which action executions are observable and which are
not.

As a result of the flexibility with respect to whether processes are observable,
there is an abundance of modelling choices. The following two alternatives might
serve as general principles for the observability of action execution. The first
alternative is to assume that an action always results in an observable change of
the world state. This assumption is controversial. Consider for instance the
situation in which two agents, A and B, both need to acquire exclusive access to a
certain resource. First, A and B simultaneously observe the environment and find
that the resource is still free. Then both try to take the resource. Assume that A is
faster and thus acquires the resource, while B does not. However, both may
observe that the resource is no longer free, so both infer that the action has been
successfully performed. B’s action only appeared to have resulted in an observable
change of the world state, because in a sense B observed the situation before A
acquired the resource and missed the fact that this has happened.

As an aside, a decentral model for mutually exclusive access to a shared
resource is presented in Chapter 10.

The second alternative is to assume that an action is considered to have been
successfully performed even if the world state has not changed. When the second
option is used, it is not possible to determine whether the execution of an action is
completed by observing the state of the world. In this case, it should be possible to
observe the execution of an action itself.

3.3.3� Communication as Action Execution

As stated in Section 3.1.4, information exchange between agents (communication,
one of the basic activities of an agent) is represented by information links between
components that represent agents. A basic connotation of information transmission
is that both the transmission and the information transmitted are, in principle, only
observable by the agents involved in the transmission. The information
transmission construct provided by the semantic structure guarantees that this is
the case. (The commitment to point-to-point transmission presented in
Section 2.2.2). However, there is an alternative way to represent communication.
This alternative treats communication as an action in the environment and thus
emphasises material aspects of communication. In the following circumstances,
this alternative seems most suitable. First, in some multi-agent systems, there are
forms of communication for which it is important to explicitly represent the way in
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which the communication takes place. Consider, for example, the multi-agent
system presented by Jonker, Treur and Wijngaards (2000), who study multi-modal
(verbal and non-verbal) communication. In this system, all communication is
modelled as action execution (by one agent), followed by observation (by the other
agent). This enables representation of disturbances by environmental influence and
of non-verbal communication by manipulating objects in the environment. Second,
in some circumstances, the multi-agent system modelled requires that agents not
involved in the communication are able to observe the communication. An
example could be a model in which fraudulent agents are modelled that eavesdrop
on communication. In addition, broadcast communication can be modelled as an
action in the environment. As is explained in Section 2.2.2, the semantic structure
does not provide constructs for broadcast communication. However, broadcast
communication can be represented as an action in the environment observable for
all agents.
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Chapter 4�

Overview and Running Example

Chapter 2 introduced the semantic structure, presenting a number of commitments
that together determine which constructs are provided. After that, Chapter 3
presented a guideline for applying the semantic structure to model multi-agent
systems. The next step in the development of the semantic structure, as stated in
Section 1.4.2, is to formally describe the constructs and relations between
constructs. Chapter 5 to Chapter 8 provide an elaborate and detailed mathematical
description of the constructs that comprise the semantic structure. This chapter,
Chapter 4, focuses on two topics that set the stage for this mathematical
description in the next four chapters. First, Section 4.1 presents an overview of the
mathematical description, which focuses on the mathematical concepts employed
and on how these concepts are employed to meet the requirements put forward in
Section 1.4.3. Second, Section 4.2 introduces a multi-agent system that is used as a
running example in Chapter 5 to Chapter 8.

4.1� Overview of the Semantic Structure

Section 1.4.3 states a number of requirements for the semantic structure. The
requirements can be summarised as follows. First, the semantic structure should
support modelling the main activities of an agent, which are deliberation and
interaction. Second, the semantic structure should be compositional, i.e.
components are the most important construct provided by the semantic structure.
Moreover, the dynamics of a compositional system (a system consisting of
components) should be defined in terms of the semantics of the components that
constitute the system together with a composition relation. Third, dynamics of a
multi-agent system should be described in terms of the state of an agent. Fourth,
the semantic structure should support a local view on dynamics. As many multi-
agent systems are not centrally designed or managed, it should never be necessary
to acquire a global picture of the structure or state of the system. However, it
should be possible to compose a more global perspective from different local
perspectives. (Thus, this requirement is also related to the compositionality
requirement.) The way in which these requirements are addressed is explained in
the next four subsections, which correspond to the next four chapters.
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4.1.1� Constructs Provided by the Semantic Structure

Chapter 5 describes the main constructs provided by the semantic structure:
components and information links. First, static aspects, and after that, dynamic
aspects of these constructs are formalised.

4.1.1.1� Static Aspects

For a component, as stated in Chapter 2, three aspects are distinguished: the
information state, or state, for short, of a component, its interfaces and its
composition structure. The mathematical description of these three aspects
together constitutes the component construct in the semantic structure.

A component is a locus of computation and information. The computations
executed by a component modify the information contents of the component. The
state of a component is determined by the information contents of the component.
In a compositional system, components are likely to contain extensive data
structures that together contain the information present in a component. These
data structures enable the identification of substates, substates of substates, and so
on, each of which is determined by a different data structure in the component. In
fact, in many approaches, e.g., Troll (Jungclaus, Saake, Hartmann &
Sernadas, 1996), the state of a component is defined in terms of the data structures
it contains. However, the semantic structure developed in this thesis abstracts from
the internal structure of a component’s information (except for the identification of
input, internal and output substates). Instead, it is assumed that at each moment in
time, the state of a component can be identified and that for each component, a set
of states (or, identifiers of states), is given. Moreover, in Chapter 5 to Chapter 8, in
which the semantic structure is developed, no language is defined to specify sets of
states. Instead, the semantic structure is developed without any reference to
syntactic constructions. However, in Chapter 9, formal languages are developed
that enable precise specification of sets of states and other sets that are assumed to
be given, in the context of an application of the semantic structure.

As stated above, it is assumed that for each component, a set of states of that

component is given. Such states are called local states to emphasise that these states
are only determined by the information contents of a single component, and by
nothing outside that component. To support locality, the semantic structure as
defined in Chapter 5 does not refer to a notion a global state, that is, a state
determined by the information contents of more than one component. Instead, a
more global view of dynamics within a compositional system is defined in a
compositional way, as compositions consisting of local states.

The other two aspects are formalised as follows. For each component, three
substates of the state of the component are distinguished: the input, internal and
output substates. These substates are determined by the information contents of
the input and output interfaces of the component, and the component itself. The
compositional structure of a component is formalised by a tuple, called a structure
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hierarchy, consisting of a set of component identifiers, a set of link identifiers, a
relation that represents the hierarchical structure of components, their
subcomponents, the subcomponents of subcomponents, and so on, and two
functions that map each link to the component or link connected to each of its end
points.

The formalisation of information links is largely determined by the
commitments presented in Section 2.2. The basic idea is that information
transmission from one component to another establishes a relation between
possible states of the two components. This idea appears both in the static aspects
of an information link as well as the dynamic aspects. From a dynamic point of
view, information transmission establishes a relation between the behaviour of
both components. This is discussed in Section 4.1.2. The static aspects of an
information link consist of which states of the link itself are distinguished
(commitment discussed in Section 2.2.3.2), the components to which it is connected
(commitment discussed in Section 2.2.3.1) and how the link is intended to relate
the behaviour of the two components it connects. Thus, similar to a component, for
a link a set of local states is distinguished. The state of a link is determined by the
state of information transmission as a process (e.g., a link can be busy transmitting
information, or waiting for information to transmit) and possibly by the contents of
the link (messages in transit). However, as for component states, the semantic
structure abstracts from the internal structure of states. Instead, it is assumed that
for each link, a set of states is given. In addition to this set, a relation, called the
information link mapping, is distinguished. As the information link mapping
describes the intended relation established between the two components it
connects, the information link mapping is defined on the state sets of these two
components. States in the state set of a component are states that may or may not
occur in the behaviour of a component. Thus, an information link mapping may
describe the relation between two components by reference to states that do not
actually occur in each behaviour of the components.

As an example, consider a compositional system with a link I which transmits
information from a component D to a component C. The state set of D contains a
state identified by S1. The state set of C contains a state identified by S2. Suppose

that the following requirement is imposed on the compositional system: if D
reaches state S1, then C should reach state S2. This requirement is part of the static

aspects of I and is described by its information link mapping. The formalisation of
information link mappings is presented in Section 5.1.2.

4.1.1.2� Dynamic Aspects

After the formalisation of static aspects presented in the first half of Chapter 5, the
second half presents the formalisation of the dynamic aspects. First, the local
behaviour of each component and link is defined. The local behaviour of a
component or link consists of a set of alternative behaviours that the component or
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link could exhibit if it were to exist in isolation. In other words, the local behaviour
is the behaviour from a strictly local point of view, neglecting constraints imposed
by a component’s or link’s relation with other components or links. The local
behaviour of a single component or link is defined as a set of so-called local
component or link traces, which are linear or branching structures of consecutive
information states of the component.

Second, given the local behaviour of a set of components and links, the actual
behaviour of a component or link in relation with other components and links is
defined as a structure consisting of elements from the local behaviours of its
constituents. The basic idea is that information transmission constrains the local
behaviour of the components involved in the transmission, and that information
transmission induces a relation between local traces of components that defines the
constraints imposed by information transmission. Such a relation, called a
compatibility relation, provides a more global view of co-operating components.
(However, no global state and/or global language is assumed.) The basic idea is
employed as follows.

For a component, three sets of traces can be distinguished, as depicted in the
top half of Figure 4.1 below (in which traces are assumed to be linear). The first set
is the set of traces consisting of all possible combinations of states of a component.
This set includes traces that, in practice, can never be acquired, because they do not
fulfil the specification of the behaviour of the component. For instance, consider a
component B that is able to provide, upon request, a service ‘s’ that, at some point
in time, places new output in the output interface of B. The set of all possible traces
of component B includes traces in which, after receipt of the request for a service ‘s’
in the input interface, the result is never placed in the output interface of B.

A subset of the set of all possible traces is the set of local component traces:
those traces that could, in principle, be acquired because they fulfil the
specification of component behaviour. These traces are called local component
traces to emphasise the fact that they are only part of a component’s behaviour
from a purely local point of view, in which constraints imposed by interaction with
other components are not taken into account. For instance, a trace in which a
service request ‘s’ is visible in the input interface, and in a following point, the
result of this service is visible in the output interface, is a local component trace.
However, this trace might not be an actual behaviour of component B in a
compositional system: it can only be an actual behaviour if another component, A,
generates a request for service ‘s’ and if this request is actually transferred to B.
Therefore, in a structure that models the behaviour of the system consisting of
component B, a component that requests B’s service and interaction between A to
B, such constraints should be represented.

As stated above, the behaviour of a composition of components and links is
defined in terms of the local behaviour of the constituents. To represent constraints
imposed by information transmission, compatibility relations are defined between
traces of components that exchange information. Only local component traces and



4.1: Overview of the Semantic Structure

55

link traces that are related by compatibility relations can constitute the dynamic
structures associated with components. Thus, a local component trace of a
component that transmits information to another component is part of the actual

overall behaviour of the system only if it respects constraints imposed by
information transmission. Only compatible local component and link traces are
included in multitraces that model the behaviour of compositional systems. Only
local component and link traces that respect information transmission are
compatible.

As an example, consider a system with components A and B introduced above,
and an information link between A and B. The information link automatically
relays a request for B’s service from A to B. In this example, a trace of component A
in which event ‘s’ is in A’s output interface is compatible with traces in which
event ‘s’ is in B’s input interface (and the result of service ‘s’ is at some point in
time generated at its output interface).

The bottom half of Figure 4.1 depicts similar sets of components of another
component. As indicated in the picture, these sets are, in general, disjoint from the
three sets of components of component A. An information link from component A
to B establishes a compatibility relation between local component traces of both
components. The two sets of compatible local component traces are the traces
related by compatibility.

Figure 4.1: Sets of component traces.

In fact, three views on the behaviour of compositional systems are
distinguished, called the black box, white box and glass box views. From a bird’s-
eye view, the structures that constitute these views consist of local component
traces and link traces of a (possibly composed) component itself, possibly its
subcomponents and its links, and possibly their subcomponents and links, and so
on. All three views on behaviour developed in this section are relative for a given
structure hierarchy and collection of compatibility relations. In a black box view, the
behaviour of C is defined as a set of local component traces of C only. As a
consequence, in the black box view the behaviour of subcomponents and links is
not visible (although their behaviour is taken into account in the definition of the
black box view to determine which local component traces of C constitute
behaviour if information exchange is taken into account). In a white box view, the
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behaviour of a component not only consists of local component traces of this
component, but also of local component traces of its subcomponents. In a glass box

view, the behaviour of a component consists of local component traces of this
component, of local component traces of its subcomponents and of local
component traces of the subcomponents of these subcomponents, and so on.To
summarise, the two most important formal notions are the structure hierarchy and
the glass box view on the behaviour of a component. A structure hierarchy enables
defining an entire compositional system, while the glass box view defines the most
complete picture of the behaviour of such a system. The definition of the glass box
view, however, is relative to among others a collection of compatibility relations.
Locality and compositionality play an important role in the formalisation of the
dynamics of a compositional system. The starting point for describing the
dynamics of a compositional system consists of structures (local component and
link traces) that describe the behaviour of a component or link from a strictly local
point of view. Three views on the dynamics of compositions of components and
links are then defined as compositions of local component and link traces. Only
local component and link traces that obey constraints enforced by information
transmission can be part of these compositions. The constraints enforced by
information transmission are represented by compatibility relations, which are
briefly described in the next section, Section 4.1.2, and defined in Chapter 6

4.1.2� Interaction: Locality and Compatibility

The definition of properties of compatibility relations is the topic of Chapter 6.
Compatibility relations are introduced in Chapter 5 as ternary relations on the set
of traces of two components or links and a link. Any relation on the sets of local
component traces of the domain of a link, the link and its co-domain is a possible
compatibility relation. In Chapter 5, no properties of compatibility relations are
defined.

In Chapter 6, specific classes of compatibility relations are defined in terms of
the properties that compatibility relations in a specific class exhibit. These
properties are expressed in terms of transmission octets. Transmission octets
provide a bridge between, on the one hand, 8-tuples of states that occur in local
component and link traces of a link I, its domain and co-domain, and, on the other
hand, the (static) declaration for the information link I of how information
transmission affects the states of the components and links involved. This (static)
declaration itself is given by the information link mapping of I. An information
link mapping does not refer to states that occur in component or link traces.
Instead, as the following definition indicates, an information link mapping is
directly defined in terms of the sets of all states of I, its domain and co-domain.

Figure 4.2 illustrates compatibility relations and transmission octets by zooming
in on Figure 4.1. A triple consisting of a trace for a component A, for a link L from
A to a component B and for B is shown. Within this triple of traces, octets of eight
states (two from the trace for A, four from the trace from L, and two from the trace
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for B) can be found that respect information transmission as depicted in Figure 2.7.
Such an octet is a transmission octet, and is depicted in Figure 4.2 by black elipses.
The triple of traces is part of a compatibility relation with a specific property if
transmission octets can be found for a specific subset of all states in the traces of
the triple. (E.g., for all states in the trace for A, a transmission octet can be found.)

Figure 4.2: A transmission octet.

Transmission octets are employed to define properties that a compatibility relation,
and thus information exchange, may exhibit. Four properties have been defined so
far: the lossless transmission property, the order-preserving transmission property,
the asynchronous transmission property and the logically instantaneous
transmission property.

4.1.3� A Global Perspective

As explained in Section 4.1.1.2, the dynamics of a compositional system are
described by compatible multitraces, which are indexed sets of local component
and link traces. Three views on the dynamics of a compositional system are
defined. Given a structure hierarchy that describes a compositional system, the
glass box view provides the view with the most detail: the multitraces that
constitute the glass box view contain local component and link traces for each
component and link in the structure hierarchy. In this sense, the glass box view
provides a global perspective on the behaviour of the compositional structure
described by the structure hierarchy.
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However, the global perspective provided by the glass box view consists of local
component and link traces, each of which consists of local component and link
states. Thus, this global perspective does not describe global dynamics in terms of
a notion of a global state. However, in some cases, it is necessary to have available
a description of the global dynamics in terms of the global state of a compositional
system.

A common way to define a global state is as a composition of the local states of
all components and links at the same moment. However, this definition relies on
the availability of global time to determine ‘the same moment’ for all components
and links. As stated in Chapter 1, this thesis assumes that global time is not
available. In Chapter 7, a different way to define global states is developed.

In Chapter 7, a global state is defined in terms of snapshots. A snapshot is itself
relative to a compatible multitraces for a structure hierarchy SH as introduced in
Section 4.1.1.2. A snapshot is a function from the set of components and links in SH

to the (disjoint union of) the sets of states of all components and links, such that the
snapshot selects exactly one local component or link state from each local
component or link trace in the multitrace. Figure 4.3 depicts a snapshot.

Figure 4.3: Structure hierarchy.

A snapshot is thus an arbitrary selection of states from a multitrace. Not every
snapshot of a multitrace for SH represent a global state of the behaviour of the
compositional system described by SH, because in an arbitrary selection of states,
possibly for a component A, a state is selected in which information is available
that is, according to the state of another component B in the same snapshot, not yet
sent. In other words, the selected state of A depends on the occurrence of state B.
Dependence was first introduced (in an event-based context) by Lamport (1978). In
the semantic structure developed in this thesis, dependence is not a primitive
notion. Instead, it is defined in terms of transmission octets. Loosely speaking, a
state �A  of component A depends on a state �B  of component B if either (1) A=B

and �B  occurred at an earlier time point in the trace of A than �A, or (2) in �A,
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information is received that is, according to a transmission octet, made available in
�B  (in other words, �B and �A are the first and eighth state of a transmission octet,
respectively), or (3) there is a state �C of a component C such that �A depends on
�C and �C depends on �B.

Two states �S and �S’ are independent if neither �S depends on �S’ nor �S’

depends on �S. States that are independent can possibly occur simultaneously. In

Chapter 7, a global state is defined as a snapshot such that for two different
components or links S and S’, the states �S  and �S’  in the snapshot are

independent. In this definition, it is not assumed that global time is available.
Instead, the definition only refers (indirectly) to information transmission as
represented by transmission octets.

Even if the traces in a compatible multitrace for a structure hierarchy SH are
linear, the set of global states as introduced above has the structure of a partial
order. This partial order of global states constitutes the global perspective on the
behaviour of the compositional system represented by SH. The partial order of
global states can also be viewed as a transition system. Starting from the global
state consisting of all initial component and link states, the compositional system
proceeds as follows. Each component or link is either involved in updating its
internal state, transmitting information to another component or link, or receiving
information. Each of these activities results in transitions from one local state to the
next local state. In the transition system, the local states in the global state are
updated accordingly.

4.1.4� Control

As stated in Chapter 1, agents are socially able. Consequently, in almost every
multi-agent system, agents try to influence other agents (by information
transmission) to satisfy goals they cannot satisfy without help. Likewise, in a
compositional system, some processes try to influence other processes. In other
words, processes in a compositional system and agents in a multi-agent system try
to exercise control over other components or agents, respectively. Chapter 8 is
devoted to the representation of this phenomenon, the phenomenon of control, in
the semantic structure.

Chapter 8 starts with a characterisation of the control phenomenon. Control (at
least, phenomena with that name) is encountered in programming language
design, but also in reactive Artificial Intelligence systems that assist in operating,
for instance, a power plant. However, all these instances of the control
phenomenon share a common characteristic: they repeatedly carry out a process
that can be described conceptually as follows. A component that wants to exercise
control over another component builds a descriptive model of the past and present
behaviour of the component that is to be controlled. It does so on the basis of
information obtained from the controlled component. The controlling component
extends the model of the controlled component such that the extension prescribes
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the future of the controlled component. This prescriptive future part of the model
presumably specifies the future as the controlling component would like it to be.
On the basis of this prescriptive part, the controlling component determines which
actions to take, or which information to transmit, to (try to) set the actual future of
the controlled component as envisioned.

Chandrasekaran (1994) argues that everything that exercises control carries out
a process to do so that can be described at a conceptual level as above.
(Chandrasekaran does not imply that, e.g., a thermostat, which controls a heater,
actually maintains a model of the heater and its behaviour. However, the process
carried out by a thermostat can be conceptualised as if it does.)

The essential element in Chandrasekaran’s characterisation of control is
information transmission. A component is able to control another component (at
least in principle) by the virtue of information transmission. Information
transmission enables trying to set the future of a controlled component as well as
observing the controlled component to evaluate the exercition of control. In terms
of the semantic structure developed in this thesis, Chandrasekaran's
characterisation of control shows that the constructs of the semantic structure as
described in Section 4.1.1 and Section 4.1.2 suffice to represent control. However,
there are some additional issues that have to be addressed.

First, the constructs presented in Section 4.1.1 and Section 4.1.2  do not enable
the distinction of information transmission for control as a special form of
information transmision. Chapter 8 introduces a number of refinements of the
constructs presented in Section 4.1.1.1 that enable the separation of control
processes (these processes are represented by components as usual) and
information transmission for control. These refinements are technically
straightforward and therefore not discussed in this section. It is important to note
that Chapter 8 does not define which information is control information. Instead,
Chapter 8 introduces facilities that enable applications of the semantic structure to
designate specific information as control information.

Second, Chapter 8 discusses the relation between the behaviour of a control
component and controlled components. Conform the general characterisation of
control, a controlling component transmits information to a controlled component
to (try to) set the future behaviour of the controlled component. Control processes
differ with respect to the extent to which the future behaviour of the controlled
component will be as specified. For instance, compare the thermostat and the
president of the national bank. On the one hand, it may be expected that if a
thermostat transmits information to a heater (by closing an electric circuit) stating
that the heater has to start, the heater will indeed start (not taking into account
malfunctions). On the other hand, if the president of a national bank tries to
influence consumers’ spendings, it may well be the case that his or her information
is misunderstood, neglected or nullified by other information directed at the
consumers. The semantic structure, nor the refinement presented in Chapter 8,
commits itself to a specific extent to which received control information determines
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the future behaviour of a controlled component. Instead, applications of the
semantic structure can choose a level of extent suitable for the application. The
final section of Chapter 8 discusses a few possible relations.

The semantic structure is fully defined in Chapter 5, Chapter 6 and Chapter 7.
Chapter 8 presents formal definitions of a number of refinements of constructs
defined in Chapter 5. (Chapter 8 also presents a number of additional
commitments with respect to control and discusses how control in a multi-agent
systems is represented in a compositional system.) Chapter 9 also contains a
number of formal definitions. However, the constructs defined in Chapter 9 are not
part of the semantic structure. Instead, they constitute the semantics of the DESIRE
modelling framework. The formal definitions of the constructs that constitute the
semantic structure are illustrated with a running example, which is described in
Section 4.2.

4.2� Running Example

An example system in the area of intelligent Internet applications is used to
illustrate the semantic structure developed in this thesis. This example system is a
multi-agent system in which an information brokering agent serves user agents
with information from information provider agents. Information brokering is
introduced in Section 4.2.1. Section 4.2.2 presents a compositional system that
models information brokering in a multi-agent system. This compositional system
is the actual running example.

4.2.1� Information Brokering

The multi-agent system on which the example is based consists of broker agents
that act as intermediaries between agents that provide information (on arbitrary
resources) and agents that use this information. (Agents that use this information
are customers of the broker agent. Provider agents can, however, also be viewed as
customers: the broker agent presents information on their behalf. To make the
distinction between the two clear, agents that use the information provided are
called ‘user agents’.) Figure 4.4 depicts the three types of agents. To keep the
example concise, only one broker agent is depicted (called ‘Broker’), together with
two agents that provide information (called ‘Provider 1’ and ‘Provider 2’,
respectively) and two users of the broker agent (called ‘User 1’ and ‘User 2’). As
indicated in Figure 4.4, the user agents exchange information with both the broker
agent and the provider agents. The reason for this is that the broker agent only
provides information on a resource, and not the resource itself. To obtain the
resource itself, user agents contact the provider agents directly.

In fact, the terms used to describe the agents in the example system indicate the
roles of the agents distinguished, and not their types. In other words, in the domain
of information brokering, one can distinguish agents that play the role of
information provider and others that play the role of information users. These roles
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need not be the only roles played by the agents: for example, agents may also play
roles that have nothing to do with the domain of information brokering and are
thus not of importance in the context of this example. Moreover, one or more
agents may have more than one role: a provider may present information obtained
as a user of another broker agent. In the example system, however, an agent has
one specific role and is named accordingly. Thus, for example, an agent with the
role of a provider is called a provider agent.

The five agents depicted in Figure 4.4 are the only agents distinguished in the
running example. Figure 4.4 deliberately depicts the agents as different forms of
agents: the user agents appear to be humans, while the broker appears to be an
automated system. The provider agents appear to be institutions or agencies (a
store and a school). The running example, however, abstracts from the form of the
agents: human agents are not distinguished from software agents, and subagents
that comprise the agencies (e.g., store clerks, school teachers) are not identified.
Moreover, the running example also abstracts from the means of communication
used by the agent. Figure 4.4 suggests that the human agents access the broker
agent via a public terminal. In this case, communication between the user agents
and the broker agent consists of manipulations using the (graphical) user interface
of the broker agent. However, it may also be the case that the users employ their
own personal computers to access the broker agent.

Figure 4.4: Information brokering.

The intended function of the broker agent is as follows. A user agent
communicates to the broker agent that he/she is interested in information on a
resource (i.e., a research paper, a WWW page, a product sold by means of e-
commerce). A provider agent communicates to the broker agent descriptions of
resources available to the broker agent, preferably using an internet standard such
as the Resource Description Framework (RDF), see (Lasilla, 1998). The broker agent
matches interests of users with information provided by the provider agents, in
compliance with a number of requirements. To keep the running example concise,
only one requirement is given:
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�� Once a broker agent receives a query from a user, information matching the
query has to be communicated to the user at the next moment in time if this
information was already available to the broker, or some time in the future
in all other cases.

Many more requirements can be placed in the design of the multi-agent system.
However, as the study of information brokering is not the topic of this thesis, and
to keep the example concise, no further requirements or detail are provided. See
(Jonker & Treur, 1998c), for a more complete investigation of information
brokering. (In Chapter 8, an additional requirement is presented, which is used to
illustrate control.)

4.2.2� Design of a Compositional System for Information Brokering

The semantic structure illustrated by the running example provides constructs for
building compositional systems, such as the multi-agent system presented in
Section 4.2.1. Applying the guideline put forward in the previous chapter to the
example multi-agent system results in the compositional system presented in
Figure 4.5. The compositional system depicted in Figure 4.5 consists of eight
components:

�� One component, called toplevel, of which all other components are
subcomponents, or subcomponents of subcomponents, and so on. This
component represents the complete multi-agent system.

�� The components labelled user_1 and user_2 represent the user agents. (As
stated in Section 4.2.1, the precise nature of these components is not
important: user_1 and user_2 can, for example, represent human agents, their
personal digital agents, or web browser applications serving as
intermediaries between the user and the broker.)

�� The component labelled broker represents the broker agent. For the broker
agent, two subcomponents are distinguished: Agent Specific Processes
(ASP) and Own Process Control (OPC). The subcomponent Own Process
Control represents all subprocesses of the broker agent that control its
behaviour. All other subprocesses, which are specific to the task of the
broker, are subprocesses of the component Agent Specific Processes. In the
next chapter, subcomponents of a subcomponent of toplevel makes the
examples more interesting. In Chapter 8, OPC and ASP are used to illustrate
control in a multi-agent system.

�� The components labelled provider_1 and provider_2 represent the information
provider agents. (Similar to user_1 and user_2, the precise nature of these
components is not important.)

As stated in Section 4.2.1, the user agents, the broker and the information provider
agents preferably employ an Internet standard such as the Resource Description
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Format (RDF, Lassila, 1998) for communication. However, while this standard
defines the format of resource descriptions, it allows different ontologies to be used
for descriptions. The running example, in fact, assumes that on the one hand the
broker and information providers and, on the other hand, the users use different
ontologies.

�

Figure 4.5: Information broker agent system.
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Chapter 5�

A Semantic Structure for Agent
Dynamics

This chapter presents the semantic structure for agent dynamics. Section 5.1
formally defines the constructs provided by the semantic structure, focusing on
static aspects of the constructs. The dynamic aspects are presented in Section 5.2.
Section 5.3 summarises the semantic structure defined so far. Proofs of
propositions presented in this chapter are given in Section 5.4.

5.1�The Constructs of the Semantic Structure

The main constructs provided by the semantic structure are components and
information links. As stated in Section 2.1, three aspects of the first construct
(components) are distinguished: the information state (i.e., the information
contents of a component), the interfaces and the compositional structure in terms
of subcomponents and links. The first two aspects are formally defined in
Section 5.1.1. The second construct (information links) is defined in Section 5.1.2.
The third aspect of a component, composition structure, is formally defined in
Section 5.1.3.

5.1.1� Components, Interfaces and State

Assume that a set of components Comp (or, more precisely, component identifiers
or names) is given. Elements of this set are typically denoted by capitals C, D, etc.
As stated in Chapter 2, a dynamically changing information state is distinguished
for each component. Each information state consists of input, internal and output
substates. The input and output substates of an information state define the
interface of a component, in the sense that these substates are accessible to other
components (and the component itself) via information links. The current section
assumes that for each component C, three non-empty sets of states �C,in, �C,int and
�C,out are given (for the input, internal and output substates, respectively), without

further commitment to the contents of these sets. (Chapter 9 provides a formal
language to specify these sets.) The (overall) state of a component C (the first
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aspect of a component distinguished in this thesis) is composed of elements of the
sets �C,in, �C,int and �C,out as follows:

Definition 5.1. (Component information state). Let C be a component. An
information state of C is an element of �C,in��C,int��C,out. The set of all component

information states of C is denoted �C, i.e., �C=�C,in��C,int��C,out.

Example 5.2. In the running example, the following sets are used for the user and
broker agents. (As explained in Section 4.2.2, the user agents and the broker agent
use different ontologies to describe resources. Therefore, two sets of ontology
terms OT1 and OT2 are assumed to be given. (These set can, for instance, be sets of
resource descriptions in the RDF (Lassila, 1998) format.) The set Q is a set of query
terms, Users={user_1,user_2} and Providers={provider_1,provider_2}. The user agents and
the broker agent also maintain information about their own processes. For
instance, the input interface of the user agents can be in a state in which it is ready
to receive information. This is taken into account in the definition of �user_1,in and
�user_2,in below. User agents and the broker agent may also internally maintain
beliefs. For instance, the broker agent maintains beliefs about matches between
user queries and information available via the providers.)

�� �user_1,in = �user_2,in = {communicated_by(t,broker) | t�OT1}�

 {ready_for_information},
�user_1,int = �user_2,int = {�}

�user_1,out = �user_2,out = {to_be_communicated_to(q,broker) | q�Q}.

�� �broker,in = {communicated_by(q,u) | q�Q and u�Users}�

 {communicated_by(t,p) | t�OT2 and p�Providers},

�broker,int = {belief(match(t,q)) | t�OT2 and q�Q}

�broker,out = {to_be_communicated_to(t,u) | t�OT2 and u�Users}�

 {just_communicated_to(t,u) | t�OT2 and u�Users}.

In this example, states are identified by elements of e.g. �user_1,in such as
communicated_by(t,broker), where t is an element from the set of ontology terms OT1.
The elements of sets such as �user_1,in resemble propositions about states. In fact, in
Chapter 9, a logical language for propositions that describe states is presented.
However, in this example, elements of sets such as �user_1,in are (unique) names of
states. These names have no internal structure. �

As stated in Section 2.1, two kinds of components are distinguished: composed
components and primitive components. The component information state
definition given above applies to both kinds of components. In this thesis, the term
‘internal (sub)state’ is used in a restricted way: it refers to the state of the part of a
component’s information contents that is not visible to other components. In
particular, the terms ‘internal (sub)state’ and ‘internal information’ do not refer to,
and are thus independent of, the (input and output) states of the subcomponents
and links of a composed component. In other words, the contents of a composed
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component consists of subcomponents, links and the internal information contents
as defined above.

5.1.2� Information Links

The second construct provided by the semantic structure is the information link.
An information link transmits information from one component (called source
component or domain of the link) to another, or possibly the same component
(called the destination component or co-domain of the link). In this section, static
aspects of this construct are formalised. As explained in Section 2.2.3.1, in the
semantic structure, information links are first-class citizens; they are of the same
standing as components.

It is assumed that a set of links Lnk (or, more precisely, link identifiers or
names) is given. An element of this set is typically denoted with the capital I. The
first static aspect identified is the state of the link (See Section 2.2.3.2). The state of a
link is determined by (1) the state of information transmission as an activity: for
instance, a link can be busy exchanging information, it can be waiting for new
information to exchange, it can be enabled or disabled, and (2) the contents of the
link, e.g. messages in transit. The semantic structure does not enforce a
commitment with respect to the contents of link states, nor to the way in which the
state of the link is described. Instead, for each information link I, a non-empty set
of information link states �I is assumed to be given.

Definition 5.3. (Link information state). Let I be an information link. An information
state of I is an element of a set �I.

Example 5.4. In the running example, a link called broker_to_user_1 exists between
broker and user_1. The set of link information states of this link is defined as follows
(where t is a set of ontology terms):

�broker_to_user_1 = {awake_and_empty,active_and_contents(t) | t�OT2} �

The second static aspect of an information link is its compositional relation with
components in a compositional system. In this section, the connection of a link
with two components or links, one at each ‘end point’, is formalised. A more
extensive definition of the compositional relation of a link is given in the next
section.

Definition 5.5. (Domain and co-domain). Let I be an information link. Two
components or links, called the domain and co-domain, are relative to I. This is denoted
by two functions, dom,cdom: Lnk�Comp�Lnk. A link I with dom(I)=S1 and cdom(I)=S2

is called a link from S1 to S2.

The third static aspect of an information link is the information link mapping. As
explained in Section 4.1.2, an information link mapping is a relation between states
from the state sets of the domain and co-domain of the link. In fact, an information
link mapping is defined as an 8-ary relation to fulfil the commitments made in
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Section 2.2.3.3, Section 2.2.5 and Section 2.2.6 (this is further explained below). As
stated in Section 2.2.1, the semantic structure distinguishes six kinds of links. The
information link mapping differs for each of the six kinds of links as follows:

Definition 5.6. (Information link mapping). Let I be an information link. An
information link mapping for I is a relation defined as follows:

�� �I	(�dom(I),out��dom(I),out)��I
4�(�cdom(I),in��cdom(I),in), if I is a private link, or

�� �I	(�dom(I),in��dom(I),in)��I
4�(�cdom(I),in��cdom(I),in), if I is an import mediating

link, or

�� �I	(�dom(I),out��dom(I),out)��I
4�(�cdom(I),out��cdom(I),out), if I is an export mediating

link, or

�� �I	(�dom(I),in��dom(I),in)��I
4�(�cdom(I),out��cdom(I),out), if I is a cross-mediating link,

or

�� �I	(�dom(I),out��dom(I),out)��I
4�(�cdom(I)��cdom(I)), if I is a link modifier link, or

�� �I	(�dom(I)��dom(I))��I
4�(�cdom(I),in��cdom(I),in), if I is a link monitoring link.

The intended meaning of an information link mapping is explained with reference
to Figure 2.7. In Figure 2.7, information transmission by a link L from a component
A to a component B is depicted by eight states. (Thus, dom(L)=A and cdom(L)=B.)
These eight states correspond to an element 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;


�B,i’;�B,j’����L. (In this thesis, tuples are delimited by angular brackets and their

elements are separated by semicolons.) This element states that (the numbers
between parentheses refer to the explanation below):

If component A reaches state �A,i (1), and link L is in state �L,i” (2), and

component B is in state �B,i’ (3),

then component B should reach state �B,j’ (4) as one of the successors of �B,i’ (5),
and one of the following states of A should be �A,j (6),

and state �L,j” should be the first state of L in which the information is in transit,
and state �L,k should be the last state of L in which the information is in
transit, and state �L,l should be the first state of L in which the information is

no longer in transit (7).

Parts (1) and (4) form the most important part of this expression and as such are
part of the informal explanation in Section 4.1.2. Parts (1) and (4) show that in the
semantic structure, information transmission is characterised in terms of states of
the components that exchange information. Condition (2) is related to the
commitment presented in Section 2.2.3.2: state �L,i enables the expression of a

requirement on the state of the information link to enable transmission, e.g., the
expression that the link must be in an enabled state. Condition (3) is related to the
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commitment presented in Section 2.2.6 and enables expression of an enabling
condition for receipt imposed by the destination component. Parts (5) and (6)
reflect the commitments to non-blocking receive (Section 2.2.6) and send
(Section 2.2.5), respectively. Part (7) enables expression of the dynamics of
transmission as a process as explained in Section 2.2.3.3. The sequence of states
can, for instance, be used to describe that a message is put in the link (change from
�L,i” to �L,j”) and later taken from it (change from �L,k to �L,l). An information link

mapping does not, in general, need to be functional in all of its arguments, and is
therefore formalised using a relation.

Example 5.7. The information link mapping of the link broker_to_user_1 is defined as
follows (where trans is a function from OT2 to OT1 that translates ontology terms in
OT2 to OT1, which is assumed to be given):

�broker_to_user_1 ={

to_be_communicated_to(t,user_1);just_communicated_to(t,user_1)�;


awake_and_empty;active_and_contents(t);active_and_contents(t);

awake_and_empty�;
ready_for_information;

communicated_by(t’,broker)�� | t�OT2, t’�OT1 and t’=trans(t)}.

This information mapping specifies that if in broker’s behaviour, there is a state
to_be_communicated_to(t,user_1), and the state of link broker_to_user_1 is awake_and_empty,
and in user_1’s behaviour, there is a state ready_for_information, then a transition of
user_1’s input interface state to the state communicated_by(t’,broker) exists, for resource
description terms such that t’=trans(t). Moreover, in broker’s behaviour, one of the
successor states is the state just_communicated_to(t,user_1), and the state of link
broker_to_user_1 changes to active_and_contents(t) and then back to awake_and_empty. (To
keep the example simple, it is assumed that link broker_to_user_1 can only transmit a
message if no other messages are in transit.) �

An information link mapping provides a static description of the relation between
two components and a link as a result of information transmission. The (informal)
meaning of an information link description is made more precise in Chapter 6. In
Chapter 6, the actual behaviour of two components and a link is related to the
intended behaviour as described by the information link mapping. In other words,
Chapter 6 discusses the relation between states that actually occur in the behaviour
of the destination and source components of a link and the link itself, and the
relation between possible states of these components described by an information
link mapping. In Chapter 5, information link mappings are only used in examples
of compatibility relations.

Information links provide flexibility in information transmission in three ways.
In the first place, it is possible to specify how states of the two components and the
link are connected. As the state of components and links is determined by their
information contents, expressed in their ‘own’ terms, information transmission
enables translation of the terms used for different components. (In the running
example, this facility is used to translate the ontology used by the broker agent to
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the ontology used by the user agents, and vice versa.) In the second place, using
the link state, the process of information transmission can be modelled in great
detail. In the third place, it is possible to specify results of information transmission
(in the example: state just_communicated_to(t,user_1)), and enabling conditions in the
destination component of a link (in the example: state ready_for_information) and in the
link itself.

5.1.3� Compositional Structures

Section 2.1 names the composition structure of a component as its third aspect.
This aspect describes compositions of components in terms of the subcomponents
and information links that constitute the components. The structural aspect is very
general: starting from a set of components Comp (or, more precisely, component
names) and a set of links Lnk (or, link names), arbitrary recursive composition
structures, called structure hierarchies, can be described. It is not assumed that for a
given set of components and a given set of links, there is only one structure
hierarchy, nor is there any commitment with respect to whether components are
composed or primitive. Thus, different perspectives on a set of components and a
set of links can be described. For instance, in a certain stage in the analysis or
development of a multi-agent system, certain components may be considered
primitive. (They do not have subcomponents). In a later stage, these
subcomponents may become composed. The qualifiers ‘composed’ and ‘primitive’
are thus related to a given structure hierarchy, as is the notion of being a
subcomponent.

While the semantic structure developed in this thesis does not assume that the
structure hierarchy of a component is unique, it is assumed that many applications
of the semantic structure have a certain unique structure for each component. For
instance, a specification framework for multi-agent systems may provide facilities
to describe the compositional structure of a component. Such a description may
induce a unique structure hierarchy for the component. Even if this is the case,
different refinements of specifications most often result in different structure
hierarchies for the same component. The formal definition of a structure hierarchy
is as follows:

Definition 5.8. (Structure hierarchy). A structure hierarchy SH is a tuple

�Comp;Lnk;�;dom;cdom�, where:

�� Comp is a finite set of component names;

�� Lnk is a finite set of information link names such that Comp�Lnk=�;

�� ��(Comp�Lnk)�Comp (the hierarchy relation) such that � defines a forest: a finite,

non-empty collection of trees. For all pairs �I;C��� such that I�Lnk, I must be a

leaf. The reflexive closure of � is denoted �;
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�� dom,cdom: Lnk�Comp�Lnk are total functions (the domain and co-domain
functions) such that for all I�Lnk, if dom(I)=S1 and cdom(I)=S2, then either

�� S1,S2�Comp and there is a P�Comp such that S1,S2�P (private link), or

�� S1,S2�Comp and S2�S1 (import mediating link), or

�� S1,S2�Comp and S1�S2 (export mediating link), or

�� S1,S2�Comp and there is a P�Comp such that I,S1,S2�P and S1=S2 (cross-

mediating link), or
�� S1�Comp and S2�Lnk and there are S3,S4,P�Comp such that S3S1, S4S1,

PSi and Si�P for i=1,…,4 and dom(S2)=S3 and cdom(S2)=S4, (link modifier

link), or.
�� S1�Lnk and S2�Comp and there are S3,S4,P�Comp such that S3S2, S4S2,

PSi and Si�P for i=1,..,4 and dom(S1)=S3 and cdom(S1)=S4, (link monitoring

link).
A structure hierarchy is called a structure hierarchy for a component C�Comp iff � defines
a collection of exactly one tree (i.e., � is connected, formally �C1,C2�Comp: C1�C2 �

C2�C1) and C is the root of the tree defined by �, thus ��C’�Comp: C�C’. If Comp=�,

then the structure hierarchy is called empty.

In the subcomponent relation, C1�C2 denotes that C1 is a subcomponent of C2 in

SH. A component C is called primitive in SH=
Comp;Lnk;�;dom;cdom� iff there is no
C’�Comp such that C’�C. Otherwise, it is called composed in SH. Components
which are leaves in a structure hierarchy (that is, components C in the structure
hierarchy for which there is no C’ such that C’�C) are by definition primitive in SH.

In general, a structure hierarchy for a component C not only contains
subcomponents of C, but also subcomponents of these subcomponents, and so on.
Therefore, a structure hierarchy itself comprises more than the compositional
structure (the third aspect of a component distinguished by the semantic structure)
of a component C. A structure hierarchy consisting of C, its subcomponents and
links is called the composition structure of C. Formally:

Definition 5.9. (Composition structure).

�� A composition structure for a component C is a structure hierarchy

CS=
Comp;Lnk;�;dom;cdom� for C such that for all S�Comp�Lnk, S�C.

�� Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy and let C�Comp be a

component. The composition structure CS(C,SH) of C with respect to SH is the

structure hierarchy 
Comp’;Lnk’;�’;dom’;cdom’� where:

�� Comp’={ C’�Comp | C’�C };

�� Lnk’={ I�Lnk | I�C };

�� S� ’C � S�C, S�Comp’�Lnk’ and C�Comp’;

�� For all I�Lnk’, dom’(I)=dom(I);

�� For all I�Lnk’, cdom’(I)=cdom(I).
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If, for a structure hierarchy SH for C it holds that SH=CS(C,SH), then SH itself is a
composition structure for C. For a given component C and structure hierarchy SH,
the composition structure CS(C,SH)=
Comp’;Lnk’;�’;dom’;cdom’� is unique. The set
of subcomponents of C with respect to SH=
Comp;Lnk;�;dom;cdom�  is denoted
Subc(C,SH)= {C’�Comp|C’�C} . The set of links of C with respect to SH is denoted
Lnk(C,SH)={I�Lnk|I�C}. The set of subcomponents of C with respect to SH and
links ‘inside’ C is denoted SLC(C,SH): SLC(C,SH)={C}�Subc(C,SH)�Lnk(C,SH). (The
abbreviation ‘SLC’ stands for ‘Subc, Lnk and the Component itself’, but also for
‘slice’.) If a component C is a primitive component according to a structure
hierarchy SH for C, then, according to the definition, Subc(C,SH)=�.

Example 5.10. To illustrate structure hierarchies, a structure hierarchy for the
compositional system depicted in Figure 4.5 is given. For conciseness, the structure
hierarchy only contains the components toplevel, user_1, broker, ASP and OPC. The
following structure hierarchy can be used to analyse user_1 together with agent
broker: sh=
Comp;Lnk;�;dom;cdom�, with:

�� Comp={toplevel,user_1,broker,ASP,OPC};

�� Lnk={user_1_to_broker,broker_to_user_1};

�� �={
ASP;broker�,
OPC;broker�,
user_1;toplevel�,
broker;toplevel�};

�� dom={
user_1_to_broker;user_1�,
broker_to_user_1;broker�};

�� cdom={
user_1_to_broker;broker�,
broker_to_user_1;user_1�}. �

5.2�Dynamics

This section focuses on how the dynamics of a compositional system is described
using the constructs provided by the semantic structure. First, Section 5.2.1
discusses the description of the local dynamics of components. Section 5.2.2
discusses the description of the dynamics of composition structures.

5.2.1� Local Dynamics

The information state of a component changes over time, which is modelled using
sequences of information states called traces. Separate local traces of the input,
internal and output substates are distinguished, making it possible for applications
of the semantic structure to focus on one or more of the interfaces of a component.

Definition 5.11. (Time frame). A time frame is a pair TF=
T;<�, where T is a set of time

points and < is a strict partial order on T. Moreover, < is connected, i.e. �t�T: �t’�T: t<t’

� t’<t.  There is one element, ��T, for which there is no t�T such that t<�.

This definition enables various types of time frames to be used in the semantic
structure, such as, for instance, branching time frames and dense time frames. In
the remainder of this thesis, linear time frames are assumed, unless explicitly states
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otherwise. (For example, the discussion of dense time frames in Chapter 7). It is,
however, possible to use different time frames with different properties for
different components in a compositional system.

Definition 5.12. (Local trace). Local traces are defined as follows:

�� A local input trace of a component C for a time frame TF=
T;<� is a pair
LTC,in=
TF;V�, where V is a total function V: T��C,in. The internal and output

traces are defined analogously.

�� A local component trace of a component C for a time frame TF=
T;<� is a pair
LTC=
TF;V�, where V is a function V: T��C.

�� The set of all local input traces of a component C is denoted ��C,in. The sets of all

internal and output traces of a component are denoted analogously. The set of all
local component traces of a component C is denoted ��C.

In the previous definitions, four different notions of traces are distinguished
(input, internal, output and local component traces). In the semantic structure
developed in this thesis, all four traces can be associated with each component.
These four traces are not independent: a local component trace consists of local
component states, each of which itself consists of the input, internal and output
traces of the same component. The dependencies between traces can be of several
types. For instance, assume that for the input, internal and output trace of a
component a discrete totally ordered time frame is used. In this case, at least three
choices for the local component traces can be distinguished:

�� For a local component trace, a discrete totally ordered time frame is chosen.
Consider a point in time t and its immediate successor t’ (which is assumed
to exist here). The state at time point t’ differs from the state at time point t
for all three substates input, internal and output;

�� For a local component trace, a discrete totally ordered time frame is chosen.
Consider a point in time t and its immediate successor t’ (which is assumed
to exist here). The state at time point t’ differs from the state at time point t
for two of the three substates input, internal and output: the input and output
substate differ, while the internal state remains the same;

�� For a local component trace, a discrete totally ordered time frame is chosen.
Consider a point in time t and its immediate successor t’ (which is assumed
to exist here). The state at time point t’ differs from the state at time point t
for one of the three substates input, internal and output;

If the restriction to totally ordered time frames is dropped, and instead, a local
component trace with a partially ordered time frame is chosen, another alternative
is possible. Consider a point in time t and one of its immediate successors t’ (which
is assumed to exist here). The state at time point t’ differs from the state at time
point t for one of the three substates input, internal and output.
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These different possibilities for local component traces model different choices
with respect to synchronisation of the different (input, internal and output)
substates of a component. In an application of the semantic structure, a time frame
and a dependence relation between the traces is chosen. (It is possible to vary these
choices for different components.) The flexibility with respect to these choices is a
feature of the semantic structure.

Local component traces are used to model the behaviour of components. For
each component C, a subset of ��C is distinguished which contains all local

component traces that are possible behaviours of C from a local point of view. (It is
assumed that the possible behaviours of C from a local point of view are given, for
instance using the specification language presented in Chapter 9.) Formally:

Definition 5.13. (Local component behaviour). Let C be a component. A local
component behaviour Behloc(C) of C is a set of local component traces of C.

To clarify the use of the qualification ‘local’ in the name of the notion defined
above, a distinction is made between two views on the concept of location. On the
one hand, a component has a specific location in a structure hierarchy. This
concept of location refers to the structure of a compositional system in terms of
components and subcomponents. This structure is determined by how processes
relate to one another in terms of the function of the subprocesses, as explained in
Chapter 3. In this conception of the location of a component, a subcomponent is
‘close’, or ‘local’ to its parent component. On the other hand, there is also a
‘physical’ distribution of components (and the processes they represent) over
processes, which are spatially divided. It is not assumed that the subcomponents of
a component all exist at the same physical location. Thus, subcomponents of a
component are not necessarily local to their parent component with respect to the
‘physical’ location of a compositional system. In this thesis, the qualifications
‘local’ and ‘global’ always refer to the physical distribution of a compositional
system.

The notion of local component behaviour is called ‘local’ because the set
Behloc(C) is not constrained by non-local phenomena such as information
transmission (not even with its subcomponents). A set Behloc(C) is independent of
any structure hierarchy in which C occurs. In other words, the set Behloc(C) can

contain local component traces that are not possible behaviour when information
exchange is taken into account, for instance because these local component traces
depend on information residing in other components. This is made more precise in
Section 5.2.2.

Example 5.14. In the running example, the set of natural numbers together with the
usual ordering is used as a time frame. A local component trace is represented as a
sequence of component states with the sets of input, internal and output
propositions separated by bars. To present some example traces, concrete elements
of �broker have to be given. (In a previous example, elements of �broker were specified
in an abstract way, because the sets of ontology terms OT1 and OT2 were not
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specified.) In this example, the sets OT1, OT2 and Q are partially specified by a few
sample elements. First, the set of ontology terms OT2 used by the information
providers and the broker agent contains elements res_1 and res_2, which stand for
specific resource descriptions. Thus, {res_1,res_2}	OT2. Second, the set OT1 of
ontology terms used by the broker agent to transmit resource descriptions to user
agents contains elements res_3 and location_of_holy_grail. Thus,
{res_3,location_of_holy_grail}	OT1. Third, the set of query terms used by user agents
contains query terms query_1 and where_is_holy_grail. Formally:
{query_1,where_is_holy_grail}	Q. The query about the location of the Holy Grail and
the ontology term describing a resource that reveals the location of the Holy Grail
serve to illustrate incorrect or formally correct, but impossible traces.

First, two example traces for broker are presented. Both traces only contain states
of �broker, so both traces are elements of ��broker. Local traces of broker, or, in other
words, elements of Behloc(broker), should satisfy the requirement mentioned in

Section 4.2. The first trace presented below satisfies the requirement presented in
Section 4.2 and is therefore an element of Behloc(broker). The second trace does not

satisfy the requirement, as, after receipt of a query for which it knows a matching
resource, it does not transmit information on this resource to user_1. Instead, it
transmits information on another resource, res_2. Therefore, this trace is not an
element of Behloc(broker).

ltbroker,1 = « | belief(match(res_1,query_1)) | « �

communicated_by(query_1,user_1) | belief(match(res_1,query_1)) | « �

communicated_by(res_1,provider_1) | belief(match(res_1,query_1)) | « �

« | belief(match(res_1,query_1)) | to_be_communicated_to(res_1,user_1) �

 « | belief(match(res_1,query_1)) | just_communicated_to(res_1,user_1)

ltbroker,2 = « | belief(match(res_1,query_1)) | « �

communicated_by(query_1,user_1) | belief(match(res_1,query_1)) | « �

 « | belief(match(res_1,query_1)) | to_be_communicated_to(res_2,user_1) �

 « | belief(match(res_1,query_1)) | just_communicated_to(res_2,user_1)

Second, two traces for user_1 are presented. Both traces only contain states of �user_1,
so both traces are elements of ��user_1. Moreover, both traces are elements of
Behloc(user_1), because both comply with the intended functionality of a user agent

in the running example. However, the second trace cannot be an actual trace for
behaviour of user_1, because in the example, there is no information provider that
provides information on the location of the Holy Grail.

ltuser_1,1 = « | « | to_be_communicated_to(query_1,broker) �

 ready_for_information | « | « �

 communicated_by(res_3,broker) | « | «

ltuser_1,2 = « | « | to_be_communicated_to(query_where_is_holy_grail,broker) �

 ready_for_information | « | « �

 communicated_by(location_of_holy_grail,broker) | « | « �
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These example traces are used in several examples below. The information state of
a link also changes over time, and this is likewise modelled by traces of link states
as follows:

Definition 5.15. (Information link trace). An information link trace of an information
link I for a time frame TF=
T;<� is a pair LTI=
TF;V�, where V is a total function V: T��I.
The set of all link traces of a link from D to C is denoted ��I.

The way in which the behaviour of a link is described by a set of information link
traces, as witnessed by the following definition, is similar to the way in which local
component behaviour is defined by a set of local component traces:

Definition 5.16. (Local link behaviour). Let I be an information link. The local link
behaviour of I is a set Behloc(I) of information link traces.

Example 5.17. A possible information link trace for the link broker_to_user_1 is:

ltbroker_to_user_1 = awake_and_empty � active_and_contents(res_1) � awake_and_empty �

In this trace, the link is first awake (ready to transmit information) and there are no
messages in transit. At the second time point, the link is busy (actively transmitting
information, and a message t is in transit. At the third point in time, the message is
delivered. The link is empty again and ready to transmit information. �

5.2.2� Compositional Dynamics

In Section 5.2.1, local component traces are defined as a means to model the
behaviour of a single component. In Section 5.1.3, the notion of a structure
hierarchy is introduced, which enables the description of compositions consisting
of components and links. This section defines structures for describing the
behaviour of such compositions, in terms of the local component and link traces
defined in Section 5.2.1.

Local component and link traces, the elements of the set Behloc(S) given for S, as

defined in Section 5.2.1, are the basic notions for describing the behaviour of a
single component or link S. A local component trace of a composed component C
is, by itself, not not sufficient to describe the behaviour of the subcomponents and
links of C, because local component traces only record local information. However,
the behaviour of a composed component C and its subcomponents and links can
be described by a structure consisting of a number of local component and link
traces: a local component trace of C, a local component trace of each of its
subcomponents and a local link trace of each link in C. Indeed, so-called
multitraces, which are defined in Section 5.2.2.1 to describe the behaviour of
(composed) components, are structures of local component and link traces.

Multitraces cannot be arbitrary combinations of elements of the sets Behloc(S),
where S�{C}�Subc(C). The set Behloc(C) as defined in Section 5.2.1 is intended, as

stated, to describe the local behaviour of C. In other words, the behaviour of C as
described by the set Behloc(C) is independent of the composition structure in which
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C is a part and the information exchange with other components in such a
structure. However, to describe the behaviour of a composed component,
dependencies imposed by information exchange between subcomponents, and
between subcomponents and the composed component, have to be taken into
account. For example, assume that no information provider provides information
on a resource describing the location of the holy grail. If the behaviour of the
running example compositional system were to be described by arbitrary
combinations of local component and link traces, the example trace in which user_1

receives information on a resource describing the location of the holy grail (given
in Example 5.14) would be included in at least some of the combinations of local
component traces. The intended meaning of this fact is that, at least in some actual
behaviours of the example compositional system, component user_1 receives
information on a resource describing the location of the holy grail. However, such
behaviour is impossible because user_1 can only receive such information if one of
the information providers can provide such information. By assumption, this is not
possible in the running example.

5.2.2.1� Compatibility and Multitraces

Dependencies between components imposed by information transmission are
represented by compatibility relations. The principle underlying compatibility
relations is as follows. For each link, a compatibility relation for that link describes
which local component or link traces of the domain of the information link are
compatible with which local component or link traces of the co-domain of the link.
A local component or link trace of the domain is compatible with a local
component or link trace of the co-domain if the information transmission as
defined by the information link mapping, and specific general properties of
information transmission, are taken into account (this is defined formally and in
detail in Section 6.1). The behaviour of a component not only depends on the
behaviour of other components with which it exchanges information, but also on
the state of the links used for this information exchange (commitment presented in
Section 2.2.3.2). For instance, in the running example, if the information link from
broker to user_1 is continuously disabled, then the traces given for broker and user_1

cannot be considered to be compatible. Therefore, a compatibility relation for an
information link I is defined as a ternary relation on the set of local component or
link traces of the domain of I, the set of link traces of I, and the set of local
component or link traces of the co-domain of I.

The focus of this section is on how compatibility relations can be employed to
determine which combinations of local component traces of a component, its
subcomponents and its links, constitute its actual behaviour. As a consequence,
although compatibility relations are defined in this section, the discussion of
various properties of compatibility relations is postponed until Chapter 6.
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Definition 5.18. (Compatibility relation). A compatibility relation for a link I is a
relation ��I	��dom(I)���I���cdom(I).

Example 5.19. Compatibility relations vary widely in their appearance due to the
flexibility offered by the semantic structure. For instance, properties of the local
component or link traces of the components and links related by a compatibility
relation influence how a concrete compatibility relation in an application of the
semantic structure is defined. In this example, a compatibility relation for a link I is
defined, based on the following assumptions:

�� Local component and link traces of I, its domain and co-domain are discrete,
totally ordered and infinite (thus, the traces are isomorphic to the natural
numbers);

�� The link I is a private link;

�� For link I, the facilities offered by the semantic structure for a detailed
representation of information transmission as a process and enabling
conditions on the state of I itself are not used.

Moreover, the compatibility relation defined in this example has the input
persistence and lossless transmission properties (which are introduced in Chapter
6). In this example, the following notation is used. Let LTS=

T,<�;V����S be a local
component or link trace. The state V(t) in LTS at time point t�T is denoted �S,t. The
compatibility relation, ��I, is defined as follows: ��I is the set of tuples

LTdom(I);LTI;LTcdom(I)� such that:

�� LTdom(I)=

Tdom(I);<dom(I)�;Vdom(I)����dom(I);

�� LTI=

TI;<I�;VI����I;

�� LTcdom(I)=

Tcdom(I);<cdom(I)�;Vcdom(I)����cdom(I);

�� For all i�Tdom(I), either:

�� There are j�Tdom(I), i”<Ij”<Ik<Il�TI and i’<cdom(I)j’�Tcdom(I) such that


out(�dom(I),i);out(�dom(I),j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�cdom(I),i’);in(�cdom(I),j’)����I,

�� Or there is no 

out(�dom(I),i);�2�;
�3;�4;�5;�6�;
�7;�8����I for any �2,…,�8.

This definition shows the role of information link mappings: only those traces in
which states occur in specific sequences as specified by the information link
mapping, are compatible. �

Example 5.20. In the example, a possible compatibility relation for the link
broker_to_user_1 is given. A compatibility relation for this link consists of triples of
local component and link traces of broker_to_user_1, dom(broker_to_user_1)=broker and
cdom(broker_to_user_1)=user_1. Traces for broker and user_1 are given in Example 5.14.
A trace for the link broker_to_user_1 is given in Example 5.17. A compatibility
relation for broker_to_user_1 relates traces of broker, user_1 and broker_to_user_1

according to the information link mapping of broker_to_user_1 given in Example 5.7,
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together with general properties of information transmission presented in Chapter
6. (In this example, such properties are briefly sketched where necessary.) The
triple 
ltbroker,1;ltbroker_to_user_1;ltuser_1,1� is an element of a compatibility relation for
broker_to_user_1, for the following reasons. First, the information link mapping
presented in Example 5.7 states that if a state to_be_communicated_to(t,user_1) occurs,
for t an ontology term, and the state of link broker_to_user_1 is awake_and_empty, then
user_1 should reach the state communicated_by(t’,broker), for t’=trans(t) another
ontology term that is the translation of t. Moreover, before user_1 can reach this
state, it must have reached the state ready_for_information, and after state
to_be_communicated_to(t,user_1) occurs in broker, the state just_communicated_to(t,user_1)
should have occurred. Furthermore, the link broker_to_user_1 should reach the state
active_and_contents(t) and after that, awake_and_empty. A compatibility relation for
broker_to_user_1 relates local component and link traces in which the situation called
for by the information link mapping actually occurs. The traces in the triple

ltbroker,1;ltbroker_to_user_1;ltuser_1,1� are traces that agree with the requirement represented
by the information link mapping. At the end of trace ltbroker_1,1, the output substate
first is to_be_communicated_to(t,user_1) and after that, just_communicated_to(t,user_1) as
required. At the end of trace ltuser_1,1, first the state ready_for_information occurs,
followed by the state communicated_by(t’,broker). Trace ltbroker_to_user_1 also fulfils the
requirement: its first state is awake_and_empty, then the state active_and_contents(term_1)

occurs, followed by the state awake_and_empty. Second, the traces in the triple

ltbroker,1;ltbroker_to_user_1;ltuser_1,1� fulfil general properties of information transmission.
In fact, the three traces fulfil the following properties: information transmitted by
broker arrives at user_1, and it is not garbled. The three traces also comply with the
most basic property of information transmission (information does not arrive
before it is sent). However, the example is too simple to prove or disprove this
claim. �

As stated in Section 4.1.1.2, in fact three views on the behaviour of a compositional
system are defined: the glass box view, the white box view and the black box view.
In all three views, the behaviour of a component is defined in terms of multitraces.
A multitrace is a collection of local component traces and link traces of a set of
components and links, indexed by a structure hierarchy as defined in Section 5.1.3.
With compatibility relations imposing additional structure and subject to certain
other requirements, these collections of local component traces and link traces
model behaviour as defined by the three views. An indexed set can also be seen as
a function, which is the view taken in the formal definition below:

Definition 5.21. (Multitrace). Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy.

A multitrace (mtS)S³CompLnk for SH is a total function mt: Comp�Lnk � S³CompLnk
�

��S such that for all S�Comp�Lnk, mt(S)���S. The set of all multitraces for SH is

denoted MTSH. A typical element of MTSH  is denoted �. The element of a multitrace �

with index P is denoted �P  (or sometimes �(P) if this is more convenient).
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The hierarchy relation � on the index set of a multitrace induces a hierarchical
structure on the collection of local component and link traces that is indexed by
this set, as depicted in Figure 5.1, which refers to the running example. In this
figure, the left hand sides depicts the hierarchy relation of the structure hierarchy
sh given in Example 5.10. The dashed lines show the multitrace as a mapping that
maps to each component a local component trace depicted at the right hand side.

Figure 5.1: Hierarchical structure of a multitrace.

In the semantic structure developed in this thesis, multitraces are used to model
possible behaviours of composed components. To model a possible behaviour, a
multitrace, which is a collection of local component traces without additional
structure apart from the indexing, has to take constraints imposed by non-local
phenomena into account. Such constraints are represented by compatibility
relations. Therefore, in the following definition, compatible multitraces are defined as
multitraces in which the local component traces and link traces in the multitrace
are related by compatibility relations.

Definition 5.22. (Compatible multitrace). Let SH=�Comp;Lnk;�;dom;cdom� be a
structure hierarchy and let 	=(	I)I³Lnk be a collection of compatibility relations. A

multitrace 
 for SH is compatible for � iff the following property holds:
�I�Lnk: �
dom(I);
I;
cdom(I)��	I.

This definition shows why multitraces are indexed by a set that not only includes
components, but also links: compatibility requires that the middle element of a
triple in the compatibility relation is present in the multitrace (denoted above by

I).

If a component C is primitive, according to a structure hierarchy SH for C, and
there are no links from C to itself, (thus SH=�{C};�;�;�;��), then every multitrace
for SH is compatible.

Before the definitions of the three views on behaviour can be given, two
additional notions derived from the notion of a structure hierarchy are defined. In
some definitions, only a subtree of (one of the trees occurring in) a structure
hierarchy is used. Such a subtree is unique for a given structure hierarchy and is
defined as follows:

Definition 5.23. (Substructure). Let SH=�Comp;Lnk;�;dom;cdom� be a structure

hierarchy and let S�Comp�Lnk be a component or link. If S�Comp, then the
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substructure SS(S,SH) of SH for S is defined as the structure hierarchy


Comp’;Lnk’;�’;dom’;cdom’� where:

�� Comp’={ C’�Comp | C’�*S }�{S}, where is �* the transitive closure of �;

�� Lnk’={ I�Lnk | dom(I),cdom(I)�Comp’ };

�� S�’C � S�C, S�Comp’�Lnk’ and C�Comp’;

�� For all I�Lnk’, dom’(I)=dom(I);

�� For all I�Lnk’, cdom’(I)=cdom(I).

If S�Lnk, then SS(S,SH)=
�;{S};�;�;��.

It is obvious that for arbitrary SH=
Comp;Lnk;�;dom;cdom� and C in Comp, SS(C,SH)

is a structure hierarchy for C (that is, it is a forest of exactly one tree with C as root).
The notion of a substructure of SH for S with S a link is used in other definitions
where a variable S’ ranges over all components and links in SLC(C,SH), such as the
following definition:

Definition 5.24. (Primitive components). Let C be a component and let SH be a
structure hierarchy for C. The set of primitive components in SH is defined as follows:

Prim(SH) = C’³Subc(C,SH)
� Prim(SS(C’,SH)), if SH=
Comp;Lnk;�;dom;cdom� such

 that Comp�6{C}.

Prim(SH) = {C}, if SH=
{C};Lnk;�;dom;cdom�.

This inductive definition of the set of primitive components in a structure
hierarchy is referenced in several definitions and propositions below. Moreover, it
serves as a means for proofs by induction of these propositions. The stage is now
set to define the three views on the behaviour of a component.

5.2.2.2� The White Box View

The first of the three views presented is the white box view. The three views on the
behaviour of a component are defined relative to a structure hierarchy and the
behaviour of specific other components in the structure hierarchy. Thus, the three
views can be seen as composition operators that define behaviour of a composition
of components in terms of the behaviour of the constituents of the composition.
Consequentially, if the behaviour of the components in the structure hierarchy to
which each view is relative, is not correct, then the behaviour defined by each of
the views is also incorrect. The behaviour of a component S of C to which a view
on the behaviour of C is relative need not be Behloc(S). However, it is required that
the behaviour of such a set S is a subset of Behloc(S).

The white box view on the behaviour of a component differs from the other two
views with respect to the kind of structure hierarchy considered. On the one hand,

                                                          
6 In this thesis, � and � denote proper subsets.
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the black box and glass box views are both relative to an arbitrary structure
hierarchy. The definitions of these two views refer to compatible multitraces for
the relevant structure hierarchy. Consequently, the black box and glass box views
may take the behaviour of arbitrary components into account by choosing an
appropriate structure hierarchy. On the other hand, the white box view is relative
to a composition structure CS, which is not an arbitrary structure hierarchy. As a
consequence, the definition of the white box view on the behaviour of a composed
component C can only refer to the behaviour of the subcomponents of C. (As stated
in Chapter 2, in this thesis the term ‘subcomponent’ always refers to direct

subcomponent of a component C.)
In addition to a composition structure CS, the white box view is relative to a

collection of compatibility relations �  and to the behaviour of the subcomponents
and links (the elements of SLC(C,CS)\{C}). The white box view on the behaviour of
a component C consists of a set of structures (multitraces) each of which consists of
local component traces of C, its subcomponents and links.  Because of
nondeterminism, which gives rise to different alternative behaviours, a component
can have more than one multitrace. (Each multitrace contains one behaviour
alternative of a specific component.) Therefore, the white box view consists of a set
of multitraces.

Definition 5.25. (Component behaviour, white box view). Let C be a component, let
CS=
Comp;Lnk;�;dom;cdom� be a non-empty composition structure for C, let �=(�I)I³Lnk

be a collection of compatibility relations and let �=(�S)S³SLC(C,CS) be a collection of sets of

traces such that for all S�SLC(C,CS), �S	Behloc(S). The white box view on the

behaviour of C, BehWB(C,CS,�,�), with respect to CS, �  and � is the set of compatible

multitraces ��MTCS  of C such that for each subcomponent or link S of C it holds that the

local component trace of S in � is an element of �S. Formally:

BehWB(C,CS,�,�) = { � | ��MTCS is compatible for �  and

 �S�SLC(C,CS): �S��S }.

This definition of component behaviour provides a white box view on the
behaviour of a component in the sense that each multitrace in BehWB(C,CS,�,�) not

only contains a local component trace of C, but also local component and link
traces of the subcomponents and links of C. However, these local component and
link traces themselves do not contain information of their subcomponents and so
on, recursively. Nevertheless, as is the case with the black box view on the
behaviour of C, the requirement on the local component traces that constitute
BehWB(C,CS,�,�) ensures that the combinations of local component traces and link
traces that constitute the elements of BehWB(C,CS,�,�) take constraints imposed by

information transmission into account.
If a component C is primitive according to a composition structure CS for C,

(thus CS=
{C};�;�;�;�� and Subc(C,CS)=Lnk(C,CS)=�), then for every collection of
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compatibility relations �, it holds that BehWB(C,CS,�,�)={ ��MTCS | �C�Behloc(C) }

(with �=�).

5.2.2.3� The Black Box View

The second of the three views presented is the black box view. Similar to the other
two views, the black box view is defined relative to a structure hierarchy, a
collection of compatibility relations and the behaviour of specific other
components in the structure hierarchy. In contrast to the white box view, but
similar to the glass box view, the black box view is relative to an arbitrary structure
hierarchy. (The white box view is relative to a specific type of structure hierarchy: a
composition structure.)

In addition to an arbitrary structure hierarchy SH, the black box view on the
behaviour of a component C is defined relative to a collection of compatibility
relations �  and the behaviour of its subcomponents and links (the elements of
SLC(C,SH)\{C}).

Definition 5.26. (Component behaviour, black box view). Let C be a component, let
SH=
Comp;Lnk;�;dom;cdom� be a non-empty structure hierarchy for C, let �=(�I)I³Lnk be a

collection of compatibility relations and let �=(�S)S³SLC(C,SH) be a collection of sets of

traces such that for all S�SLC(C,SH), �S	Behloc(S). The black box view
BehBB(C,SH,�,�) for C with respect to SH, �  and �S on the behaviour of C is the subset of

Behloc(C) such that each local component trace in this subset is part of a compatible

multitrace for SH that is based on the given traces of the subcomponents and links of C.
Formally:

BehBB(C,SH,�,�) = { �C | ��MTSH  is compatible for �,

 �S�SLC(C,SH): �S��S and

 �I�Lnk such that dom(I)=cdom(I)=C: �I�Behloc(I) }.

The definition given above provides a black box view in the sense that the
behaviour of a component C is a set consisting of local component traces of C itself
only, and not of its subcomponents and links. As the definition of local component
traces given in Section 5.2.1 indicates, only local information is recorded in a local
component trace of a component. In particular, information of subcomponents is
not recorded in the local component trace of the encompassing component and is
thus not visible in the black box view on component behaviour as defined above.

As stated in the beginning of Section 5.2.2, the behaviour of a composed
component is, in general, not a set of arbitrary combinations of local component
traces of its subcomponents and link traces, because only combinations that take
constraints imposed by information transmission into account can be considered to
represent behaviour of the component. The requirement on the local component
traces that constitute BehBB(C,SH,�,�) ensures that the combinations of local
component traces from which the elements of BehBB(C,SH,�,�) are taken, take

constraints imposed by information transmission into account. This is ensured
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because BehBB(C,SH,�,�) depends on the existence of a compatible multitrace, and

the elements of this compatible multitrace are themselves part of the behaviour of
the subcomponents, to which the definition of the black box view is relative.

To determine the black box view on the behaviour of a component C, only the
behaviour of the subcomponents and links of C needs to be given. This also holds
if, according to the related structure hierarchy, these subcomponents are
composed. It suffices to only take the behaviour of the subcomponents into
account, (and not of their subcomponents), because it is assumed that the
behaviour given for these subcomponents takes constraints imposed by their
subcomponents into account. However, if this is not the case, the behaviour as
defined by the black box view is incorrect.

If a component C is primitive, according to a structure hierarchy SH for C, and
there are no links from C to itself, (thus SH=
{C};�;�;�;��, and
Subc(C,SH)=Lnk(C,SH)=�), then for every collection of compatibility relations �, it
holds that BehBB(C,SH,�,�)=Behloc(C) (with �=�). However, BehBB(C,SH,�,�) is not

equal to BehWB(C,SH,�,�) because BehWB(C,SH,�,�) is a set of multitraces, while
BehBB(C,SH,�,�) is a set of local component traces.

5.2.2.4� The Glass Box View

As is the case for the black box view, the glass box view is relative to a structure
hierarchy SH, a collection of compatibility relations �  and the behaviour specific
subcomponents (in this case, the primitive subcomponents).  The glass box view on
the behaviour of a component C is defined by imposing three requirements on the
set of multitraces � for a structure hierarchy SH=
Comp;Lnk;�;dom;cdom� for C: (i)
they must be compatible, (ii) for all components C’ in Comp that are primitive in
SH, the local component trace �C’ must be an element of the given sets of traces
and (iii) for all components and links I in Lnk, the link trace �I must be an element
of Behloc(I). Formally:

Definition 5.27. (Component behaviour, glass box view). Let C be a component, let
SH=
Comp;Lnk;�;dom;cdom� be a non-empty structure hierarchy for C, let �=(�I)I³Lnk be a

collection of compatibility relations and let �=(�S)S³Prim(SH) be a collection of sets of traces

for the primitive components in SH. The glass box view BehGB(C,SH,�,�) for C with

respect to SH, �  and � on the behaviour of C is the subset of the set MTSH of multitraces

for SH such that for all ��BehGB(C,SH,�,�) it holds that:

�� � is compatible for �;

�� �C’�Prim(SH)\{C}: �C’��C’ and

�� �S�Comp�Lnk: �S�Behloc(S).

The glass box view is the most complete view on the behaviour of a component, as
it consists of multitraces for a structure hierarchy SH. At first sight, the white box
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view may look like a special case of the glass box view. This is indeed almost the
case for a structure hierarchy SH=�Comp;Lnk;�;dom;cdom� for a component C if this
structure hierarchy consists of only two levels. In this case SH=SS(C,SH)=CS(C,SH)

and Prim(SH)�{C}=SLC(C,SH)=Comp�Lnk, so the three requirements that a
multitrace 
 must meet to be an element of BehGB(C,SH,	,(�S)S³Prim(SH)) can be

written as:

�� 
 is compatible for 	,

�� �C’�SLC(C,SH)\{C}: 
C’��C’ and

�� �S�SLC(C,SH): 
S�Behloc(S).

The only difference, in this case, between the white box and the glass box view is
that the white box view requires that 
C��S, while the glass box views requires
that 
C�Behloc(S). An alternative definition of the white box view can thus be

given:

Definition (Component behaviour, white box view, alternative definition I). Let C

be a component, let SH=�Comp;Lnk;�;dom;cdom� be a structure hierarchy for C such that
SH=SS(C,SH), let CS=SS(C,SH), let 	=(	I)I³Lnk be a collection of compatibility relations

and let �=(�S)S³SLC(C,SH) be a collection of sets of traces such that for all S�SLC(C,SH),

�S�Behloc(S). The white box view BehWB(C,SH,	,�) for C with respect to CS, 	 and � on

the behaviour of C is the set of compatible multitraces in BehGB(C,SH,	,(S)S³Prim(SH))

(with S=�S for all S�Prim(SH)) such that 
C��S. Formally:

BehWB(C,SH,	,(�S)S³SLC(C,SH)) = {
�BehGB(C,SH,	,(S)S³Prim(SH))|
C��S}.

In this case, for structure hierarchies with more than two levels, the white box view
is not defined. (Note that Definition 5.25 of the white box view is defined for
composition structures, which are two-level structure hierarchies, so the
alternative definition and Definition 5.25 are similar in this respect.)

A completely different definition of the white box view is to define the white
box view for arbitrary structure hierarchies, but only focus on the two highest
levels:

Definition (Component behaviour, white box view, alternative definition II). Let C

be a component, let SH=�Comp;Lnk;�;dom;cdom� be a structure hierarchy for C, let Lnk’ be
the set of links in SLC(C,SH), let 	=(	I)I³Lnk’ be a collection of compatibility relations for

the links in SLC(C,SH) and let �=(�S)S³SLC(C,SH) be a collection of sets of traces such that

for all S�SLC(C,SH), �S�Behloc(S). The white box view BehWB(C,SH,	,�) for C with

respect to CS, 	 and � on the behaviour of C is the set of multitraces 
�MTCS(C,SH) of C

such that:

�� �I�Lnk’: �
dom(I);
I;
cdom(I)��	I, and

�� �S�SLC(C,SH): 
S��S.
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Note that in this second alternative definition, it is not required that � is a
compatible multitrace, because the definition of compatible multitraces requires
that 
�dom(I);�I;�cdom(I)���I for all I�Lnk, not only for all I in the subset Lnk’ of Lnk.

Of the three definitions of the white box view on the behaviour of a component
C, Definition 5.25 is chosen because this definition puts most emphasis on the
compositional nature of the semantic structure. A composition structure CS

describes the structure of a component as an entity independent of other
components with which it is related. The white box view relative to a composition
structure CS describes the behaviour of such an independent component. The
other two views on the behaviour of a component can then be employed to
describe the behaviour of the component in a larger context. In the rest of this
section, a proposition is presented that enables the definition of the behaviour of
such a larger context as a composition of the white box views on the behaviour of
its constituents.

In fact, in the rest of this section, three propositions are presented that relate the
three views on the behaviour of a component. These propositions show how the
white box view and the black box view can be expressed in terms of the glass box
view by restricting the multitraces (in the usual sense of restricting the domain of a
function) in the glass box view to a subset of the components and links in a
structure hierarchy of C. A restriction of a multitrace to a set S of components and
links is denoted �|S and is called a restricted multitrace. The set of all multitraces
restricted by a set S is denoted MT|S.

The first proposition shows how the white box view and the glass box view are
related. On the one hand, the proposition shows how the white box view can be
expressed in terms of the glass box view by restricting multitraces. On the other
hand, the proposition shows how the glass box view on the behaviour of a
composed component can be constructed from the white box views on the
behaviour of this component, its subcomponents and their subcomponents, and so
on. The proposition assumes that a structure hierarchy SH for a component C is
given and states that, if a multitrace for this structure hierarchy satisfies a specific
requirement for the restriction of this multitrace to the subcomponents of C, and
their subcomponents, and so on, then this multitrace is an element of the glass box
view on the behaviour of C. The definition of the proposition involves the
following technical issues:

�� Figure 5.2 shows a structure hierarchy for a composed component C

consisting of six composed components (grey ovals), thirteen primitive
components (white ovals) and four links (small white boxes). For each
composed component C’, the composition structure CS(C’,SH) is enclosed in
a solid line. Within component S1, as an example also SLC(S1,SH)\{S1} is
depicted by a dashed line. The ‘=’ between CS(S1,SH) and SLC(S1,SS(S1,SH))

is put between quotes because CS(S1,SH) is a structure hierarchy and
SLC(S1,SS(S1,SH)) is a set, and therefore, they cannot be directly compared.



5.2: Dynamics

87

The proposition below expresses the white box view in terms of the glass
box view on the behaviour of C’ by restricting multitraces for SH to
SLC(C’,CS(C’,SH)). To construct the glass box view from the white box
views on the behaviour of each C’, the proposition assumes that for each
component C’ in SH (composed and primitive), the restriction of a
multitrace for SH to SLC(C’,SS(C’,SH)) is an element of the white box view
on the behaviour of C’.

�� The glass box view constructed from the white box views is relative to a
collection of sets of local component and link traces of the primitive
components in SH, as indicated by the definition of the glass box view on
the behaviour of a composed component. Such a collection of sets
(�S)S³Prim(SH) is assumed to be given.

�� Each of the white box views from which the glass box view is constructed, is
itself relative to a collection of sets of local component and link traces, as
indicated by the definition of the white box view on the behaviour of a
component. These collections are taken from multitraces for SH as follows.
Let � be a multitrace for SH. For each component C’ in SH, a collection of
sets of local component and link traces (�S)S³SLC(C’,SS(C’,SH)) is defined as
follows: �S=�S if S is a primitive component in SH, or �S={�S} otherwise.

The collections of sets of traces for each composed component in SH are
themselves grouped as a collection of collections �� indexed by the
components in SH. (Figure 5.2 might help to obtain an overview of the index
sets involved.)

�� The collection of collections �� is well-defined, although for each composed
component S in SH that is a subcomponent of a component C’, (��C’)S is

defined twice: once because S�SLC(C’,SS(C’,SH)) and once because
S�SLC(S,SS(S,SH)). In both cases, (��C’)S={�S} because S is composed.

�� Each of the white box views from which the glass box views is constructed,
is itself also relative to a collection of compatibility relations indexed by the
set of links in the composition structure to which the glass box view is
relative. A collection of collection of compatibility relations ��, indexed by
the set Comp, is defined in terms of the collection of compatibility relations �
to which the glass box view is relative and which is assumed to be given, as
follows: ��=((�I)I³Lnk’)C’³Comp, with Lnk’ the set of links in CS(C’,SH)=


Comp’;Lnk’;�’;dom’;cdom’�, such that for all C’�Comp and for all I’�Lnk,
(��C’)I=�I.

�� It is straightforward to construct the glass box view on the behaviour of a
primitive component from the white box view on its behaviour, as shown by
Proposition 5.30 below. To avoid unnecessary extra cases in the proof of the
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proposition below, the proposition is only applicable to composed
components.

Figure 5.2: Composing the glass box view.

Proposition 5.28. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy for a
composed component C. Let ��MTSH be a multitrace for SH such that for all

S�Comp�Lnk, �S�Behloc(S). Let �=(�I)I³Lnk be a collection of compatibility relations and

let (�S)S³Prim(SH) be a collection of sets of local component traces for the primitive

components in SH such that for all S�Prim(SH): �S	Behloc(S). Define

��=((�I)I³Lnk’)C’³Comp, with Lnk’ the set of links in CS(C’,SH)=


Comp’;Lnk’;�’;dom’;cdom’�, such that for all C’�Comp and for all I’�Lnk, (��C’)I=�I.
Define ��=((�S)S³SLC(C’,CS(C’,SH)))C’³Comp such that for all C’�Comp and for all

S�SLC(C’,CS(C’,SH)):

(��C’)S=
�
�
��S if S�Prim(SH),

{�S} otherwise.

Then the following equivalence holds:
 For all C’�Comp:�|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’),

� ��BehGB(C,SH,�,(�S)S³Prim(SH)).

Proposition 5.28 is important for compositional verification of compositional
systems (Engelfriet, Jonker & Treur, 1999), because this proposition shows that the
semantic structure supports proving global properties of a system from local
properties. This topic is not further investigated in this thesis.
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The glass box view on the behaviour of a component C can be compared to the
parallel composition operator � in process algebra with communica-
tion (Bergstra & Klop, 1985) in the following way. In Process Algebra, the parallel
composition operator takes a number of processes and returns a composed
process. The behaviour of the composed process is the same as the concurrent
execution of its constituent processes, taking non-local phenomena (information
transmission) into account. Likewise, as indicated by Proposition 5.28, the glass
box view on behaviour can be used to determine the behaviour of the concurrent
execution of a set Comp of components given the white box views on the behaviour
of each of the components in Comp individually. The semantic structure developed
in this thesis has a very rich mechanism for composing components to form
compositional structures. Therefore, this construction viewed as a composition
operator is parameterised by a set of links with which the components are
connected in SH.

The next proposition shows how the black box view can be expressed in terms
of the glass box view. As stated before, all three views are, among others, relative
to sets of traces of specific subcomponents. In the context of the propositions
presented below, these sets of traces to which the black box view is relative, are
defined in terms of the glass box view from which the black box view is generated.
This is done by defining a collection of sets (�S)S³SLC(C,SH)\{C} such that for each
S�SLC(C,SH)\{C}, �S={�S|��BehGB(C,SH,�,�)}. In this proposition, the black box
view is taken relative to (�S), which (only) consists of sets of traces for the

subcomponents of C in SH taken from the glass box view. The glass box view itself
is defined relative to a collection of sets (�S)S³Prim(SH)\{C} of traces of the primitive

components in SH. In general, the primitive components in a structure hierarchy SH

for C and the subcomponents of C are distinct.

Proposition 5.29. Let C be a composed component, let SH=
Comp;Lnk;�;dom;cdom� be a
non-empty structure hierarchy for C, let �=(�I)I³Lnk be a collection of compatibility

relations and let �=(�S)S³Prim(SH) be a collection of sets of traces for the primitive

components in SH. Define �=(�S)S³SLC(C,SH) such that for all S�SLC(C,SH),

�S={�S | ��BehGB(C,SH,�,(�S))}. Then:

BehBB(C,SH,�,�)={ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

�The last proposition presented in this section shows how the three views relate to each other

in the case of primitive components:

Proposition 5.30. Let C be a primitive component, let SH=
{C};Lnk;�;dom;cdom� be a
structure hierarchy for C, let �=(�I)I³Lnk be a collection of compatibility relations, let

�=(�S)S³{C} be a collection consisting of one set of traces such that �C	Behloc(C) and let �

be a multitrace for SH such that for all I�Lnk, �I�Behloc(I). Then:

��BehGB(C,SH,�,�) �  ��BehWB(C,CS(C,SH),�,�) � �C�BehBB(C,SH,�,�).
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5.2.2.5� Example

In the next example, the behaviour of the example compositional system is
described to illustrate how the behaviour of components is modelled.

Example 5.31. In this example, three views on the behaviour of the compositional
system in the running example are presented. This example is based on the
following assumptions:

�� The three views are developed relative to the structure hierarchy SH

presented in Example 5.10;

�� A collection of compatibility relations �  is given. In conformance with
Example 5.20, �  is assumed to be defined such that traces ltbroker,1,
ltbroker_to_user_1 and ltuser_1,1 are compatible;

�� Component toplevel only serves as a demarcation component for the example
compositional system. Its set of information states is defined as
�toplevel={
�;�;��};

�� The behaviour of OPC and ASP, the subcomponents of broker according to SH

and Figure 4.5, is such that their collective behaviour fulfils the requirements
put forward in Section 4.2.1. Moreover, sets of local component traces are
given that reflect this behaviour.

As there is a component, toplevel, that represents the entire running example
compositional system, the behaviour of the example compositional system is the
behaviour of toplevel. So, in this example, three views on the behaviour of toplevel are
developed. The first view on the behaviour of toplevel, the black box view, is
obtained as follows. As for toplevel, only one state is distinguished (state 
�;�;��),
the only possible local component trace of toplevel is the trace
lttoplevel=�|�|���|�|��… This trace is compatible because there are no links
from toplevel to any of its subcomponents or vice versa, nor are there any links from
toplevel to its parent (which does not exist in SH) or components at the same level
(which do not exist in SH either). Thus, BehBB(toplevel,SH,�,�)=

{�|�|���|�|��…} for any collection � of component and link traces.
The second view on the behaviour of toplevel, the white box view, is not relative

to SH, but, according to Definition 5.25, to a composition structure. In this example,
a composition structure CS is defined as follows: CS=CS(toplevel,SH). Moreover, the
white box view on the behaviour of toplevel is defined relative to a collection
�=(�S)S³SLC(toplevel,CS)\{toplevel} of sets of traces of the components and links in

SLC(toplevel,CS)\{toplevel}={user_1,user_2,broker,provider_1,provider_2,broker_to_user_1}.
Thus, before the white box view on the behaviour of toplevel can be defined, a
relevant collection of component and link traces has to be defined. According to
SH, only broker is a composed component. Therefore, a relevant collection of
component and link traces can be defined by taking Behloc(S) for the links and
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primitive components in SLC(toplevel,SH)\{toplevel} and the black box view on the
behaviour of broker relative to its subcomponents. This is motivated as follows:

�� Sets Behloc(S) are assumed not to take any non-local constraint into account.

Thus, these sets are, in general, too large: they contain traces that are not
possible if non-local constraints were taken into account. However,
requirements on the multitraces from which the black box and white box
views on the behaviour of toplevel are taken, prevent local component and
link traces in Behloc(S) that do not take information transmission with

components at the same level and with the parent component from
appearing in these multitraces. Moreover, according  to SH, there are no
subcomponents of the primitive components that further constrain which
local component or link  traces from Behloc(S) can appear in multitraces.
Therefore, it is reasonable to take Behloc(S) for the links and primitive

components in SH. As an aside, if specific components or links are omitted
from SH, and subcomponents of components that are primitive in SH can be
distinguished, taking Behloc(S) is not a good choice: constraints imposed by

the omitted components and links are not taken into account.

�� According to SH, broker is a composed component. In this case, it is not a
good choice to take Behloc(broker). Instead, the black box view on the

behaviour of broker relative to sets of local component traces of its
subcomponents in SH is taken. This is a better choice for the following
reason. The black box view, which is a set of component traces as required,
is a subset of Behloc(broker) in which constraints imposed by information

exchange with the subcomponents of broker is taken into account. (As an
aside, it would have been possible to take the black box view not only for
broker, but also for the other components in SLC(toplevel,SH)\{toplevel}.
However, as these other components are primitive according to SH, it holds
that BehBB(S,SS(S,SH),�,�)=Behloc(S), so formally there is no difference.)

Thus, the next step is to develop the black box view
BehBB(broker,SH,�,(�S’)S’³SLC(broker,SH)\{broker}) on the behaviour of broker. The black box

view is defined relative to the behaviour of the subcomponents of broker according
to SH, which are OPC and ASP. (Thus, SLC(broker,SH)\{broker}={APC,OPC}.) As OPC

and ASP are primitive according to SH, (�S’)S’³{OPC,ASP} is defined as �S’=Behloc(S’)

for all S’�{OPC,ASP}. (The same motivation as for the primitive subcomponents of
toplevel applies.) As stated above, it is assumed that the behaviour of OPC and ASP is
such that their collective behaviour fulfils the requirements put forward in
Section 4.2.1. Therefore, trace ltbroker,1 presented in Example 5.14, is an example
element of BehBB(broker,SH,�,(�S’)S’³{OPC,ASP}), which is a set of local component
traces generated from compatible multitraces in MT|SLC(broker,SH).

The white box view on the behaviour of toplevel can now be defined relative to
the collection of sets (�S)S³SLC(toplevel,SH) defined such that
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�broker=BehBB(broker,SH,�,(�S’)S’³{OPC,ASP}) and �S=Behloc(S) for

S�(SLC(toplevel,SH)\{toplevel})\{broker}. The white box view is a set of compatible
multitraces � from MTCS such that (among other requirements) for each
S�SLC(toplevel,CS)\{toplevel}, �S��S. This requirement holds for the following
multitrace, as the traces ltuser_1,1, ltbroker_to_user_1 and ltbroker,1 are compatible:

mt1 = {
toplevel;lttoplevel�,
user_1;ltuser_1,1�,
broker_to_user_1;ltbroker_to_user_1�,

 
broker;lttoplevel�,
user_2;ltuser_2�, 
provider_1;ltprovider_1�,

 
provider_2;ltprovider_1�},

where ltuser_2�Behloc(user_2), ltprovider_1�Behloc(provider_1) and ltprovider_2� Behloc(provider_2).

(The other traces referred to in mt1 have been introduced before.) Other elements
of BehWB(toplevel,SH,�,�) can be found in a similar way.

To finalise the example, also the glass box view on the behaviour of toplevel is
given. The glass box view is defined relative to a collection of sets of traces of the
primitive components in SH, the elements of the set
Prim(SH)={user_1,user_2,provider_1,provider_2,OPC,ASP}. This collection
�’=(�’S)S³Prim(SH) is defined such that for all S�Prim(SH), �’S=Behloc(S). (The same

motivation as for the primitive subcomponents of toplevel applies.) An example
element of BehGB(toplevel,SH,�,�’) is given by the following multitrace to show how

the behaviour of the example multi-agent system is modelled in the glass box view.
However, it is left to the reader to check that the hierarchical multitrace given is
indeed an element of BehGB(toplevel,SH,�,�’). (This is quite straightforward.)

mt2 = {
toplevel;lttoplevel�,
user_1;ltuser_1,1�,
broker_to_user_1;ltbroker_to_user_1�,

 
broker;lttoplevel�,
OPC;ltOPC�,
ASP;ltASP�,
user_2;ltuser_2,1�,

  
provider_1;ltprovider_1�,
provider_2;ltprovider_1�},

This multitrace is an element of MTSH. The hierarchical structure on mt2 is imposed
by the ordering � of SH. This ordering is depicted in Figure 5.3 as a tree. �

The example presented in this section exhibits two aspects of compositionality. In
the first place, the example compositional system consists of five components, one
of which itself consists of two subcomponents. The composition of the system is
reflected in the formal description of its structure by the structure hierarchy
presented in Example 5.10. In the second place, the composition of the example
system is also reflected in the behaviour of the system, in particular in the glass
box view on its behaviour: the compositional structure of the example system
induces the structure of the multitraces that comprises the glass box view on the
behaviour of the example system. Moreover, a specific feature of the semantic
structure developed in this thesis is that the behaviour of a composed component
is not only determined by the behaviour of its subcomponents but also by the local
behaviour of the composed component itself. (In the previous examples,
Behloc(broker), which was assumed to be given, represented this factor in the total

behaviour of the composed component broker.)
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Figure 5.3: A structure hierarchy SH and an element of BehGB(toplevel,SH,�,�’).

5.3�Summary and Outlook

As explained in Chapter 1, this thesis aims at developing a formal, compositional
semantic structure for multi-agent system dynamics. The semantic structure,
which consists of constructs for building compositional systems, is presented in
this chapter. The two most important definitions are the definition of a structure
hierarchy and the definition of the glass box view on the behaviour of a
component. A structure hierarchy enables an entire compositional system to be
defined, while the glass box view defines the most complete picture of the
behaviour of such a system. The definition of the glass box view, however, is
relative to, among others, a collection of compatibility relations, which are
discussed further in Chapter 6. Chapter 7 defines a more global notion of state as
an extension of the semantic structure. After further development of the semantic
structure in Chapter 6 and Chapter 7, facilities for separated, domain independent
control are added in Chapter 8. Finally, in Chapter 9, the semantic structure is
applied in the development of a semantics for DESIRE, an extensive compositional
modelling framework for multi-agent systems.

5.4�Proofs

This thesis employs a notation for structuring proofs proposed by Lamport (1995).
In Section 5.4.1, this notation is introduced. Proofs of the propositions and
theorems presented in this chapter are provided in Section 5.4.2.
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5.4.1� A Note on Proof Notation

Lamport (1995) advocates the use of a hierarchically structured proof style as a
replacement for unstructured proofs presented in the form of (English) prose. The
proof style he advocates is a refinement of natural deduction, in which proof steps
are numbered according to a specific scheme, and the structure of the proof is
represented by the indentation in its textual form. The following principles are
applied:

�� A proof has a hierarchical structure, which is represented in its textual form
by indentation. Each level consists of proof steps, which are themselves
proven at the next level. The proof steps at a specific level together prove the
statement at the next higher level. A proof of a very simple statement can be
given directly at the level of that statement. A proof can be read level by
level.

�� Proof steps are numbered by a decimal numbering system similar to the
numbering of the section headings in this thesis. As step numbers at deeper
levels of the proof can become quite long, and as it is easy to confuse e.g.
3.1.1.1.2 with 3.1.1.2, an abbreviation is used: a number such as 3.1.1.2 is
written as �4	2 (a four-part number ending in 2), while 3.1.1.1.2 is written as
�5	2 (a five-part number ending in 2). The laws of natural deduction
guarantee that the abbreviated form suffices: a step such as 3.1.1.1.2 can only
be used after it is proven, but because it is proven under the assumption of
step 3.1.1.1, it can only be referred to in the proof of its parent. In the proof
of its parent, step 3.1.1.1.2 is the only five-part number ending in 2. Parts of a
proof step are referred to by appending the part number to the step number,
separated by a semicolon e.g., �3	:1. An assumption at the highest level is
referred to by �0	.

�� A proof by cases is introduced by the word ‘Case’, followed by an
expression characterising the case, which is an assumption in the proof of
the case. A proof by cases ends with a proof that shows that all cases are
covered.

According to Lamport, this proof style results in more rigorous and less error
prone proofs that are easier to read, especially in the area of correctness proofs for
algorithms, where proofs are seldom deep, but have considerable detail.

5.4.2� Proofs of Propositions and Theorems

In Section 5.2.2, three propositions are presented that relate the three views on
behaviour developed in that section.

Proposition 5.28. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy for a
composed component C. Let ��MTSH be a multitrace for SH such that for all
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S�Comp�Lnk, �S�Behloc(S). Let �=(�I)I³Lnk be a collection of compatibility relations and

let (�S)S³Prim(SH) be a collection of sets of local component traces for the primitive

components in SH such that for all S�Prim(SH): �S	Behloc(S). Define

��=((�I)I³Lnk’)C’³Comp, with Lnk’ the set of links in CS(C’,SH)=


Comp’;Lnk’;�’;dom’;cdom’�, such that for all C’�Comp and for all I’�Lnk, (��C’)I=�I.
Define ��=((�S)S³SLC(C’,CS(C’,SH)))C’³Comp such that for all C’�Comp and for all

S�SLC(C’,CS(C’,SH)):

(��C’)S=
�
�
��S if S�Prim(SH),

{�S} otherwise.

Then the following equivalence holds:
 For all C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’),

� ��BehGB(C,SH,�,(�S)S³Prim(SH)).

Proof. Proof sketch: the proof of the first implication (the implication from left to
right) is as follows. For a multitrace � that complies with a number of assumptions,
it is proven that ��BehGB(C,SH,�,(�S)S³Prim(SH)). Thus, three requirements for
elements of BehGB(C,SH,�,(�S)S³Prim(SH)) are proven. (Actually, one of the three, the
requirement that for all S�Comp�Lnk, �S�Behloc(S), is an assumption, so only two

requirements are proven.) The requirements are checked by induction to the
structure of SH. The base case for induction is identified as SH=CS(C,SH). Thus,
the base case is formed of structure hierarchies consisting of precisely two levels.
(It is assumed that C is composed.) Then, induction can be applied based on
Definition 5.24 (the definition of Prim(SH)), which guarantees that for each
primitive component C’ in SH, there is a subcomponent C” of C such that C’ is a
primitive component in SS(C”,SH). Technically, the induction steps in the proof are
identified as �C’�Subc(C,SH): C’�Prim(SH). The second implication (the
implication from right to left) consists of straightforward expansions of the
definitions.
Assume: 1. SH=
Comp;Lnk;�;dom;cdom� is a structure hierarchy for a composed

    component C.
2. � is a multitrace for SH such that for all S�Comp�Lnk, �S�Behloc(S).
3. ��=((�S)S³SLC(C’,CS(C’,SH)))C’³Comp such that for all C’�Comp and for

    all S�SLC(C’,CS(C’,SH)):

(��C’)S=
�
�
��S if S�Prim(SH),

{�S} otherwise.

4. ��=((�I)I³Lnk’)C’³Comp such that for all C’�Comp and for all I’�Lnk,

    (��C’)I=�I.
Prove: for all C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’) �

��BehGB(C,SH,�,(�S)S³Prim(SH)).



5.4: Proofs

96

�1	1. �C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’) �

��BehGB(C,SH,�,(�S)S³Prim(SH)).

Assume: �C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’).

Prove: ��BehGB(C,SH,�,(�S)S³Prim(SH)).

�2	1. For each C’�Prim(SH), �C”�Subc(C,SH): C’�Prim(SS(C”,SH)).

Proof: by assumption �0	:1, C is a composed component. By

Definition 5.24, Prim(SH)=C’³Subc(C,SH)
� Prim(SS(C’,SH).

�2	2. � is compatible for �.
�3	1. Let I�Lnk. There is a C”�Comp such that I�SLC(C”,CS(C”,SH)).

Proof: by the definition of a structure hierarchy.
�3	2. �|SLC(C”,CS(C”,SH))�BehWB(C”,CS(C”,SH),��C”,��C”).

Proof: by assumption �1	.
�3	3. �|SLC(C”,CS(C”,SH)) is compatible for ��C”.

Proof: by step �3	2 and the definition of
BehWB(C”,CS(C”,SH),��C”,��C”).

�3	4. 
�dom(I);�I;�cdom(I)��(��C”)I.

Proof: by step �3	3 and the definition of compatible multitraces,
for each link I’�Lnk’ where Lnk’ is the set of links in
CS(C”,SH), 
�dom(I’);�I’;�cdom(I’)��(��C”)I’. By step �3	1, I�Lnk’.

�3	5. For all I�Lnk, 
�dom(I);�I;�cdom(I)���I.

Proof: by steps �3	1 and �3	4 and assumption �0	:4.
�3	6. Q.E.D.

Proof: by step �3	5 and the definition of compatible multitraces.
�2	3. �C’�Prim(SH)\{C}: �C’��C’.

�3	1. Case: SH=CS(C,SH).
�4	1. Prim(SH)\{C}	SLC(C,CS(C,SH))\{C}.

Proof: by assumption �3	.
�4	2. �S�SLC(C,SH)\{C}: (�|SLC(C,CS(C,SH))S�(��C)S.

Proof: by assumption �1	, �|SLC(C,CS(C,SH))�

BehWB(C,CS(C,SH),��C,��C), and by the definition of
BehWB(C,CS(C,SH),��C,��C),

(�|SLC(C,CS(C,SH))S�(��C)S.
�4	3. �C’�Prim(SH)\{C}: �C’�(��C)C’.

Proof: by assumption �3	, �|SLC(C,CS(C,SH))=�, and by steps
�4	1 and �4	2, �C’�(��C)C’.

�4	4. �C’�Prim(SH)\{C}: (��C)C’=�C’.
Proof: by assumption �0	:3 (definition of ��C’).

�4	5. Q.E.D.
Proof: by steps �4	3 and �4	4.

�3	2. Case: 1. �C’�Subc(C,SH): C’�Prim(SH).
 2. �S�Subc(C,SH): �C’�Prim(SS(S,SH))\{C}: �C’��C’.
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�4	1. Let C’�Prim(SH)\{C}. �S�Subc(C,SH): C’�Prim(SS(S,SH)).
Proof: by assumption �3	:1 and step �2	1.

�4	2. Q.E.D.
Proof: by step �4	1 and assumption �3	:2.

�3	3. Q.E.D.
Proof: by steps �3	1, �3	2 and induction to the structure of SH.

�2	4. Q.E.D.
Proof: by steps �2	2 and �2	3, assumption �0	:2 and the definition of

BehGB(C,SH,�,(�S)S³Prim(SH)).
�1	2. ��BehGB(C,SH,�,(�S)S³Prim(SH)) �

�C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’).

Assume: 1. � is a multitrace for SH such that ��BehGB(C,SH,�,(�S)S³Prim(SH)).

2. C’�Comp and �’ is a multitrace for CS(C’,SH) such that
    �’=�|SLC(C’,CS(C’,SH)).

Prove: for all C’�Comp: �|SLC(C’,CS(C’,SH))�BehWB(C’,CS(C’,SH),��C’,��C’).
�2	1. �’�MTCS(C’,SH) is compatible for ��C’.

�3	1. � is compatible for �.
Proof: by definition of BehGB(C,SH,�,(�S)S³Prim(SH)).

�3	2. For all I�Lnk: 
�dom(I);�I;�cdom(I)���I.

Proof: by step �3	1 and the definition of compatible multitraces.
�3	3. Let Lnk’ be the set of links in SLC(C’,CS(C’,SH)). For all I’�Lnk’:


�’dom(I’);�’I’;�’cdom(I’)���I’.

Proof: by step �3	2 and Lnk’	Lnk, and by assumption �1	:2,
�’=�|SLC(C’,CS(C’,SH)).

�3	4. �I’�Lnk’: 
�’dom(I’);�’I’;�’cdom(I’)��(��C’)I’.

Proof: by step �3	3 and assumption �0	:4.
�3	5. Q.E.D.

Proof: by step �3	4 and the definition of compatible multitraces.
�2	2. For all S�SLC(C’,CS(C’,SH)): �’S�(��C’)S.

�3	1. Case: C’�Prim(SH).

Proof: by assumption �2	, SLC(C’,CS(C’,SH))={C}, thus S=C’. By
assumption �0	:3, (��C’)S=�S. By the definition of
BehGB(C,SH,�,(�S)S³Prim(SH)), �S��S and by assumption
�1	:2, �’S=�S��S=(��C’)S.

�3	2. Case: C’�Prim(SH).
Proof: by assumption �0	:3, (��C’)S={�S}. By assumption �1	:2,

�’S=�S. Therefore, �’S=�S�{�S}=(��C’)S.

�3	3. Q.E.D.
Proof: steps �3	1 and �3	2 list all cases.

�2	3. Q.E.D.
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Proof: by steps �2	1 and �2	2 and the definition of
BehWB(C’,CS(C’,SH),��C’,��C’).

�1	3. Q.E.D.
Proof: by steps �1	2 and �1	2.

Proposition 5.29. Let C be a composed component, let SH=
Comp;Lnk;�;dom;cdom� be a
non-empty structure hierarchy for C, let �=(�I)I³Lnk be a collection of compatibility

relations and let �=(�S)S³Prim(SH) be a collection of sets of traces for the primitive

components in SH. Define �=(�S)S³SLC(C,SH) such that for all S�SLC(C,SH),

�S={�S | ��BehGB(C,SH,�,(�S))}. Then:

BehBB(C,SH,�,�)={ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

Proof. Proof sketch: at the highest level, the proof consists of two inclusions. The
proof of the first inclusion is complicated. For an arbitrary element of
BehBB(C,SH,�,�) (a local component trace), it is proven that the multitrace from
which this element is taken is an element of BehGB(C,SH,�,�). Induction on the

structure of SH is applied twice to prove two requirements on elements of
BehGB(C,SH,�,�). Intuitively, induction is needed to ensure that local component or
link traces that cannot occur in elements of BehGB(C,SH,�,�), do not occur in the
multitraces from which BehBB(C,SH,�,�) is built. The proof of the second inclusion

consists of straightforward expansions of definitions.
Assume: 1. C is a composed component,

2. �=(�S)S³SLC(C,SH) such that for all S�SLC(C,SH),

    �S={�S | ��BehGB(C,SH,�,�)}.

Prove: BehBB(C,SH,�,�)={ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

�1	1. BehBB(C,SH,�,�)	{ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

Assume: LT�BehBB(C,SH,�,�).

Prove: LT�{ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

�2	1. There is a ��MTSH compatible for � such that �C=LT��S	Behloc(C) and
�S�SLC(C,SH), �S��S.
Proof: by definition of BehBB(C,SH,�,�).

�2	2. �C’�Prim(SH)\{C}: �C’��C’.

�3	1. Case: SH=CS(C,SH).

�4	1. Prim(SH)=Comp\{C}	SLC(C,SH).

Proof: by assumptions �3	 and �0	:1, all subcomponents of C
are primitive.

�4	2. �C’�Prim(SH): �C’��C’.

Proof: by definition of BehBB(C,SH,�,�), �S�SLC(C,SH):

�S��S and by step �4	1, Prim(SH)	SLC(C,SH).

�4	3. �C’�Prim(SH): ��’�MTSH such that �’�BehGB(C,SH,�,�)

and �C’=�’C’.
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Proof: by step �4	2 and assumption �0	:2 (definition of �S).
�4	4. �C’�Prim(SH): ��’�MTSH: �’C’��C’ and �C’=�’C’.

Proof: by step �4	3 and definition of BehGB(C,SH,�,�).

�4	5. Q.E.D.
Proof: by step �4	4.

�3	2. Case: 1. �C’�Subc(C,SH): C’�Prim(SH).
 2. �S�SLC(C,SH)\{C}: �C’�Prim(SS(S,SH)): �C’��C’.

�4	1. �C’�Prim(SH)\{C}: �S�SLC(C,SH)\{C}: C’�Prim(SS(S,SH)).

Proof: by assumption �3	:1 and the definition of Prim(SH).
�4	2. Q.E.D.

Proof: by step �4	1 and assumption �3	:2.
�3	3. Q.E.D.

Proof: by step �3	1, �3	2 and induction to structure of SH.
�2	3. �S�Comp�Lnk: �S�Behloc(S).

�3	1. Case: SH=CS(C,SH).

�4	1. Case: S=C.
Proof: �C��S	Behloc(C) by definition of

BehBB(C,CS(C,SH),�,�)

�4	2. Case: S�(Comp\{C})�Lnk.

Proof: S�SLC(C,SH)\{C} because �I�Lnk, I�*C. Therefore,
�S��S. Thus, ��’�BehGB(C,SH,�,�): �S=�’S and
�S�(Comp\{C})�Lnk: �’S�Behloc(S) by the definition
of BehGB(C,SH,�,�).

�4	3. Q.E.D.
Proof: steps �4	1 and �4	2 list all cases.

�3	2. Case: 1. �C’�Subc(C,SH): C’�Prim(SH).
 2. �S’�SLC(C,SH)\{C}: �S”�Comp’�Lnk’: �S”�Behloc(S”)

      with SS(S,SH)=
Comp’;Lnk’;�’;dom’;cdom’�,
 3. S
Comp�Lnk.
�4	1. Case: S=C

Proof: by definition of BehBB(C,SH,�,�), �C��C	Behloc(C).

�4	2. Case: S�Lnk such that S�C” for C”�Subc(C,SH), or
 S�Comp\{C}.

Proof: �S’�SLC(C,SH)\{C}: S�Comp’�Lnk’ for
SS(S’,SH)=
Comp’;Lnk’;�’; dom’;cdom’�. By assumption
�3	:2, �S�Behloc(S) for S�Comp’�Lnk’.

�4	3. Case: S�Lnk such that S�C.
Proof: S�SLC(C,SH). Therefore, �S��S. Thus,

��’�BehGB(C,SH,�,�): �S=�’S and
�S�(Comp\{C})�Lnk: �’S�Behloc(S) by the definition
of BehGB(C,SH,�,�).
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�4	4. Q.E.D.
Proof: step �4	1, �4	2 and �4	3 list all cases.

�3	3. Q.E.D.
Proof: by step �3	1, �3	2 and induction to structure of SH.

�2	4. Q.E.D.
Proof: by step �2	1, �2	2 and �2	3, ��BehGB(C,SH,�,�). �C=LT�Behloc(C),

thus, LT�{�C�Behloc(C) | ��BehGB(C,SH,�,�)}.

�1	2. { �C�Behloc(C) | ��BehGB(C,SH,�,�) }	BehBB(C,SH,�,�).

Assume: LT�{ �C�Behloc(C) | ��BehGB(C,SH,�,�) }.

Prove: LT�BehBB(C,SH,�,�).

�2	1. ���BehGB(C,SH,�,�): LT=�C�Behloc(C).

Proof: by assumption �1	.
�2	2. � is compatible for �, �C’�Prim(SH)\{C}: �C’��C’ and�S�Lnk�Comp:

�S�Behloc(S).

Proof: by step �2	1 and definition of BehGB(C,SH,�,�).
�2	3. �S�SLC(C,SH): �S��S.

Proof: by step �2	2 and assumption �0	 (definition of �).
�2	4. �I�Lnk such that dom(I)=cdom(I)={C}: �I�Behloc(I).

Proof: by step �2	2.
�2	5. Q.E.D.

Proof: by step �2	3, �2	4, compatibility of � and definition of
BehBB(C,SH,�,�).

�1	3. Q.E.D.
Proof: by steps �1	1 and �1	2.

Proposition 5.30. Let C be a primitive component, let SH=
{C};Lnk;�;dom;cdom� be a
structure hierarchy for C, let �=(�I)I³Lnk be a collection of compatibility relations, let

�=(�S)S³{C} be a collection consisting of one set of traces such that �C	Behloc(C) and let �

be a multitrace for SH such that for all I�Lnk, �I�Behloc(I). Then:

��BehGB(C,SH,�,�) �  ��BehWB(C,CS(C,SH),�,�) � �C�BehBB(C,SH,�,�).

Proof. Proof sketch: the proof consists of straightforward expansions of the
definitions. Note that, because C is primitive, Lnk=Lnk’, where Lnk’ is the set of
links in CS(C,SH). Therefore, the collection of sets of link traces � conforms to the
requirements of the white box view as well as of the glass box and black box views.
Assume: 1. C is a primitive component,

 2. SH=
{C};Lnk;�;dom;cdom� is a structure hierarchy for C,
 3. �=(�S)S³{C} is a collection consisting of one set of traces such that
     �C	Behloc(C),

 4. � is a multitrace for SH such that for all I�Lnk, �I�Behloc(I).

Prove: ��BehGB(C,SH,�,�) �  ��BehWB(C,CS(C,SH),�,�) �  �C�BehBB(C,SH,�,�).

�1	1. ��BehGB(C,SH,�,�) � ��BehWB(C,CS(C,SH),�,�).
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Assume: ��BehGB(C,SH,�,�).

Prove: ��BehWB(C,CS(C,SH),�,�).

�2	1. ��MTSH=MT|{C}=MT|SLC(C,SH) is compatible for �, and �C��C.

Proof: by definition of BehGB(C,SH,�,�).

�2	2. �S�SLC(C,CS(C,SH)): �S��S.
Proof: by assumption �0	:1, SLC(C,CS(C,SH))={C}. By step �2	1, �C��S.

�2	3. Q.E.D.
Proof: by steps �2	1 and �2	2, and the definition of

BehWB(C,CS(C,SH),�,�).

�1	2. ��BehWB(C,CS(C,SH),�,�) � �C�BehBB(C,SH,�,�).
Assume: ��BehWB(C,CS(C,SH),�,�).

Prove: �C�BehBB(C,SH,�,�).

�2	1. ��MTCS(C,SH)=MT|{C}=MTSH is compatible for �  and
�S�SLC(C,SH)\{C}: �S��S.
Proof: by definition of BehWB(C,CS(C,SH),�,�) and by assumption �0	:1,

CS(C,SH)=SH.
�2	2. �I�Lnk such that dom(I)=cdom(I)={C}, �I�Behloc(I).

Proof: by assumption �0	:4.

�2	3. Q.E.D.
Proof: by steps �2	1 and �2	2 and the definition of BehBB(C,SH,�,�).

�1	3. �C�BehBB(C,SH,�,�) � BehGB(C,SH,�,�).
Assume: �C�BehBB(C,SH,�,�).

Prove: ��BehGB(C,SH,�,�).

�2	1. ��’�MTSH such that �C=�’C��C	Behloc(C), �’ is compatible for �, and
�I�Lnk such that dom(I)=cdom(I)={C}, �’I�Behloc(I).

Proof: by definition of BehBB(C,SH,�,�).

�2	2. �C’�Prim(SH)\{C}: �S��S.

Proof: by assumption �0	:1, SLC(C,SH)={C}, and Prim(SH)\{C}=�.
�2	3. �S�Comp�Lnk: �S�Behloc(S)

Proof: assumption �0	:3 covers S�Lnk and by step �2	1, �C�Behloc(C).

�2	4. Q.E.D.
Proof: by steps �2	1, �2	2 and �2	3 and definition of BehGB(C,SH,�,�).

�1	4. Q.E.D.
Proof: by steps �1	1, �1	2, and �1	3 and transitivity of �.
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Chapter 6�

Properties of Information
Transmission

This chapter presents properties of information transmission. First, in Section 6.1,
properties of component interfaces, and properties of local component and link
traces related to information transmission are presented. In Section 6.2, properties
of compatibility relations are defined. Some of these properties are related to
properties of component interfaces defined in Section 6.1. Finally, in Section 6.3, a
discussion of the notion of a compatibility relation is presented.

6.1�Properties of Interfaces and Traces

In this section, two properties of (component) interfaces and local component and
link traces are discussed. The first property is properness of traces. The properness
property ensures that for each state in a trace, an immediate successor state can be
distinguished. Properness is presented in Section 6.1.1. The second property, input
persistence, is a property of the input interface of a component or of a link. This
property states that input information can only change as a result of information
transmission. The input persistence property is defined in terms of an important
notion, transmission octets, which is defined in Section 6.1.2 below. The input
persistence property itself is discussed in Section 6.1.3.

6.1.1� Properness and Finite Variability

Some properties of compatibility relations refer to immediate successor states, or
next states. Time frames as defined in Section 5.2.1 are not necessarily discrete.
Therefore, a next state of a state �A,i is defined as the first state after �A,i that differs
from �A,i. Formally:

Definition 6.1. (Next and previous state). Let LT=
TF;V� be a local component or link

trace with time frame TF=
T;<�.
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�� A next state of a state V(t) is a state V(t’) such that t<t’ and V(t’)V(t) and for all

t” with t<t”<t’ it holds that V(t)=V(t”). The set of all next states of a state V(t) is
denoted nextLT(V(t)).

�� A previous state of a state V(t) is a state V(t’) such that t’<t and V(t’)V(t) and

for all t” with t’<t”<t it holds that V(t)=V(t”). The set of all previous states of a
state V(t) is denoted prevLT(V(t)).

Note that, for a discrete time frame, it is possible that there are two time points t
and t’ such that there is no t” with t<t”<t’, while V(t’)=V(t). For a dense time frame,
there are usually intervals of time for which the state remains constant.

Traces in which up to a specific point in time t, each state V(t’) with t’<t has a
next state and a previous state (unless t’=�), are called proper traces.

Definition 6.2. (Proper trace). A local component or link trace LT=
TF;V� with time

frame TF=
T;<� is a proper trace iff for all t�T, V(t) has a next state and a previous state

unless t=�, or there is a t’�T such that for all t�T with t’<t, V(t) has a next state and a

previous state unless t=�, and for all t”�t’, V(t”)=V(t’).

It is not the case that for a proper trace, the order of the time frame is necessarily
discrete. However, the order of the states induced by the next state relation, i.e. the
order {
�S,i;�S,j�|�s,j�nextLT(�S,i)}, is discrete.

For a proper trace with a dense order, another property can be defined: the
finite variability or non-Zenoness property (Barringer, Kuiper & Pnueli, 1986). This
property asserts that in a finite amount of time, only a finite number of next states
can be distinguished. This property is not formally defined in this thesis. Instead, a
trace that does not have the finite variability property is depicted (Figure 6.1).

Figure 6.1: A trace that does not have the finite variability property.

In Figure 6.1, the horizontal line represents a dense set of time points of the time
frame, i.e. the set of reals. The small vertical lines represent time points at which
there is a state change. As can be seen from the figure, on the horizontal line, state
changes occur at t=1/2, t=2/3, 3/4, t=4/5, and so on. There are an infinite number of
state changes before t=1, but nevertheless, for every t�[0,1), the state at t has a next
state. Thus, the trace depicted in the figure is a trace that does not have the finite
variability property. (The trace depicted in Figure 6.1 is a proper trace, because all
states except the state at t=0 have a previous state. A previous state of the state at
t=1 is state �.)
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The semantic structure presented in this thesis is not committed to a specific choice
with respect to properness and finite variability of traces. However, as indicated in
Chapter 1, the semantic structure is based on the assumption that global time does
not exist. This assumption is related to the properties presented in this section.
First, two different conceptions of the notion of time are presented, which are
called observer time and implied time:

�� A local trace describes the behaviour of a component or link. A possible way
to interpret such a trace is to view the trace as a record of observations made
by a dedicated observer of the component or link. An observer has access to
a device that generates a sequence of time points. (E.g., a wall clock, or a
stopwatch. Whether these ticks are generated at regular intervals cannot be
determined by the observer.) The observer is able to observe the state of the
component or link. (As the observer is dedicated to the component or link it
observes, the observer does not observe any other component or link.) At
each time tick, the observer makes note of the state of the component or link,
which results in a local component or link trace. Thus, this trace is based on
observer time: the (notion of) time of an observer. The observer’s time device
can be assumed to generate a continuous sequence of time points (this is
probably the normal conception of real-world time). This case naturally
leads to a dense time frame for the local component trace, although this is
not necessary. With observer time, whether dense or discrete, it is frequently
the case that for two consecutive time points or an interval of time, the state
of the component or link remains the same.

�� A second way to interpret a local trace is to view the component or link itself
as the source of the time frame of the trace. No observer and no external
time device is assumed. Instead, each change of the (externally visible part)
of the component or link defines a new point in time. In other words, (a
notion of) time is implied by the activity of the component or link. If the
behaviour of the component or link is continuous, the implied time is dense.
If the behaviour of the component or link is discrete, the implied time is
discrete. A consequence of this interpretation is that, in a discrete time
frame, for any pair of time points t,t’ such that there is no t” with t<t”<t’,

V(t)V(t’). (If this were not the case, then t’ would not be distinguished as a
new point in time). In a dense time frame, a similar property holds: for any
two points in time t and t’, no matter how close to one another, there is
always a time point t” such that t<t”<t’, V(t”)V(t) and V(t”)V(t’).

The semantic structure presented in this thesis does not assume that local traces are
interpreted as observer time or as implied time. However, as the semantic
structure is based on the assumption that global time does not exist, neither the
observer time interpretation nor the implied time interpretation for a specific
component or link can be used as a reference time for another component or link.
As an example, if the observer time interpretation is adopted, then it is assumed
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that no two components or link share an observer or its time device. (This is the
result of the assumption that observers are dedicated.)

6.1.2� Transmission Octets

Information transmission establishes a relation between two components and a
link, or between two links and a component. More specifically, each occurrence of
an information transmission establishes a relation between states of the domain
and co-domain of a specific link: a state of the domain contains information, which
is transmitted to the co-domain, in which a new state results from this
transmission. This correspondence is the basis of interaction.

In fact, in the semantic structure presented in this thesis, the relation can be
extended to a correspondence between eight states, as explained in this section.
Tuples of eight states that correspond as a result of information transmission are
called transmission octets. The relation between the eight states of a transmission
octet is related to an information link mapping: tuples composed of eight states
that occur in local component and link traces of a link, its domain and co-domain,
form a transmission octet if they comply with the information link mapping of the
link. This relation is formally defined in this section.

A transmission octet for a link I is an octet consisting of two states from a local
component or link trace of the domain of I, four states from a local link trace of I
and two states from a local component or link trace of the co-domain of I. A
transmission octet thus consists of states taken from the behaviour of a link, its
domain and its co-domain as represented by local component and link traces. The
connection with the intended information transmission functionality of the link is
made as follows: an octet of states is a transmission octet if the states in the octet
equal an element of the information link mapping of I and have a specific order in
the local traces from which they are taken. (The information link mapping of a link
consists of substates taken from the set of all possible states of a link, its domain
and co-domain—the sets �I, �dom(I) and �cdom(I), respectively.

The definition of a transmission octet only enforces that the two states of the
domain have a specific order in the local trace of the domain, and likewise for the
four states of the link itself and the two states of the co-domain. The definition of a
transmission octet does not enforce any other relation between the two states of the
domain of the link, or between the two states of the co-domain of the link, or
between the four states of the link itself. Thus, almost any two states of the domain
of a link, together with four states of the link itself and two states of the co-domain,
can potentially form a transmission octet, regardless of the number of states in-
between the states in the domain, link or co-domain,. The definitions of properties
of compatibility relations in Section 6.2, however, do enforce relations between the
two states of the domain of a link, between the four states of the link, and between
the two states of the co-domain. E.g., a specific property holds for a compatibility
relation for a link if a state of the domain of the link and its immediate successor
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state, together with four states of the link in a specific order and a state of the co-
domain with its immediate successor, form a transmission octet.

The notion of a transmission octet is close to the notion of an information link
mapping. The difference between, on the one hand, a transmission octet, and, on
the other hand, an information link mapping is as follows. An information link
mapping consists, as indicated by Definition 5.6, of octets of substates taken from
the sets of possible states of a link, its domain and co-domain. (The exact choice of
substates varies for the six types of information links distinguished in the semantic
structure.) However, local component and link traces consist of states. For a
specific property of a compatibility relation, only specific substates of these states
are relevant, depending on the type of the link with which the compatibility
relation is associated (see below). Contrary to an information link mapping, a
transmission octet consists of states. A transmission octets matches states from local
component or link traces with (input and output) substates from an information
link mapping.

As stated before, properties of compatibility relations are expressed in terms of
transmission octets. The relationship between compatibility relations and
transmission octets can be illustrated as follows. Loosely speaking, properties of
compatibility relations (which are relations defined on traces), require that specific
combinations of eight states—two from a local trace of the domain of a link, four
from a local trace of the link itself and two of a local trace of the co-domain—form
transmission octets. Again loosely speaking, if for all states in a trace of the domain
or co-domain of a link, such combinations can be found, then a compatibility
relation for that link satisfies a specific property.

To summarise, information link mappings, transmission octets and
compatibility relations are compared as follows. An information link mapping
relates eight substates from the sets of all states of two components and a link or a
component and two links (Thus, an information link mapping does not refer to
traces). A transmission octet relates eight states taken from traces of two
components and a link or one component and two links, such that these eight
states constitute an instance of transmission as described by an information link
mapping. A property of a compatibility relation requires, loosely speaking, that
specific octets of states taken from triples of traces in the compatibility relation
form transmission octets. (Different properties require different specific octets to
form transmission octets.)

For ease of comprehension, the definition of a transmission octet below
deliberately uses the names of the link, components and states depicted in Figure
2.7 as the names of the variables in the definition. In the definition, the following
notation is used: let LTS=
T;V����S be a local component or link trace. The state
V(t) in LTS at time point t�T is denoted �S,t or sometimes LTS(t).

Definition 6.3. (Transmission octet). Let LTA, LTB and LTL be three local traces of

components A and B and an information link L with information link mapping �L, such
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that A=dom(L) and B=cdom(L). Let �A,i and �A,j be two states in LTA, let �L,i”, �L,j”, �L,k

and �L,l be four states in LTL and let �B,i’ and �B,j’ be two states in LTB. The octet

���A,i;�A,j�;��L,i”;�L,j”;�L,k;�L,l�;��B,i’;�B,j’�� is a transmission octet with respect to LTA,

LTL and LTB iff i<Aj, i”<Lj”<Lk<Ll, i’<Bj’ and:

�� L is a private link and ��out(�A,i);out(�A,j)�;��L,i”;�L,j”;�L,k;�L,l�;

�in(�B,i’);in(�B,j’)����L, or

�� L is an import mediating link and ��in(�A,i);in(�A,j)�;��L,i”;�L,j”;�L,k;�L,l�;

�in(�B,i’);in(�B,j’)����L, or

�� L is an export mediating link and ��out(�A,i);out(�A,j)�;��L,i”;�L,j”;�L,k;�L,l�;

�out(�B,i’);out(�B,j’)����L, or

�� L is a cross-mediating link and ��in(�A,i);in(�A,j)�;��L,i”;�L,j”;�L,k;�L,l�;

�out(�B,i’);out(�B,j’)����L, or

�� L is a link modifier link and ��out(�A,i);out(�A,j)�;��L,i”;�L,j”;�L,k;�L,l�;

��B,i’;�B,j’����L, or

�� L is a link monitoring link and ���A,i;�A,j�;��L,i”;�L,j”;�L,k;�L,l�;

�in(�B,i’);in(�B,j’)����L.

Example 6.4. In Example 5.19 a compatibility relation for the traces ltbroker,1,
ltbroker_to_user_1 and ltuser_1,1 is presented. The current example presents two
transmission octets for these traces, to provide a more detailed view on the
compatibility relation. The transmission octets presented in the current example
are used in another example in Section 6.2.1 to illustrate the definition of a
property of a compatibility relation in terms of transmission octets. For ease of
reference, the information link mapping for broker_to_user_1, given in Example 5.7, is
repeated here:

�broker_to_user_1 ={��to_be_communicated_to(t,user_1);just_communicated_to(t,user_1)�;

�awake_and_empty;active_and_contents(t);active_and_contents(t);

awake_and_empty�;�ready_for_information;

communicated_by(t’,broker)�� | t�OT2, t’�OT1 and t’=trans(t)}.

In this example, assume that trans(res_1)=res_3. First, consider the following octet of
states, taken from the traces ltbroker,1 and ltuser_1,1 given in Example 5.14, and
ltbroker_to_user_1, given in Example 5.17:

��« | belief(match(res_1,query_1)) | to_be_communicated_to(res_1,user_1); (4th state in ltbroker,1)

   « | belief(match(res_1,query_1)) | just_communicated_to(res_1,user_1)�; (5th state in ltbroker,1)

 �awake_and_empty; (1st state in ltbroker_to_user_1)
  active_and_contents(res_1); (2nd state in ltbroker_to_user_1)
  active_and_contents(res_1); (2nd state in ltbroker_to_user_1)

  awake_and_empty�; (3rd state in ltbroker_to_user_1)
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ready_for_information | « | «; (2nd state in ltuser_1,1)

  communicated_by(res_3,broker) | « | «�� (3rd state in ltuser_1,1)

The first element in this octet is referred to as �broker_1,4, the second as �broker_1,5 the
third to the sixth as �broker_to_user_1,i for i=1,…4, respectively, the seventh as �user_1,2

and the eight as �user_1,3. This octet is a transmission octet for the following reason:
broker_to_user_1 is a private link, out(�broker_1,4)= to_be_communicated_to(res_1,user_1),
out(�broker_1,5)=just_communicated_to(res_1,user_1), in(�user_1,2)=ready_for_information, and
in(�user_1,3)=communicated_by(res_3,broker). Thus:

 

out(�broker_1,4);out(�broker_1,5)�;

  
�broker_to_user_1,1;�broker_to_user_1,2;�broker_to_user_1,2; �broker_to_user_1,3�;

  
in(�user_1,2);in(�user_1,3)��

= 

to_be_communicated_to(res_1,user_1);just_communicated_to(res_1,user_1)�;

 
awake_and_empty; active_and_contents(res_1);active_and_contents(res_1)

   awake_and_empty�;
ready_for_information;

   communicated_by(res_3,broker)��

��broker_to_user_1

This is exactly as required for a private link by Definition 6.3.
Second, consider an octet of states similar to the octet given in the first part of

this example, but with the first element replaced by «|belief(match(res_1,query_1))|«,
named �broker_1,1, which is the first state in ltbroker_1,1. The octet with �broker_1,1 is not a
transmission octet for broker_to_user_1, for the following reason: out(�broker_1,1)=«7,
thus 

out(�broker_1,4);out(�broker_1,5)�;
�broker_to_user_1,1;�broker_to_user_1,2;

�broker_to_user_1,2;�broker_to_user_1,3�;
in(�user_1,2);in(�user_1,3)����broker_to_user_1, which is contrary

to the requirement for a private link as given by Definition 6.3. �

6.1.3� Input Persistence

The first property of a component defined in this section, the input persistence
property, specifies that information that is input to the component cannot change
spontaneously:

Definition 6.5. (Input persistence property). Let SH=
Comp;Lnk;�;dom;cdom� be a

structure hierarchy, let � be a multitrace for SH and let C�Comp be a component with
�C=

TC;<C�;VC�. Component C has the input persistence property if for each

j’�TC\{�}, either:

�� There is an I�Lnk with cdom(I)=C, �I=

TI;<I�;VI� and

�dom(I)=

Tdom(I);<dom(I)�;Vdom(I)� such that there exist i’�TC, i”<Ij”<Ik<Il�TI and

i<dom(I)j�Tdom(I) such that 

�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�I,k;�I,l�;
�C,i’;�C,j’�� is a

transmission octet for LTdom(I), LTI and LTC,

                                                          
7
 « is the name of a state (see Example 5.2), not the empty set.
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�� Or, there is an i’�TC with i’<Cj’ such that for all m�TC with i’<Cm�Cj’,

in(�C,m)=in(�C,j’).

This property specifies that for each state �S,j’, one of the following requirements

holds:

�� There is another component or link in SH that provides new input to C.
Formally, it is required that there is a link in SH with C as co-domain, such
that a state �C,i’ exists that is a predecessor (not necessarily immediate) of
�C,j’, four states �I,i”, �I,j”, �I,k, and �I,l and two states �dom(I),i and �dom(I),j

such that all eight states together form a transmission octet. This implies that
the input substate of state �C,j’ contains information obtained from the
domain of link I, where it was available in state �dom(I),i. Moreover, the

transmission is carried out in conformance with the information link
mapping. Two enabling conditions (represented by the states �I,i” and �C,i’,

respectively) are also fulfilled.

�� Or, the input substate of state �C,j’ has not changed, i.e., a time point i’ can be

found such that for all time points m between i’ and j’, the input substate of
m equals the input substate of �C,j’.

This property models input persistence in the sense that if the input substate
changes, then the change is caused by information transmission. Otherwise, the
input substate is persistent: it is the same as in the previous state.

6.2�Properties of Compatibility Relations

Section 5.2.2 defined a compatibility relation for a link I as a ternary relation on the
set of local component or link traces of the domain of I, the set of link traces of I
and the set of local component or link traces of the co-domain of I. The formal
definition is repeated here for ease of reference:

�Definition 5.18. (Compatibility relation). A compatibility relation for a link I is a
relation ��I	��dom(I)���I���cdom(I).

As stated in Section 5.2.2, compatibility relations are used to model constraints
imposed by information transmission. However, Section 5.2.2 does not define how
compatibility relations model different properties of information transmission,
such as reliability (whether information can be lost). This chapter defines such
properties of compatibility relations. Applications of the semantic structure may or
may not choose to adopt these properties.

As stated earlier, a compatibility relation for a link relates states that occur in
the actual behaviour of the link, its domain and co-domain, in conformance with
the information link mapping given for the link. In fact, the connection between,
on the one hand, an information link mapping and, on the other hand, states that
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actually occur in local component and link traces is formalised by the notion of
transmission octets, introduced in Section 6.1.1. The various properties of
information transmission are defined in this section in terms of transmission octets.
In sections 6.2.1 to 6.2.4, four properties are presented.

6.2.1� Lossless Transmission Property

The first possible property of a compatibility relation defined in this section, the
lossless transmission property, specifies that no data is lost during information
transmission. Formally:

Definition 6.6. (Lossless transmission property). Let ��I be a compatibility relation for

a link I. For this compatibility relation the lossless transmission property holds iff for
each 
LTdom(I);LTI;LTcdom(I)����I: with LTI=

TI;<I�;VI�, LTdom(I)=

Tdom(I);<dom(I)�;

Vdom(I)�, and LTcdom(I)=

Tcdom(I);<cdom(I)�;Vcdom(I)�: for all i�Tdom(I) it holds that either:

�� There exist j�Tdom(I), i”<Ij”<Ik<Il�TI and i’<cdom(I)j’�Tcdom(I) such that



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a transmission octet,

�� Or, one of the following holds:

�� There is no 

out(�dom(I),i);�2�;
�3;�4;�5;�6�;
�7;�8����I for any �2,…,�8, if I is

a private link, an export mediating link or a link modifier link, and

�� There is no 

in(�dom(I),i);�2�;
�3;�4;�5;�6�;
�7;�8����I for any �2,…,�8, if I is

an import mediating link or a cross-mediating link, and

�� There is no 

�dom(I),i;�2�;
�3;�4;�5;�6�;
�7;�8����I for any �2,…,�8, if I is a

link monitoring link.

This property specifies that for each state �dom(I),i, one of the following

requirements must hold:

�� There exists a state �dom(I),j that is a successor (not necessarily immediate) of
�dom(I),i, four states �I,i”, �I,j”, �I,k, and �I,l, two states �cdom(I),i’ and �cdom(I),j’

such that all eight states together form a transmission octet. For a private
link, this implies that for each state �dom(I),i, if the output substate of �dom(I),i

should, according to the information link mapping of I, be transmitted, and
two enabling conditions (represented by the states �I,i” and �cdom(I),i’,
respectively) are fulfilled, then there should be a state �cdom(I),j’ in which the

effect of the transmission as specified by the information link mapping is
present.

�� Or, state �dom(I),j is not applicable for transmission via link I, which is

indicated by the absence of an octet of states in the information link
mapping of I in which (a substate of) �dom(I),j is the first element.

This property models lossless transmission in the sense that if, according to the
information link mapping, transmission is required, then there is a state in the
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trace of the co-domain in which the effect of the transmission is present. Thus, the
information is not lost in transit.

From the definition of the lossless transmission property, a number of
interesting characteristics of compatibility relations can be observed:

�� Like an information link mapping, a compatibility relation does not refer to
the actual behaviour of components: a compatibility relation only refers to
arbitrary local component and link traces. Instead, a compatibility relation in
a sense lifts intended information transmission as defined by information
link mappings, from possible states to states that occur in local component
and link traces. These local component and link traces are possible
behaviours and not necessarily actual traces of a component. However, as
explained in Section 5.2.2, compatibility relations are used to define actual
behaviour of composed components. In this case, compatibility relations
impose a structure on multitraces consisting of actual component behaviour.

�� The lossless transmission property does not specify that the moment in time at
which state �dom(I),i in LTdom(I) or state �I,k in LTI occurs must precede the
moment in time at which state �cdom(I),j in LTcdom(I) occurs. However, it does

specify that the input substate of the co-domain of I depends on output
substate of the domain of I and the state of I. With the definition presented,
it is not even possible to express that moments in time for the domain of I
have any relation with moments in time of the co-domain of I, because no
relationship between time in the domain and co-domain (represented by
their traces) is given. In the next chapter, the relationship between
dependence and global temporal precedence is explored in more detail.

�� The lossless transmission property is related to the commitments put
forward in Chapter 2. In particular, the commitment to non-blocking send
and receive operations presented in Section 2.2.5 and Section 2.2.6,
respectively, are represented in the definition of the lossless transmission
property. These commitments are represented by the (relatively weak)
requirements that state �dom(I),j is a successor, but not an immediate
successor, of �dom(I),i (non-blocking send) and that state �cdom(I),j’ is a
successor, but not an immediate successor, of �cdom(I),i’ (non-blocking

receive).

Example 6.7. Example 5.20 in Chapter 5 presents a compatibility relation for the
link broker_to_user_1. Example 5.20 claims that one of the elements of this
compatibility relation is the triple 
ltbroker,1;ltbroker_to_user_1;ltuser_1,1�, with the local
component traces ltbroker,1 and ltuser_1,1 as presented in Example 5.14 and the local
link trace ltbroker_to_user_1 as presented in Example 5.17. Example 6.4 presented two
transmission octets for these traces.

The current example shows that the triple 
ltbroker,1;ltbroker_to_user_1;ltuser_1,1� satisfies
the lossless transmission property. Thus, for each state �broker,i it has to be shown
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that either there are states in ltbroker_to_user_1 and ltuser_1,1 such that these states form a
transmission octet, or �broker,i is not applicable to transmission via the (private) link

broker_to_user_1:

�� �broker,i for i=1,2,3: out(�broker,i)=«, and there is no element



«;�2�;
�3;�4;�5;�6�;
�7;�8����broker_to_user_1 for any �2,…,�8, so the second

clause of Definition 6.6 holds.

�� �broker,4: According to Example 6.4, the following octet is a transmission octet
for the traces ltbroker,1, ltbroker_to_user_1 and ltuser_1,1:



« | belief(match(res_1,query_1)) | to_be_communicated_to(res_1,user_1);

   « | belief(match(res_1,query_1)) | just_communicated_to(res_1,user_1)�;

 
awake_and_empty;
  active_and_contents(res_1);
  active_and_contents(res_1);

  awake_and_empty�;

 
ready_for_information | « | «;

  communicated_by(res_3,broker) | « | «��

=

�broker,4;�broker,5�;

    
�broker_to_user_1,1;�broker_to_user_1,2;�broker_to_user_1,2;�broker_to_user_1,3�;

    
�user_1,2;�user_1,2��.

Thus, there exist a j in Tbroker, an i”, j”, k and l in Tbroker_to_user_1, and an i’ and j’
in Tuser_1 such that 

�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a

transmission octet (take j=5, i”=1, j”=2, k=2, l=3, i’=2 and j’=3). It also holds
that �I,2�nextLTI(�I,1) and �I,3�nextLTI(�I,3), for I=broker_to_user_1. Thus, for

�broker,4, the first clause of Definition 6.6 holds.

�� �broker,5: out(�broker,i)=just_communicated_to(res_1,user_1), and there is no element



just_communicated_to(res_1,user_1);�2�;
�3;�4;�5;�6�;
�7;�8����broker_to_user_1 for
any �2,…,�8, so the second clause of Definition 6.6 holds.

Thus, for each state in ltbroker,1, the requirements of Definition 6.6 hold. �

Example 6.8. The lossless transmission property only requires that for each state in
the domain of a link that contains information that has to be transmitted, there is a
state in the co-domain in which this information is present. It does not require that
this state is unique. This is illustrated as follows. Suppose that there is a trace
ltbroker,3, which is a copy of ltbroker,1 extended with two new states, �broker,6 and �broker,7,
with �broker,6=�broker,4 and �broker,7=�broker,5. The triple 
ltbroker,3;ltbroker_to_user_1;ltuser_1,1� also
satisfies the lossless transmission property: for each state �broker,i, either there are
states in ltbroker_to_user_1 and ltuser_1,1 such that these states form a transmission octet,
or �broker,i is not applicable to transmission via the (private) link broker_to_user_1:
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�� �broker,i for i=1,…,5: same reason as in the previous example.

�� �broker,6: According to Example 6.4, the following octet is a transmission octet
for the traces ltbroker,3, ltbroker_to_user_1 and ltuser_1,1:



« | belief(match(res_1,query_1)) | to_be_communicated_to(res_1,user_1);

   « | belief(match(res_1,query_1)) | just_communicated_to(res_1,user_1)�;

 
awake_and_empty;
  active_and_contents(res_1);
  active_and_contents(res_1);

  awake_and_empty�;

 
ready_for_information | « | «;

  communicated_by(res_3,broker) | « | «��

=

�broker,6;�broker,7�;

    
�broker_to_user_1,1;�broker_to_user_1,2;�broker_to_user_1,2;�broker_to_user_1,3�;

    
�user_1,2;�user_1,2��.

Thus, there exist a j in Tbroker, an i”, j”, k and l in Tbroker_to_user_1, and an i’ and j’
in Tuser_1 such that 

�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a

transmission octet (take j=7, i”=1, j”=2, k=2, l=3, i’=2 and j’=3). It also holds
that �I,2�nextLTI(�I,1) and �I,3�nextLTI(�I,3), for I=broker_to_user_1. Thus, for

�broker,4, the first clause of Definition 6.6 holds.

�� �broker,7: out(�broker,i)=just_communicated_to(res_1,user_1), and there is no element



just_communicated_to(res_1,user_1);�2�;
�3;�4;�5;�6�;
�7;�8����broker_to_user_1 for
any �2,…,�8, so the second clause of Definition 6.6 holds.

Thus, for each state in ltbroker,1, the requirements of Definition 6.6 hold. This
example shows that the same pair of states in the co-domain of a link may take
part in more than one transmission octet. �

6.2.2� Order-Preserving Transmission Property

The second property of a compatibility relation defined in this chapter, the order-
preserving transmission property, requires that the results of two transmissions
from a specific component to a specific other component by the same link occur in
the same order as the initiations of the transmissions. As the property is a
requirement on the occurrence of two transmissions, the formal definition is stated
in terms of two transmission octets. Altogether, the formal definition refers to
sixteen states.

Definition 6.9. (Order-preserving transmission property). Let ��I be a compatibility

relation for a link I. For this compatibility relation the order-preserving transmission
property holds iff for each 
LTdom(I);LTI;LTcdom(I)����I: with LTI=

TI;<I�;VI�,
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LTdom(I)=��Tdom(I);<dom(I)�;Vdom(I)�, and LTcdom(I)=��Tcdom(I);<cdom(I)�;Vcdom(I)�: for all

i,j,m,n�Tdom(I), i”,j”,k,l�TI, m”,n”,o,p�TI, i’,j’,m’,n’�Tcdom(I):

�� if

�� ���dom(I),i;�dom(I),j�;��I,i”;�I,j”;�I,k;�I,l�;��cdom(I),i’;�cdom(I),j’�� is a transmission

octet,

�� and ���dom(I),m;�dom(I),n�;��I,m”;�I,n”;�I,o;�I,p�;��cdom(I),m’;�cdom(I),n’�� is a

transmission octet,
�� and i<dom(I)m,

�� then j’<cdom(I)n’.

The definition states that, for the order-preserving transmission property to hold,
for each state �A,i in a trace of the domain of the link, if this state is involved in a
transmission that results in a state �B,j’, and there is a later state �A,m that is
involved in another transmission that results in �B,n’, then �B,n’ must occur later
than �B,j’. To illustrate the definition of the order-preserving transmission property,

a triple of traces for which the property does not hold is depicted. The negation of
the property is as follows: there is a triple �LTdom(I);LTI;LTcdom(I)����I with
LTI=��TI;<I�;VI�, LTdom(I)=��Tdom(I);<dom(I)�;Vdom(I)�, and LTcdom(I)=��Tcdom(I);<cdom(I)�;

Vcdom(I)� for which there exist i,j,m,n�Tdom(I), i”,j”,k,l�TI, m”,n”,o,p�TI,

i’,j’,m’,n’�Tcdom(I) such that:

�� ���dom(I),i;�dom(I),j�;��I,i”;�I,j”;�I,k;�I,l�;��cdom(I),i’;�cdom(I),j’�� is a transmission

octet,

�� and ���dom(I),m;�dom(I),n�;��I,m”;�I,n”;�I,o;�I,p�;��cdom(I),m’;�cdom(I),n’�� is a

transmission octet,

�� and i<dom(I)m,

�� and n’<cdom(I)j’.

Figure 6.2: Traces that do not satisfy the order-preserving transmission property.
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This situation is depicted in Figure 6.2. The two transmission octets are indicated
by solid and dashed ovals. (The lines connecting the ovals indicate which states
together form a transmission octet.) It is clear that the traces depicted in Figure 6.2
do not satisfy the order-preserving transmission property.

6.2.3� Asynchronous Transmission Property

The third property presented in this chapter is the asynchronous transmission
property, which coincides with the commitment to asynchronous transmission
presented in Section 2.2.7. This property is defined in terms of another notion,
dependence, which is itself defined in terms of transmission octets. Dependence is a
binary relation on the union of the sets of states that occur in the traces of a link, its
domain and co-domain. As it is not assumed that all �S are pairwise disjoint, the
relation is defined using coloured versions of the states in each �S. This makes it

possible to define notions that uniquely reference states of specific components.
Moreover, it is not assumed that for a specific component or link, states in a local
component or link trace are unique. Therefore, for reasons explained shortly, states
are also coloured with the point in time at which they occur.

Definition 6.10. (Disjoint union of states). Let SH=
Comp;Lnk;�;dom;cdom� be a

structure hierarchy and let � be a multitrace for SH. The disjoint union of all local
component and link states of the components and links in SH is the set
�SH={
�S;S;i� | S�Comp�Lnk, �S��S and �S(i)=�S}.

For notational convenience, in the rest of this thesis, coloured versions 
�S;S;i� are
identified with the uncoloured versions, i.e., a coloured state 
�;S;i� is denoted �S,i..

A state �B,j’ depends on a state �A,i if either A=B and i<j’ for A’s local time
ordering, or if there is a state �C,m such that �B,j’ depends on �C,m, and �C,m

depends on �A,i, or if A=dom(L) for a link L and B=cdom(L) and �B,j’ contains the
result of information transmission from �A,i. The latter requirement can be

expressed formally in terms of transmission octets, as shown in the following
definition.

Definition 6.11. (Dependence). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy and let LTA=

TA;<A�;VA�, LTB=

TB;<B�;VB� and LTL=

TL;<L�;VL� be three

traces of components or links A,B�Comp�Lnk and a link L�Lnk such that A=dom(L) and
B=cdom(L). Let �A,i and �A,j be two states in LTA, let �L,i”, �L,j”, �L,k and �L,l be four

states in LTL, and let �B,i’ and �B,j’ be two states in LTB. The dependence relation

�d	�SH��SH for LTA, LTL and LTB is defined as the smallest relation �d such that

�A,i�d�B,j’ iff either

1. A=B and i <A j’, or

2. 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’�� is a transmission octet for LTA, LTL and

LTB, or
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3. There is a state �C,m of a component or link C�Comp�Lnk such that �A,i�d�C,m and

�C,m�d�B,j’.

Definition 6.12. (Asynchronous transmission property). Let ��I be a compatibility

relation for a link I. For this compatibility relation the asynchronous transmission
property holds iff for each 
LTdom(I);LTI;LTcdom(I)����I, the dependence relation �d for

LTdom(I), LTI and LTcdom(I) is a partial order.

The dependence relation �d is similar to Lamport’s (1986) “happens before”

relation that defines a temporal order without assuming the existence of global
time. (However, Lamport’s notion is defined in terms of events and does not
support locality.) If �d is a partial order, it cannot contain cycles, so there is no

chain of states that all have to occur before their predecessor. This characterisation
of asynchronous information transmission is also presented in (Charron-Bost,
Mattern & Tel, 1996) in terms of events. Chapter 7 further discusses such partial
orders.

Definition 6.12 requires that all states in a local component or link trace of a
specific component or link are unique. If states are not unique, �d is naturally

symmetric and therefore not a partial order. This is the reason why states are
coloured with the point in time at which they occur.

6.2.4� Logically Instantaneous Transmission Property

In Section 2.2.7, a commitment is made to asynchronous transmission. However, in
some circumstances, synchronous information transmission is favoured over
asynchronous information transmission. From the point of view of the initiator,
synchronous information transmission appears to be instantaneous: there are no
activities between the initiation of the information transmission and the receipt of
the information by another component. Therefore, synchronous communication is
more accurately referred to as the logically instantaneous transmission property.

Definition 6.13. (Logically instantaneous transmission property). Let
SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy and let LTA, LTB and LTL be three

traces of components or links A,B�Comp�Lnk and a link L�Lnk such that A=dom(L) and
B=cdom(L). Let �A,i and �A,j be two states in LTA, let �L,i”, �L,j”, �L,k and �L,l be four

states in LTL, and let �B,i’ and �B,j’ be two states in LTB.

�� The relation K	�SH��SH for LTA, LTL and LTB is defined as follows:

K={
�A,i;�B,j’�|

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’�� is a transmission octet

for LTA, LTL and LTB};

�� The relation R is defined as R={
�S,i;�S,j�|(S=A or S=B) and i<j}�K;

�� Let K-1 be the set {
�B,j’;�A,i�|

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’�� is a

transmission octet for LTA, LTL and LTB and i<j, i’<j’};
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�� Let R’=(R�K-1)*\(K�K-1), where R* denotes the transitive closure of R;

�� Let ��I be a compatibility relation for a link I. For this compatibility relation the

logically instantaneous transmission property holds iff for each

LTdom(I);LTI;LTcdom(I)����I, the relation R’ for LTdom(I), LTI and LTcdom(I) is a

partial order.

The construction R’=(R�K-1)*\(K�K-1) is adapted from a proof in (Charron-Bost et

al., 1996) in which an equivalent characterisation of logically instantaneous
information transmission in terms of events is given. From the logically
instantaneous transmission property, it can be proven that an arbitrary state � of
the domain D of a link or the co-domain C of a link happens before (in Lamport’s
sense) a state in which information is made available in D if and only if it happens
before a state in which this information is received by C. Likewise, an arbitrary
state � of D or C happens after (in Lamport’s sense) a state in which information is
made available in D if and only if it happens after a state in which this information
is received by C. Thus, at the moment of logically instantaneous information
transmission, components C and D have the same past and future. (See (Charron-
Bost et al., 1996) for the proof.)

6.3�Discussion

The reader may be surprised to find that non-local phenomena and properties of
information transmission can be defined without any relation to the clocks of the
components involved. The following observations may further clarify this issue. In
the first place, the definition of compatibility given above amounts to a theory of
dependence and nothing more. In particular, the three views on the behaviour of a
component abstract from (i) the actual time spent by components between two
states according to some observer and (ii) synchronisation characteristics and
buffering of information transmission between components. In the second place, a
non-local view in terms of dependence is, on the one hand, sufficient for many
purposes, while, on the other hand, it is the best possibility if one does not want to
assume a global clock. A view in terms of dependence is sufficient for the
following reasons. If a global clock is assumed, then a dependence ordering
implies a temporal ordering, in the real physical reality as well as in any
conceivable computer implementation (Lamport, 1986). However, a real temporal
ordering is only required if state transitions have side effects not modelled as
communication with other components in the system. Thus, a view in terms of
dependence is sufficient, if such side effects are modelled explicitly (which is the
case for the semantic structure presented in this thesis). If no global clock is
assumed (which is the only possibility in relativistic systems and which is often
beneficial when modelling widely distributed systems, see (Pratt, 1986)), then no
temporal order can be defined whatsoever, so a view in terms of dependence is the
best possibility.
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An interesting question is whether there are objective criteria to verify the claim
that e.g. the logically instantaneous transmission property does indeed characterise
instantaneous transmission. This question can be approached as follows. In the
context of models of the dynamics of distributed systems, characterisations of
various properties of information transmission have been published (Soneoka &
Ibaraki, 1994; Charron-Bost et al., 1996). These properties induce a proper hierarchy
of classes of computations that (exclusively) use a specific information
transmission property. I.e., Charron-Bost and her co-authors identify the following
classes of computations: synchronous computations, causally ordered
computations, FIFO-computations and asynchronous computations. A FIFO-
computation is a computation in which all information exchange is order-
preserving in the terminology used in this thesis. A causally ordered computation
is a computation in which the order-preserving property not only holds for each
individual information link, but also between all links to a specific component.
Charron-Bost and her co-authors show that the class of synchronous computations
is a proper subclass of the class of causally ordered computations. The class of
causally ordered computations is a proper subclass of the class of FIFO-
computations, which is itself a proper subclass of the class of asynchronous
computations.

The properties formulated in (Soneoka & Ibaraki, 1994; Charron-Bost et al.,
1996) are expressed in terms of a global, event based model of a distributed system.
In Chapter 7, a comparable global perspective is developed for the semantic
structure developed in this thesis. The characterisations published in (Soneoka &
Ibaraki, 1994; Charron-Bost et al., 1996) may serve as formal criteria to verify the
properties expressed above by considering those properties from the global
perspective developed in the next chapter.

For the logically instantaneous information transmission property, this
approach provides the following criteria:

�� If for all compatibility relations in a structure hierarchy the logically
instantaneous transmission property holds, the behaviour of that structure
hierarchy is in the class of synchronous computations. If, for all
compatibility relations in a structure hierarchy, the order-preserving
transmission property holds, then the behaviour of that structure hierarchy
is the class of FIFO-computations. As the class of synchronous computations
is a subclass of the classes of FIFO computations, the order-preserving
transmission property should by implication hold for a compatibility
relation for which the logically instantaneous transmission property holds.
Note that this criterion does not rely on a global perspective;

�� In (Charron-Bost et al., 1996), a refinement of the causality relation for
synchronous computations is given. This relation essentially expresses the
requirement that two components involved in synchronous information
exchange share the same past and future at their (local) time points at which
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this information exchange happens. One way to evaluate the definition of
Section 6.2.4 consists of defining a requirement similar to the requirement of
Charron-Bost et al. and to prove that this requirement is equivalent with the
definition of the logically instantaneous information transmission property;

�� In (Charron-Bost et al., 1996), an equivalent characterisation of synchronous
computations is given by a requirement on the common ‘happens before’
relation as defined by Lamport. (This requirement states that there should
exist at least one linear extension of the ‘happens before’ relation such that
for all pairs of corresponding send and receive events, the interval between
two corresponding events is empty. Similar to the previous point, a possible
way to evaluate the definition of Section 6.2.4 consists of defining a
requirement similar to the requirement of Charron-Bost et al. and to prove
that this requirement is equivalent with the definition of the logically
instantaneous information transmission property;

�� In (Soneoka & Ibaraki, 1994), yet another characterisation of synchronous
computations is given. Soneoka and Ibaraki develop a formal notion that
precisely determines whether messages cross each other. They then prove
that a communication is synchronous iff no messages can cross. Thus, yet
another way to evaluate the definition of Section 6.2.4 consists of defining a
requirement similar to the requirement of Soneoke and Ibaraki and to prove
that this requirement is equivalent with the definition of the logically
instantaneous information exchange property. As an aside, in (Charron-Bost
et al., 1996), the no-message-crossing property is also mentioned.
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Chapter 7�

Global Perspectives

As stated in Chapter 1, an important characteristic of the semantic structure
presented in the previous chapters is locality: the semantic structure provides a
local view on the state and dynamics of a compositional system. A more global
perspective on the dynamics of a multi-agent system and a compositional system
is, however, in some cases interesting. In the first place, a more global perspective
provides additional insight in the connections between individual components. A
more global perspective enables a detailed comparison with other models of
dynamics of concurrent systems, which often only have a global perspective. In the
second place, a more global perspective facilitates the development of a refinement
of the semantic structure presented in the previous chapters. This refinement, to
which Chapter 8 is devoted, involves relations between, on the one hand,
components that control other components and, on the other hand, the
components controlled by other components.

In this chapter, in Section 7.1, a notion of the global state of the components and
links in a structure hierarchy is developed. This notion is discussed and compared
in detail with other models of concurrency in Section 7.2. Proofs are collected in
Section 7.3.

7.1�Global State in Distributed Systems

The aim of this chapter is to develop a more global perspective on the behaviour of
components and links in a compositional system. A global perspective is, like the
three views on behaviour defined in Chapter 5, relative to a structure hierarchy. As
a consequence, a global perspective on the behaviour of a compositional system is
not unique, but depends on a structure hierarchy that describes (part of) the
compositional system. One could argue that given a structure hierarchy SH, the
glass box view on the behaviour of the components and links in SH provides a
global perspective. However, although the glass box view models the behaviour of
single components and links in SH in the context of the behaviour of all other
components and links in SH, the glass box view does not define the global state of
(the compositional system consisting of) the components and links in SH.
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The main contribution of this chapter, and the main difference between global
perspectives developed in this chapter and the perspective provided by the glass
box view, is the notion of a global state. In Section 7.1.1, this notion is defined in a
declarative style. Section 7.1.2 presents a similar definition in terms of a transition
system that enables the generation of the set of global states for a given structure
hierarchy. These subsections are deliberately kept concise and technical. An
informal discussion of the notion of global state developed in these subsections is
deferred until Section 7.2.1, which is dedicated to a discussion of models of
concurrency developed in Theoretical Computer Science in the last decades. In
Section 7.2.2, a detailed, formal comparison of the notion of global state developed
and a similar notion proposed by Mattern (1992) is presented.

7.1.1� A Notion of Global State

The starting point for the definition of a global state is a structure hierarchy SH or a
component structure CS, a collection of compatibility relations �, and a collection of
sets of local component and link traces (�S) for a specific index set S. Given a

component C in SH, the behaviour of the components and links in SH can be
described by the three views BehWB(C,CS,�,(�S)), BehBB(C,SH,�,(�S)) and
BehGB(C,SH,�,(�S)) developed in Section 5.2.2. These definitions are repeated here

for ease of reference.

Definition 5.25. (Component behaviour, white box view). Let C be a component, let
CS=
Comp;Lnk;�;dom;cdom� be a non-empty composition structure for C, let �=(�I)I³Lnk

be a collection of compatibility relations and let �=(�S)S³SLC(C,CS) be a collection of sets of

traces such that for all S�SLC(C,CS), �S	Behloc(S). The white box view on the

behaviour of C, BehWB(C,CS,�,�), with respect to CS, �  and � is the set of compatible

multitraces ��MTCS  of C such that for each subcomponent or link S of C it holds that the

local component trace of S in � is an element of �S. Formally:

BehWB(C,CS,�,�) = { � | ��MTCS is compatible for �  and

 �S�SLC(C,CS): �S��S }.

Definition 5.26. (Component behaviour, black box view). Let C be a component, let
SH=
Comp;Lnk;�;dom;cdom� be a non-empty structure hierarchy for C, let �=(�I)I³Lnk be a

collection of compatibility relations and let �=(�S)S³SLC(C,SH) be a collection of sets of

traces such that for all S�SLC(C,SH), �S	Behloc(S). The black box view
BehBB(C,SH,�,�) for C with respect to SH, �  and � on the behaviour of C is the subset of

Behloc(C) such that each local component trace in this subset is part of a compatible

multitrace for SH that is based on the given traces of the subcomponents and links of C.
Formally:

BehBB(C,SH,�,�) = { �C | ��MTSH  is compatible for �,

 �S�SLC(C,SH): �S��S and

 �I�Lnk such that dom(I)=cdom(I)=C: �I�Behloc(I) }.
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Definition�5.27. (Component behaviour, glass box view). Let C be a component, let
SH=
Comp;Lnk;�;dom;cdom� be a non-empty structure hierarchy for C, let �=(�I)I³Lnk be a

collection of compatibility relations and let �=(�S)S³Prim(SH) be a collection of sets of traces

for the primitive components in SH. The glass box view BehGB(C,SH,�,�) for C with

respect to SH, �  and � on the behaviour of C is the subset of the set MTSH of multitraces

for SH such that for all ��BehGB(C,SH,�,�) it holds that:

�� � is compatible for �;

�� �C’�Prim(SH)\{C}: �C’��C’ and

�� �S�Comp�Lnk: �S�Behloc(S).

The elements of BehBB(C,SH,�,�) are local component traces. The elements of
BehWB(C,CS,�,�) and BehGB(C,SH,�,�) are compatible multitraces, where each

compatible multitrace is a multiset of local component traces, one for each
component and link in SH. Each different local component trace or compatible
multitrace represents different behaviour of the components and links in SH.

Global states are defined in terms of another notion (i.e., snaphots). Given a
compatible multitrace �, a snapshot selects one local component or link state from
each local trace in �. In other words, a snapshot is a function that maps every
component and link in SH=
Comp;Lnk;�;dom;cdom� to a state of that component or
link. The co-domain of this function is thus the union of all sets �S for

S�Comp�Lnk. In the development of a notion of global state, a binary relation on
this set is needed. As the sets of states of different components are not necessarily
disjoint, coloured versions of the states, as defined in Definition 6.10, are used.
(Similar to the definition of dependence in Chapter 6.) A snapshot is formally
defined as follows:

Definition 7.1. (Snapshot). Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy,
let �=(�I)I³Lnk be a collection of compatibility relations and let � be a multitrace compatible

for �. A snapshot of SH for � and �  is a function snap(SH,�,�): Comp�Lnk�S³CompLnk
�

�S such that for all S�Comp�Lnk, snap(SH,�,�)(S)=�S(i) for some i. The set of all

snapshots of a structure hierarchy SH and a multitrace � is denoted SNAP(SH,�,�). A

snapshot is typically denoted by �.

A snapshot is thus a multiset indexed by the components and links in SH

containing a local state of each component and link in SH. If � is an element of the
black box view on the behaviour of the components and links in a particular
structure hierarchy, a snapshot consists solely of a local state of the top component
of that structure hierarchy. Figure 7.1 depicts a snapshot for the multitrace
depicted in Figure 5.1.

Alternatively, a snapshot can be defined as an element of the Cartesian product
of the sets of local states of the components and links in SH, as witnessed by the
following definition:
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Figure 7.1: A snapshot for the multitrace of Figure 5.1.

Definition 7.2. (Snapshot, alternative definition). Let SH=
Comp;Lnk;�;dom;cdom� be
a structure hierarchy, let � be a collection of compatibility relations and let � be a

multitrace compatible for �. A snapshot of SH and � is a tuple 
�S1;…;�Sn��S³CompLnk
�

�S such that for all S�Comp�Lnk, �S=�S(i) for some i.

Given a structure hierarchy SH=
Comp;Lnk;�;dom;cdom�, as is indicated by the
definition of a snapshot, a snapshot selects local component and link states from all
components and links in Comp�Lnk, at all levels with respect to the hierarchy
relation �. Consequently, the definition of a snapshot does not constrain possible
selections of local states for the subcomponents of a composed component. In other
words, it is not the case that for a subcomponent or link S�C, the definition of a
snapshot requires �(S) to have any relation with �(C). This fact is further discussed
at the end of this subsection.

As stated just before Definition 7.1, the global state of a structure hierarchy is
defined in terms of a snapshot. The relation between snapshots and global states is
as follows. Given a multitrace � that is compatible for �, any selection of local states
from the traces in � is a snapshot in the set SNAP(SH,�,�). Consider the behaviour
of the components and links in SH as described by �. At each moment in time, the
current local state of each component and link in SH can be distinguished, and, as
time passes, local transitions from one local state to the next occur. A
straightforward, but, for reasons to be presented shortly, unsound notion of a
global state of the structure hierarchy SH can be defined as the composition of the
local states of all components and links in SH at the same moment in time. In other
words, the global state is a snapshot � such that each local state �(S) in the
snapshot is the state of the component or link S at the same moment in time.
However, by defining a global state as the composition of local states of
components and links at the same moment in time, a notion of simultaneity based
on global time is assumed, that determines equivalent moments in time. However,
as discussed in Section 7.2.1, global time is generally considered to be undefined in
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a distributed system (Lamport, 1978, 1986; Pratt, 1986). Therefore, a different
definition of global state is needed, which does not rely on a notion of simultaneity
based on global time.

The following observation suggests a solution. Not every snapshot of a structure
hierarchy SH and a multitrace � is a global state of SH, because some selections of
local states of the components and links in SH cannot be considered simultaneous
in the behaviour described by �. An example of a snapshot that is not a global state
is a snapshot containing two local states �A,i and �B,j’ of two components A and B,
in which in �B,j’ information is available that, according to compatibility, is
produced by state �A,i of A. In other words, �B,j’ depends on �A,i, or �A,i�d�B,j’ in
the notation of Definition 6.11. In this case, �A,i and �B,j’ cannot be considered to be

simultaneous states. (If they were simultaneous, then information transmission
from A to B would be instantaneous.) Therefore, the snapshot containing �A,i and
�B,j’ cannot be considered a global state.

The solution suggested in the previous paragraph is as follows. A global state is
defined as a snapshot in which every pair of local component or link states may
possibly happen simultaneously, where two states may happen simultaneously
only if neither depends on the other, or, in other words, if they are not related by
the dependence relation �d defined in Definition 6.11. (Whether they indeed

happen simultaneously is not relevant, as explained in Section 7.2.1 below.)
Independence of two states is formally represented as follows:

Definition 7.3. (Independence). Let �d be the dependence relation for states. Two states

�A,i and �B,j’ are independent, denoted �A,i�d�B,j’, iff �A,i�/ d�B,j’ and �B,j’�/ d�A,i.

A global state is defined as a snapshot such that all states that are selected from the
local component and link traces in a multitrace � are pairwise independent.
Formally:

Definition 7.4. (Global state). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �  be a collection of compatibility relations and let � be a multitrace

compatible for �. A global state of the compositional system described by SH is a snapshot
��SNAP(SH,�,�) such that for all S1S2�Comp�Lnk, �(S1)�d�(S2). The set of all global

states of SH for � and �  is denoted GS(SH,�,�).

This definition does not depend on the availability of a notion of global time.
Instead, the notions of dependence and independence are used.

The notion of dependence defined in Definition 6.11 is applicable for proper
traces (as defined by Definition 6.2) as well as for traces that do not have the
properness property. Some notions developed in the rest of this chapter, however,
only apply to multitraces consisting of proper traces. Therefore, a notion of strict

dependence is introduced. This definition assumes that all traces in � are proper
traces, to ensure the existence of prevm(S)(�) and nextm(S)(�).
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Definition 7.5. (Strict dependence). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy and let LTA=

TA;<A�;VA�, LTB=

TB;<B�;VB� and LTL=

TL;<L�;VL� be three

traces of components or links A,B�Comp�Lnk and a link L�Lnk such that A=dom(L) and
B=cdom(L). Let �A,i and �A,j be two states in LTA, let �L,i”, �L,j”, �L,k and �L,l be four

states in LTL, and let �B,i’ and �B,j’ be two states in LTB. The strict dependence relation

�sd	�SH��SH for LTA, LTL and LTB is defined as the smallest relation �sd such that

�A,i�sd�B,j’ iff either

1. A=B and �B,j’�nextLTA(�A,i), or

2. 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’�� is a transmission octet for LTA, LTL and

LTB, for �A,j�nextLTA(�A,i) and �B,i’�prevLTB(�B,j) or

3. There is a state �C,m of a component or link C�Comp�Lnk such that �A,i�sd�C,m and

�C,m�sd�B,j’.

For realistic compositional systems, the strict dependence relation is assumed to be
a partial order (to avoid that cycles of states are possible that all depend on one
another). It is not the case that for proper traces, dependence and strict dependence
are equivalent. Consider, for example, the two traces depicted in Figure 7.2, in
which vertical lines represent the discrete time points induced by the next state
relation on a dense time line (in this figure, the link from A to B is left implicit). The
four black dots, together with four states of a link (which are not depicted in Figure
7.2) between A and B constitute a transmission octet.

Figure 7.2: Comparing dependence and strict dependence.

It is clear that �A,i�d�B,j’ by clause 2 of Definition 6.11. However, it is not the case
that �A,i�sd�B,j’ because �A,j is not an element of nextLTA(�A,i), and �B,i’ is not an

element of prevLTB(�B,j’).

Thus, for proper traces, there are pairs of states such that one state depends on
the other in the sense of Definition 6.11 (dependence), but not in the sense of
Definition 7.5 (strict dependence). However, for proper traces, the difference
between the two notions can be made more precise, which shows that both notions
formalise the same phenomenon.

Section 6.1.2 motivates transmission octets by the observation that information
transmission establishes a relation between the states involved in the transmission.
(In fact, in the semantic structure developed in this thesis, it establishes a relation
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between eight states.) The relation between the two states is as follows (in which
the states mentioned refer to Figure 7.2): a state �A,i of the domain contains
information, which is transmitted to the co-domain, in which a new state �B,j’

results from this transmission. This relation between states has a one-to-one
correspondence with a similar relation between state transitions. This relation
between state transitions relates the following two transitions. On the domain side,
there is a state transition from a state of the domain that contains information that
is transmitted to the co-domain, and the immediate successor of that state. (This
transition is depicted by a black arrow in the time line for A in Figure 7.1.) On the
co-domain side, there is a relation from the immediate successor of the new state
with the results of the transmission and that new state. (This transition is depicted
by a black arrow in the time line for B in Figure 7.1.) For proper traces, both
Definition 6.11 and Definition 7.5 define dependence implicitly in terms of this
relation on transitions.

Apart from �A,i and �B,j’, a transmission octet consists of four states of the link
between A and B, a state �A,j of A and a state �B,i’ of B. As explained in
Section 6.1.2, state �A,j of A and a state �B,i’ of B are used for the result of

transmission and to denote an enabling state, respectively. The difference between
dependence and strict dependence is that strict dependence requires the state used
for the result of a transmission to be the immediate successor of �A,i and the
enabling state of B to be the immediate predecessor of �B,j’. Non-strict dependence
only requires the state used for the result of a transmission to be a successor of �A,i

and the enabling state of B to be a predecessor of �B,j’. However, under the

assumption of finite variability, it is always the case that there is a finite, maximal
chain of discrete states between �A,i and �A,j. It is also the case that there is a (finite)
chain of discrete states between �B,i’ and �B,j’. Take the leftmost state in the chain
from �A,i to �A,j, or, if the length of this chain is one, take �A,j . Take the rightmost
state in the chain from �B,i’ to �B,j’, or, if the length of this chain is one, take �B,i’.
Non-strict dependence for these states and �A,i, �B,j’ is exactly the same as strict

dependence for these states.
The notion of strict dependence gives rise to strict versions of the notions of

independence and global states:

Definition 7.6. (Strict independence and strict global state).

�� Let �sd be the strict causality relation for states. Two states �A,i and �B,j’ are

strictly independent, denoted �A,i�sd�B,j’, iff �A,i�/ sd�B,j’ and �B,j’�/ sd�A,i.

�� Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let �  be a collection of

compatibility relations and let � be a multitrace compatible for �. A strict global
state of the compositional system described by SH is a snapshot ��SNAP(SH,�,�)
such that for all S1S2�Comp�Lnk, �(S1)�sd�(S2). The set of all strict global states

of SH for � and �  is denoted SGS(SH,�,�).
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In principle, each of the components and links in a compositional system
represented by a structure hierarchy SH is active, which implies that its state
changes over time. Consequently, the global state of the compositional system
represented by SH also changes over time. This induces an order relation on the
global states that models the temporal succession of global states. For strict
dependence, this order is discrete. The next global state relation is first formally
defined for linear, proper traces.

One may expect that the order relation on global states is defined as a binary
relation on the set GS(SH,�,�) or SGS(SH,�,�). However, this is not the case for the
following reason. Consider three global states �, �’ and �” such that:

�� � and �’ only differ for the local state of a component C. In other words,
�(C)��’(C) and for all S�Comp\{C}�Lnk, �(S)=�’(S).

�� �’ and �” only differ for the local state of a link I with dom(I)=C. In other
words, �(I)��’(I) and for all S�Comp�Lnk\{I}, �(S)=�’(S).

Suppose that 

�(C);�’(C)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a transmission

octet for I. In other words, local state �(C) is a state in which information is
available that is to be transmitted. As the domain end of I is co-located with C, the
local state transition from �(C) to �’(C) should be simultaneous with respect to
local time with the local state transition from �(I) to �’(I). Thus, �” should be an
immediate successor of �, and global state �’, which is an element of GS(SH,�,�),
should not even be considered for the definition of the next global state relation.
Therefore, in the next global state relation, states � and �’ are considered to be
equivalent, and the next global state relation is defined on the set of equivalence
classes.

Consider two global states �,�’�SGS(SH,�,�) for a structure hierarchy
SH=
Comp;Lnk;�;dom;cdom� such that �’ is a successor of � and there is no global
state �” such that �” is a successor of �, and �’ is a successor of �”. For reasons
explained in Section 7.2.1, the definition of the global state order imposes an
important restriction on � and �’. This restriction requires that for at least one and
at most two different S�Comp�Lnk, �(S)�’(S), and thus for all other S’S,
�(S’)=�’(S’). Moreover, if there are two different S1,S2�Comp�Lnk such that
�(S1)�’(S1) and �(S2)�’(S2), then it is required that S2�Lnk, and: dom(S2)=S1 and
cdom(S2)=C, or dom(S2)=C and cdom(S2)=S1 for some component C. A component or
link S1 and a link S2 that comply with these requirements are co-located: S1 is the
domain or co-domain of S2. Thus, the restriction can be reformulated informally as

follows: between one global state and an immediate successor, there is exactly one
time point at which the local state changes. As explained in Section 7.1.2, this
restriction is necessary to accurately model the dynamics of a distributed
compositional system under the assumption that global time is not available. In the
definition below, the restriction introduced above is made formal. Moreover, an
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extra condition is added: only if the local state �(S1) of a component S1 is involved
in information transmission, a link S2 can change its state.

In the formal definition of the next global state relation below, first the
equivalence relation mentioned above is defined. The next global state relation is
then defined on the set of equivalence classes of this relation. This is done as
follows. First, for two equivalence classes X and Y, two strict global states ��X and
�’�Y are selected such that � is maximal in X and �’ is minimal in Y with respect to
the order on the states in local component and link traces. As traces are assumed to
be linear, � and �’ are unique. A relation for such � and �’ is then defined. The
equivalence classes X and Y are related by the next global state relation if � and �’

are related.

Definition 7.7. (Next global state). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace

compatible for �. Let:

�� R be the relation {
�;�’�|there is a component C and a link I such that
�’(C)=nextm(C)(�(C)) and �’(I)=nextm(I)(�(I)) and either:

– 

�(C);�’(C)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a transmission octet, or

– 

�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�’(I)�;
�(C);�’(C)�� is a transmission octet.

�� PART(SH,�,�) be the set of equivalence classes with respect to R�R-1 (where R-1 is

the symmetric closure of R).

Let X,Y�PART(SH,�,�) be two equivalence classes with respect to R�R-1, and let ��X,
�’�Y be two strict global states such that for all S in Comp�Lnk, there is no �1�X with

�1(S)=nextm(S)(�(S)) and there is no �2�Y with �2(S)=prevm(S)(�’(S)). The next global
state relation is a binary relation on PART(SH,�,�) such that Y�nextSGS(SH,m,g)(X) iff

either:

�� X=Y;

�� X�Y and there is exactly one S�Comp�Lnk such that:

1. �’(S)�nextm(S)(�(S)), and

2. there is no I�Lnk such that for any i,i’,i”,j,j’,j”,k,l:



�dom(I),i;�dom(I),j�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� or



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�’(I)�;
�cdom(I),i’;�cdom(I),j’�� is a transmission

octet, and

3. for all other components or links S’S�Comp�Lnk, �’(S)=�(S), or

�� X�Y and there is exactly one component or link S�Comp�Lnk and a link I�Lnk
with dom(I)=S such that �’(S)�nextm(S)(�(S)), �’(I)�nextm(I)(�(I)),



�(S);�’(S)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� is a transmission octet and
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for all other components or links S’�Comp�Lnk, if S’S and S’I, then

�’(S’)=�(S’), or

�� X�Y and there is exactly one component or link S�Comp�Lnk and a link I�Lnk
with cdom(I)=S such that �’(S)�nextm(S)(�(S)), �’(I)�nextm(I)(�(I)),



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�’(I)�;
�(S);�’(S)�� is a transmission octet and for

all other components or links S’�Comp�Lnk, if S’S and S’I, then �’(S’)=�(S’),

or

�� X�Y and there is an equivalence class Z such that Z�nextSGS(SH,m,g)(X) and

Y�nextSGS(SH,m,g)(Z).

The pair 
PART(SH,�,�);nextSGS(SH,m,g)� has the structure of a lattice, as is shown by

the following proposition:

Proposition 7.8. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace compatible for

�. If �sd is an irreflexive partial order, then the pair 
PART(SH,�,�);nextSGS(SH,m,g)� is a

lattice.

This proposition is important for two reasons. First, it enables a formal comparison
with another notion of global states which can be attributed to Mattern (1992) and
which is based on the ideas of Lamport (1978, 1986). As the title of Mattern’s (1992)
paper indicates, in his approach global states also form a lattice. A comparison
with Mattern’s notion is presented in Section 7.2.2. Moreover, Proposition 7.8
indicates a relation between Katz and Peled’s (1990) Interleaving Set Temporal
Logic (ISTL) and the semantic structure developed in this thesis. ISTL, which is a
logic to reason with global states, is interpreted over models with a lattice
structure, similar to the lattice of strict global states. A discussion of ISTL is
presented in Chapter 12.

Second, this proposition shows that nextSGS(SH,m,g) is a partial order (if �sd is a

partial order). In general, this order is not total: a particular global state might have
successors that are not related by nextSGS(SH,m,g). It is insightful to compare this to

the use of partial orders in other formal models of concurrency. Usually, unrelated
successors of a state in a formal model of concurrency represent choices between
different behaviour, and the partial order as a whole represents all possible
behaviours. In a deterministic setting, the choices taken are fully determined by the
environment of the modelled system, while in a nondeterministic setting, arbitrary
choices may be made. In both cases, it is the compositional system of which the
behaviour is modelled by the partial order that actually chooses one of the
different alternatives. Consequently, for a fixed time interval, different observers of
the compositional system all observe the same behaviour of the compositional
system.

However, apart from representing choices taken within components in a
compositional system, the partiality of the order nextSGS(SH,m,g) also represents a
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different phenomenon. This is best explained by assuming, for the moment, that all
local component and link traces in a compatible multitrace � are linear (i.e., each
state in each local component or link trace has a unique next state). Consider the
next global state relation nextSGS(SH,m,g) and the set of global states SGS(SH,�,�)

relative to this compatible multitrace �. In the semantic structure developed in this
thesis, each compatible multitrace � represents one specific behaviour. Consequently,
the set of global states SGS(SH,�,�) and its partial order nextSGS(SH,m,g) necessarily

represent one specific behaviour. (In the semantic structure developed in this
thesis, sets of compatible multitraces such as the white box view represent all
possible behaviours.) The compositional system of which the specific behaviour �
is modelled by the set of global states SGS(SH,�,�), and its partial order
nextSGS(SH,m,g) do not make any choices: at any moment in time, all components

and links in SH each have a unique next local state. However, because a notion of
global time is not assumed to be available and because it is assumed that different
observers of the compositional system are subject to nondeterminism with respect
to their observations, it is not possible to totally order the global states of the
compositional system. Thus, the partial order on the set of global states
SGS(SH,�,�) represents the different observations made by different observers. In
Section 7.2.1, the assumption of nondeterminism with respect to observations is
clarified.

It is difficult to define a next global state relation for traces that do not have the
properness property or that are not linear. For traces that are proper but not linear,
Definition 7.7 can easily be adapted. In this case, the only difference is that
nextm(S)(�S) is no longer unique. In general, the next global state relation does not

define a lattice in this case, as two states on different branches do not always have
a lowest upper bound. For traces that do not have the properness property,
Definition 7.7 must be adapted in such a way that the relation nextm(S) is no longer
needed. This may be achieved by changing occurrences of the form nextm(S)(�S) in

the definition by the requirement that there is a state �’ in �(S) such that �’ occurs
later than �S. As for two arbitrary global states it is not always possible to find an

upper bound that is the lowest upper bound, the resulting order most likely does
not have a lattice structure. In this thesis, the next global state relation is mainly
used to compare the notion of global state developed in this chapter to approaches
found in the literature on modelling distributed systems. In these approaches,
traces are considered to be proper and linear. Therefore, Definition 7.7 is not
adapted for traces that do not have the properness property or that are not linear.

Definition 7.4 is stated (via independence) in terms of the dependence relation,
which, in turn, is stated in terms of transmission octets (among others). The
following proposition establishes a direct relation between transmission octets and
global states.

Proposition 7.9. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let �  be a
collection of compatibility relations, let � be a multitrace compatible for �  and let



7.1: Global State in Distributed Systems

132

��SNAP(SH,�,�) be a snapshot. If for all S1S2�Comp�Lnk and for all j’ such that

�<j’�j, with j such that �(S1)=�S1(j), there is no transmission octet



�(S1);�(S1)’�;
�L,i”;�L,j”;�L,k;�L,l�;
prev�(S2)(�S2(j’));�S2(j’)����L for any link L from S1

to S2, �(S1)’�next�(S1)(�(S1)) and i”,j”,k,l in the time frame of �L, then � is a strict global

state.

The converse of Proposition 7.9 is not true.
The end of this subsection recurs to the remark made earlier in this subsection

on the absence of a requirement on the relation between local component or link
states in a snapshot of a component or link S with S�C and the local component
state of C in this snapshot. Such a requirement is also absent from the definition of
a global state given above or from the more direct characterisation of global states
given by Proposition 7.9. Given a structure hierarchy SH=
Comp;Lnk;�;dom;cdom�,
all components or links in Comp�Lnk are treated on an equal footing, regardless of
their level in the hierarchical composition relation �. However, because the
depence relation is a relation on all states in �SH, the dependence relation induces a

relation on the local component state �(C) and the local component or link states of
all S�Comp�Lnk such that S�C, for � a global state. Such an induced relation might
be seen as a relation that defines a notion of ‘constituent state’: the global state of C
consists of the ‘constituent states’ of its subcomponents and links. This notion is
related to the notion of an abstract event in event-based approaches, where an
abstract event is an event that itself consists of other events. Lamport (1986)
extends the dependence relation (actually, a version of the dependence relation
defined on events) to abstract events. Kshemkalyani (1998) systematically develops
all 24 possible dependence relations on abstract events.

7.1.2� A Transition System

In this subsection, the set of global states associated with a structure hierarchy SH

and a multitrace � compatible for � are defined as a subset of SNAP(SH,�,�)

induced by a global transition system that is defined below. This definition of the
set of global states is, like Definition 7.4, not defined in terms of global time. The
definition developed in this subsection provides a more detailed, constructive
notion of global state.

The transition system, called the global transition system of a given structure
hierarchy SH, is a pair 
SNAP(SH,�,�);�g�, where �g, the transition relation, is

called the global transition relation. The global transition relation is defined as
follows: there is a transition from a snapshot � to a snapshot �’ iff there is either an
internal global transition, a sending global transition, or a receiving global
transition from � to �’ (these three types of global transitions are defined below).

The global transition relation is related to properties of compatibility relations
as defined in Chapter 6. Chapter 6 presents a number of properties of compatibility
relations, such as the lossless transmission property and the order preserving
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transmission property. These properties model properties of information
transmission that may or may not be adopted in an application of the framework
developed in this thesis. The properties presented in Chapter 6 only specify what is
understood to be information transmission in particular applications, and not how

information transmission can be realised (i.e., what actions to take) such that
information transmission indeed possesses the properties attributed to it. In other
words, Chapter 6 is dedicated to a declarative, or intensional discussion of
information transmission.

The notion of global transitions defined below enables a more operational, or
extensional, formalisation of information transmission properties. In fact, the
definition of global transitions is suitable for ‘encoding’ properties of information
transmission of the form presented in Chapter 6. The general idea is as follows.
Consider a snapshot �, which is a selection of local states, one for each component
or link in a specific structure hierarchy SH. The global transition relation relates �
to a set of possible successor snapshots. A successor snapshot �’ differs from � for
one or two local component or link states, depending on whether the global
transition is a send global transition, a receive global transition or an internal
global transition.

�� Consider a snapshot ��SNAP(SH,�,�) and a component or link
S�Comp�Lnk. The local state of S is given by �(S). From a local point of
view, the next local state is determined by the local component or link trace
of S in �. A successor of � is thus a snapshot �’ such that �’(S)�nextm(S)(�(S)).

Now consider all links in Lnk connected to S, that is, all links I such that
dom(I)=S or cdom(I)=S. For each of these links, a compatibility relation �I is

assumed to be given. Assume that there is no transmission octet


�(S);�’(S)�;
�(I);�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� (if dom(I)=S) or



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�I,l�;
�(S);�’(S)�� (if cdom(I)=S) in any of these

compatibility relations. This means that information transmission is not
involved in the local transition of component S from �(S) to �’(S). The global
transition from � to �’ is an internal global transition, and for all
S”�Comp�Lnk with S”S: �’(S”)=�(S”);

�� Consider a snapshot ��SNAP(SH,�,�) and a component or link
S�Comp�Lnk. The local state of S is given by �(S). From a local point of
view, the next local state is determined by the local component trace of S in
�. A successor of � is thus a snapshot �’ such that �’(S)�nextm(S)(�(S)). Now

consider a link I�Lnk such that dom(I)=S and assume that there is a
transmission octet 

�(S);�’(S)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’����I, for
some i’,j’�Tm(cdom(I)) with �(cdom(I))=

Tm(cdom(I));<m(cdom(I))�;Vm(cdom(I))�,

��i’<j’. This means that information transmission is involved in the local
transition of S from �(S) to �’(S). More specifically, the transition from
�cdom(I),i’ to �cdom(I),j’ relies on receiving information from S. The global
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transition from � to �’ is a sending global transition. Moreover, together with
the local transition of S from �(S) to �’(S), a transition of the state of link I
occurs. Therefore, �’(I)�nextm(I)(�(I)) and for all S”�Comp�Lnk with S”S and

S”I: �’(S”)=�(S”);

�� Finally, consider a snapshot ��SNAP(SH,�,�) and a component or link
S�Comp�Lnk. The local state of S is given by �(S). From a local point of
view, the next local state is determined by the local component trace of S in
�. A successor of � is thus a snapshot �’ such that �’(S)�nextm(S)(�(S)). Now

consider a link I�Lnk such that cdom(I)=S and assume that there is a
transmission octet 

�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�’(I)�;
�(S);�’(S)����I, for
some i�Tm(dom(I)) with �(dom(I))=

Tm(dom(I));<m(dom(I))�;Vm(dom(I))�, ��i<j. This

means that information transmission is involved in the local transition of S
from �(S) to �’(S). More specifically, the transition of S from �(S) to �’(S)
relies on the occurrence of a transition of S’ from �dom(I),i to �dom(I),j. The

global transition from � to �’ is a receiving global transition. Moreover,
together with the local transition of S from �(S) to �’(S), a transition of the
state of link I occurs. Therefore, �’(I)�nextm(I)(�(I)) and for all S”�Comp�Lnk

with S”S and S”I: �’(S”)=�(S”);

The three scenarios sketched are formalised in the following definition:

Definition 7.10. (Global transition relation). Let SH=
Comp;Lnk;�;dom;cdom� be a
structure hierarchy, let �=(�I)I³Lnk  be a collection of compatibility relations, let � be a

multitrace compatible for � and let �,�’�SNAP(S,�,�) be two snapshots. The global
transition relation �g for SH, � and � is a binary relation on SNAP(SH,�,�) such that

��g�’ iff 
�;�’� is either an internal global transition, a send global transition or a receive
global transition. These transitions are defined as follows:

�� The pair 
�;�’� is an internal global transition iff there is exactly one component
or link S�Comp�Lnk such that �’(S)�nextm(S)(�(S)), while for all S’�Comp�Lnk

with S’S: �’(S’)=�(S’) and for all links I�Lnk, there is, for i”,j”,k,l,i’,j’ no

transmission octet 

�(S);�’(S)�;
�I,i”;�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’����I and no

transmission octet 

�dom(I),i;�dom(I),j�;
�I,i”; �I,j”; �I,k;�I,l�;
�(S);�’(S)����I;

�� The pair 
�;�’� is a sending global transition iff there is exactly one component or

link S�Comp�Lnk and exactly one link I�Lnk with dom(I)=S such that
�’(S)�nextm(S)(�(S)), �’(I)�nextm(I)(�(I)) and, for arbitrary k,l,i’,j’,



�(S);�’(S)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’����I, while for all

S”�Comp�Lnk with S”S and S”I: �’(S”)=�(S”), with k,l�Tm(I), where

�(I)=

Tm(I);<m(I)�;Vm(I)�, and i’,j’�Tm(cdom(I)), where

�(I)=

Tm(cdom(I));<m(cdom(I))�;Vm(cdom(I))�;

�� The pair 
�;�’� is a receiving global transition iff there is exactly one component

or link S�Comp�Lnk and exactly one link I�Lnk with cdom(I)=S such that
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�’(S)�nextm(S)(�(S)), �’(I)�nextm(I)(�(I)) and, for arbitrary i,j,i”,j”,



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);�’(I)�;
�(S);�’(S)����I, while for all

S”�Comp�Lnk with S”S and S”I: �’(S”)=�(S”) with i”,j”�Tm(I), where

�(I)=

Tm(I);<m(I)�;Vm(I)�, and i,j�Tm(dom(I)), where

�(I)=

Tm(dom(I));<m(dom(I))�;Vm(dom(I))�.

With respect to this definition, a number of remarks can be made:

�� The definition of a global transition does not contain a commitment to a
specific property of information transmission. Instead, although this
definition provides operational details that are not included in the
definitions in Chapter 6, it is still general enough to capture different forms
of information transmission. Properties of information transmission are
properties of the information links. The properties of information
transmission presented in Chapter 6 can be encoded by constraining the set
of local component traces of information links. For instance, the order
preserving property can be encoded by constraining local link traces such
that the link behaves as a queue;

�� In Section 2.2.7, two forms of information transmission are discussed:
synchronous and asynchronous information transmission. For ease of
reference, the relevant part of this discussion is summarised. Different
researchers take different positions in the issue of synchronous versus
asynchronous information transmission: whether synchronous information
transmission is more basic than asynchronous information transmission or
conversely. On the one hand, synchronous information transmission is a
special form of asynchronous information transmission in which the
capacity of the communication channels to hold information in transit is
restricted. On the other hand, asynchronous information transmission can
be realised by synchronous information transmission as follows. There is
synchronous information transmission between the sending component and
one end of the communication channel and there is synchronous
information transmission between the other end and the receiving
component. These two instances of information transmission are not
synchronous with one another. In the semantic structure developed in this
thesis, both views may be held. On the one hand, the definition of sending
and receiving global transitions above corresponds to synchronous
information transmission with the two ends of an information link: both the
state of the sending (respectively receiving) component and of the link
change at the same time. However, in this definition the transitions of two
components S and S’ that exchange information are not related. Thus,
asynchronous communication is simulated by two instances of synchronous
communication. On the other hand, if one abstracts from the detailed,
operational view provided by the definition of global transitions above and
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reverts to compatibility relations and their properties, asynchronous
information transmission is the basic notion. Synchronous information
transmission between components is then a special case of information
transmission in which a property is adopted that restricts the capacity to
hold information in transit;

�� In a global transition, at most two local states change (and at least one). This
is a consequence of the assumption that global time is not assumed to be
available and is discussed in Section 7.2.1.

The definition of a transition system is now straightforward:

Definition 7.11. (Global transition system). Let SH=
Comp;Lnk;�;dom;cdom� be a
structure hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations and let � be a

multitrace compatible for �. A global transition system for SH, � and � is a pair
GTS(SH,�,�)=
SNAP(SH,�,�);�g�.

The following proposition establishes a relationship between global states as
defined in the previous subsection, and the set of all snapshots that can be reached
from a certain initial state (defined below) in one or more steps by the transition
system.

Proposition 7.12. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace compatible for �

and let GTS(SH,�,�) be a global transition system for SH.

�� Let �,�’�SNAP(SH,�,�) be two snapshots. Let the n-step successor relation �n g

on SNAP(SH,�,�) be defined inductively for n�0 as follows: ��0 g�’ iff �=�’ and,

for n>0, ��n g�’ iff ��n-1
g�” and �”�g�’;

�� Let the closure of a set of global states be a function *: �(SNAP(SH,�,�))�

�(SNAP(SH,�,�)) defined as follows:

X*=n�0
� {��SNAP(SH,�,�)|�’�n g� for �’�X};

�� Let the initial global state of SH be the snapshot q0�SNAP(SH,�,�) such that for

all S�Comp�Lnk: q0(S)=�S(�) (where � is the beginning of time as defined in

Definition 5.11);

If ��{q0}*, then � is a global state.

Similar to the next global state relation defined in Definition 7.7, the global
transition relation is a partial order. Again, the partiality of this order represents
not only choices made by the components, but also nondeterminism in the
observation of the global transition system.

As a final remark, note that this thesis does not assume that a notion of a (non-
distributed, sequential) automaton representing the behaviour of a distributed
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system is conceptually valid. Therefore, this thesis does not claim that a transition
system GTS(SH,�,�) is an abstract, non-distributed automaton that corresponds to a
compositional system represented by SH.

7.2�Discussion

While developing the notion of global state in Section 7.1, some remarks were
made with respect to the relationship between the notion of global state as
developed in this chapter and other notions that have been developed in
Computer Science. The notion of global state is an aspect of modelling
concurrency, for instance in distributed systems. Therefore, in Section 7.2.1, an
overview of concurrency models is presented to provide context for a more
detailed comparison. A formal comparison of the notion developed in this chapter
and other notions is presented in Section 7.2.2. Section 7.2.3 discusses a
generalisation of the notion of strict dependence.

7.2.1� Modelling distributed systems

The notion of global state attracted considerable interest in the areas of Theoretical
Computer Science and Distributed Systems research, as one of many aspects of
modelling concurrency in distributed systems. In this section, a short survey of the
results in these areas is provided, inspired by (Pratt, 1986, 1991).

The first formal models of concurrency found their roots in formal models of
sequential computation. These models of sequential computation themselves were
based on the concepts of transition systems, automata and formal languages. For
sequential, non-distributed computations8, there is no difference between local and
global states, because there is no spatial dimension. A sequential computation is
modelled as follows: it remains in a particular state for some time, in which it is not
active. These static intervals are alternated by periods in which some activity takes
place: an action occurs, which results in transition to a new state. Contrary to
common parlance in Artificial Intelligence, such an action is not something that
tries to alter the state of the environment of the computation. Instead, it is assumed
to be internal and although the occurrence of an action is not part of the result of
the computation, an occurrence of an action is assumed to be observable.
Moreover, it is also assumed that an action is atomic: it does not consist of sub-
actions.

A transition system assumes that a set of states � of the computation and a set A
of action names are given and defines a ternary relation on these sets: the transition
relation TR	�
A
�, where ��1;a;�2��TR means that if the computation is in state

                                                          
8 A sequential, non-distributed computation is the activity of a single computer over

some amount of time. A distributed computation is the collective activity of a number of
computers, or processors, over some amount of time.
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�1, performing action a changes the state to �2. An automaton is a transition system

in which one particular state is distinguished as the starting state, and several other
states are distinguished as ending states. Transition systems and automata induce
an ordering on the set of states, but not (directly) on the set of actions. The ordering
on states induced by a transition system is, in general, not linear, but only partial.
This partiality represents states where computations have the possibility to choose
between performing different actions. It is still assumed that the sequence of states
of one particular computation are linearly ordered. As an aside, underlying this
assumption is the definition of a computation as the activity or behaviour of a
computer over some amount of time (also known as a run), and not as the
collection of possible behaviours over different amounts of time (or, a collection of
runs).

The formal language theory approach to modelling sequential computations
takes an orthogonal view by defining an order on the actions: a sequential
computation is identified with the sequence of the actions it performs, which is a
word in the language of all computations. Technically, such a sequence or word is
a linearly ordered multiset of action names. (A sequence is a multiset because
actions can occur more than one time. To distinguish between different
occurrences, a set E of symbols identifying action occurrences can be introduced.
Each element from E is labelled by the action of which it represents an occurrence.
This way, no element from E has to be in a sequence more than once and multisets
are no longer needed.) While transition systems and automata order states,
sequences order action occurrences. However, an order on states can easily be
obtained from this linear order on action occurrences, by taking the state that
results after each action occurrence. This order is again linear. As an aside,
sequences of action occurrences are often called traces, which is an unlucky
coincidence with temporal logic, in which a trace usually refers to a sequence of
possible worlds or states9.

The first approaches to modelling concurrency tried to stay as close to the
approaches used for sequential computations as possible. To this end, these first
approaches identified the concurrent occurrence of two actions a and b with a
nondeterministic choice between their two possible sequential occurrences: either a
followed by b or the other way around. The two possible sequential occurrences
are called the interleavings of a and b. If the (atomic) actions a and b are assumed to
have duration, this means that a has stopped before b begins (or the other way
around): their occurrences are completely mutually exclusive. This approach is
called the atomic mutual exclusion view on concurrent computations10. The choice
between the two interleavings is nondeterministic and differs from computation

                                                          
9 This coincidence clearly shows the independent development of temporal logic and

models of computation until Pnueli’s (1977) landmark paper.
10 The more common name ‘interleaving’ is not used here to avoid confusion with the

notion ‘interleaving view’ which has a very specific meaning, to be defined below.
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(or run) to computation. However, all observers of a single computation observe
the same interleaving. As a consequence, the states and actions of a single
computation are still linearly ordered. Pratt (1986) lists the following arguments
advocating this approach:

�� The atomic mutual exclusion view needed only minimal adaptations of the
approaches used for modelling sequential computations. Formal language
theory was extended with a binary operator on strings, the shuffle operator,
which, given two strings, produces the interleavings of the actions in these
strings. All other operators (concatenation, Kleene star, etc.) are still
applicable;

�� Every partially ordered set is representable as the set of its linearisations
(Abraham et al., 1990). Therefore, if a partial order would be needed to
model concurrency, its set of linearisations suffices and is preferable, as the
linearisations can easily be described using formal language theory;

�� In real systems, time is totally ordered. Only in non-rigid systems (systems
in which parts move with respect to one another), time is no longer totally
ordered as is described by relativity theory. Especially in the early days of
concurrency theory, when most concurrent systems were actually
multiprogramming systems, the assumptions underlying the atomic mutual
exclusion view were intuitively appealing. (In a multiprogramming system,
there is no concurrency in the sense that several processors are computing
and exchanging information simultaneously. Instead, one processor rapidly
switches between executing several programs. For an observer, these
programs appear to be running simultaneously. However, at any moment in
time, only one program is active. In a multiprogramming system, the
processor actually chooses between interleavings.)

An important disadvantage of this approach is that behaviour of a concurrent
system is not preserved in the case of action refinement (Castellano et al., 1987).
Consider two processes, one of which performs an action a, while the other one
performs action b. The behaviour of the concurrent execution of these processes is
described by the set of the two interleavings {ab,ba} (where the string ab models the
case in which first a is performed, followed by b, and ba models the case in which
first b is performed, followed by a). In either case, conform the mutual exclusion
assumption, the first action is fully finished before the last action starts. Now
suppose that action a is decomposed into two sequencial actions a1 and a2. The
behaviour of the concurrent execution of processes a1a2 and b is described by the
set of three interleavings {a1a2b,ba1a2,a1ba2}. The interleaving a1ba2 shows that

behaviour is not preserved in the case of action refinement: action b occurs while
action a=a1a2 has already started but not finished. Glabbeek and Goltz (1989) show

that partial orders preserve behaviour in the case of action refinement. (As the title
of their paper suggests, a model in between interleaving and partial orders in
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expressive power is often sufficient for the preservation of behaviour in the case of
action refinement.)

A second disadvantage of the atomic mutual exclusion view is of a more
conceptual nature. The atomic mutual exclusion view implicitly assumes that a
notion of global time is available, because the activities of concurrent processes are
synchronised. However, the assumption that global time is available is
conceptually invalid in current-day distributed systems for two reasons: (i) it is
impossible to make global time available to physically separated parts of a wide-
area distributed system and (ii) if it nevertheless were available, it cannot be
proven to be available.

At first sight, global time seems to be available automatically and unavoidably.
As stated above, time is totally ordered for rigid physical systems. As distributed
computer systems are physical systems (most often rigid or almost rigid), at a
physical (hardware) level, global time is available in the form of the everyday
notion of continuous wall clock time. For this reason, it is tempting to assume that
global (synchronised) time is available also at higher levels, and use the atomic
mutual exclusion view to model distributed systems. However, at the level of
interest for modelling distributed systems, i.e. at the level of abstraction of action
performance and information exchange, continuous wall clock time, synchronised
for the entire distributed system, is not available, for reasons explained below. If,
nevertheless, models of distributed systems assume that global time is available,
either implementing these systems is difficult (as each processor has to actively
synchronise with all other processors), or the implemented systems may have
erroneous properties that cannot be predicted by the model.

At the level of abstraction that is of interest for modelling distributed systems
(and at higher levels), global time is not available because at this level, individual
processors in a distributed system perform their processes in discrete steps,
governed by a very regular square-wave electrical signal called the ‘clock’ signal,
typically with a frequency between 1 and 1000 MHz. At this level, time is
measured in terms of this clock signal. The clock signal of each processor is a
function of wall clock time, but in general, this function varies from processor to
processor. For the notion of time derived from the clock signal to be considered
global, either the signal has to come from the same source for each processor, or
different sources have to be synchronised11.

Providing one source for the clock signal to which each processor is physically
connected is only feasible for fine-grained parallel computers, i.e. with all

                                                          
11 It is probably helpful to compare these two possibilities to looms and workers in a

nineteenth-century cotton mill. In those days, all looms were driven by a single, central
steam engine, connected to the looms by chains and gears. The number of revolutions of the
engine acted as a time source for the looms. The workers, however, each have their own,
common human sense of time, which they could synchronise with one another by looking at
the wall clock, that may or may not have been present.
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processors connected to one backplane that distributes the clock signal. (It is even
doubtful whether this is feasible for fine-grained parallel computers.) However, on
a world-wide scale, already at the physical (hardware) level, immense if not
insurmountable problems arise. (As stated above, it is dangerous that nevertheless,
at higher levels, global time is available.) As in the area of multi-agent systems,
focus is more on world-scale distribution (e.g., agents that roam the Internet) than
on fine-grained parallel computers, the first possibility for providing global time is
not applicable.

For the second possibility, individual sources have to be synchronised. Several
algorithms for synchronisation with UTC (Universal Coordinated Time, which is
measured using cesium clocks and broadcasted by special radio transmitters) exist
(Tanenbaum, 1992, p. 471-476). However, Tanenbaum draws the conclusion that:
“All in all, getting the clocks in a distributed system synchronised to within 5 or 10
msec of UTC is an expensive and nontrivial business.” Compared to the speed of
today’s processors, synchronisation to an accuracy of 5 or 10 msec can only be
called rudimentary at best.

It is thus very impractical, if not impossible, to provide clock signals that are
synchronised or come from the same source. Even if it were possible to achieve
synchronisation as envisioned in the atomic mutual exclusion view, it is of limited
value. In current-day engineering practice, distributed systems are connected to
other systems and/or observed using electronic information transmission, i.e. via
computer networks. Such information transmission is very slow compared to the
internal activity of the individual processors in a system (i.e., the discrete steps
governed by the clock signal). Moreover, observation delays are unpredictable and
in general vary from observer to observer of the same system. As a result, the
temporal order of observed events is no longer well-defined: two observers of the
same activity of the same distributed system may observe the system differently. As
observation delays in a current-day wide-area distributed system are enormous
compared to the internal processing speed of the processors in the network, these
effects are as relevant as relativity is at speeds close to the speed of light. In this
sense, global time cannot be proven to be available. It is therefore of limited value
for modelling and analysing distributed systems in an engineering context.

Thus, given the focus of the multi-agent systems area at wide-area distributed
systems consisting of autonomous processors (the agents) that are truly active
simultaneously, the interleaving metaphor of a distibuted system as a centralised
automaton that picks a non-deterministic but well-defined linear order of atomic
actions is conceptually invalid. Instead, an alternative concept is needed as a
foundation for modelling distributed systems. Many authors, e.g., (Lamport, 1978),
propose to use causality as this alternative concept.

This concept is best introduced as follows. Similar to the formal language
approach to modelling sequential computations, a set of events, or action
occurences, forms the starting point. An event e1 is causally dependent on an event
e2 if both occur in the same process and e1 occurs (locally) later than e2, or if both
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occur in different processes and e1 is an event in which information is received that
is sent during the occurrence of event e2, or if there is a third event e3 on which e1 is
causally dependent and which itself is causally dependent on e2. In any realistic

distributed system, the causality relation must be a partial order, as, if it were not,
cycles of events can exist that all depend causally on one another.

Thus, the starting point for the alternative view on modelling concurrency
(often called the true concurrency view) consists of a set of events together with a
partial order. In fact, in his paper, Pratt (1986) does not (explicitly) refer to causal
dependence to introduce partial orders. Instead, Pratt proposes to generalise the
formal language theory approach as follows. In the formal language theory
approach, the behaviour of a distributed system is described by strings of actions
performed by the system. A string is a linearly ordered set (or, actually, a multiset,
as multiple occurrences are allowed) of action symbols. In his generalisation, Pratt
allows strings to be partially ordered (partially ordered stings are called pomsets,
for partially ordered multisets. In his paper, Pratt then proceeds to develop an
algebraic model for concurrency based on partial orders. This work culminated in
a very abstract algebraic framework, Chu spaces, applicable not only to model
concurrency but also to reason about mathematical relations in general
(Pratt, 1995). Pratt’s work, which is almost completely algebraic in nature, is not
exploited further in this thesis. As an aside, neither Pratt nor Lamport are the first
authors to use partial orders. Partial orders already appear in Petri nets
(Petri, 1962) and in Winskel’s event structures (Winskel, 1989), which were
developed roughly at the same time as Pratt’s approach.

So far, the true concurrency view has been introduced as a generalisation of the
formal language approach to modelling sequential computations. In fact, in the
true concurrency view, events are predominant. However, it is possible to develop
a notion of global state for a distributed system in the true concurrency view. If a
distributed system is active, the set of all events that may occur for a specific
processor can be partitioned in the set of events that have already occurred and the
set of events that still have to occur. The state of a distributed system as a whole
can be described by the set consisting of all events that have already occurred for
each processor. In a realistic system, this set has to be closed with respect to the
causal dependence relation: if this set contains an event e1 that causally depends on
an event e2, then the set should also contain e2. (Otherwise an action’s effect would

preceed its cause.) Such a set is called a consistent cut. Consistent cuts can be
ordered by set inclusion. This order represents the activity of the distributed
system over time: from the empty set (no events have occurred) to the set of all
events. Mattern (1992) shows that the set of all consistent cuts ordered by set
inclusion is a lattice. This is interesting, as time in relativity theory also has the
structure of a lattice.

A consequence of using set inclusion to order consistent cuts is that the smallest
transitions from one consistent cut to the next consist of pairs of sets that differ for
only one element. (E.g., the transition from � to {e1} to {e1,e2} and not from � to
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{e1,e2} as smallest transition.) The question is: is this correct, even if e1 and e2

actually happened simultaneously? To answer this question, first the notion of
simultaneity in the absence of global time should be clarified. Suppose that a
distributed system is observed by a number of (sequential) observers. Due to
observation delays, some observers observe the events e1 and e2 in the sequence
e1e2, while other observers observe the sequence e2e1. (These sequences are
interleaving views of the same computation.) This is only possible if e1 and e2 are
causally independent, and therefore, e1 and e2 are considered simultaneous.

Nevertheless, to be able to capture all possible observations in this case, all
consistent cuts �, {e1}, {e2} and {e1,e2} should be present. (Observation of the
sequence e1e2 corresponds to the sequence of consistent cuts �, {e1} and {e1,e2},
while the sequence e2e1 corresponds to the sequence �, {e2} and {e1,e2}.) When

ordered by set inclusion, the smallest transitions consists of consistent cuts that
differ by only one event. (Katz and Peled (1990) summarise this argument by
noting that it cannot be proven that the distributed system did not actually go
through a state in which only e1 (or e2) has occurred.)

However, as the definition of the next global state relation indicates, the
semantic structure developed in this thesis sometimes allows global state
transitions that consists of two local state transitions. (This is the case for sending
and receiving global state transitions, where the state of a link changes as well as
the state of another link or a component.) As each local state transition can be
compared to the occurrence of an event, the semantic structure developed in this
thesis seems to divert from the ordering of consistent cuts. In a sending or
receiving global transition, however, the two state transitions are related in the
sense that they are state changes occuring at the same location: either the domain
side of a link and the domain itself, or the co-domain side of a link and the co-
domain itself. Thus, the two transitions can be considered as one event, either the
sending or receipt of information. Consequently, in the semantic structure
developed in this thesis, the smallest global state transitions consist of only one
event.

To conclude this short survey on modelling distributed systems, a few key
differences between the atomic mutual exclusion view and the true concurrency
view are summarised.

�� In the atomic mutual exclusion view, the (global) state of a distributed
system is predominant. Concurrency is identified with (nondeterministic)
choice between interleavings of the concurrent actions, indistinguishable
from choices made in the computations carried out by individual processors
in the system. States are partially ordered, where the partial order represents
choices that can be made by the system, resulting in different possible runs
of the system, one for each linearisation of the partial order. Given a specific
run, all observers of that run observe the same behaviour.
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�� In the true concurrency view, events are a predominant concept. Events are
partially ordered, where the partial order represents causal dependence of
the events. A concept of global state can be derived from the partial order of
events. These global states are partially ordered (more precisely, they form a
lattice). A partial order represents one specific run of a distributed system.
Each linearisation of the partial order corresponds with one observation of
the same run. For each choice made by computations carried out by
individual processes, only one of the alternatives is represented in the
partial order. Other alternatives are represented in different partial orders,
one for each alternative12.

7.2.2� An Event-Based Model of Concurrency

Section 7.1.1 defined a notion of global state that does not rely on the availability of
global time. The notion of global state developed in Section 7.1.1 has interesting
relationships with a similar notion originally proposed by Lamport (1978), and
further developed by many authors as stated in Section 7.2.1. In fact, e.g.,
Section 7.1.1 frequently refers to Lamport’s ideas as a motivation. In this
subsection, Lamport’s notion is surveyed and the relationships between the two
notions of global state are developed. First, in Section 7.2.2.1, the equivalence is
established between the notion of strict dependence as defined by Definition 7.5
and the notion of causality in event based approaches. Second, in Section 7.2.2.2,
the accuracy of the notion of global state developed in Section 7.1.1 is established
by an equivalence to a similar notion in an event-based approach.

7.2.2.1� Equivalence with an Event-Based Approach

As stated in Section 7.2.1, the starting point in Lamport’s approach and similar
approaches is a set of events or state transitions, which can be partitioned in subsets
of events that occur in the same process. A similar notion can be defined within the
semantic structure developed in this thesis. As indicated in Section 7.2.1, event-
based approaches usually assume that events within a single, primitive process are
linearly ordered. Therefore, in this section, all local component and link traces are
assumed to be linear. Moreover, it is assumed that traces are proper. As local traces
are assumed to be linear and proper, the sets nextLT(�S,i) and prevLT(�S,i) each

contain only one element. For ease of notation, this element itself is denoted

                                                          
12 True concurrency models always seem to be two-dimensional in the sense that there is

a concept for the representation of choice (e.g., the conflict relation in event structures,
different outgoing edges from places in Petri nets, sets of partial orders in ISTL (Katz &
Peled, 1990), and one of the two matrix dimensions in Chu spaces (Pratt, 1995)) and a
concept for the representation of the partial order of events (e.g., the partial order in event
structures and ISTL, different outgoing edges from transitions in Petri nets, and the other
matrix dimension in Chu spaces).
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nextLT(�S,i) or prevLT(�S,i). For each component or link with proper traces, a set of

transitions is defined as follows.

Definition 7.13. (Transitions). Let S be a component or link and let LTS be a local

component or link trace of S. The set �S of transitions of S is defined as follows:

�S={
�S,i;�S,j� | �S,i=prevLTS(�S,j) ). An element 
�S,i;�S,j� of �S is denoted trans(�S,i,�S,j).

The set �SH of all transitions for a structure hierarchy SH=
Comp;Lnk;�;dom;cdom� is

defined as��SH=S³CompLnk
� �S

Given a structure hierarchy SH, the set �SH is the set of state transitions or events

that is assumed to be given as a starting point in Lamport’s or similar approaches
(in fact, in this section the terminology and notation of Charron-Bost et al. (1996) is
used). In such approaches, it is also assumed that three kinds of events can be
distinguished: send event, receive events and internal events. As events are
assumed to be atomic, an event is either a send event, a receive event, or an
internal event. As stated above, events within a single process are assumed to be
totally ordered (by a relation �l).

Approaches such as Lamport’s (1986) informally assume that each send event
corresponds with a receive event and vice versa. (Thus, no information is lost and
no information is received without being sent.) A relation � is assumed to be given
which relates send events to their ‘corresponding receive events’ (Charron-Bost et
al., 1996). Thus, if Ci and Cj are the sets of events of processes i and j respectively,
then �	Ci�Cj such that 
s;r��� denotes that s corresponds to r. Mattern (1992,

Def. 1.4, clause 2) makes the assumption that each send event corresponds with a
receive event and vice versa formally explicit by the requirement that � is left-
unique and right unique. (A binary relation R is right-unique if for all x,y,z, if xRy

and xRz, then y=z. A binary relation R is left-unique, or functional, if for all x,y,z, if
yRx and zRx, then y=z.)

The notions developed in Chapter 5 and Chapter 6 can be used to provide
specific �l and �, which are assumed to be given in Lamport’s or similar

approaches. First, the correspondence relation � on transitions can be defined in
terms of transmission octets. A transmission octet relates states—two states of the
domain of a link, for states of the link itself, and two states of the co-domain of the
link—that correspond similarly to send and receive transitions in �. More
precisely, a transmission octet relates information that is present in the first of the
two states of the domain with information received in the second of the two states
of the co-domain. Second, the order �l on transitions of the same process can be

defined in terms of the next-state relation. Formally:

Definition 7.14. (Local order and correspondence for transitions). Let

SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy and let � be a multitrace for SH.

�� The local order relation for � is the relation �l defined as follows:
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�l={
trans(�A,i,nextm(A)(�A,i));trans(prevm(A)(�A,j’),�A,j’)�|nextm(A)(�A,i)=

prevm(A)(�A,j’)}

�� The correspondence relation for � is the relation � defined as follows:

�={
trans(�A,i,nextm(A)(�A,i));trans(prevm(B)(�B,j’),�B,j’)�|there is a link L with

dom(L)=A and cdom(L)=B and there are i”,j”,k,l in the time frame of �(L) such

that 

�A,i;nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;
prevm(B)(�B,j’);�B,j’�� is a

transmission octet}

Given a set C of events, a local order relation �l, and a correspondence relation �, a

binary relation, called ‘happens before’ (Lamport) or ‘causally depends’ (e.g.
Schwarz & Mattern, 1994) is defined as follows. (The definition, as well as the
definition of �, is taken literally (modulo notation) from (Charron-Bost et al., 1996)):

Definition 7.15. (Causality (Charron-Bost et al., 1996)). The causality relation � in C
is the smallest relation that satisfies the following three properties:

1. If a�lb, then a�b;

2. If 
s;r���, then s�r;

3. If a�b and b�c, then a�c.

This notion of causality can be further refined by additional constraints to model
properties of information transmission. (This is the topic of the paper by Charron-
Bost et al. (1996)).

The definition of (Charron-Bost et al., 1996) is directly applicable to the semantic
structure developed in this thesis. Given a structure hierarchy SH and a multitrace
�, take �SH as defined in Definition 7.13 above for the set of events C and take the

local order relation and the correspondence relation as defined in Definition 7.14
for �l and �, respectively. In this chapter, the relation � defined in Definition 7.15
is written as �tr and called dependence for transitions.

In the rest of this subsection, a formal relation is established between causality
for transitions and strict dependence. Below, a proposition is presented which
states that, under specific assumptions, a transition from �A,i to its immediate

successor state is causally related to a transition from the immediate predecessor of
�B,j’ to �B,j’ if and only if �B,j’ strictly depends on �A,i, and �B,j’ is not itself the
immediate successor of �A,i. Thus, this proposition precisely relates the notion of

strict dependence to the well-known notions first developed by Lamport.
However, the proposition that relates strict dependence to causality for

transitions only holds for multitraces that fulfil a number of specific assumptions.
These assumptions are mentioned at the beginning of this subsection: each
transition is either a send transition, a receive transition or an internal transition,
and � is left-unique and right-unique. These assumptions are derived from a more
general assumption, which states that transitions or events are atomic: they do not
consist of sub-events. Mattern (1992) defines a ‘computation’ as a partially ordered
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set of events for which these assumptions hold. In this thesis a notion of atomic
computation is defined as follows:

Definition 7.16. (Atomic computation). Let SH=
Comp;Lnk;�;dom;cdom� be a

structure hierarchy, let � be a multitrace for SH, let A�Comp be a component and let i be a

point in the time frame of �(A).

�� The transition trans(�A,i,nextm(A)(�A,i)) is a send transition if there is a link

L�Lnk such that dom(L)=A and there are i”,j”,k,l and j’ in the time frames of �(L)

and �(cdom(L)), respectively, such that 

�A,i,nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;


prevm(cdom(L))(�cdom(L),j’);�cdom(L),j’�� is a transmission octet.

�� The transition trans(�A,i,nextm(A)(�A,i)) is a receive transition if there is a link

L�Lnk such that cdom(L)=A and there are i”,j”,k,l and i’ in the time frames of �(L)

and �(dom(L)), respectively, such that 

�dom(L),i’,nextm(dom(L))(�dom(L),i)�;


�L,i”;�L,j”;�L,k;�L,l�;
�A,i,nextm(A)(�A,i)�� is a transmission octet.

�� Otherwise, the transition trans(�A,i,nextm(A)(�A,i)) is an internal transition.

The multitrace � is called an atomic computation if for all S�Comp�Lnk and for all
i�TS with �S=

TS;<S�;VS�:

�� trans(�A,i,nextm(A)(�A,i)) is either a send transition, a receive transition or an

internal transition,

�� and the correspondence relation for � is left-unique and right-unique.

Left-uniqueness and right-uniqueness of the correspondence relation ensures that
each pair of states in the domain of a link in which information is present that is
transmitted via that link corresponds to exactly one pair of states in the co-domain
in which the information is received. The importance of left-uniqueness and right-
uniqueness is further discussed below. The stage is now set to present
Proposition 7.17, which states that a transition from �A,i to its immediate successor
state is causally related to a transition from the immediate predecessor of �B,j’ to
�B,j’ if and only if �B,j’ strictly depends on �A,i and �B,j’ is not itself the immediate
successor of �A,i:

Proposition 7.17. Let SH be a structure hierarchy and let � be an atomic computation for
SH. Then:

t1=trans(�A,i,nextm(A)(�A,i))�trtrans(prevm(B)(�B,j’),�B,j’)=t2

� �A,i�sd�B,j’ and �B,j’nextm(A)(�A,i).

Proposition 7.17 is illustrated in Figure 7.3, where the filled rectangles represent
the transmission octet 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’��. In this figure, the

thick arrow labelled tr depicts the causality relation for the transitions
trans(�A,i,nextLTA(�A,i)) and trans(prevLTB(�B,j’),�B,j’). The thick arrow labelled sd
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depicts the corresponding strict dependence relation between the states �A,i and
�B,j’. Thus, Proposition 7.17 shows the relation between the notion of dependence

as presented in this thesis and the notion of causality for events or transitions as
defined in (Charron-Bost et al., 1996).

Figure 7.3: Strict precedence and causality for transitions.

Proposition 7.17 reveals a difference between strict dependence and causality for
transitions: strict dependence is more fine-grained than causality for transitions.
Both strict dependence and causality for transitions are irreflexive. Therefore, in
terms of states, strict dependence relates two states, while causality for transitions
relates at least three states (begin and end states of transitions related by causality
for transitions). In other words, if there are only two different states, there is at
most one transition, which cannot be related with itself. For this reason,
Proposition 7.17 requires that �B,j’nextm(A)(�A,i).

Proposition 7.17 also requires that � is an atomic computation. In the semantic
structure presented in Chapter 5 and Chapter 6, sets of states for all components
and links in a structure hierarchy are assumed to be given. No notion of ‘atomic
state change’ or operation is assumed. Consequently, it may be the case that in a
local component or link trace, new states are only distinguished after several
activities (internal and information exchange) have taken place. In this case, the
relation � as defined in Definition 7.16 need not be left-unique and right-unique:
during a transition from �A,i to its immediate successor state, information may be
received from another component C1 and information may be send to yet another
component C2, and so forth. In this case, the transition is related by � to more than

one other transition. However, in this case, strict dependence need not be transitive
when causality for transitions is. As a consequence, strict dependence is not similar
to causality for transitions. This can be made more precise as follows. In Figure 7.4,
it holds that t1=trans(�A,i,nextm(A)(�A,i))�trtrans(�C,z’,nextm(C)(�C,z’))=t4,
t3=trans(�C,z,nextm(C)(�C,z’))�trtrans(prevm(B)(�B,j’),�B,j’))=t2 and t4�trt3. By
transitivity, t1�trt2. Because t1�trt2, Proposition 7.17 suggests that �A,i�sd�B,j’. If �

is an atomic computation, than this is indeed the case. However, if � is not an
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atomic computation, then this is not the case. This is explained as follows. By
Proposition 7.17, �A,i�sdnextm(C)(�C,z’) and �C,z�sd�B,j’. Two cases are

distinguished:

�� If � is not an atomic computation, it cannot be established that �A,i�sd�B,j’.
In this case, it may be that t4=t3: the transition from �C,z’ to nextm(C)(�C,z’) is

both a receive transition (information received from A) and a send
transmission (information send to B). In this case, � is not left and right
unique: t4 is related by � to both t1 and t2. In Figure 7.4, the curved arrow
from t4 to t3 would go directly to t2 in this case, and the dashed arrow from
�C,z to �B,j’ would go from �C,z’ to �B,j’. It is possible to establish �A,i�sd�B,j’,
via transitivity if nextm(C)(�C,z’)�sd�C,z, but this cannot be the case as
�C,z=�C,z’.

�� If � is an atomic computation, then �A,i�sd�B,j’ in Figure 7.4. Because � is an
atomic computation, t3 is strictly later than t4. Therefore,
nextm(C)(�C,z’)�sd�C,z, or nextm(C)(�C,z’)=�C,z (as is the case in Figure 7.4). By
transitivity of �sd, �A,i�sd�B,j’.

Figure 7.4: Atomic computation and transitivity of �tr and �sd.

To finalise the comparison of the notion of strict dependence with causality for
transitions, a different perspective is provided by defining strict dependence in
terms of a notion of causality for transitions. This is done in (Fromentin &
Raynal, 1994) as follows:

Definition 7.18. (Causality for states (Fromentin & Raynal, 1994)). Let
SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let �=(�I)I³Lnk be a collection of

compatibility relations, let � be a multitrace compatible for �, and let �A,i and �B,j’ be two

local component states of components or links A,B�Comp�Lnk. The causality for states
relation �fr	�SH��SH is defined as follows: �A,i�fr�B,j’ iff:

1. A=B and �A,i�prevm(A)(�B,j’), or

2. trans(�A,i,nextm(A)(�A,i))�trtrans(prevm(B)(�B,j’),�B,j’).
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The notion of causality as defined by Fromentin & Raynal (1994) is equivalent with
the notion of strict dependence developed in this thesis:

Proposition 7.19. Let SH be a structure hierarchy and let � be an atomic computation for
SH. Then �A,i�sd�B,j’ iff �A,i�fr�B,j’.

This proposition ends the formal comparison between the notion of (strict)
dependence developed in this thesis and similar notions developed in the area of
distributed systems research. In the next section, the notion of global state as
defined in Section 7.1 is compared to a similar notion that is often employed in the
area of distributed systems research.

7.2.2.2� Accuracy of Global States

The rest of this subsection proceeds as follows. In Section 7.1, for a structure
hierarchy SH, a multitrace �, and a collection of compatibility relations �, the set of
snapshots SNAP(SH,�,�) is defined in Definition 7.1. A specific subset GS(SH,�,�) of
SNAP(SH,�,�) is defined in Definition 7.4 as the set of global states of the structure
hierarchy SH. Likewise, a subset of strict global states SGS(SH,�,�) is defined in
Definition 7.6. The current section evaluates the choice of these specific subsets by
comparing them to a well-known notion in event based approaches, the notion of a
consistent cut. Consistent cuts are a good approximation of the global state of a
distributed system, as is argued in e.g. (Schwarz & Mattern, 1994). It can be proven
that the set of consistent cuts (or, more precisely, the set of snapshots determined
by consistent cuts) equals the set of strict global states as defined in Definition 7.6.
Therefore, the notion of strict global state developed in Definition 7.4. is a good
approximation of the global state of a distributed system as well. General (i.e., not
necessarily strict) global states as defined in Definition 7.4 are difficult to compare
with consistent cuts. As explained below, consistent cuts are defined in terms of
transitions, which assume traces to be proper. With proper traces, strict
dependence (and, consequently, strict global states) is a more appropriate notion to
use.

Consistent cuts are defined without any reference to a notion of global time.
Instead, they formalise the following view on the behaviour of a distributed
system. In a distributed system, as a result of local activity the state of each
component and link changes over (local) time, thus generating a sequence of state
transitions. For the system as a whole, it is possible to partition the set of all state
transitions of all components and links in two parts: one part consisting of, for
every component and link, all transitions that, according to the local time of the
component or link they belong to, have already happened and the other part
consisting of the rest of the possible transitions. The part consisting of all
transitions that have already happened is completely determined by the set of the
last transitions of each component or link that has already happened. This set is
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called a cut and is defined as follows (in this definition, a set �S is the set of all

transitions of a component or link S as defined in Definition 7.13):

Definition 7.20. (Cut). Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations and let � be a multitrace compatible for

�. A cut of SH for � and � is a function cut(SH,�,�): Comp�Lnk�S³CompLnk
� �S such that

for all S�Comp�Lnk: cut(SH,�,�)(S)��S.

However, not every cut of a structure hierarchy SH can occur in a computation,
because a state transition can only occur if all state transitions on which it depends
(in the sense of Definition 7.15) have also occurred. Cuts that fulfil this requirement
are called consistent cuts. A consistent cut exactly represents the global state of a
computation of the components and links in a structure hierarchy SH. The
definition of consistency for cuts refers to the transitive closure of a cut, which is
defined below. (The transitive closure of a cut resembles the transitive closure of a
relation. However, as a cut is not a relation, it is not exactly the same.) The
transitive closure is exactly the set of all state transitions that have already
happened (as in Section 7.2.2.1, traces are assumed to be linear):

Definition 7.21. (Consistent cut). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace

compatible for �, and let cut(SH,�,�) be a cut of SH for � and �.

�� For a component or link S, the transitive closure (cut(SH,�,�)(S))* of

cut(SH,�,�)(S)=trans(�S,i,nextm(S)(�S,i)) is the set {trans(�S,j,next(�S,j)) | ��j�i }.

�� The transitive closure of cut(SH,�,�) is a function cut*(SH,�,�) on Comp�Lnk

such that for all S�Comp�Lnk it holds that cut*(SH,�,�)(S)=cut*(S). If there is a

component or link S�Comp�Lnk such that for a certain transition t it holds that

t�cut*(SH)(S), then this is written as t�cut*(SH,�,�).

�� A cut is consistent iff for all S�Comp�Lnk and for all t’��SH: if

t’�trcut(SH,�,�)(S), then t’�cut*(SH,�,�). The set of all consistent cuts of SH with

respect to � and � is denoted CUT(SH,�,�).

Theorem 7.22. (Mattern, 1992). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations and let � be a multitrace

compatible for �. The triple 
CUT(SH,�,�);�;�� is a lattice ordered by 	.

The proof presented in (Mattern, 1992) is straightforward. To show that

CUT(SH);�;�� is a lattice, it suffices to show that it is closed under � and �,
because CUT(SH) is a subset of the powerset of �SH, and the powerset of any set is

a lattice itself under 	. To show that it is ordered by 	, it is sufficient to show that
C1	C2 iff C1�C2=C1.
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A computation, or run, of the components and links in a structure hierarchy SH is
modelled as a sequence of consistent cuts such that the transitive closure of each
cut in this sequence is a biggest subset of its successor:

Definition 7.23. (Run). Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace compatible for

�. A run of SH with respect to � and � is a sequence (cut(SH,�,�)n)n³N of consistent cuts

such that for all 0<i�n: S³CompLnk
� (cut*(SH,�,�)i-1(S))�S³CompLnk

� (cut*(SH,�,�)i(S)) and

|S³CompLnk
� (cut*(SH,�,�)i(S))|=i.

The notion of a run of a system as defined above is, in a sense, the most precise
view of a system that can be obtained: it is impossible to prove that during a run,
the system did not go through the sequence of consistent cuts as defined above.
Therefore, a consistent cut represents a global state of the system. As stated in the
previous section, the notion of a run, although defined in a somewhat different
manner, occurs in many approaches to modelling true concurrency, such as for
instance (Winskel, 1989).

It is possible to associate with each cut a set of states consisting of, for each
component, the state obtained by the state transition for that component in the cut:

Definition 7.24. (Final states). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace

compatible for �. The final states of a cut cut(SH,�,�) is the function fs(cut(SH,�,�)):

Comp�Lnk�S³CompLnk
� �S such that for all S�Comp�Lnk: if

cut(SH,�,�)(S)=trans(�S,i,nextm(S)(�S,i)), then fs(cut(SH,�,�)(S))=nextm(S)(�S,i).

As is witnessed by the following theorem, if a cut is consistent, then its associated
set of final states is a global state as defined in Definition 7.4. Therefore, a global
state as defined in Definition 7.4 is a good approximation of the notion of a global
state of a distributed system.

Proposition 7.25. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace compatible for �

and let cut(SH,�,�) be a cut for SH with respect to � and �. If cut(SH,�,�) is a consistent

cut, then fs(cut(SH,�,�)) is a global state.

Moreover, only consistent snapshots represent global states, which is witnessed by
the next theorem. This theorem states that the set consisting of, for each component
and link, the transition that leads to the state occurring in a consistent snapshot is a
consistent cut.

Definition 7.26. (Final transition set). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy, let �=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace

compatible for �, and let ��SNAP(SH,�,�) be a snapshot of SH for � and �. The final
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transition set of � is the function fts(�): Comp�Lnk�S³CompLnk
� �S such that for all

S�Comp�Lnk: if �(S)=�S,i, then fts(�)(S)=trans(prevm(S),�S,i).

Proposition 7.27. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace compatible for �

and let ��SNAP(SH,�,�) be a snapshot of SH for � and �. If � is a strict global state of a

structure hierarchy SH, then fts(�) is a consistent cut.

This section on the accuracy of the notion of global states defined in this thesis
concludes with some remarks on the lattice structure of global states. As shown by
Proposition 7.8, 
PART(SGS,�,�);nextSGS(SH,m,g)� is a lattice. According to

Theorem 7.22, the pair 
CUT(SH,�,�);	� is also a lattice. These two lattices are
expected to be isomorphic, as is shown by the following conjecture;

Conjecture 7.28. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace compatible for

�. The lattice 
PART(SGS,�,�);nextSGS(SH,m,g)� is isomorphic to 
CUT(SH,�,�);	�.

This conjecture states that it is possible to use state-based and event-based
representations interchangeably. A possible way to prove this conjecture may be as
follows. First, 
CUT(SH,�,�);	� is proven to be a distributive lattice, which is
possibly infinite. Second, PART(SH,�,�) must be shown to represent order-ideals
with respect to�sd of CUT(SH,�,�). In the finite case, Birkhoff’s (1933)

representation theorem for finite distributive lattices can be applied to complete
the proof. (This theorem states that each lattice is isomorphic to the lattice of its
prime ideals ordered by subset inclusion.) For the infinite case, algebra does not
seem to suffice. Instead, a topological structure proposed by Stone (1936) can be
imposed on the set of prime ideals of a lattice. With the help of this construction,
Stone (1936) established a representation theorem for boolean algebras (which are
a special class of distibutive lattices). Priestley (1970) combined the results of
Birkhoff and Stone, resulting in a general representation theorem for distributive
lattices. (See also (Davey & Priestley, 1990, Th. 10.18).) His theorem states that a
lattice is isomorphic to the set of closed-open subsets of a compact totally-order
disconnected space. (Which is a set bearing Stone’s topology.) Thus, to apply
Priestley's result, 
PART(SGS,�,�);nextSGS(SH,m,g)� must be proven to consist of such

closed-open subsets. The use of Priestley’s result in the area of models of
distributed computation is suggested by Pratt (1992). Pratt refers to Priestley's
result as the Birkhoff-Stone duality.

7.2.3� A Generalisation of Strict Dependence

Section 7.1.1 discussed differences between strict dependence and general (i.e.,
non-strict) dependence. It is possible to generalise the notion of strict dependence
in order to resemble the notion of dependence. This is done by adapting the second
clause of the definition such that �B,j’ depends on �A,i if there is a transmission
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octet with �A,i and �A,j as first and second elements, where i<j and there is a state
�A,k such that i<k�j and �A,k�nextLTA(�A,i), and similar for the last two elements of

the transmission octet. The difference with the non-generalised notion of strict
dependence is that �A,j is not itself required to be an element of nextLTA(�A,i) (and

likewise for �B,i’). The generalised version of strict dependence is formally defined

as follows:

Definition 7.29. (Generalised strict dependence). Let SH=
Comp;Lnk;�;dom;cdom� be
a structure hierarchy and let LTA=

TA;<A�;VA�, LTB=

TB;<B�;VB� and

LTL=

TL;<L�;VL� be three traces of components or links A,B�Comp�Lnk and a link

L�Lnk such that A=dom(L) and B=cdom(L). Let �A,i and �A,j be two states in LTA, let

�L,i”, �L,j”, �L,k and �L,l be four states in LTL, and let �B,i’ and �B,j’ be two states in LTB.
The generalised strict dependence relation for LTA, LTL and LTB is a binary relation

�gsd on �SH defined as the smallest relation �gsd such that �A,i�gsd�B,j’ iff either

1. A=B and �B,j’�nextLTA(�A,i), or

2. 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’);�B,j’�� is a transmission octet for LTA, LTL and

LTB, and there is a state �A,k�nextLTA(�A,i) with k�j and there is a state �B,k’�prevLTB

(�B,j) with i’�k’ or

3. There is a state �C,m of a component or link C�Comp�Lnk such that �A,i�gsd�C,m and

�C,m�gsd�B,j’.

The rest of this chapter mainly focusses on (formal, detailed) comparisons between
the notion of global state developed in this chapter and similar notions found in
Computer Science literature. As (non-generalised) strict dependence fits better to
assumptions made for these similar notions, in this chapter non-generalised strict
dependence is used.

7.3�Proofs

Before presenting, in Section 7.3.2, proofs of the properties and theorems presented
in this chapter, first some properties of transitive relations used in these proofs are
developed in Section 7.3.1.

7.3.1� A Note on Transitive Relations

The third (inductive) clause in Definition 6.11 (the dependence relation) is the
source of complications in a number of proofs of properties of this relation. This
clause seems to naturally correspond to inductive proofs. This turns out to be true,
however, it is somewhat involved to find an isomorphism with a discretely
ordered set on which to base the induction. Consider a proof in which one tries to
prove a property for all �A,i and �B,j’ such that �A,i�sd�B,j’. At first sight, chains
from �A,i to �B,j’ (i.e, totally ordered subsets of �SH with �A,i as minimal and �B,j’ as



7.3: Proofs

155

maximal element) seem to be suitable candidates. Under certain circumstances, it is
always the case that if �A,i�sd�B,j’, there is a maximal chain from �A,i to �B,j’ (i.e., a
chain from �A,i to �B,j’ such that all other chains from �A,i to �B,j’ have fewer

elements). The property can then be proven by induction to the length of this
maximal chain. However, if the order on �SH is dense, which is not prohibited,

such a maximal chain might have an uncountable number of elements, which
implies that induction is not applicable.

There are, however, other candidates. One possibility is to define the
dependence relation as the least fixed point of a recursively defined transitive
closure operator. Below it is proven that this definition is equivalent to
Definition 6.11. Properties of the dependence relation can then be proven by
induction to the number of times the closure operator is applied before the fixed
point is reached. As proven below, this is countable number of times, even if the
order on �SH is dense. The proof uses some concepts from the theory of partial

orders, which are defined below. (In the following definitions, sup(D) denotes the
least upper bound, or supremum, of set D, if the supremum exists. A fixed point, or
fixpoint of a function �: P�Q is an x in P such that �(x)=x. If a smallest x such that
�(x)=x exists, it is denoted lfp(�), for least fixed point of �.)

Definition 7.30. (Davey & Priestley, 1992, p. 51) Let 
P;<� be a partial order.

�� A non-empty subset S	P is directed iff, for every finite subset F	S, there exists

z�S such that z is an upper bound of F;

�� The partial order P is a complete partial order (CPO) iff P has a smallest element

and sup(D) exists for each directed subset of D	P;

�� Let 
Q;<’� be a partial order. A function �: P�Q is order-preserving (or,

alternatively, monotone) if for all x,y�P, x<y implies �(x)<’�(y);

�� Let Q be a CPO. A function �: P�Q is continuous if, for every directed set D	P,

�(sup(D))=sup({�(x) | x�D}).

For any set X, the partial order 
�(X);	� is a complete lattice and therefore a
complete partial order. In this partial order, � is the bottom element and for

arbitrary subset S={Ai|i�I}	�(X), sup(S)=i³I
�Ai.

The following theorem establishes the existence of a least fixpoint lfp( ) for an
order-preserving map  . The set of all (not necessarily least) fixpoints of   is
denoted fix( ).

Theorem 7.31. (CPO Fixpoint Theorem I, adapted from (Davey & Priestley, 1992)).

Let P be a CPO, let  : P�P be an order-preserving map and define !:= n�0
sup n(�).

1. If !�fix( ), then lfp( ) exists and equals !.

2. If   is continuous then lfp( ) exists and equals !.

Proof. See (Davey & Priestley, 1992, p. 89).
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The transitive closure of a relation < can now be defined as follows, where  n is
defined as:  0 is the identity map, and  m= ( m-1) for m>0.

Definition 7.32. (Transitive closure). Let P be a set and let < be a binary relation on P.

�� Define a function  <:��(P�P)��(P�P) such that

        <(X)={
x;y�|x<y} � X � {
x;z�|
x;y�,
y;z��X};

�� The transitive closure <* of < is the relation <*=lfp( <)=n�0
�  n

<(�).

The co-domain of  < (namely �(P�P)), is a lattice of sets. In a lattice of sets,

sup(D)=�D for any D	�(P�P). Therefore, !:= n�0
sup n(�)=n�0

�  n
<(�). The transitive

closure of < is well-defined because  < is order-preserving and continuous, as is

proven in the next two propositions. After that, it is proven that <* is the smallest
transitive relation such that <	<*.

Proposition 7.33.  < is order-preserving.

Proof. Proof sketch: it has to be proven that for X	Y,  <(X)	 <(Y). This is done by
proving that all three cases given by Definition 7.32 for 
x;y�� <(X) imply that

x;y�� <(Y).
Assume: 1. X,Y��(P�P) such that X	Y, 2. x,y�P such that 
x;y�� <(X).

Prove: 
x;y�� <(Y).

�1	1. Case: x<y.
Proof: by assumption �0	:1, 
x;y��Y. By the definition of  <(Y), 
x;y�� <(Y).

�1	2. Case: 
x;y��X.
Proof: 
x;y��Y by assumption �0	:1, 
x;y�� <(Y) by definition of  <(Y).

�1	3. Case: 
x;y��{
x’;y’�|
x’;z�,
z;y’��X}.
�2	1. �z�P: 
x;z��X and 
z;y��X.

Proof: by assumption �1	.
�2	2. �z�P: 
x;z��Y and 
z;y��Y.

Proof: by step �2	1 and assumption �0	:1.
�2	3. Q.E.D.

Proof: 
x;y��{
x’;y’�|
x’;z�,
z;y’��Y}	 <(Y) by step �2	2 and definition of
 <(Y).

�1	4. Q.E.D.
Proof: steps �1	1, �1	2, and �1	3 enumerate all three cases for 
x;y�� <(X).

Proposition 7.34.  < is continuous.

Proof. Proof sketch: by the definition of continuity, it has to be proven that for
D	�(P�P) directed,  < preserves suprema, that is:  <(sup(D))=sup({ <(X)|X�D}).
First, it is established that sup({ <(X)|X�D}) exists. After that, the equality is
proven by proving that all three cases for 
x;y�� <(sup(D)) imply that

x;y��sup({ <(X)|X�D}).
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Assume: D	�(P�P) is directed.
Prove:  <(sup(D))=sup({ <(X)|X�D}).

�1	1. { <(X)|X�D} is directed.
Assume: F	{ <(X)|X�D} finite.
Prove: there is a Z�{ <(X)|X�D} such that Z is an upper bound of F.

�2	1. Let F={ <(X1),…, <(Xn)} for finite subset {X1,…,Xn} of D. Then there is
a Z’�D such that Z’ is an upper bound of {X1,…,Xn}.

Proof: by directedness of D.
�2	2. �Xi with 1�i�n, Xi	Z’.

Proof: by step �2	2 and the definition of an upper bound of {X1,…,Xn}.
�2	3. �Xi with 1�i�n,  <(Xi)	 <(Z’).

Proof: by the order-preserving property of  < (Proposition 7.33) and

step �2	2.
�2	4.  <(Z’) is an upper bound of F.

Proof: by step �2	3 and the definition of an upper bound of
F={ <(X1),…, <(Xn)}.

�2	5. Q.E.D.
Proof: take Z= <(Z’)�{ <(X)|X�D}. By step �2	4, Z is an upper bound

of F.
�1	2. sup({ <(X)|X�D}) exists.

Proof: step �1	1, { <(X)|X�D} is directed. By the remark following

Definition 7.30, �(P�P) is a CPO, and by definition of a CPO, every
directed subset has a supremum.

�1	3. �X�D,  <(X)	sup({ <(X)|X�D}).

Proof: by step �1	2 and the definition of supremum.
�1	4.  <(sup(D))	sup({ <(X)|X�D}).

Assume: 
x;y�� <(sup(D))={
x;y�|x<y}�sup(D)�{
x;z�|
x;y�,
y;z��sup(D)}.

Prove: 
x;y��sup({ <(X)|X�D}).

�2	1. Case: x<y.
Proof: x<y implies 
x;y�� <(X) for any X�D by definition of  <(X). By

step �1	3, 
x;y��sup({ <(X)|X�D})

�2	2. Case: 
x;y��sup(D).
Proof: let X be an arbitrary element of D. Then 
x;y��X by assumption

�1	. By the definition of  <, X	 <(X). Thus, 
x;y�� <(X). By step
�1	3, 
x;y��sup({ <(X)|X�D}).

�2	3. Case: 
x;y��{
x;z�|
x;y�,
y;z��sup(D)}.
�3	1. There is a z such that 
x;z�,
z;y��sup(D)

Proof: by assumption �2	.
�3	2. Let X be an arbitrary element of D. Then 
x;z�,
z;y��X.

Proof: by step �3	1.
�3	3. 
x;y�� <(X).
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Proof: y the definition of  <.

�3	4. Q.E.D.
Proof: by step �1	3,  <(X)	sup({ <(X)|X�D}).

�2	4. Q.E.D.
Proof: steps �2	1, �2	1 and �2	1 enumerate all cases for 
x;y�� <(sup(D)).

�1	5. sup({ <(X)|X�D})	 <(sup(D)).
�2	1. { <(X)|X�D} is directed.

Proof: take F	D finite. Because D is directed, there is a Z�D such that Z
is an upper bound of F. Thus, for all Z’�F, Z’	Z. By order-
preservation, for all Z’�F,  <(Z’)	 <(Z). Thus,  <(Z) is an upper
bound of { <(X)|X�D}, and therefore, { <(X)|X�D} is directed.

�2	2.  <(sup(D)) is an upper bound of { <(X)|X�D}.

Proof: For all X�D, X	sup(D). By order-preservation, for all X�D,
 <(X)	 <(sup(D)).

�2	3. Q.E.D.
Proof: by step �2	1, { <(X)|X�D} is directed and therefore,

sup({ <(X)|X�D}) exists. As sup({ <(X)|X�D}) is by definition
the least upper bound of { <(X)|X�D},
sup({ <(X)|X�D})	 <(sup(D)).

�1	6. Q.E.D.
Proof: by steps �1	4 and �1	5.

Proposition 7.35. Let P be a set and let < be a binary relation on P. The relation

<*=lfp( <)=n�0
�  n

<(�) on P is the smallest transitive relation such that <	<*.

Proof. Proof sketch: first, it is established that <* is well defined by checking

whether the least fixpoint of  < exists and equals n�0�  n
<(�). After that, it is proven

that for x,y�P such that x<y, (i) x<*y, (ii) <* is transitive and (iii) <* is the smallest
transitive relation such that <	<*. This is proven by assuming that there is a
smaller transitive relation and deriving a contradiction from the fact that this
smaller relation must be transitive.
Assume: x,y�P and x<y.

Prove: x<*y, <* is transitive and <* is the smallest relation such that <	<*.

�1	1. The least fixed point of  < exists and equals n�0�  n
<(�).

�2	1. The pair 
�(P�P);	� is a complete partial order in which � is the bottom
element and for arbitrary subset S of �(P�P), sup(S)=�S.

Proof: by the remark presented just after Definition 7.30.
�2	2.  < is order-preserving and continuous.

Proof: by Propositions 7.33 and 7.34.
�2	3. Q.E.D.

Proof: by steps �2	1 and �2	2 and Theorem 7.31 (CPO Fixpoint Theorem
I).
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�1	2. x<*y.
Proof: by the definition of  <,  1

<(�)={
x;y�|x<y}. Thus, 
x;y��<*.

�1	3. For all x,y,z�P, if x<*y and y<*z, then x<*z.

Assume: x,y,z�P, x<*y and y<*z.

Prove: x<*z.
�2	1. There exists an m such that 
x;y�,
y;z�� m

<(�).

Proof: by assumption �1	 and the definition of <*.
�2	2. 
x;z�� m+1

<(�).
Proof: by step �2	1 and the definition of  <.

�2	3. Q.E.D.
Proof: by step �2	2 and the definition of <*.

�1	4. <* is the smallest relation such that <	<*.
Assume: there is a transitive relation <’�<* such that <	<’.
Prove: false.
�2	1. <’ is not a fixpoint of  <.

Proof: <* is the least fixpoint of  <, so any relation that is smaller than

<* cannot be a fixpoint of  <.
�2	2. <’ <(<’)={
x;y�|x<y}�<’�{
x;y�|
x;z�,
z;y��<’}.

Proof: by step �2	1, <’ is not a fixpoint of  <.

�2	3. Q.E.D.
�3	1. Case: <’� <(<’).

�4	1. Case: 
x;y��{
x;y�|x<y} and 
x;y��<’.
Proof: this is impossible because if 
x;y��{
x;y�|x<y}, then


x;y��<’ by assumption �1	.
�4	2. Case: 
x;y��{
x;y�|
x;z�,
z;y��<’} and 
x;y��<’.

Proof: this is impossible because by assumption �1	, <’ is
transitive. Therefore, if 
x;y��{
x;y�|
x;z�,
z;y��<’},
then 
x;y��<’.

�4	3. Q.E.D.
Proof: steps �4	1 and �4	2 list all cases for <’� <(<’).

�3	2. Case:  <(<’)�<’.
Proof: this is impossible because X	 <(X) for any X.

�3	3. Q.E.D.
Proof: steps �3	1 and �3	2 list all cases for step �2	2 (<’ <(<’)).

�1	5. Q.E.D.
Proof: by steps �1	2, �1	3 and �1	4.

7.3.2� Proofs of Properties and Theorems in Chapter 7.

A number of theorems and properties presented in this chapter is proven by
induction to the number of times the recursive function defined in the previous
subsection is applied. The following definition and lemma enable this method by
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establishing a relation between the dependence relation defined in Section 7.1 and
a fixed point characterisation of a similar notion:

Definition 7.36. (One-step relations). Let SH=
Comp;Lnk;�;dom;cdom� be a structure
hierarchy and let LTA=

TA;<A�;VA�, LTB=

TB;<B�;VB� and LTL=

TL;<L�;VL� be three

traces of components or links A,B�Comp�Lnk and a link L�Lnk such that A=dom(L) and
B=cdom(L). Let �A,i and �A,j be two states in LTA, let �L,i”, �L,j”, �L,k and �L,l be four

states in LTL, and let �B,i’ and �B,j’ be two states in LTB.

�� The one-step strict dependence relation is the relation �sd1	�SH��SH be a

binary relation such that �A,i�sd1�B,j’ iff either

1. A=B and i <A j’, or

2. 

�A,i;�A,j�;
�L,i”;�L,j”;�L,k;�L,l�;
�B,i’;�B,j’�� is a transmission octet for LTA,

LTL and LTB, and i <A  j, i”<Ij”<Ik<Il, i’ <B  j’, there is a state �A,k�nextLTA

(�A,i) with k�i and there is a state �B,k’�prevLTB(�B,j) with i’�k’

�� The one-step dependence for transitions relation is the relation �tr1	�SH��SH

be a binary relation such that t1=trans(�A,i,nextLTA(�A,i))�tr1trans(prevLTB(�B,j’),

�B,j’)=t2 iff either

1. A=B and nextLTA(�A,i)= prevLTB(�B,j’), or

2. There is a link L with dom(L)=A and cdom(L)=B and there are i”,j”,k,l in the

time frame of �(L) such that



�A,i;nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;
prevm(B)(�B,j’);�B,j’�� is a

transmission octet.

Lemma 7.37. Let �sd1 and �tr1 be the one-step relations defined in Definition 7.36.

�� 1. �sd=(�sd1)*,

�� 2. �tr=(�tr1)*.

Proof. Proof sketch: Both �sd and (�sd1)* are shown to be the smallest elements of
a subset of all relations on a set of states. The smallest element in a set of relations
is unique. Therefore, �sd=(�sd1)*. The proof for the second part of the lemma is
analogous.
�1	1. �sd=(�sd1)*.

�2	1. Let � be a set of states and let "={R	�(���)|R transitive and �sd1	R}.

Then �sd�".

�3	1. �sd1	�sd.
Proof: by the definitions of �sd1 and �sd.

�3	2. �sd is transitive.
Proof: by the definition of �sd, clause 3.

�3	3. Q.E.D.
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Proof: by steps �3	1 and �3	2.
�2	2. �sd is the smallest element of ".

Proof: by the definition of �sd, �sd is the smallest relation that

complies with the three clauses of the definition.
�2	3. (�sd1)*�".

Proof: by Proposition 7.35, (�sd1)* is transitive and �sd1	(�sd1)*.

�2	4. (�sd1)* is the smallest element of ".

Proof: by Proposition 7.35, (�sd1)* is the smallest transitive relation such

that �sd	(�sd1)*.

�2	5. Q.E.D.
Proof: by antisymmetry of the partial order 	 on �(���), if the subset "

of �(���) has a smallest element, then it is unique. By steps �2	2
and �2	4, both �sd and (�sd1)* are smallest elements of ".

�1	2. �tr=(�tr1)*

Proof: analogous to proof of step �1	1.
�1	3. Q.E.D.

Proof: steps �1	1 and �1	2.

The previous lemma enables application of induction to the number of times the
function  �sd1

 is applied. In proofs of properties of, e.g., �sd, induction is applied

to prove the same property for �sd1. By the previous lemma, the property then
also holds for, e.g., �sd.

Proposition 7.8. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, and let � be a multitrace compatible for

�. If �sd is an (irreflexive) partial order, then the pair 
PART(SH,�,�);nextSGS(SH,m,g)� is a

lattice.

Proof. Proof sketch: To show that 
PART(SH,�,�);nextSGS(SH,m,g)� is a lattice, it

suffices to show that for each pair of equivalence classes X,Y�PART(SH,�,�), a
lowest upper bound and greatest lower bound exist. These bounds are constructed
as follows. First, for an equivalence class X, a function I(X) is defined that maps X
to the set of all local states that are before (or equal to) the local states of ��X with
respect to the local orders of the local traces in �. (The letter I is chosen for these
sets as they resemble order ideals with respect to the local order of states in �.) Then,
for a set X’ of local component and link states, a function I�(X’) is defined that
maps X’ to the set of all local component and link states, one for each component
or link, that are maximal in X’ with respect to the local order. (Please note that it is
essential in this construction that states are coloured.) The result is not an
equivalence class, as it contains only one element. Therefore, an equivalent element
with respect to R�R-1 (as defined in Definition 7.7) is added. The lowest upper
bound of X and Y is defined as I�(I(X)�I(Y)). A number of lemmas is used to show
that this bound is itself an equivalence class of global states, that it is an upper
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bound, and that it is the lowest upper bound. For the greatest lower bound, I� is
defined as a function that maps an “order ideal” to the set of minimal local
component and link states. The greatest lower bound is then defined as
I�(I(X)�I(Y)). (Note the use of intersection instead of union.)
�1	1. Define:

1. ��(SH,�,�) is the set of all order ideals for SH, � and �:

   ��(SH,�,�)={S³CompLnk
� {�(S)(i)|��i�i’ with �(S)=�S,i’}|��SNAP(SH,�,�)}

2. A function I: PART(SH,�,�)���(SH,�,�) such that:

    I(X)=S³CompLnk
� {�(S)(i)|��i�i’ with �(S)=�S,i’ for ��X},

3. A function Imax: ��(SH,�,�)�SNAP(SH,�,�) such that:

    Imax(X’)=S³CompLnk
� {�(S)(i)|�(S)(i)�X’ and ��i’>i: �(S)(i’)�X’},

4. A function I�: ��(SH,�,�)�PART(SH,�,�) such that:

    I�(X’)={Imax(X’)}� {S³CompLnk
� {�(S)(i)|�!S’�Comp� Lnk: �S’,i=prevm(S’)(�S,i’)

                           and �S”�Comp�Lnk with S”�S’: �S”,i=�S,i’ with �S,i’�Imax(X’)}}.

Then I�(I(X)�I(Y)) is an equivalence class of strict global states with respect
to R�R-1.
Proof: by Lemma 7.38.

�1	2. I�(I(X)�I(Y)) is an upper bound of X and Y.
Proof: by Lemma 7.39.

�1	3. I�(I(X)�I(Y)) is the least upper bound of X and Y.
Proof: by Lemma 7.40.

�1	4. Define:
1. A function Imin: ��(SH,�,�)�SNAP(SH,�,�) such that:

    Imin(X’)=S³CompLnk
� {�(S)(i)|�(S)(i)�X’ and ��i’<i: �(S)(i’)�X’}

2. A function I�: ��(SH,�,�)�PART(SH,�,�) such that:

    I�(X’)={Imin(X’)}� {S³CompLnk
� {�(S)(i)|�!S’�Comp� Lnk: �S’,i=nextm(S’)(�S,i’)

                           and �S”�Comp�Lnk with S”�S’: �S”,i=�S,i’ with �S,i’�Imax(X’)}}.

Then I�(I(X)�I(Y)) is an equivalence class of strict global states with respect
to R�R-1.
Proof: similar to the proof of Lemma 7.38. The difference is that in steps �6	1-

4, the cases are the other way around. I.e., for the first case (step �6	1),
i�i’ and j�j’, �”(S1)=�(S1) and �”(S2)=�(S2) instead of �”(S1)=�’(S1) and
�”(S2)=�’(S2).

�1	5. I�(I(X)�I(Y)) is a lower bound of X and Y.
Proof: similar to the proof of Lemma 7.39: I(X)�I(Y)	I(X): as I� is order-

preserving, 
I�(I(X)�I(Y));I�(I(X))��nextSGS(SH,m,g). As


I�(I(X));X��nextSGS(SH,m,g), by transitivity,


I�(I(X)�I(Y);X��nextSGS(SH,m,g), and similar for Y.

�1	6. I�(I(�)�I(�’)) is the greatest lower bound of X and Y.
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Proof: similar to the proof of Lemma 7.40. The difference is that in steps �6	1-
4, the cases are the other way around, similar to step �1	4 above.

�1	7. Q.E.D.
Proof: for arbitrary equivalence classes X and Y, by steps �1	1, �1	2, and �1	3,

the least upper bound exists, and by steps �1	4, �1	5, and �1	6, the
greatest lower bound exists.

Lemma 7.38. Let X,Y�PART(SH,�,�). Then I�(I(X)�I(Y)) is an equivalence class of
strict global states.

Proof. Proof sketch: Take �” as the maximal element in I�(I(X)�I(Y)). Assuming
that �” is not a strict global state, a contradiction is derived as follows. If �” is not a
strict global state, then there must be two components or links S1 and S2 such that
�”(S1) and �”(S2) are not independent. In other words, �”(S1)�sd�”(S2) or
�”(S2)�sd�”(S1). Assume that �”(S1)�sd�”(S2). With induction to the number of

times the fixpoint operator is applied, it is proven that a contradiction can be
derived by case analysis. In these cases, the most important step is as follows. Take
��X and �’�Y such that � and �’ are maximal in X and Y, respectively, with
respect to the order of local states for each local component or link trace �(S),

S�Comp�Lnk. (� and �’ are unique as traces are assumed to be linear.) For each
component or link S, either �(S)=�’(S), or �(S) is earlier than �’(S), with respect to
the local order of states in a local component or link trace, or �(S) is later than �’(S).
As �” is an element of the union of the “order ideals” I(X) and I(Y), �”(S)=�’(S) or
�”(S)=�(S), respectively. (In other words, by definition, for each component or
link, the latest state in either � or �’ is chosen13.) This enables ‘translating’ the case
�”(S1)�sd�”(S2) to a statement about either � or �’. A contradiction between such a

statement and the assumption that � and �’ are strict global states can then be
derived. The proof for the case that �”(S2)�sd�”(S1) is similar.

Assume:
1. ��X such that �S�Comp�Lnk: ���1�X such that �1(S)=nextm(S)(�(S))

2. �’�Y such that �S�Comp�Lnk: ���1�Y such that �1(S)=nextm(S)(�’(S))

3. �” is not a strict global state.
Prove: false.
�1	1. �S1,S2�Comp�Lnk: �”(S1)�sd�”(S2) � �”(S2)�sd�”(S1).

Proof: by assumption �0	:3 and the definition of a strict global state.
�1	2. Case: �”(S1)�sd�”(S2).

�2	1. �S1,S2: 
�”(S1);�”(S2)���sd=(�sd1)*=n�0
�  n(�), with  = �sd1.

Proof: by assumption �1	 and Lemma 7.37.
�2	2. �S1,S2: �n�0: 
�”(S1);�”(S2)�� n(�).

Proof: by step �2	1.

                                                          
13 For the lower bound I�(I(�)�I(�’)), the earliest state is chosen, because the lower

bound is defined as the intersection of the “order ideals” I(X) and I(Y) instead of the union.
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�2	3. �m�0: 
�”(S1);�”(S2)�� m(�) � false.

�3	1. Case: m=0.
Proof: by definition,  m(�) for m=0 is the empty set, because for

m=0,  m is the identity function.
�3	2. Case: 1. m>0,

2. 
�”(S1);�”(S2)�� m-1(�) � false,

3. 
�”(S1);�”(S2)�� m(�)= ( m-1(�))=

    {
�S1;�S2�|�S1�sd1�S2}�  m-1(�)�

    {

�S1;�S2�|
�S1;�S3�,
�S3;�S2�� 
m-1(�)}

�4	1. Case: �”(S1)�sd1�”(S2).

�5	1. Case: S1=S2 and �”(S2)=next�(S1)(�”(S1)).

Proof: impossible, because �”(S1) cannot be the
maximal element in �(S1) as required by the

definition of I�, as �”(S2) is later by ass. �5	.

�5	2. Case: 

�”(S1);next�(S1)(�”(S1))�;
�L,i”;�L,j”;�L,k;�L,l�;


prev�(S2)(�”(S2));�”(S2)�� is a transmission octet for a

link L, traces �(S1), �(L) and �(S2) and states �L,i”, �L,j”,

�L,k, and �L,l.

�6	1. Let �(S1)=�S1,i, �’(S1)=�S1,i’, �(S2)=�S2,j and

�’(S2)=�S2,j’. Case: i�i’ and j�j’.

Proof: �”(S1)=�’(S1) and �”(S2)=�’(S2) (see proof

sketch). By substitution in assumption �5	,
�’(S1)�sd�’(S2), which contradicts �0	:2.

�6	2. Case: i�i’ and j’<j.
Proof: �”(S1)=�’(S1) and �”(S2)=�(S2). By

substitution in �5	, �’(S1)�sd�(S2). By �6	,
�(S2)�sd�’(S2). By transitivity,
�’(S1)�sd�’(S2), which contradicts �0	:2.

�6	3. Case: i’<i and j�j’.
Proof: �”(S1)=�(S1) and �”(S2)=�’(S2). By

substitution in �5	, �(S1)�sd�’(S2). By �6	,
�’(S1)�sd�(S1). By transitivity,
�(S1)�sd�(S2), which contradicts �0	:1.

�6	4. Case: i’<i and j’<j.
Proof: �”(S1)=�(S1) and �”(S2)=�(S2). By

substitution in assumption �5	,
�(S1)�sd�(S2), which contradicts �0	:1.

�6	5. Q.E.D.
Proof: steps �6	1 to �6	4 list all possible cases.
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�5	3. Q.E.D.
Proof: steps �5	1 and �5	2 list both cases for

assumption �4	.
�4	2. Case: 
�”(S1);�”(S2)�� m-1(�).

Proof: by assumption �3	:2.
�4	3. Case: ��: 
�”(S1);��,
�;�”(S2)�� m-1(�).

Proof: for arbitrary state �, if 
�”(S1);��� m-1(�), then by

assumption �3	:2, false is derived. By assumption �4	,
there is a state � such that 
�”(S1);��� m-1(�).

�4	4. Q.E.D.
Proof: steps �4	1, �4	2 and �4	3 list all cases for assumption

�3	:3.
�3	3. Q.E.D.

Proof: steps �3	1 and �3	2 and induction to m.
�2	4. Q.E.D.

Proof: by steps �2	2 and �2	3.
�1	3. Case: �”(S2)�sd�”(S1).

Proof: analogous to proof of step �1	2.
�1	4. Q.E.D.

Proof: steps �1	2 and �1	3 enumerate both cases of �1	1.

Lemma 7.39. Let X,Y�PART(SH,�,�) and let Z=I�(I(X)�I(Y)). Then Z is an upper
bound of X and Y.

Proof. Proof sketch: First, I� is shown to be order-preserving, i.e., for sets of states
X’ and Y’, if X’	Y’, then 
I�(X’);I�(Y’)��nextSGS(SH,m,g). This is done using
induction to the number of elements in the difference between X’ and Y’. (For the
application of the induction hypothesis, it is shown that

I�(X’);I�(Y’)��nextSGS(SH,m,g) for the non-transitive part of the definition of

nextSGS(SH,m,g)). After this, the order-preserving property of I� is applied twice to
show that Z is greater than X and Y, respectively.
�1	1. I� is order-preserving.

Assume: X’,Y’���(SH,�,�) such that X’	Y’.

Prove: 
I�(X’);I�(Y’)��nextSGS(SH,m,g).

�2	1. �m�0: if |Y’\X’|=m, then 
I�(X’);I�(Y’)��nextSGS(SH,m,g).

�3	1. Case: m=0

Proof: assume that |Y’\X’|=0, thus X’=Y’, thus I�(X’)=I�(Y’). By
reflexiveness, 
I�(X’);I�(Y’)��nextSGS(SH,m,g).

�3	2. Case: 1. m>0,

 2. if |Y”\X”|=m-1, then 
I�(X”);I�(Y”)��nextSGS(SH,m,g),

 3. |Y’\X’|=m.
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�4	1. Let S�Comp�Lnk and take �S,i’�Y’ such that
�S,i’=nextm(S)(�S,i) with �S,i maximal for �(S) in X’. Then
|Y’\X’|={�S,i’}�(Y’\(X’�{�S,i’})).

Proof: as X’,Y’���(SH,�,�) and X’	Y’, �S,i’#X’, as �S,i is
maximal in X’ and �S,i’=nextm(S)(�S,i).

�4	2. |Y’\(X’�{�S,i’})|=m-1.

Proof: by step �4	1, �S,i’#X’ and by assumption �3	:3,

|Y’\X’|=m.
�4	3. 
I�(X’�{�S,i’});I�(Y’)��nextSGS(SH,m,g).

Proof: by step �4	2 and assumption �3	:2 (induction).
�4	4. 
I�(X’);I�(X’�{�S,i’})��nextSGS(SH,m,g).

�5	1. Let � be the maximal element in I�(X’). Then
�S’�Comp�Lnk with S’�S: �(S’)=�(S).
Proof: (X’�{�S,i’})\X’={�S,i’}, so �S,i’ is the only

difference.
�5	2. Case: S�Comp and there is no I�Lnk such that



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S);

�S,i’�� is a transmission octet.
Proof: clause 2 of the definition of nextSGS(SH,m,g).

�5	3. Case: S�Lnk and there is no I�Lnk such that


�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S);

�S,i’�� is a transmission octet.
Proof: clause 3 of the definition of nextSGS(SH,m,g).

�5	4. Case: S�Lnk and there is an I�Lnk such that


�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S);

�S,i’�� is a transmission octet.

Proof: same equivalence class.
�5	5. Case: S�Comp and there is an I�Lnk such that



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S);

�S,i’�� is a transmission octet.

Proof: the case is empty.
�5	6. Q.E.D.

Proof: as X’�Y’ by assumption �3	:1, steps �5	2-5 list all
cases.

�4	5. Q.E.D.
Proof: by steps �4	3, �4	4 and transitivity of nextSGS(SH,m,g).

�3	2. Q.E.D.
Proof: steps �3	1 and �3	2 and induction to m.

�2	2. Q.E.D.
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Proof: by assumption �1	, �m: |X’\Y’|=m. By step �2	1,

I�(X);I�(Y)��nextSGS(SH,m,g)..

�1	2. 
X;Z��nextSGS(SH,m,g).

�2	1. I(X)	I(X)�I(Y).

Proof: trivial.
�2	2. 
I�(I(X));I�(I(X)�I(Y))��nextSGS(SH,m,g).

Proof: by steps �2	1 and �1	1.
�2	3. 
I�(I(X));Z��nextSGS(SH,m,g).

Proof: substitute Z=I�(I(X)�I(Y)) in step �2	2.
�2	4. 
X;I�(I(X))��nextSGS(SH,m,g).

Proof: X and I�(I(X)) are in the same equivalence class with respect to
R�R-1, and nextSGS(SH,m,g) is reflexive.

�2	5. Q.E.D.
Proof: by steps �2	3 and �2	4 and transitivity of nextSGS(SH,m,g).

�1	3. 
Y;Z��nextSGS(SH,m,g).

Proof: analogous to �1	2.
�1	4. Q.E.D.

Proof: steps �1	2 and �1	3.

Lemma 7.40. Let X,Y�PART(SH,�,�) and let Z=I�(I(X)�I(Y)). Then Z is the least
upper bound of X and Y.
Proof. Proof sketch: From the assumption that there is an upper bound Z’ of X and
Y that is smaller than Z, a contradiction is derived as follows. First,
nextSGS(SH,m,g)=(onestepSGS(SH,m,g))*, where onestepSGS(SH,m,g) is the non-transitive part
of the relation nextSGS(SH,m,g). With induction to the number of times the fixpoint

operator is applied in (onestepSGS(SH,m,g))*, a contradiction is derived from the
assumption that Z’ is smaller than Z, while Z’ is an upper bound of X and Y. In the
proof, case analysis similar to the proof of Lemma 7.38 is applied. In these cases,
the most important step is as follows. Take �X�X, �Y�Y and �Y�Y such that �X,
�Y and �Z are maximal in X, Y and Z, respectively, with respect to the order of

local states for each local component or link trace �(S), S�Comp�Lnk. For each
component or link S, either �X(S)=�Y(S), or �X(S) is earlier than �Y(S), with respect
to the local order of states in a local component or link trace, or �X(S) is later than
�Y(S). As �Z is an element of the union of the “order ideals” I(X) and I(Y),
�Z(S)=�Y(S) or �Z(S)=�X(S), respectively. This enables ‘translating’ statement that
Z’ is smaller than Z to a statement about either �X or �Y. A contradiction between
such a statement and the assumption that Z’ is an upper bound of X and Y can
then be derived.
Assume: Z is not the least upper bound of X and Y.

Prove: false.
�1	1. Z is an upper bound of X and Y.

Proof: by Lemma 7.39.
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�1	2. There is an equivalence class Z’�Z such that Z’ is an upper bound of X and Y

and 
Z’;Z��nextSGS(SH,m,g)=(onestepSGS(SH,m,g))*=n�0
�  n(�), with

 = onestepSGS(SH,m,g)
.

Proof: by assumption �0	.
�1	3. �Z’: Z’�Z is an upper bound of X and Y, and �n: 
Z’;Z�� n(�).

Proof: by step �1	2.
�1	4. �m�0: if 
Z’;Z�� m(�), then false, for Z’ upper bound of X and Y.

�2	1. Case: m=0.

Proof: by definition,  m(�) for m=0 is the empty set, because for m=0,
 m is the identity function.

�2	2. Case: 1. m>0,

2. if 
Z’;Z�� m-1(�), then false, for Z’ upper bound of X and Y,
3. 
Z’;Z�� m(�)= ( m-1(�))={
x;y�|
x;y��onestepSGS(SH,m,g)} �

      m-1(�) � {
x;z�|
x;y�,
y;z�� m-1(�)},

 4. Z’ upper bound of X and Y.
�3	1. Case: 
Z’;Z��onestepSGS(SH,m,g).

�4	1. Let �Z’�Z’:�S�Comp�Lnk: ���1�Z’: �1(S)=nextm(S)(�Z’(S))

Let �Z�Z:�S�Comp�Lnk: ���1�Z: �1(S)=nextm(S)(�Z(S))

Let �X�X:�S�Comp�Lnk: ���1�X: �1(S)=nextm(S)(�X(S))

Let �Y�Y:�S�Comp�Lnk: ���1�Y: �1(S)=nextm(S)(�Y(S))

Case: there is exactly one C�Comp such that
�Z(C)=nextm(C)(�Z’(C)) and �S�Comp�Lnk with S�C:

�Z(S)=�Z’(S) and there is no transmission octet



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S); �S,i’�� for

any link I.
�5	1. Let �X(C)=�C,i and let �Y(C)=�C,i’. Case: i�i’.

Proof: �Z(C)=�Y(C)=nextm(C)(�Z’(C)). Thus

Z’;Y��nextSGS(SH,m,g) by clause 2 of the
definition of nextSGS(SH,m,g). Thus, Z’ is not an

upper bound of Y, which contradicts ass. �2	:4.
�5	2. Case: i’<i.

Proof: �Z(C)=�X(C)=nextm(C)(�Z’(C)). Thus

Z’;X��nextSGS(SH,m,g) by clause 2 of the
definition of nextSGS(SH,m,g). Thus, Z’ is not an

upper bound of X, which contradicts ass. �2	:4.
�5	3. Q.E.D.

Proof: steps �5	1 and �5	2 list both cases.
�4	2. Case: there is exactly one I�Lnk such that

�Z(I)=nextm(I)(�Z’(I)) and �S�Comp�Lnk with S�I:

�Z(S)=�Z’(S) and there is no transmission octet
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�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S); �S,i’�� for

any link I.
Proof: similar to proof of the previous step.

�4	3. Case: there is exactly one C�Comp such that
�Z(C)=nextm(C)(�Z’(C)) and there is exactly one I�Comp such
that �Z(I)=nextm(I)(�Z’(I))and �S�Comp�Lnk with S�C and
S�I: �Z(S)=�Z’(S) and there is either a transmission octet



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S); �S,i’�� or



�dom(I),i;�dom(I),j�;
�I,i”;�I,j”;�(I);nextm(I)(�(I))�;
�(S); �S,i’��.

Proof: similar to proof of the previous step.
�4	4. Q.E.D.

Proof: as Z’�Z, steps �4	1-3 list all cases for assumption �3	.
�3	2. Case: 
Z’;Z�� m-1(�).

Proof: by assumption �2	:2.
�3	3. Case: �Z”: 
Z’;Z”�,
Z”;Z�� m-1(�).

Proof: for arbitrary Z”, if 
Z”;Z�� m-1(�), then false by
assumption �2	:2. By assumption �3	, such Z” exists.

�3	4. Q.E.D.
Proof: steps �3	1, �3	2 and �3	3 list all cases for assumption �2	:3.

�2	3. Q.E.D.
Proof: steps �2	1 and �2	2 and induction to m.

�1	5. Q.E.D.
Proof: by steps �1	1, �1	3 and �1	4.

Proposition 7.9. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let �  be a

collection of compatibility relations, let � be a multitrace compatible for �  and let
��SNAP(SH,�,�) be a snapshot. If for all S1S2�Comp�Lnk and for all j’ such that

�<j’�j, with j such that �(S1)=�S1(j), there is no transmission octet



�(S1);�(S1)’�;
�L,i”;�L,j”;�L,k;�L,l�;
prev�(S2)(�S2(j’));�S2(j’)����L for any link L from S1

to S2, �(S1)’�next�(S1)(�(S1)) and i”,j”,k,l in the time frame of �L, then � is a strict global

state.

Proof. Proof sketch: Assuming that there is no transmission octet for any j’ as
defined in the proposition and nevertheless, � is not a strict global state, a
contradiction is derived.
Assume:

1. �S1S2�Comp�Lnk, �j’: �<j’�j with j such that �(S1)=�S1(j), there is no

transmission octet 

�(S1);�(S2)’�;
�L,i”;�L,j”;�L,k;�L,l�;
prev�(S2)(�S2

(j’));�S2(j’)����L for any link L from S1 to S2, �(S1)’�next�(S1)(�(S1)) and

i”,j”,k,l in the time frame of �L.

2. �  is not a strict global state.
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Prove: false.
�1	1. �S1,S2�Comp�Lnk: �(S1)�sd�(S2) or �(S2)�sd�(S1).

Proof: by assumption �0	:2 and the definition of a strict global state.
�1	2. Case: �(S1)�sd�(S2).

�2	1. �S1,S2: 
�(S1);�(S2)���sd=(�sd1)*=n�0
�  n(�), with  = �sd1.

Proof: by assumption �1	 and Lemma 7.37.
�2	2. �S1,S2: �n�0: 
�(S1);�(S2)�� n(�).

Proof: by step �2	1.
�2	3. �m�0: 
�(S1);�(S2)�� m(�) � �j’: �<j’<j such that there is a

transmission octet.
�3	1. Case: m=0.

Proof: by definition,  m(�) for m=0 is the empty set, because for
m=0,  m is the identity function.

�3	2. Case: 1. m>0,
2. 
�(S1);�(S2)�� m-1(�) � �j’: �<j’<j such that there is a

    transmission octet,
3. 
�(S1);�(S2)�� m(�)= ( m-1(�))=

    {
�S1;�S2�|�S1�sd1;�S2}�  m-1(�)�

    {

�S1;�S2�|
�S1;�S3�,
�S3;�S2�� 
m-1(�)}

�4	1. Case: �(S1)�sd1�(S2).

�5	1. Case: S1=S2 and �(S2)=next�(S1)(�(S1)).

Proof: the case is empty, as the next state relation is
not reflexive.

�5	2. Case: 

�(S1);next�(S1)(�(S1))�;
�L,i”;�L,j”;�L,k;�L,l�;


prev�(S2)(�(S1));�(S2)�� is a transmission octet for a

link L, traces �(S1), �(L) and �(S2) and states �L,i”, �L,j”,

�L,k, and �L,l.

Proof: trivial.
�5	3. Q.E.D.

Proof: steps �5	1 and �5	2 list all cases for assumption
�3	:3.

�4	2. Case: 
�(S1);�(S2)�� m-1(�).

Proof: by assumption �3	:2.
�4	3. Case: �S3: 
�S1;�S3�,
�S3;�S2�� 

m-1(�).

Proof: for arbitrary state �, if 
�S1;��� m-1(�), then by

assumption �3	:2, �j’: �<j’<j such that there is a
transmission octet. By assumption �4	, there is a state
� such that 
�S1;��� m-1(�).

�4	4. Q.E.D.
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Proof: steps �4	1, �4	2 and �4	3 list all cases for assumption
�3	:3.

�3	3. Q.E.D.
Proof: steps �3	1 and �3	2 and induction to m.

�2	4. Q.E.D.
Proof: by application of �2	3, there is a transmission octet, which

contradicts assumption �0	:1.
�1	3. Case: �(S2)�sd�(S1).

Proof: analogous to proof of step �1	2.
�1	4. Q.E.D.

Proof: steps �1	2 and �1	3 enumerate both cases of �1	1.

Proposition 7.12. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk  be a collection of compatibility relations, let � be a multitrace compatible for �

and let GTS(SH,�,�) be a global transition system for SH. If ��{q0}*, then � is a strict

global state.

Proof. Proof sketch: The proof consists of a straightforward induction to the length
of the transition from q0 to �. A lemma is applied for the inductive case.

Assume: ��{q0}*=n�0
� {�’�SNAP(SH,�,�)|q0�

n
g�’}.

Prove: � is a strict global state.

�1	1. �n�0: ��{�’�SNAP(SH,�,�)|q0�
n

g�’}.

Proof: by assumption �0	.

�1	2. �m�0: if ��{�’�SNAP(SH,�,�)|q0�
m

g�’}, then � is a strict global state.

�2	1. Case: m=0.

Proof: by definition of �mg, �=q0 in this case. q0 is a strict global state.

�2	2. Case: 1. m>0.

 2. ��”: if �”�{�’�SNAP(SH,�,�)|q0 �
m-1

g�’}, then �” is a

     strict global state.

 3. ��{�’�SNAP(SH,�,�)|q0�
m

g�’}.

�3	1. ��”: q0 �
m-1

g�” and �”�g�.

Proof: by assumption �2	:3 and the definition of �mg.

�3	2. �” is a strict global state.
Proof: by step �3	1 assumption �2	:2.

�3	3. Q.E.D.
Proof: by Lemma 7.41 and step �3	2.

�2	3. Q.E.D.
Proof: by steps �2	1 and �2	2 and induction to m.

�1	3. Q.E.D.
Proof: by steps �1	1 and �1	2.



7.3: Proofs

172

Lemma 7.41. ��,�’�SNAP(SH,�,�) such that ��g�’: if � is a strict global state, then �’

is a strict global state.

Proof. Proof sketch: At the highest level, the proof consists of proofs of the lemma
for the three cases for ��g�’: 
�;�’� is an internal global transition, 
�;�’� is a

sending global transition, or 
�;�’� is a receiving global transition. Each case itself
proves that for arbitrary S1,S2�Comp�Lnk, �’(S1)��’(S2). This is done by case
analysis for possible choices for S1 and S2.
Assume: 1. ��g�’, 2. � is a strict global state.

Prove: �’ is a strict global state.
�1	1. Case: 
�;�’� is an internal global transition.

�2	1. Let S�Comp�Lnk such that �’(S)�nextm(S)(�(S)) and �S’�Comp�Lnk

with S’�S: �’(S’)=�(S’) and there is no transmission octet


�(S);�’(S)�;
�I,i”;�I,j”;�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� for any link I. Let
S1,S2�Comp�Lnk. Then �’(S1)��’(S2).
�3	1. Case: S1�S and S2�S.

Proof: by assumptions �2	 and �3	, �’(S1)=�(S1)��(S2)=�’(S2), as �

is a strict global state by assumption �0	:2.
�3	2. Case: S1=S and S2=S.

Proof: by reflexivity of the independence relation.
�3	3. Case: S1=S and S2�S.

�4	1. �(�’(S1)�sd�’(S2)).
Proof: Assume that �’(S1)�sd�’(S2). By substitution of ass.

�3	 and �2	, ��sd�(S2) for ��nextm(S1)(�(S1)). Then
�(S1)�sd�(S2) by transitivity of �sd. This contradicts

assumption �0	:2.
�4	2. �(�’(S2)�sd�’(S1)).

Proof: Assume that �’(S2)�sd�’(S1). By substitution of ass.
�3	 and �2	, �(S2)�sd� for ��nextm(S1)(�(S1)). As S1�S2,

there must be a transmission octet


�(S2);nextm(S2)(�(S2))�;
�I,i”; �I,j”; �I,k; �I,l�;
�(S1);���,

which contradicts assumption �1	.
�4	3. Q.E.D.

Proof: by steps �4	1 and �4	2, and the definition of the
independence relation, �’(S1)��’(S2).

�3	4. Case: S1�S and S2=S.

Proof: similar to the proof of the previous case.
�3	5. Q.E.D.

Proof: steps �3	1-4 list all cases for S1 and S2.

�2	2. Q.E.D.
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Proof: by step �2	1, �’(S1) and �’(S2) are independent for arbitrary S1

and S2.

�1	2. Case: 
�;�’� is a sending global transition.
�2	1. Let S�Comp�Lnk such that �’(S)�nextm(S)(�(S)), let I�Lnk such that

�’(I)�nextm(I)(�(I)) and �S’�Comp�Lnk with S’�S and S’�I: �’(S’)=�(S’)

and there is a transmission octet


�(S);�’(S)�;
�(I);�’(I);�I,k;�I,l�;
�cdom(I),i’;�cdom(I),j’�� for I. Let
S1,S2�Comp�Lnk. Then �’(S1)��’(S2).
�3	1. Case: S1�C and S2�C and S1�I and S2�I.

Proof: by assumptions �2	 and �3	, �’(S1)=�(S1)��(S2)=�’(S2), as �

is a strict global state by assumption �0	:2.
�3	2. Case: (S1=C and S2=C) or (S1=I and S2=I).

Proof: by reflexivity of the independence relation.
�3	3. Case: S1=C and S2=I.

Proof: by definition of �sd.
�3	4. Case: S1=I and S2=C.

Proof: similar to previous case.
�3	5. Case: S1=C and S2� C and S2� I.

�4	1. �(�’(S1)�sd�’(S2)).
Proof: Assume that �’(S1)�sd�’(S2). By substitution of ass.

�3	 and �2	, ��sd�(S2) for ��nextm(S1)(�(S1)). Then
�(S1)�sd�(S2) by transitivity of �sd. This contradicts

assumption �0	:2.
�4	2. �(�’(S2)�sd�’(S1)).

Proof: Assume that �’(S2)�sd�’(S1). By substitution of ass.
�3	, �(S2)�sd�’(S). As S1�S2, there must be a

transmission octet 

�(S2);nextm(S2)(�(S2))�;
�I,i”; �I,j”;

�I,k; �I,l�;
�(S);�’(S)��. This contradicts ass. �1	, as by

ass. �1	, 
�(S);�’(S)�  is the first element of a
transmission octet and �sd is a partial order.

�4	3. Q.E.D.
Proof: by steps �4	1 and �4	2, and the definition of the

independence relation, �’(S1)��’(S2).
�3	6. Case: S1� C and S1� I and S2=C.

Proof: similar to previous case.
�3	7. Case: S1=I and S2� C and S2� I.

Proof: by definition of �sd.
�3	8. Case: S1� C and S1� I and S2=I.

Proof: similar to previous case.
�3	9. Q.E.D.
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Proof: steps �3	1-8 list all cases for step �2	1.
�1	3. Case: 
�;�’� is a receiving global transition.

Proof: similar to the proof of step �1	2.
�1	4. Q.E.D.

Proof: steps �1	1-3 list all cases for assumption �0	:1.

Proposition 7.17. Let SH be a structure hierarchy and let � be an atomic computation for
SH. Then:

t1=trans(�A,i,nextm(A)(�A,i))�trtrans(prevm(B)(�B,j’),�B,j’)=t2

� �A,i�sd�B,j’ and �B,j’nextm(A)(�A,i).

Proof. Proof sketch: At the highest level, the proof consists of proofs for the two
implications in either direction. Both implications are proven with induction to the
number of times the one-step relations defined in Definition 7.36 are applied. By
Lemma 7.37, it follows that the implications hold for �tr and �sd. The proof of the

implication from left to right is the most involved. The central step is step 1.2.2.3
(denoted �4	3 in the proof—a four-part step number ending with ‘3’). The
assumption that � is an atomic computation is crucial in this step. The proof of step
1.2.2.3 proceeds as follows. In this step, it is assumed that there is a transition
t3=trans(�C,z,nextm(C)(�C,z)) such that 
t1;t3��$

m-1(�) and 
t3;t2��$
m-1(�). By

induction, �A,i�sdnextm(C)(�C,z) and �C,z�sd�B,j’. As � is an atomic computation,
either t1�/ tr1t3 or t3�/ tr1t2. (If t1�tr1t3 and t3�tr1t2, then t3 has to be both a receive

transition and a send transition, respectively. This is impossible by the definition of
an atomic computation.) Consider the case t1�/ tr1t3. In step 1.2.2.3, as t1 and t3 are

related by (�tr1)*, there is a transition t4 such that the induction hypothesis can be
applied to 
t4;t3�, and the proof can be completed.

�1	1. 
t1;t2���tr=(�tr1)*=n�0
� $n(�), with $=$�tr1 � 
�A,i;�B,j’���sd=(�sd1)*=n�0

�

 n(�), with  = �sd1, and �B,j’nextm(A)(�A,i).

Assume: 
t1;t2���tr=(�tr1)*=n�0
� $n(�).

Prove: 
�A,i;�B,j’���sd=(�sd1)*=n�0
�  n(�) and �B,j’nextm(A)(�A,i).

�2	1. There is an n�0 such that 
t1;t2��$
n(�).

Proof: by assumption �1	.
�2	2. �m�0: if 
 t1;t2��$

m(�) then (
�A,i;�B,j’��(�sd1)* and �B,j’nextm(A)(�A,i)).

�3	1. Case: m=0.
Proof: by definition, $m(�) for m=0 is the empty set, because for

m=0, $m is the identity function.
�3	2. Case: 1. m>0,

2. �m’ with 0<m’<m, 
 t1;t2��$
m’(�) � (
�A,i;�B,j’��(�sd1)*

    and �B,j’nextm(A)(�A,i)),

3. 
t1;t2��$
m(�)=$($m-1(�))={
t’;t”�|t’�tr1t”}�$m-1(�)�

    {
tx;tz�|
tx;ty�,
ty;tz��$
m-1(�)}.
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�4	1. Case: t1�tr1t2.

�5	1. Case: A=B and nextm(A)(�A,i)=prevm(B)(�B,j’).

Proof: by assumption �5	, �A,i�sd1nextm(A)(�A,i) and
nextm(A)(�A,i)�sd1�B,j’. Because �sd1	(�sd1)*,


�A,i;nextm(A)(�A,i)�,
nextm(A)(�A,i);�B,j’��(�sd1)*

and because (�sd1)* is transitive,


�A,i;�B,j’��(�sd1)*. By assumption �5	,
�B,j’nextm(A)(�A,i).

�5	2. Case: 

�A,i;nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;


prevm(B)(�B,j’);�B,j’�� is a transmission octet.
Proof: by definition of �sd1.

�5	3. Q.E.D.
Proof: by the definition of �tr1, steps �5	1 and �5	2 list

all cases.
�4	2. Case: 
t1;t2��$

m-1(�).

Proof: by assumption �3	:2.
�4	3. Case: �t3: 
t1;t3��$

m-1(�) and 
t3;t2��$
m-1(�).

�5	1. Let t3=trans(�C,z,nextm(C)(�C,z)). 
�A,i;nextm(C)(�C,z)�,


�C,z;�B,j’��(�sd1)*.

Proof: by assumption �3	:2.
�5	2. �(t1�tr1t3 % t3�tr1t2).

Proof: assume that t1�tr1t3, t3�tr1t2 and ABC. Then

� cannot be left and right unique as required by
Proposition 7.17.

�5	3. Case: �(t1�tr1t3).
�6	1. �t4: t4=trans(�C,z’,nextm(C)(�C,z’)): t1�tr1t4 and


t4;t3��$
m-2(�).

Proof: by the assumption that � is left and right
unique and assumptions �4	 and �5	 and
the definition of $m-1(�).

�6	2. 
�A,i;nextm(C)(�C,z’)���sd1	(�sd1)*.
Proof: by step �6	1 and the definitions of �tr1

and �sd1.
�6	3. �C,z=nextm(C)(�C,z’) or


nextm(C)(�C,z’);�C,z��(�sd1)*.

Proof: by assumption �3	:2, 
�C,z’;nextm(C)(�C,z)�

�(�sd1)*, and the definition of �sd1.

�6	4. Q.E.D.
Proof: by transitivity of (�sd1)* and steps �5	1,

�6	2 and both cases of step �6	3.
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�5	4. Case: �(t3�tr1t2).

Proof: analogous to proof of previous step.
�5	5. Q.E.D.

Proof: steps �5	3 and �5	4 list both cases for step �5	2.
�4	4. Q.E.D.

Proof: by assumption �3	:3, steps �4	1, �4	2 and �4	3 list all
cases.

�3	3. Q.E.D.
Proof: by steps �3	1 and �3	2 and induction to n.

�2	3. Q.E.D.
Proof: by steps �2	1 and �2	2.

�1	2. (
�A,i;�B,j’��(�sd1)*=n�0
�  n(�), with  = sd1& and '�B,j’nextm(A)(�A,i) �


t1;t2��(�tr1)*=n�0
� $n(�), with $=$tr1

Assume: 
�A,i;�B,j’��(�sd1)*=n�0
�  n(�) and �B,j’nextm(A)(�A,i).

Prove: 
t1;t2��(�tr1)*=n�0
� $n(�).

�2	1. There is an n�0 such that 
�A,i;�B,j’�� 
n(�) and �B,j’nextm(A)(�A,i).

Proof: by assumption �1	.
�2	2. �m�0: if 
�A,i;�B,j’�� 

m(�) and �B,j’nextm(A)(�A,i), then 
t1;t2��(�tr1)*.

�3	1. Case: m=0.
Proof: by definition,  m(�) for m=0 is the empty set, because for

m=0,  m is the identity function.
�3	2. Case: 1. m>0,

2. if 
�A,i;�B,j’�� 
m-1(�) and �B,j’nextm(A)(�A,i)), then

    
t1;t2��(�tr1)*,

3. �B,j’nextm(A)(�A,i)

4. 
�A,i;�B,j’�� 
m(�)= ( m-1(�))=

    {
�A,o;�B,p�|�A,o�sd1�B,p} �  m-1(�) �

    {
�A,x;�B,y�|
�A,x;�C,z�,
�C,z;�B,y�� 
m-1(�)}.

�4	1. Case: �A,i’�sd1�B,j’.

Proof: by the definition of �sd1 and assumption �3	:3,



�A,i;nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;


prevm(B)(�B,j’);�B,j’�� is a transmission octet. By the

definition of �tr1, 
t1;t2���tr1	(�tr1)*.

�4	2. Case: 
�A,i;�B,j’�� 
m-1(�).

Proof: by assumptions �3	:2 and �3	:3.
�4	3. Case: ��C,z: 
�A,i;�C,z�,
�C,z;�B,j’�� 

m-1(�).
�5	1. Case: �C,z�nextm(A)(�A,i) and �B,j’�nextm(C)(�C,z).

�6	1. 
t1;trans(prevm(C)(�C,z),�C,z)��(�tr1)*.

Proof: by assumptions �3	:2 and �5	.
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�6	2. 
trans(�C,z,nextm(C)(�C,z));t2��(�tr1)*.

Proof: by assumptions �3	:2 and �5	.
�6	3. 
trans(prevm(C)(�C,z),�C,z);

trans(�C,z,nextm(C)(�C,z))���tr1 	(�tr1)*.

Proof: by definition of �tr1.

�6	4. Q.E.D.
Proof: by steps �6	1, �6	2 and �6	3 and

transitivity of (�tr1)*.
�5	2. Case: �C,z=nextm(A)(�A,i) or �B,j’=nextm(C)(�C,z).

Proof: similar to the proof of the other case. The
induction hypothesis is only applied once or not
at all. Instead, if e.g. �C,z=nextm(A)(�A,i), then


t1;trans(�C,z,nextm(C)(�C,z)��(�tr1)* by clause 1 of
the definition of �tr1.

�5	3. Q.E.D.
Proof: steps �5	1 and �5	2 list all cases.

�4	4. Q.E.D.
Proof: by assumption �3	:4, steps �4	1, �4	2 and �4	3 list all

cases.
�3	3. Q.E.D.

Proof: by steps �3	1 and �3	2 and induction to n.
�2	3. Q.E.D.

Proof: by steps �2	1 and �2	2.
�1	3. Q.E.D.

Proof: by steps �1	1 and �1	2.

Proposition 7.19. Let SH be a structure hierarchy and let � be an atomic computation for
SH. Then �A,i�sd�B,j’ iff �A,i�fr�B,j’.

Proof. Proof sketch: The proof consists of straightforward expansions of the
definitions involved.
�1	1. �A,i�sd�B,j’ � �A,i�fr�B,j’.

Assume: �A,i�sd�B,j’.

Prove: �A,i�fr�B,j’.
�2	1. Case: A=B and �A,i=prevm(A)(�B,j’).

Proof: by clause 1 of the definition of Fromentin & Raynal.
�2	2. Case: 

�A,i;nextm(A)(�A,i)�;
�L,i”;�L,j”;�L,k;�L,l�;
prevm(B)(�B,j’);�B,j’�� is a

transmission octet for LTA, LTL and LTB.
Proof: by Proposition 7.17, trans(�A,i,nextm(A)(�A,i))�tr

trans(prevm(B)(�B,j’),�B,j’). By clause 2 of the definition of Fromentin
& Raynal, �A,i�fr�B,j’.

�2	3. Case: there is a state �C,m such that �A,i�sd�C,m’ and �C,m�sd�B,j’.



7.3: Proofs

178

Proof: by applying Proposition 7.17 twice and clause 3 of the definition
of Fromentin and Raynal.

�2	4. Q.E.D.
Proof: steps �2	1, �2	2 and �2	3 list all cases.

�1	2. �A,i�fr�B,j’ � �A,i�sd�B,j’.

Assume: �A,i�fr�B,j’.
Prove: �A,i�sd�B,j’.
�2	1. Case: A=B and �A,i=prevm(A)(�B,j’).

Proof: by clause 1 of the definition of strict dependence.
�2	2. Case: trans(�A,i,nextm(A)(�A,i))�trtrans(prevm(B)(�B,j’),�B,j’).

Proof: by Proposition 7.17, �A,i�sd�B,j’.

�2	3. Q.E.D.
Proof: steps �2	1 and �2	2 list all cases.

�1	3. Q.E.D.
Proof: by steps �1	1 and �1	2.

Proposition 7.25. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace compatible for �

and let cut(SH,�,�) be a cut for SH with respect to � and �. If cut(SH,�,�) is a consistent

cut, then fs(cut(SH,�,�)) is a global state.

Proof. Proof sketch: The contraposition of the proposition is proven. Thus,
fs(cut(SH,�,�)) is assumed not to be a strict global state. Then there must be two
components or links S1,S2 such that the state of S1 in fs(cut(SH,�,�)) is strictly
dependent on the state of S2 or the other way around. Using induction, it is proven

that in either case, there are transitions such that cut(SH,�,�) cannot be a consistent
cut.
Assume: fs(cut(SH,�,�)) is not a strict global state.
Prove: cut(SH,�,�) is not a consistent cut.
�1	1. Let �=fs(cut(SH,�,�)) and let S1,S2�Comp�Lnk. Then �(S1)�sd�(S2) or

�(S2)�sd�(S1).

Proof: by assumption �0	 and the definition of a strict global state.
�1	2. Case: �(S1)�sd�(S2).

Assume: 
�(S1);�(S2)���sd=(�sd1)*=n�0
�  n(�) with  = sd1.

Prove: cut(SH,�,�) is not consistent.
�2	1.  �n: 
�(S1);�(S2)�� n(�).

Proof: assumption �1	.
�2	2. �m�0: if 
�(S1);�(S2)�� m(�), then cut(SH,�,�) is not consistent.

�3	1. Case m=0.

Proof: by definition,  0(�) is the empty set, because for m=0,  m

is the identity function. Thus, for this case, the claim is
trivially true.
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�3	2. Case: 1. m>0,
2. 
�(S1);�(S2)�� m-1(�) � cut(SH,�,�) is not consistent.

3. 
�(S1);�(S2)�� m(�)= ( m-1(�))=

    {
�S1;�S2�|�S1�sd1�S2}�  m-1(�)�

    {

�S1;�S2�|
�S1;�S3�,
�S3;�S2�� 
m-1(�)}.

�4	1. Case: 
�(S1);�(S2)��{
x;y�|x�sd1y}

�5	1. Case: S1=S2 and �(S2)=next�(S1)(�(S1)).

Proof: the case is empty, as by the definition of fs, it is
impossible that �(S2)=next�(S1)(�(S1)), while

�=fs(cut(SH,�,�).
�5	2. Case: 

�(S1);next�(S1)(�(S1))�;
�I,i”;�I,j”;�I,k;�I,�;


prev�(S2)(�(S2));�(S2)� is a transmission octet for a

link I from S1 to S2 and traces �(S1), �(I) and �(S2).
�6	1. t1=trans(�(S1),next�(S1)(�(S1)))�trtrans(prev�(S2)

(�(S2));�(S2))=t2.

Proof: by definition of �tr.

�6	2. t1#cut*(SH,�,�).

Proof: by the definition of the final state set and
of a cut.

�6	3. Q.E.D.
Proof: t2=cut(SH,�,�)(S2) by definition of a cut,

t1�trt2 by step �6	1 and t1#cut*(SH,�,�) by

step �6	2.
�5	3. Q.E.D.

Proof: steps �5	1 and �5	2 list all cases for assumption
�4	.

�4	2. Case: 
�(S1);�(S2)�� m-1(�).

Proof: by assumption �3	:2.
�4	3. Case: 
�(S1);�(S2)��{
x;z�|
x,y�,
y;z�� m-1(�)}.

Proof: Let � be an arbitrary state. By assumption �3	:2, if

�(S1);��� m(�), then cut(SH,�,�) is not consistent. By

assumption �4	, there is a � such that 
�(S1);��� m(�).

�4	4. Q.E.D.
Proof: steps �4	1, �4	2 and �4	3 list all cases for assumption

�3	:3.
�3	3. Q.E.D.

Proof: by steps �3	1 and �3	2 and induction to m.
�2	3. Q.E.D.

Proof: by steps �2	1 and �2	2.
�1	3. Case: �(S1)�sd�(S2).
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Proof: analogous to �1	2.
�1	4. Q.E.D.

Proof: steps �1	2 and �1	3 list all cases for �1	1.

Proposition 7.27. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let
�=(�I)I³Lnk be a collection of compatibility relations, let � be a multitrace compatible for �

and let ��SNAP(SH,�,�) be a snapshot of SH for � and �. If � is a strict global state of a

structure hierarchy SH, then fts(�) is a consistent cut.

Proof. Proof sketch: The contraposition of the proposition is proven. Thus, fts(�) is
assumed not to be a consistent cut. Then there must be two transitions t,t’ of
components or links S1,S2 such that t’ depends on t. Using induction, it is proven
that in this case, �(S1) strictly depends on �(S2) or the other way around. In both

cases, � is not a strict global state.
Assume: fts(�) is not a consistent cut.
Prove: � is not a strict global state.
�1	1. There is an S�Comp�Lnk and there is a t’��SH such that t’�trt=fts(�)(S) and

t’#fts*(�).

Proof: by assumption �0	 and the definition of a consistent cut.
�1	2. Let S�Comp�Lnk and let t’��SH. If t’�trt=fts(�)(S) and t’#fts*(�), then � is not

a strict global state.

Assume: 1. 
t’;t���tr=(�tr1)*=n�0
�  n(�) with  = �tr1, 2. t’#fts*(�).

Prove: � is not a strict global state.
�2	1. �n: 
t’;t�� n(�).

Proof: assumption �1	:1.
�2	2. �m�0: if 
t’;t�� m(�), then � is not a strict global state.

�3	1. Case m=0.

Proof: by definition,  0(�) is the empty set, because for m=0,  m

is the identity function. Thus, for this case, the claim is
trivially true.

�3	2. Case: 1. m>0,
2. 
t’;t�� m-1(�) � � is not a strict global state.
3. 
t’;t�� m(�)= ( m-1(�))=

    {
t’;t�|t’�tr1;t}�  m-1(�) � {

t’;t�|
t’;t”�,
t”;t�� m-1(�)}

�4	1. Case: 
t’;t��{
t’;t�|t’�tr1t}.

�5	1. Let t’=trans(
�S1;nextm(S1)(�S1)) and let t=trans(prevm(S2)

(�(S2)),�(S2)).

Case: S1=S2 and nextm(S1)(�S1)=prevm(S2)(�(S2)).

Proof: the case is empty, because by ass. �5	 and
the definition of fts*(�), t’�fts*(�), which
contradicts assumption �1	:2.
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�5	2. Case: �I�Lnk: dom(I)=S1 and cdom(I)=S2 and

��I,i”,�I,j”,�I,k,�I,l: 

�S1;nextm(S1)(�S1)�;
�I,i”;�I,j”;�I,k;�I,l�;


prevm(S2)(�(S2));�(S2)�� is a transmission octet for I,

�(S1), �(I) and �(S2).
�6	1. �S1�sd�(S2).

Proof: by assumption �5	 and the definition of
strict dependence.

�6	2. �(S1)�sd�S1 or �(S1)=�S1.

Proof: by assumption �1	:2, t’=trans(
�S1;

nextm(S1)(�S1))#fts*(�). By the definition of

fts*(�) and of �sd, �S1 must be later than

�(S1).

�6	3. Q.E.D.
Proof: by steps �6	1, �6	2 and transitivity of �sd.

�5	3. Q.E.D.
Proof: steps �4	1 and �4	2 list all cases for assumption

�4	.
�4	2. Case: 
t’;t�� m-1(�).

Proof: by assumption �3	:2.
�4	3. Case: 
t’;t��{
t’;t�|
t’,t”�,
t”;t�� m-1(�)}.

Proof: Let t” be an arbitrary state. By assumption �3	:2, if

t’;t”�� m(�), then � is not a strict global state. By
assumption �3	, there is a t” such that 
t’;t”�� m(�).

�4	4. Q.E.D.
Proof: steps �4	1, �4	2 and �4	3 list all cases for assumption

�3	:3.
�3	3. Q.E.D.

Proof: steps �3	1 and �3	2 and induction to m.

�2	3. Q.E.D.
Proof: steps �2	1 and �2	2.

�1	3. Q.E.D.
Proof: by steps �1	1 and �1	2.
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Chapter 8�

Control in Compositional
Systems and Multi-Agent
Systems

This chapter is dedicated to the phenomenon of control in compositional systems
and multi-agent systems. The aim of this chapter is to develop constructs for
modelling control in multi-agent systems as a refinement of the semantic structure
presented in the previous chapters. In other words, in this chapter, new
commitments are introduced that further characterise the constructs provided by
the semantic structure. These commitments determine how one component in a
compositional system can control another component. Furthermore, additional
modelling choices are presented that illustrate how control in a compositional
system can be used to model control in a multi-agent system.

The previous chapters discuss the influence of information exchange between
components on the dynamics of the components. Under specific conditions, this
influence enables one component to control other components. Thus, the semantic
structure presented in the previous chapters provides necessary constructs to
support control. However, to apply the semantic structure, refinements of the
constructs provided by the semantic structure are needed that resolve the
following issues. First, although the semantic structure presented in the previous
chapters ensures that one component can influence another component, the
question of what is influenced and what this influence entails, is not addressed.
Second, the constructs provided by the semantic structure do not address
questions of how control can be exercised in a domain-independent and compositional

way. Third, the scope of influence exercised by each individual component in a
compositional system is not clear. These issues are addressed in this chapter.

The structure of this chapter is as follows. To provide a strong foundation from
which to pursue the aim of this chapter, first, in Section 8.1, the control
phenomenon is characterised, the role of control in compositional systems is
discussed, and some perspectives from other research areas are presented. The
next two sections have a structure similar to Chapter 2 and Chapter 3. Thus,
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Section 8.2 presents commitments with respect to how control in compositional
systems is represented. This section explains how constructs provided by the
semantic structure can exercise control over components. Section 8.3 discusses
control in multi-agent systems. Although the autonomy of an agent in a multi-
agent system seems to be incompatible with control over that agent, the
characterisation of control presented in Section 8.1 is also applicable to an
autonomous agent. Section 8.3 presents some modelling choices with respect to
how control in multi-agent systems can be represented in a compositional system
that models the multi-agent system. Section 8.4 provides an example of the
material presented in the previous sections. The final topic is the relationship
between controlling components and the components they control. The notion of
global state developed in the previous chapter is exploited to investigate this
relation. This topic is covered in Section 8.5.

8.1� Control and Compositionality

The phenomenon of control appears in many different guises, both in multi-agents
systems as well as in conventional Computer Science and Artificial Intelligence.
The control phenomenon is encountered whenever a specific part of a system
adopts a goal that requires another part of the system to reach a specific state. In
other words, a part of a system that tries to constrain the future of another part
such that this other part reaches a specific state, has to exercise control over the
part that is to be constrained. For instance, in a multi-agent system with robot
agents, one of the robots may adopt a goal to change something in the
environment (e.g., to paint a car in an assembly line), or to change the state of
another robot such that this robot moves out of the way. In both cases, the agent
faces a control task: it needs to execute actions in the environment, perform
observations or exchange information, to exercise influence with the effect of
changing the current state of the environment or agent to the desired state.

The previous paragraph deliberately characterises control in terms of parts of a
system. Indeed, control is exercised in all kinds of systems, by different kinds of
parts. In a compositional system, one component may control other components.
In a multi-agent system, one agent may control other agents.

Although the control phenomenon appears in many different guises, it is
possible to develop a common characterisation of control tasks, as is indicated in
Chandrasekaran (1994). Chandrasekaran studies exercising control from a
knowledge-level point of view. His goal is to answer the following question:
“What is it that unifies the control task in all its manifestations, from the
thermostat to the operator of a nuclear power plant?” (Chandrasekaran, 1999). The
answer he derives consists of a process model of control, and provides a general
characterisation of what comprises exercising control. The general process model
for control consists of the following subprocesses. First, either implicitly or
explicitly, by observing the controlled components, a controlling component
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constructs a descriptive model of the past and present behaviour of the controlled
components. The control component then derives a prescriptive extension of this
model, for instance by instantiating a (possibly pre-compiled) plan. This extension
describes the intended future behaviour of the controlled components. Using this
extension, the control component tries to influence the behaviour of the controlled
components by transmitting information to them. After that, the control
component may obtain new observations with which the model of the past and
present behaviour of the controlled components can be updated, after which the
control process is repeated.

As the quotation from Chandrasekaran suggests, the control phenomenon
spans a very diverse spectrum of domains, from a thermostat to a nuclear power
plant operator or the president of a national bank. According to Chandrasekaran,
in all of these domains, exercising control has a similar structure, summarised as
follows: a controlling component repeatedly attempts to influence other
components by transmitting information to these components, and uses
information transmitted from these components as feedback. Thus, the essence of
control is information exchange. The constructs provided by the semantic structure
are sufficient to enable the construction of compositional systems that execute
control tasks as characterised by Chandrasekaran because these constructs support
information transmission.

In this chapter, the semantic structure is refined (i.e., additional properties of
constructs and relations between constructs are distinguished and committed to)
with the aim of providing better support for control. The refined semantic structure
supports building compositional systems in which control is separated and as
domain-independent as possible. As explained in Section 8.1.1, separated, domain-
independent control provides a more maintainable and reusable structure. To
separate control, the additional properties and relations for control require that
control and control information can be distinguished in a compositional system.
As, due to the many different guises of the control phenomenon, it is difficult to
distinguish control information from other information by a general definition,
another approach is adopted: users of the semantic structure can designate specific
components and information to be control components and information. The
additional properties and relations are applicable to the components and
information designated to be specific for control. Designating control components
and information is the subject of Section 8.1.2. Perspectives on control from other
areas are presented in Section 8.1.3 The additional properties and relations are
presented in Section 8.2.

8.1.1� Separate, Domain-independent control

In most branches of engineering, systems are partitioned in components to reduce
overall complexity and enhance reuse, modification and maintenance. The extent
to which these goals are met depends on how a specific system is partitioned.
Therefore, an important research topic in Computer Science and Artificial
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Intelligence is the investigation of design principles that guide software engineers
in finding a good compositional structure. (Recent developments in this area take
place within the study of software architecture (Perry & Wolf, 1992; Bass,
Clements, Kazman & Bass, 1998), design patterns (Gamma, Helm, Johnson &
Vlissides, 1995) and co-ordination languages (Papadopoulos & Arbab, 1998).)

A design principle applied in Computer Science and Artificial Intelligence is to
separate a computation’s logic and control, and make both equally explicit.
Although this principle appears in many areas of Computer Science and Artificial
Intelligence, it is probably most famous as the foundation for logic programming
languages as presented in the paper by Kowalski (1979). In the area of knowledge
based systems design, Clancey (1983, 1992) and Neches, Swartout and
Moore (1985) emphasise the importance of separating domain knowledge (what

knowledge to apply) from control knowledge (how to apply that knowledge). In
generic architectures for knowledge based systems, control knowledge is
recognised as a separate type of knowledge (Chandrasekaran, Johnson &
Smith, 1992; Brazier, Treur & Wijngaards, 1996). In all of these areas, separating
control knowledge results in systems that are more maintainable and easier to
modify and reuse.

In a compositional system with a recursive structure of subcomponents,
subcomponents of subcomponents, and so on, control is separated at each level.
This implies that at each level, some components are control components, while
other components are controlled components. In the terminology of
Kowalski (1979), the controlled components contain the logic of the computation
that is carried out collaboratively by the control components and controlled
components. In the terminology of knowledge based systems, the controlled
components contain domain knowledge such as, for instance, inference relations.
In a compositional system, controlled components themselves actively perform
computations and may themselves consist of control subcomponents and
subcomponents controlled by the control subcomponents. These control
subcomponents and controlled subcomponents collaboratively perform the
computations of their parent component, which is a controlled component at its
level. Thus, although in Kowalski’s terms, a controlled component (only) contains
the logic of a computation, if the controlled component is composed, there may be
control inside the component.

Figure 8.1 illustrates separated control in a compositional system. In this figure,
components drawn with thick lines are control components, while the other
components are controlled components. All links depicted in Figure 8.1 are used to
transmit control information. The figure shows that the control component that is a
subcomponent of the controlled component receives control information and
provides feedback information for the control component at its parent level. In
Figure 8.1, the specific part of each input and output interface that is reserved for
control information, is shown in gray.
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Figure 8.1: Control in a compositional system.

Control and control information separated in a compositional system should be
domain independent to support maintainability and ease of modification and
reuse. Computations performed by a component are specific for a particular
domain. For instance, in a compositional system that represents a nuclear power
plant, computations that represent the operator are e.g. co-operation with other
operators in the plant and to diagnosis of reactor malfunctioning. These
computations process domain specific information, such as e.g. information on the
status of the reactor in the nuclear power plant or on the intentions of other
operators. Control information should contain as little domain information as
possible and should instead consist of domain-independent information on e.g.
activating components and enabling information transmission. In other words,
control information should be as domain-independent as possible. Note that, apart
from control information, other information can also be domain-independent, or
generic. As an example, consider mathematical knowledge, which is present in
almost every domain, but is not control information.

8.1.2� Designating Control Information

The previous subsection presented reasons for separating control in a
compositional system. This subsection explains which information to separate as
control information. As stated at the beginning of Section 8.1, the control
phenomenon is encountered whenever part of a system tries to influence another
part of the system in an attempt to constrain the future of the other part. In a
compositional system, these parts are components. Components use information
exchange to influence each other. Therefore, all information exchange has a
potential control effect. In other words, it is difficult to distinguish information
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transmission for control from other information transmission. Consider, for
example, the president of a national bank, who tries to control the economic
behaviour of companies and customers. The bank president can influence the
behaviour of companies and customers in several ways. One way is to change the
official interest rate and transmit information on the new rate to all companies and
customers. However, this information does not force a change of behaviour, as
companies and customers are free to continue their behaviour. Nevertheless, an
interest rate change is usually explained as an attempt to control the behaviour of
domestic customers and companies. However, the interest rate may have been
changed for other reasons, or other information provided by the bank president
also changed the behaviour of customers and companies. As every information
transmission changes the state of destination components, all information
transmission has a potential control effect. (This example domain has been
suggested by Chandrasekaran.)

For reasons put forward in the previous subsection, it is important to
distinguish information transmission for control from other information
transmission. As all information transmission has a potential control effect, an
additional criterion has to be developed. There are two possibilities for such a
criterion. The first possibility is to require that information transmissions must be
performed intentionally for control to classify as transmissions of control
information. In the example of the bank president, transmitting information on a
new interest rate is only a transmission for controlling domestic customers and
companies if the president has the intention of changing the economic behaviour of
those domestic customers and companies and changed the interest rate because of
this intention. This possibility requires insight in the intentions and relationship
between intentions and transmitted information to distinguish information
transmission for control from other information transmission. This might be
suitable in a multi-agent system in which intentions of agents are explicitly
modelled. However, in the more general context of compositional systems, this
possibility is not realistic.

The other possibility is to avoid committing to a specific characterisation and
instead provide a flexible way for users of the semantic structure to designate

specific information as control information. Specific properties of constructs
provided by the semantic structure and specific relations between constructs are
only applicable to information designated as control information. Users of the
semantic structure can choose which information they wish to subject to these
specific properties and relations. Information is designated as control information
by associating it, for example, with a reserved part of the input and output
interfaces of a component. Consequently, for the state of a component, two
substates can be distinguished: called the control state and the domain state.

The specific properties and relations for control provided by the semantic
structure enable separating control that is as domain-independent as possible.
Moreover, there is an additional property of information designated as control:
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control information sent to a controlled component not merely influences this
component, it also constrains the behaviour of the controlled component. Control
information specifies one or more possible futures for the reserved control
information substate of a controlled component. The properties and relations
committed to (see Section 8.2) guarantee that the controlled component cannot
choose another future but the specified one. This is the most important property of
control information and should determine, for a specific application, which
information is designated as control information.

As an example, the information on a new interest rate transmitted by the bank
president should probably not be designated as information transmission for
control: a specific customer might choose to neglect the changed interest rate and
continue with his or her behaviour (although this might not be rational). As an
example of information transmission that should be designated as a control
transmission, consider a nuclear power plant operator. If he or she detects a
situation that requires an immediate stop of the reactor, probably by pushing a
button he or she commands a specific component of the plant to drop bars of a
moderating material into the reactor. The content information of pushing the
button (pushing the button is the encapsulated form of the content information, see
Section 2.2.4) is: “drop the moderator”, or “stop the reactor”. The reactor cannot
choose to neglect this command: pushing the button breaks a circuit to an
electromagnetic device holding the bars containing the moderator. The laws of
physics guarantee that the bars fall into the reactor, which slows down or stops.
The specified future is not guaranteed: if the button is broken or if someone has
removed the moderator bars, the future may not be as expected. However, this is
beyond the reactor’s control.

8.1.3� Some Perspectives on Control

Different perspectives on the concept of control can be found in related areas:

�� In the context of (formal) languages for the specification of algorithms, such
as programming languages, the concept of control refers to the sequencing
of steps in an algorithm. The characterisation of control developed by
Chandrasekaran is also applicable in this context. In his terminology, the
specification or (compiled) computer program tries to influence a state space
(e.g., a computer memory) to constrain the set of all possible contents of this
space. In this context, operations to influence and observe the state space are
generally assumed to be infallible (e.g., read and write operations in a
computer). The specification or program text itself can be viewed as
knowledge provided by a software engineer that is used by the compiled
program to, in Chandrasekaran’s terminology, derive a prescriptive
extension of the model of the behaviour of the state space. This knowledge is
formalised in different ways. In imperative programming languages, so-
called control structures such as ‘if … then’ and ‘do … while’ are used. In
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logic programming languages, control is fixed and implicit in the semantics
of the language. In (Eck, Engelfriet, Fensel, Harmelen, Venema &
Willems, in press), formalisms for specification of dynamics in Software
Engineering and Information Systems are surveyed from a Knowledge
Engineering perspective. They identify two major differences between the
formalisms studied. First, there is a distinction between constructive and
constraining control specifications. In a constructive specification, control is
specified by stating how valid sequences of states are constructed, often in
the style of an imperative programming language. In a constraining
specification, control is specified by a set of expressions, such as, for
instance, temporal logic formulae, that constrain the set of all possible
sequences. Second, there is a distinction between step-based and sequence-
based specification of control. In a step-based specification, control can only
be described in terms of the relation between a begin state and an end state.
In a sequence-based specification, control can also be described by reference
to intermediate states.

�� Control of one agent over another seems to be incompatible with the
autonomy of agents in a multi-agent system. Indeed, a property of an
autonomous agent is that it is impossible for other agents to unconditionally
set the agent’s goals in a way that is inescapable for that agent. However, the
concept of control sketched at the beginning of Section 8.1 does not assume
that this is possible: an agent that controls another agent merely tries to
influence the controlled agent to adopt a specific goal. In the area of multi-
agent systems, control is related to co-ordination and management. This
topic is addressed further in Section 8.3.

�� In the CommonKADS approach to Knowledge Engineering (Schreiber,
Akkermans, Anjewierden, Hoog, Shadbolt, Velde & Wielinga, 1999), the
control phenomenon appears in to some extent in most of the models that
constitute the CommonKADS model suite. (The CommonKADS model suite
consists of six models, divided over three levels. At the highest level, the
organisation, task and agent models describe the environment in which
knowledge-intensive systems are applied. The middle level consists of the
knowledge model and the communications model, which describe
knowledge-intensive tasks and information exchange in a conceptual and
implementation-independent way. The lowest level consists of the design
model, which describes the (computer) system that is constructed to
implement the knowledge and communication models.) First, at the
environment level, control is scattered over all three models. The agent
model describes various attributes of agents, including competences,
responsibilities and communication relations of individual agents. These
attributes indicate, implicitly, possible control relations. The organisation
model describes formal and informal power relations between agents in the
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organisation. In a sense, this is a static view on control, which focuses on the
question which agent has the power to control which other agent(s). The
task model covers knowledge of time-related aspects of tasks that constitute
the process modelled by a CommonKADS model. Thus, this is control over

tasks. Presumably, specific agents have to exercise control to ensure proper
timing and order of tasks. However, the CommonKADS approach does not
provide constructs to make explicit which agents control which tasks.
Second, control for knowledge-intensive tasks identified in the task model is
described in the knowledge model. This is control within the task, and
describes how the goals of a task can be achieved in terms of subtasks and
inferences. This form of control is described using a pseudo-code language
in an imperative style. However, control in the knowledge model is only
used to describe the task at a conceptual level, in a sense to help characterise
the task. In the knowledge model, the entity that is responsible for exercising
control to ensure that subtasks and inferences are executed in the order
specified, is not distinguished. Third, the design model covers control in the
(computer) system that is constructed to implement the knowledge model
(and communication model). The design model consists of an architecture
design, an application design, and a platform design. There is no
commitment to a specific form of control. Instead, properties of control
depends on the choices made for the skeletal architecture (e.g., rule-based),
the application design (e.g., search), and the platform (i.e., languages and
support environment, such as OPS5). However, the preferred choice in the
CommonKADS approach is a design model that preserves the structure of
the knowledge and communication models. Such a structure-preserving
design inherits properties of control from the knowledge and
communication models.

8.2� Constructs for Control in Compositional Systems

Chapter 2 presented commitments that characterise the constructs for information
transmission in the semantic structure developed in this thesis. In this section, a
similar characterisation of additional commitments for support of control is
presented. In the next subsections, the following commitments are discussed:

�� All control is explicitly represented in the compositional system. If, for any
component, control is to be exercised, a component responsible for
exercising this control is appointed (Section 8.2.1);

�� Control is exercised by components that do not have a domain-dependent
function (Section 8.2.2);

�� For each component, a part of the state of both the component’s input and
output is distinguished as the control substate (Section 8.2.3);
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�� Control information is transmitted using dedicated links, called control links

(which, apart from their dedication, are normal links). These control links
connect control components and (the control part of the interfaces of) the
controlled components (Section 8.2.4);

�� A control component can directly activate control links to which it is
connected (Section 8.2.5);

�� Control information constrains the future of controlled components
(Section 8.2.6).

8.2.1� Component Responsible for Control

The control phenomenon is often encountered in the following way. During
analysis or design of a multi-agent system, the need for a specific order of
subprocesses within an agent is identified. Control is needed for this purpose. The
question is: which, if any, process is responsible for exercising the control needed?

In a compositional system that represents the multi-agent system, each
component may, in principle, be active completely independent from all other
components. There is no ‘automatic’, or default order or execution of processes.
Therefore, the execution order determined has to be actively established by either
the subcomponents that represent the subprocesses themselves, or by other
components. The semantic structure developed in this thesis is not committed to
either choice. However, it is not possible to leave the choice implicit.

, In contrast, it is possible to leave implicit which part of a system is responsible
for exercising control in many other modelling frameworks. In those frameworks,
the execution order determined during analysis and/or design is specified using a
notation such as pseudo-code (as in CommonKADS, see Section 8.1.3), some form
of dynamic logic, or temporal logic. The semantics of such a notation specifies how
this notation is to be interpreted. If the semantics is specified in an operational style
(e.g., Plotkin, 1981,1982), the interpretation is given in the form of a mechanism
that is able to exercise control as specified. However, this mechanism is only given
as a means to find the interpretation of the specification of the proper execution
order for the subprocesses. Such frameworks do not explicitly assume the existence
of an entity that actually controls the subprocesses and which itself is a part of the
system. As an example, consider an algorithm specified in an imperative
programming language such as Pascal. The designer of the algorithm specifies the
proper execution order of the primitive Pascal statements by means of the control
statements provided by the language (e.g., repeat ... until, do ... while). The
microprocessor of the computer that executes the program (more or less
automatically) carries out the primitive statement in the order specified, and this is
well known to all users of the language. However, it is important to note that the
component that is actually responsible for the proper execution order is not
represented explicitly in the specification of the algorithm. (For a language



8.2: Constructs for Control in Compositional Systems

193

designed for sequential computers such as Pascal, it is implicitly assumed that
there is only one component that is active at a time, therefore explicit
representation of this component is irrelevant.)

In a multi-agent system, there is by definition more than one entity in the
system that is active and, at least in principle, able to exercise control over other
entities. Nevertheless, it is possible to specify that subprocesses of agents are to be
executed in a specific order. In this case, however, confusion may arise as to which
component is responsible for exercising the control needed to ensure that
subprocesses are executed in the specified order. Usually, a fixed choice is made in
the semantics of the notation used for the specification.

For the refinement of the semantic structure developed in this chapter, the
situation is slightly different, as there is no specification notation associated with
the semantic structure or its refinement. Apart from this, the question of which
component is responsible for exercising control is equally relevant. As stated at the
beginning of this section, in the refinement of the semantic structure, there is no
default choice, and the question has to be answered explicitly.

8.2.2� Dedicated Control Components

The second commitment is the commitment to dedicated control components. This
commitment states that, in a compositional system, control is exercised by
specifically designated components, called control components, that do not have a
domain-dependent function. However, apart from their dedication, control
components are not special: they are normal components. Control components
carry out the process described by Chandrasekaran. In other words, the process of
exercising control can be found in these components. A control component can
only control components that are subcomponents of the same parent component as
the control component itself. As a control component is, apart from its dedication,
a normal component, a control component itself may be a composed component.
In this case, one of the subcomponents of the control component is itself a control
component, which controls the other subcomponents. However, at the level of the
parent component, this is not important.

An additional commitment can be distinguished with respect to dedicated
control components. This additional commitment is discussed in Section 8.2.2.1.

8.2.2.1� Multiplicity of Control Components

In the semantic structure developed in this thesis, it is assumed that there is exactly
one control component in each composed component. As a consequence, all other
subcomponents are controlled components, and these controlled components are
controlled by the unique control subcomponent of the parent component. This
commitment is the most simple option.

An alternative approach is to allow more than one control component within a
specific composed component. In this case, the set of controlled components has to
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be partitioned in subsets of subcomponents that are controlled by the same control
component to avoid conflicting requirements imposed by different control
components on the same controlled component. Such a partition could be
enforced by the introduction of a new composed component for each partition
with all controlled components in the partition and their control component as
subcomponent. In this case, the result is that each composed component has
exactly one control component.

As each composed component has exactly one control component, all
subcomponents that are not control components are controlled components. (If
composed components that do not have a control component were allowed, then
subcomponents of that component would not be controlled at all: they are able to
behave in any conceivable way, without any influence by other components.) As a
consequence, all components that are not control components are potentially
constrained in their behaviour. However, applications of the semantic structure
may choose, for specific composed components, to specify a control component
that enforces none, or almost no restrictions on the behaviour of the
subcomponents it controls.

8.2.3� Dedicated Control Substates

As explained in Section 2.1.1, the semantic structure distinguishes a state for each
component and link. The state of a component consists of three substates: the state
of the input interface, the state of the output interface and an internal state. To
separate control as described in Section 8.1.1, the substates are partitioned further:
each of the three substates is divided in a control part and a domain part. Formally,
this can be accomplished by defining the sets �C,in, �C,int and �C,out for a component

C as unions of sets of control states and domain states. The partition of each
substate in a control part and a domain part also holds for the interfaces: each
interface is divided in a control part and a domain part. Likewise, the state of a link
is divided in a control substate and a domain substate.

As explained in Section 8.1.2, applications of the semantic structure can
designate specific information to be control information. The semantic structure
uses the following principle for designating information to be control information:
by placing information in the control part of an interface, it is designated to be
control information. Consequently, control information is the information that
determines the control part of each substate. Control is thus separated from
domain information in a compositional system and appears in specifically
designated control components and in the control part of the substates of all
components. The (behaviour of the) control parts is subject to the constraint
mentioned in Section 8.1.2: a controlled component behaves as directed. This is
made more precise in Section 8.2.6. In Chapter 9, syntactic structures for specifying
information as control information are presented. With these structures, control
states can be described using domain-independent terms from an ontology for the
specification of control (Chandrasekaran, Josephson & Benjamins, 1998).)
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Formally, control information is captured as follows:

Definition 8.1. (Control and domain states).

�� Let C be a component with set of states �C=
�in;�int;�out� such that �X=�X,c��X,d for

X�{in,int,out}. Then �in,c is the component’s set of control states and �X,d is the

component’s set of domain states.

�� Let I be a link with set of states �I such that �I=�I,c��I,d. Then �I,c is the link’s set of

control states and �I,d is the link’s set of domain states.

8.2.4� Dedicated Control Links

Chandrasekaran characterises control as an attempt (by a control component) to
influence another component, based on information on the state of the other
component. Thus, control is exercised using information transmission. Similar to
control components and control substates, information transmission specific for
control is separated from other information transmission. In the semantic structure,
control information is transmitted by dedicated control links, which are, apart
from their dedication, normal links. There are four kinds of control links. First,
there are control links from a control component to a controlled component or link.
These control links, called downward control links, transmit control information that
specifies the initial part of the future of the controlled component or link. Second,
there are control links from a controlled component or link to a control component.
These control links, called upward control links, transmit feedback control
information that is used by the control component to evaluate the effect of control
it exercised. Third, there are import control links which transmit control information
from the control part of the input interface of a composed component to the control
part of the input interface of the control component in this composed component.
Fourth, there are export control links which transmit control information from the
control part of the output interface of the control component in a composed
component to the control part of the output interface of this composed component.

Thus, dedicated control components and dedicated control links are
distinguished. As explained in Chapter 5, the structure of a compositional system
is described by a structure hierarchy. The designation of dedicated control
components and links within a structure hierarchy is formally captured by the
definition of a special class of structure hierarchies, called structure hierarchies with

control. Informally, a structure hierarchy SH=
Comp;Lnk;�;dom;cdom� is a structure
hierarchy with control if the following requirements hold:

�� The set of components Comp can be partitioned in a set of control
components Contr and a set of controlled components Comp’;

�� And the set of links Lnk can be partitioned in a set of upward control links
UCLnk, a set of downward control links DCLnk, a set of import control links
ICLnk, a set of export control links ECLnk and a set of controlled links Lnk’;
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�� And for each control component, there is a (control or controlled)
component of which it is a subcomponent, together with an import control
link I1 from the input interface of the parent component to the control

component and an export control link from the control component to the
output interface of the parent component;

�� And for each controlled component C that is not primitive, there is exactly
one control component C’ such that C’ is a subcomponent of C and for each
other subcomponent or link S of C, there is a downward control link I1 from
C’ to S and an upward control link I2 from S to C’;

�� And for each downward control link I in a composed component C, there is
a control component C’ and a controlled subcomponent or link S of C such
that I is a link from C’ to S;

�� And for each upward control link I in a composed component C, there is a
control component C’ and a controlled subcomponent or link S of C such
that I is a link from S to C’;

�� And for each import control link I, there is a control component C and a
component P such that C is a subcomponent of P and I is a link from the
input interface of P to the input interface of C;

�� And for each export control link I, there is a control component C and a
component P such that C is a subcomponent of P and I is a link from the
output interface of C to the output interface of P;

The eight informal requirements directly correspond with the eight requirements
in the following definition:

Definition 8.2. (Structure hierarchy with control). Let SH=
Comp;Lnk;�;dom;cdom�
be a structure hierarchy. This structure hierarchy is a structure hierarchy with control
if:

�� Comp=Contr�Comp’ with Contr and Comp’ disjoint;

�� Lnk=Lnk’�UCLnk�DCLnk�ICLnk�ECLnk with Lnk’, UCLnk, DCLnk, ICLnk

and ECLnk pairwise disjoint;

�� For all C�Contr there is a component C’�Comp, a link I1�ICLnk and a link

I2�ECLnk such that C�C’, I1�C’, and I2�C’, dom(I1)=C’, cdom(I1)=C, dom(I2)=C

and cdom(I2)=C’;

�� For all C�Comp’ such that C�Prim(SH), there is exactly one C’�Contr such that
C’�C and for all S in Comp�Lnk, if S�C and SC’, then there is an I1�DCLnk:

dom(I1)=C’ and cdom(I2)=S and there is an I2�UCLnk: dom(I2)=S and

cdom(I2)=C’;



8.2: Constructs for Control in Compositional Systems

197

�� For all I�DCLnk such that I�C for C�Comp, there is a C’�Contr and an

S�Comp�Lnk such that dom(I)=C’ and cdom(I)=S and S,C’�C;

�� For all I�UCLnk such that I�C for C�Comp, there is a C’�Contr and an

S�Comp�Lnk such that dom(I)=S and cdom(I)=C’ and S,C’�C;

�� For all I�ICLnk, there is a component C�Contr and a component P�Comp such

that C�P, dom(I)=P and cdom(I)=C;

�� For all I�ECLnk, there is a component C�Contr and a component P�Comp such

that C�P, dom(I)=C and cdom(I)=P.

Example 8.3. In Chapter 5 (Example 5.10), a structure hierarchy
sh=
Comp;Lnk;�;dom;cdom� was presented, with

�� Comp={toplevel,user_1,broker,ASP,OPC};

�� Lnk={user_1_to_broker,broker_to_user_1};

�� � = {
ASP;broker�,
OPC;broker�,
user_1;toplevel�,
broker;toplevel�,

 
user_1_to_broker;toplevel�,
broker_to_user_1;toplevel�};

�� dom = {
user_1_to_broker;user_1�,
broker_to_user_1;broker�};

�� cdom = {
user_1_to_broker;broker�,
broker_to_user_1;user_1�};

This structure hierarchy describes the structure of a part of the running example
system. (Only one user agent was included in the example structure hierarchy to
keep the example concise.) The structure hierarchy with control for this example is
the structure hierarchy sh’=
Comp’;Lnk’;�’;dom’;cdom’�, with:

�� Comp’=Comp�Contr, with Contr={toplevel_control,broker_control};

�� Lnk’=Lnk�UCLnk�DCLnk�ICLnk�ECLnk, with:

±� UCLnk={broker_UCL,user_1_UCL,OPC_UCL,ASP_UCL};

�� DCLnk={broker_DCL,user_1_DCL,OPC_DCL,ASP_DCL};

�� ICLnk={toplevel_ICL,broker_ICL};

�� ECLnk={toplevel_ECL,broker_ECL};

�� �’ = ��{
broker_control;broker�,
toplevel_control;toplevel�,
toplevel_ICL;toplevel�,

 
toplevel_ECL;toplevel�,
broker_ICL;broker�,
broker_ECL;broker�,

 
broker_UCL;toplevel�,
broker_DCL;toplevel�,
user_1_UCL;toplevel�,

 
user_1_DCL;toplevel�,
OPC_UCL;broker�,
OPC_DCL;broker�,

 
ASP_UCL;broker�,
ASP_DCL;broker�};

�� dom’ = dom�{
toplevel_ICL;toplevel�,
toplevel_ECL;toplevel_control�,

 
broker_ICL;broker�,
broker_ECL;broker_control�,
broker_UCL;broker�,

 
broker_DCL;toplevel_control�,
user_1_UCL;user_1�,

 
user_1_DCL;toplevel_control�,
OPC_UCL;OPC�,
OPC_DCL;broker_control�,

 
ASP_UCL;ASP�,
ASP_DCL;broker_control�}
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�� cdom’ = cdom�{
toplevel_ICL;toplevel_control�,
toplevel_ECL;toplevel�,

 
broker_ICL;broker_control�,
broker_ECL;broker�,
broker_UCL;toplevel_control�,

 
broker_DCL;broker�,
user_1_UCL;toplevel_control�,
user_1_DCL;user_1�,

 
OPC_UCL;broker_control�,
OPC_DCL;OPC�,

 
ASP_UCL;broker_control�,
ASP_DCL;ASP�}.

The requirements for a structure hierarchy with control can easily be checked:

�� Comp’ and Lnk’ are partitioned in pairwise disjoint sets as required;

�� 
broker_control;broker���, 
toplevel_control;toplevel���, 
broker_ICL;broker���,

broker_ECL;broker���, 
toplevel_ICL;toplevel���, and 
toplevel_ECL;toplevel���, so
for each C�Contr, there is a C’�Comp, a I1�ICLnk and a I2�ECLnk such that
C�C’, I1�C’ and I2�C’;

�� Components toplevel and broker are the only composed components in sh’. For
both, there is exactly one component C’�Contr such that C’ is a
subcomponent of the composed component;

�� For each component or link S�Comp�Lnk, there are upward and downward
control links connected to S and the control component C’�Contr such that
C’�P for S�P;

�� All links in DCLnk, UCLnk, ICLnk and ECLnk are connected as requested.

Figure 8.2: Example of a structure hierarchy with control.

The structure hierarchy with control is depicted in Figure 8.2. According to their
names, in this example, for the broker agent, there seem to be two control
components: the dedicated control component broker_control to which all dedicated
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control links are connected, and OPC (Own Process Control). However, OPC is not a
dedicated control component. Instead, it is a regular component that does not
differ from ASP. In the generic agent model presented in Chapter 3, OPC is the
component responsible for strategic reasoning, including goal adaptation and
priorities. Component OPC executes high-level control which is most often
dependent on the domain. The information it processes should therefore not be
designated as control information. This is illustrated in the example in Section 8.4.�

8.2.5� Channel State and Channel Activation

A control component exercises control over a set of components and links. To
exercise control, a control component exchanges information with the controlled
components and links using control links. As stated before, control links are, apart
from their dedication, normal links. This raises a question: how are control links
controlled? The answer consists of a commitment that is specific for control
components and links: the state of a control link is fixed and cannot be controlled
dynamically. The state of control links is such that they continuously try to
transmit control information that appears in the output interface of its source
component. This behaviour cannot be influenced by anything in the compositional
system. However, if a component wants to delay transmission of control
information, it can delay putting this information in its output interface. An
advantage of this alternative is that control links are completely independent from
the control components to which they are connected.

Another option is to introduce a special kind of link that is used as a control
link. This kind of link is special in the sense that it can be activated directly by the
control component to which it is connected. This is unlike normal links, which
cannot be controlled by the components to which they are connected. (As stated
above, normal links are controlled via control links by a control component, similar
to components.)

8.2.6� Constraints Imposed by Control

As Chandrasekaran’s (1994) abstract characterisation of control indicated, control
restricts the future of controlled components and links. The semantic structure
therefore requires that a relation between a control component and the
components and links it controls is defined that describes in what respect control
restricts the future of controlled components and links. However, for reasons
explained in Section 8.5, the semantic structure is not committed to a specific
relation. Instead, in Section 8.5, a general notion is presented that enables such
relations to be defined. Section 8.5 also presents a requirement, the co-ordinated
control requirement, that is advised for application of the semantic structure.
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8.3� Control in a Multi-Agent System

Section 8.2 presented additional commitments to properties of constructs and
relations between constructs provided by the semantic structure that support
separate, domain-independent control in a compositional system. The properties to
which commitment has been made are encountered in applications of the semantic
structure. This section discusses how these properties and relations can be used in
the primary application considered in this thesis: modelling multi-agent systems as
compositional systems. In Section 8.3.1, the relation between control and autonomy
is discussed. Section 8.3.2 presents some perspectives on control in multi-agents
system. In Section 8.3.3, modelling choices with respect to control are investigated.
In Section 8.3.3, the use of the commitments presented in Section 8.2 for modelling
multi-agent systems is discussed.

8.3.1� Control and Autonomy

A multi-agent system consists of a number of agents, each of which is assumed to
be autonomous. Even without a philosophically completely satisfactory definition
of autonomy, it seems clear that control by one agent over another might conflict
with the autonomy of the agents. The central idea put forward in (Castelfranchi,
1995) and (Luck & d’Inverno, 1995) is that to be autonomous, an agent must be
able to generate (from its motivations) its own goals, so the agent is not only
dependent on the goals of others. This notion of autonomy is called ‘goal
autonomy’ in (Castelfranchi, 1995), who also distinguishes a less strict form of
autonomy, called ‘executive autonomy’. (For executive autonomy, an agent should
be able to accomplish its goals (either generated by itself or given to it by others)
free of direct influence of the environment, free to choose among the means needed
for the goal.)

Thus, it is impossible for an agent to directly and forcefully change the goal of
another agent. However, this does not imply that it is impossible to control an
autonomous agent. To control an autonomous agent, instead of forcefully resetting
its goals or beliefs (against which it can only complain unsuccessfully), the agent is
influenced in such a way that it adopts new goals by itself. This influence can be
exercised by communication or by changing the environment of the controlled
agent such that this agent changes its beliefs and goals based on new observations.
Thus, control over an autonomous agent amounts to attempting to influence it such
that it changes its state, specifically its goals. This is completely conform the
characterisation of control presented at the beginning of Section 8.1. There is no
conflict between control as characterised in this chapter and an agent’s autonomy.
This is in correspondence with the observation that responses of many living
systems are “neither caused by, nor independent of the external stimuli.”
(Chomsky, 1988). There must be no external influences that directly dictate an
agent’s responses. Under these circumstances, an agent is able to accomplish a goal
(either given to it or generated by itself) by the means it chooses.
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8.3.2� Some Perspectives on Control in Multi-Agent Systems

Control in a multi-agent system can be related to some other areas:

�� In most multi-agent systems, the activities of individual agents in the shared
environment introduce interdependencies between the agents and between
individual agents and object in the environment. In general, management of
these interdependencies by the agents is essential for the agents to achieve
their goals. This management of interdependencies, or co-ordination, is thus
essential in multi-agent systems. Malone and Crowston (1994) study co-
ordination from an interdisciplinary point of view, surveying and
comparing methods for co-ordination in Computer Science, in biological
systems and in Management Science. Malone and Crowston define co-
ordination as “management of interdependencies” and argue that co-
ordination is a more general notion than co-operation, collaboration and
competition. (I.e., co-operation, collaboration and competition are special
forms of co-ordination. Co-operation usually is connoted with a shared goal
that cannot be achieved individually. Collaboration implies a division of
work, and competition usually has the connotation that interdependencies
have to be managed in the presence of other agents with conflicting goals.)
Control in multi-agent systems as sketched in Section 8.3.1 borders on co-
ordination.

�� Agents in a multi-agent system can be compared with concurrent objects or
actors. Wooldridge (1999) and Briot and Gasser (1998) characterise agents as
a special kind of concurrent objects that “decide for themselves whether or
not to perform an action on request from another agent” (Wooldridge, 1999,
p. 35). This view coincides with the view on autonomy presented in
Section 8.3.1. Concurrent, or active, objects, however, do not possess such
autonomy. A (concurrent) object makes a set of state operators (methods)
available for other objects to invoke. Once a method is made available, the
object has no control over invocations of this method: if another object
invokes the method, it has to execute that method.

�� Contrary to a concurrent object, an agent can decide whether or not to
perform an action on request. Consequently, an agent requires a decision
procedure that it can use upon receipt of a request to perform an action. In
the generic agent model GAM presented in Section 3.2.2, such a decision
procedure can be part of the component Own Process Control. A specific
decision procedure that has drawn much attention is the BDI (Beliefs,
Desires and Intention) architecture developed by Rao and Georgeff (1991).
Receipt of a request to perform an action results in a new belief state of the
agent. Based on its belief and desires and a theory on the relationships
between beliefs, desires and intentions, an agent may adopt an intention to
perform the action. From a control point of view, the BDI-approach can be



8.3: Control in a Multi-Agent System

202

compared with logic programming languages: an agent is equipped with
application-specific, static knowledge that drives a general control
mechanism specific for the BDI approach. This control mechanism plays the
same role as an interpreter for a logic programming language. However, the
control mechanism in the BDI approach handles knowledge represented in
terms of beliefs, desires and intentions. The control mechanism in logic
programming usually handles Horn clauses.

8.3.3� Modelling Choices for Control in Multi-Agent Systems

In addition to modelling choices for interaction presented in Chapter 3, one
modelling choice is made for control. Options for this modelling choice are
discussed in the next subsection.

8.3.3.1� Modelling Control

The primary application of the semantic structure developed in this thesis is to
model multi-agent systems. Chapter 3 presented a guideline for modelling a multi-
agent system as a compositional system, which can be represented by the semantic
structure. The guideline assumes that a multi-agent system is viewed as a
collection of processes, and that specific relations between processes are identified.

In almost every multi-agent system, some processes have to control other
processes in the sense of Section 8.1: they have to influence other processes to
achieve one of their own goals. As explained in Section 8.1, the essence of
exercising control is information transmission. Thus, the control relationship
between processes identified in the multi-agent system is modelled by information
transmission in the compositional system that represents the multi-agent system.
Modelling choices with respect to information processing are presented in Chapter
3.

To introduce the modelling choice presented in this section, the characterisation
of control presented in this chapter is summarised. As stated in Section 8.1, control
information should be separated, and as domain-independent as possible.
Moreover, information transmission for control is special in the sense that it
constrains the future of controlled components. As a consequence, only processes
that process domain-independent control information should be modelled as
control components, and only information exchange between processes in the
multi-agent system that constrain the future of other processes in an inescapable
way should be modelled as transmissions for control. Thus, for each control
relationship between processes in a multi-agent system, it is determined whether
the information used for control is domain-independent and whether the
controlled processes cannot escape the future envisioned by the controlling
process. Information for which this is the case is designated as control information,
and the controlling process is modelled as a control component. Together with the
three relations between processes presented in Chapter 3, a structure hierarchy is
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found that describes the compositional system that represents the multi-agent
system. If, during analysis of the multi-agent system, it is decided that specific
processes process domain-independent control information and that they
determine an inescapable future for the processes they control, the structure
hierarchy that represents the multi-agent system should be a structure hierarchy
with control as defined in Definition 8.1.

As stated in Chapter 1, the semantic structure developed in this thesis can be
used to provide semantics for multi-agent modelling frameworks or specification
languages. In such frameworks, the problem of modelling control in multi-agent
systems is approached in a generic way. For instance, in the DESIRE modelling
framework presented in Chapter 9, the framework provides a fixed control lexicon
and fixed control components for each multi-agent system modelled within the
framework. The precise behaviour of control components, however, is not fixed.
The user of the DESIRE framework may represent control relationships between
processes by specifying the behaviour of specific control components.
Alternatively, the user may represent control relationships between processes by
normal information transmission. The choice between these alternatives depends
on the nature of the processes involved.

On the one hand, if the processes involved represent agents, the control
representation is best represented as information transmission. As stated in
Chapter 1, an agent is considered to be, among others, autonomous. Therefore,
there is almost no information that constrains the future of those processes in an
inescapable way. (The only exceptions are probably creation and death of agents.)
On the other hand, most processes within agents are not autonomous at all: their
future can be completely determined by control information. In this case, the best
choice is to provide a description of the precise behaviour of a specific control
component.

8.4� An Example

In this section, a comprehensive example is presented to illustrate how control in a
multi-agent system is represented in a compositional system.

Example 8.4. Chapter 4 presented a scenario in which an information broker agent
matches information provided by provider agents with requests received from
user agents. In Chapter 4, two internal processes for the provider agents are
distinguished: Own Process Control (OPC) and Agent Specific Processes (ASP).
However, in Chapter 4, no further information on these processes was provided.

In this chapter, the scenario presented in Chapter 4 is extended to illustrate how
control is represented in a separate, domain-independent way as follows. Upon
receipt of a request from one of the user agent, the broker agent first determines
whether it is willing to process the request. (This decision is for instance made on
the basis of a payment scheme: only if the user’s balance maintained by the broker
is positive, the broker processes the request.) In the generic model presented in
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Chapter 3, knowledge of whether to process incoming information is often
modelled as a subprocess of Own Process Control. The actual processing of the
request is considered a subprocess of Agent Specific Processes. (Many different
choices are possible. The decision whether to process an incoming request can for
instance also be considered a subprocess of Cooperation Management.)

The execution order of Own Process Control and Agent Specific Tasks sketched
above is determined during design of the example system. As stated in
Section 8.2.1, the question which process is responsible for exercising the control
needed to ensure the proper execution order of Own Process Control and Agent
Specific Tasks has to be answered. There are two possible alternatives: either OPC
and ASP themselves are responsible, or the component of which they are
subcomponents (in the example, this is the component called broker, which
represents the broker agent). In this example, the second alternative is chosen.
Thus, broker controls its subcomponents to ensure the proper execution order upon
receipt of a request from one of the user agents.

As indicated by the description above, control within the broker can be
expressed independently from the domain (information brokering): it is sufficient
to use terms such as execution of processes and activation of components.
Moreover, it is realistic to expect that the subprocesses of the broker agent are not
autonomous at all and will comply exactly with control exercised by the broker
agent. Consequently, the information needed to control ASP and OPC is designated
to be control information. In conformance with the commitment presented in
Section 8.2.2, a dedicated control component is added as a subcomponent of broker.
Moreover, dedicated control links are added to broker. To describe the composition
structure of broker including the added control component and links, a substructure
of the structure hierarchy with control presented in Example 8.3 can be used:

SHbroker=SS(broker,sh’)=�Comp;Lnk;�;dom;cdom�, with:

�� Comp = {broker,OPC,ASP,broker_control};

�� Lnk = {OPC_UCL,ASP_UCL,OPC_DCL,ASP_DCL,broker_ICL,broker_ECL};

�� � = {�OPC;broker�,�ASP;broker�,�broker_control;broker�} �

 {�I;broker�|I�Lnk};

�� dom = {�broker_ICL;broker�,�broker_ECL;broker_control�,�OPC_UCL;OPC�,

  �OPC_DCL;broker_control�,�ASP_UCL;ASP�,�ASP_DCL;broker_control�};

�� cdom = {�broker_ICL;broker_control�,�broker_ECL;broker�,�OPC_UCL;broker_control�,

  �OPC_DCL;OPC�,�ASP_UCL;broker_control�,�ASP_DCL;ASP�}.

This structure hierarchy is itself a structure hierarchy with control.
In conformance with the commitment presented in Section 8.2.3, control states

are distinghuished as a part of the state of each component. For controlled
components, the control state is part of the input and output substates. The
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following sets of control state names are used for broker, OPC and ASP (broker is a
controlled component of toplevel, as indicated in Example 8.3):

�� �in,csub = {own_state(active),own_state(idle)};

�� �out,csub = {own_evaluation(succeeded),own_evaluation(failed)}.

The domain part of the input and output substates of OPC and ASP are not specified
in this example. The domain part of the input and output substates of broker is
given in Example 5.2.

The state of the control component broker_control only consists of control
information. Its set of component states is therefore fully specified as follows:

�� �broker_control,out = {component_state(OPC,active),

  component_state(ASP,active),

  own_state(idle)};

�� �broker_control,in = {own_state(active),

   evaluation(OPC,succeeded),evaluation(OPC,failed),

   evaluation(ASP,succeeded),evaluation(ASP,failed)};

Note that the elements of these sets are names of states that do not have an internal
structure. Similar to controlled components, the state of a control component is
determined by its information contents and changes as a result of information
processing. This is illustrated by the set of local component traces
Behloc(broker_control) for the control component:

�� ltbroker_control,1 = own_state(active)|«|« �

 own_state(active)|«|component_state(OPC,active) �

 evaluation(OPC,succeeded)|«|« �

 own_state(active)|«|component_state(ASP,active) �

 evaluation(ASP,succeeded)|«|« �

 «|«|own_state(idle);

�� ltbroker_control,2 = own_state(active)|«|« �

 own_state(active)|«|component_state(OPC,active) �

 evaluation(OPC,failed)|«|« �

 «|«|own_state(idle).

The two local component traces in Behloc(broker_control) represent two different

situations. The first state of both traces results from information transmission via
broker_ICL, which imports control information from the input interface of broker. (It is
assumed that receipt of a request from a user agent triggered the occurrence of an
input state with own_state(active) as the control part for the input interface of broker.)
The output substate of the second state of both traces indicates the envisioned
future for OPC: it has to become active. The input substate of the third state of
ltbroker_control,1 indicates that feedback from OPC is received. As explained below,
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evaluation(OPC,succeeded) indicates that OPC has succeeded in establishing that the
balance of the user is positive. Consequently, the request received has to be
processed by ASP, and therefore, the envisioned future of ASP is that it becomes
active, as indicated by the fourth state in ltbroker_control,1. Assuming that there are no

other requests to be processed, following receipt of feedback information from ASP,
the state of broker_control becomes idle. In the second trace, the user’s balance is not
positive. The input substate of the third state of ltbroker_control,2 also indicates that

feedback from OPC has been received. However, evaluation(OPC,failed) indicates that
OPC has not succeeded in establishing that the balance of the user is positive
(possibly because the balance is negative or zero, or OPC could not determine the
state of the account for another reason). Consequently, the request received is not
processed by ASP. Assuming that there are no other requests to be processed, the
state of broker_control becomes idle. In both situations, the information that
broker_control becomes idle is transmitted to the output interface of broker by the
export control link broker_ECL. This information may then serve as feedback
information for a component that controls broker.

The control component broker_control receives control information from the
components it controls and transmits control info to these controlled components
via dedicated control links. Apart from their dedication, control links are normal
links. Information link mappings as defined in Definition 5.6 are used to specify
which states are linked. According to Definition 5.6, an information link mapping
is an octet of states. To keep this example concise, the state of the links is not
specified. Consequently, the third, fourth, fifth and sixth states of octets in an
information link mapping, which are states of the link itself, need not be taken into
account. Moreover, it is assumed that. the result of information transmission is not
recorded by the domain of the link, and no enabling condition for the co-domain is
taken into account. Therefore, the second and seventh state in an information link
mapping are not necessary. Thus, the information link mappings are presented as
sets of pairs of states: the first state is a state of the domain of the link, and the
second state is a state of the co-domain. Such pairs specify that if the first state
occurs in a local trace of the domain of the link, then the second state has to occur
in a trace of the co-domain of the link. The information link mappings used are:

�� �broker_ICL = �broker_ECL = {
own_state(active);own_state(active)�,

  
own_state(idle);own_state(idle)�};

�� �OPC_DCL = {
component_state(OPC,active);own_state(active)�,

  
component_state(ASP,active);own_state(idle)�};

�� �OPC_UCL = {
own_evaluation(succeeded);evaluation(OPC,succeeded)�,

  
own_evaluation(failed);evaluation(OPC,failed)�};

�� �ASP_DCL = {
component_state(ASP,active);own_state(active)�,

  
component_state(OPC,active);own_state(idle)�};



8.4: An Example

207

�� �ASP_UCL = {
own_evaluation(succeeded);evaluation(ASP,succeeded)�,

  
own_evaluation(failed);evaluation(ASP,failed)�};

The envisioned future of OPC and ASP as determined by broker_control is transmitted
to the respective components, where the control substates are affected by the
receipt of this information. The commitment presented in Section 8.2.6 requires
that a relation between the envisioned future as determined by broker_control and the
behaviour of the controlled components are specified. This relation is indicated by
the set of local component traces Behloc(OPC) for OPC. In these traces, only the

control part of the input and output substates is shown.

�� ltOPC,1 = «|«|own_state(idle) �

 own_state(active)|«|« �

 … �

 own_state(active)|user_balance_positive|« �

 own_state(idle)|«|own_evaluation(succeeded);

�� ltOPC,2 = «|«|own_state(idle) �

 own_state(active)|«|« �

 … �

 own_state(active)|user_balance_not_positive|« �

 own_state(idle)|«|own_evaluation(failed);

The starting state for OPC is a state in which it is idle. The second state in both
traces indicates that OPC receives control information from broker_control (via the
downward control link OPC_DCL, which is added to the structure hierarchy
representing the running example system to form a structure hierarchy with
control conform Definition 8.2. The downward control link OPC_DCL is depicted in
Figure 8.2, together with other control links). As a result, OPC processes the request
(indicated by the dots). After a while, the assessment of the user’s balance is
finished. In the first trace, the balance is positive, which results in the occurrence in
the output state own_evaluation(succeeded). In the second trace, the balance is not
positive, which results in the occurrence in the output state own_evaluation(failed).
Both evaluations are transmitted to broker_control via the upward control link
OPC_UCL. The fact that in both traces in Behloc(OPC), the occurrence of own_state(active)

(caused by receipt of information via the downward control link OPC_DCL) is
followed by activity indicates that the informtion transmitted via the downward
control link fully determines the future of OPC. Moreover, the traces also show how
domain dependent information (represented by the internal substates
user_balance_positive and user_balance_not_positive) is related to domain-independent
control information (own_evaluation(succeeded) and own_evaluation(failed)).

In this example, for ASP the following local component traces are of interest:

�� ltASP,1 = «|«|own_state(idle) �

 own_state(active)|«|«;
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�� ltASP,2 = «|«|own_state(idle).

The starting state for ASP is a state in which it is idle. The second state in the first
trace indicates that ASP receives control information from broker_control (via the
downward control link ASP_DCL). After receipt of this information, ASP starts
processing the request. The second trace indicates the situation in which ASP stays
idle.

The behaviour of the broker agent can be analysed using the white box view on
the behaviour of broker with respect to SHbroker. (As all subcomponents of broker are
primitive, the white box view equals the glass box view.) The white box view on
the behaviour of broker with respect to SHbroker is a set of compatible multitraces for
SHbroker. A multitrace that represents the situation in which the user’s balance is
positive is as follows:

mtbroker,1 = {
broker;ltbroker,1�,
broker_control;ltbroker_control,1�,
OPC;ltOPC,1 �,
ASP;ltASP,1�,

  
broker_ICL;…�,
broker_ECL;…�,
OPC_UCL;…�, 
OPC_DCL;…�,

  
ASP_UCL;…�, 
ASP_DCL;…�}.

It is straightforward to check that this multitrace is compatible. A multitrace that
represents the situation in which the user’s balance is positive is as follows:

mtbroker,2 = {
broker;ltbroker,1�,
broker_control;ltbroker_control,2�,
OPC;ltOPC,2�,
ASP;ltASP,2�,

  
broker_ICL;…�, 
broker_ECL;…�, 
OPC_UCL;…�, 
OPC_DCL;…�,

  
ASP_UCL;…�, 
ASP_DCL;…�}.

In fact, there are only two pairwise compatible combinations of local component
traces for the subcomponents of broker: (1) ltbroker_control,1, ltOPC,1 and ltASP,1, and (2)
ltbroker_control,2, ltOPC,2 and ltASP,2,. The traces ltbroker_control,1 and ltOPC,2 are not compatible:
in ltOPC,1 a state own_evaluation(succeeded) occurs, but in ltbroker_control,1, a state

evaluation(OPC,succeeded) does not occur, which violates �OPC_UCL.

8.5� The Relation between Control Components and Controlled
Components

Section 8.1 states that information transmission for control is special in the sense
that it constrains the future of the component to which control information is
transmitted: this component cannot escape the future specified by the control
information. Section 8.5.1 explains which commitment of the semantic structure
supports this property of information transmission for control. Section 8.5.2
presents some relations between control components and controlled components
associated with these commitments.
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8.5.1� Constraints Imposed by Control Information

The commitment of the semantic structure with respect to information
transmission for control is that the model of the behaviour of a controlled
component maintained by a control component must match the actual behaviour
of the controlled component. As described in Section 8.1, according to
Chandrasekaran (1994), each control processes can be described as a process in
which a model of the past and current behaviour of the controlled component is
made, after which this model is extended to include an envisioned future for the
controlled component. (As the semantic structure abstracts from the structure of
information processed in components, the model maintained by a control
component cannot be specified. However, similar to all information maintained by
a component, such a model determines a part of the state of the control
component. Note that the model maintained by a control component is not a
construct provided by the semantic structure.)

Although there is a commitment to the existence of a relation between the
model maintained by a control component and the controlled components, no
commitment to a specific relation is made, for the following reasons:

�� The precise definition of such a relation depends on how a control
component models its controlled component. However, this differs for
different applications of the semantic structure. Thus, as the semantic
structure abstracts from the structure of the information maintained within a
component, a precise definition fixed for the semantic structure of such a
relation cannot be given;

�� The extent to which a control component is able to determine the future of a
controlled component varies from application to application. A commitment
to a specific commitment would probably be too restrictive for a number of
applications, and not restrictive enough for other applications. If the
commitment is too restrictive for an application, almost no information
transmission can be designated as control information. If the commitment is
not restrictive enough, almost all information transmission can be
designated as control information. In both cases, control cannot be separated
to such an extent that it leads to a better, reusable structure of the model.

�� The precise definition of such a relation determines, to a large extent, a
number of other dynamic properties of a compositional system.
Applications of the semantic structure differ with respect to these
properties. Consequently, if one specific relation is defined for the semantic
structure, this relation is most likely too weak for some applications, and too
restrictive for others. The way in which such relations affect dynamic
properties is discussed in Section 8.5.1. For the application of the semantic
structure to DESIRE presented in Chapter 9, a precise definition is given.
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Thus, in this chapter, no commitment to a specific relation is made. However, the
problem of how to formalise such a relation is addressed in general.

As stated earlier in this chapter, the essence of control is information
transmission, and therefore, the constructs presented in Chapter 5 and Chapter 6
suffice for control in the semantic structure. In fact, the constructs presented in
Chapter 5 and Chapter 6 suffice to express the relation between a control
component and the component it controls in a basic form, using the sets Behloc(S)

for controlled components and links S and information link mappings as follows.
As stated in Section 8.2, the state of controlled components and links consist of

control and domain parts. Information in the control parts is exchanged via control
links with the control component that controls the controlled components. The
state of control components only have a control part. Information link mappings
can be used to specify which control information produced by the control
component is to be transmitted to which controlled component or link. This control
information is meant to influence the behaviour of the controlled component. For
example, assume that a state called component_state(A,active) of the control component
is linked to a state with a control part called own_state(active) of a controlled
component A. Compatibility ensures that if the state component_state(A,active) occurs
in a local component trace of the control component, then a state with a control
part own_state(active) occurs in the local component trace for A in a compatible
multitrace. As the names of these states suggest, A should become active, which, in
this example means that the next state of A contains specific domain information,
e.g., the next state should be the state called results_available.

Control information is special in the sense that applications of the semantic
framework have to ensure that the future of a controlled component as envisioned
by a control component is inescapable. In the example sketched in the previous
paragraph, this can be accomplished by restricting the set Behloc(A) to traces in

which each state with control part own_state(active) is followed by state results_available.
This requirement is a local requirement: it only restricts the set of local component
traces of A. (Example 8.4 in Section 8.4 specified the relation between the
envisioned future of OPC as determined by broker_control and the local component
traces of OPC in a similar way.)

Thus, the relation between a control component and the components it controls
can be expressed using the constructs presented in Chapter 5 and Chapter 6:
specific states of the control component are linked to specific states of the
controlled components and links, and requirements on the sets of local component
traces of the controlled components and links further determine how the
behaviour of the controlled components is related to behaviour of the control
component. However, although in this way, the future of a controlled component
is related to the behaviour of the control component, the key point is that it is not
clear when this future begins from the point of view of the control component.
When the future begins depends on the properties of information transmission (if
information transmission is not lossless, it may not begin at all). For instance, in
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Example 8.4, it is not clear how the states of broker_control relate to the states of OPC

and ASP in time. In local component trace ltbroker_control,1, the state in which feedback

information from OPC is received (third state) immediately follows the state in
which OPC is made active (second state). However, as trace ltOPC,1 indicates, there

are several local states of OPC between the receipt of the information that OPC has
to become active and the state own_evaluation(succeeded).

For some applications of the semantic structure, more detail than provided by
the constructs presented in Chapter 5 and Chapter 6 is not needed. However, for
many applications more detail is needed for the following reason. Evaluation of
the design of a multi-agent system includes analysis of dynamic properties of the
system. In general, the three views on the behaviour of a compositional system can
be used to assess dynamic properties by comparing occurrences of state transitions
in the individual traces within compatible multitraces. For sets of components and
links that consist of a dedicated control component and the components and links
it controls, a second alternative is available. As stated in Section 8.2.6, the control
component determines the behaviour of the components and links it controls, to a
large extent. Therefore, it is possible to assess properties of the controlled
components and links by evaluating the behaviour of the control component.

As global time is not assumed to be available, it is not possible to directly
express relations between time points in different traces using only the constructs
presented in Chapter 5 and Chapter 6. However, with the help of global states as
defined in Chapter 7, the relation between a control component and the
components and links it controls can be specified more precisely.

As an example of the use of global states, it is possible to request that the
envisioned future of controlled components and links in a control component
occurs in the same global states as the actual future of the controlled components
and links. The envisioned future of controlled components and links is represented
by specific states of the control components. These states are linked to states of the
controlled components and links by downward task control links, as specified by
the information link mappings for these links. The suggested requirement can thus
be stated more precisely as follows: given a structure hierarchy with control and a
compatible multitrace for this structure hierarchy, for each global state � of the
multitrace, if the output part of a control component C in the global state occurs as
the first state in a tuple in the information link mapping of a downward control
link from C, then in the same global state, the input part for the co-domain of this
link must be the eighth state in that tuple. Formally: let
SH=
Comp�Contr;Lnk�UCLnk�DCLnk;�;dom;cdom� be a structure hierarchy with
control, let � be a collection of compatibility relations and let � be a multitrace
compatible for �. Then:

���SGS(SH,�,�), �C�Contr, �I�DCLnk and ����C:

   if dom(I)=C and �(C)=� and
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out(�);out(�C,j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�cdom(I),i’);in(�cdom(I),j’)����I,

   then �(cdom(I))=�cdom(I),j’ for any j,i”,j”,k,l,i’ and j’.

This requirement, however, is too strict: there are no global states for which this
requirement holds. (A global state for which this requirement holds cannot be a
global state for the following reason. On the one hand, for each global state � and
for each component C and link I, if


out(�);out(�C,j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�cdom(I),i’);in(�cdom(I),j’)����I, with �(C)=� then
�(C)�sd�(cdom(I)) by the second clause of the definition of strict dependence. On

the other hand, by the definition of a global state �, for each pair of components C
and D, �(C)�sd�(D), and therefore, for each global state � and for each component
C and link I, �(C)�sd�(cdom(I)).)

As an alternative, the future of controlled component A may be required to
begin as soon as possible. More precisely: each global state in which the local state
of the control component is component_state(A,active) must be followed by a global
state in which the local state of A is results_available. Formally: let
SH=
Comp�Contr;Lnk�UCLnk�DCLnk;�;dom;cdom� be a structure hierarchy with
control, let � be a collection of compatibility relations and let � be a multitrace
compatible for �. Then:

���SGS(SH,�,�), �C�Contr, �I�DCLnk and ����C:

   if dom(I)=C and �(C)=� and
      

out(�);out(�C,j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�cdom(I),i’);in(�cdom(I),j’)����I,

   then there is a strict global state �’�nextSGS(SH,g,m)(�) such that

      �’(cdom(I))=�cdom(I),j’ for any j,i”,j”,k,l,i’ and j’.

Contrary to the requirement presented previously, this requirement can be met.
However, two issues remain. First, this requirement is not very strong, as it does
not constrain the global states between the global state with substate
component_state(A,active) for the control component the global state with substate
results_available for the controlled component. The second issue is related to the fact
that the order of global states is a partial order. This issue is discussed with the
help of some additional notions, which are presented in the rest of this chapter.
Chapter 9 presents an application of the semantic structure in which the principles
presented in this chapter are applied.

8.5.2� Common Global States

Chapter 7 defined a notion of global state relative to a multitrace for a structure
hierarchy SH. As explained in Chapter 7, global states are partially ordered, even if
all local component and link traces in a multitrace are linear. The partiality of the
global state order represents the fact that different observers may observe different
behaviour of the compositional multitrace represented by SH, due to the absence of
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global time or fixed duration of information transmission. Each observation
corresponds with a different path through the partial order of states.

Most global states for a specific multitrace are only observed by a subset of all
possible observers. However, some global states occur on each path in the partial
order. In other words, such a state is observed by each possible observer. To
formally define common global states, first the notion of an observation is formally
defined as a linear extension of the partial order of global states.

Definition 8.5. (Observation). Let SH be a structure hierarchy, let � be a collection of

compatibility relations and let � be a multitrace compatible for �. An observation of � is a
sequence of strict global states �1,�2,…�SGS(SH,�,�) such that:

�� if �i�nextSGS(SH,m,g,)(�j), then i>j, and

�� �i+1 is an immediate successor of �i., i.e, there is no �’�SGS(SH,�,�) such that

�’�nextSGS(SH,m,g,)(�i) and �i+1�nextSGS(SH,m,g,)(�’).

The set of all observations of � is denoted OBS(SH,�,�).

The definition of a common global state is now straightforward:

Definition 8.6. (Common global state). Let SH be a structure hierarchy, let � be a

collection of compatibility relations and let � be a multitrace compatible for c. A common
global state is a strict global state �� SGS(SH,�,�) such that for all sequences (�i)i³N in

OBS(SH,�,�), there is an i such that �=�i. The set of all common global states for a

structure hierarchy SH, a multitrace  �, and a collection of compatibility relations � is

denoted CSGS(SH,�,�).

In (Fromentin & Raynal, 1995), a necessary and sufficient criterion for global states
to be common is presented. In terms of the semantic structure developed in this
thesis, this criterion is as follows:

Proposition 8.7. Let SH=
Comp;Lnk;�;dom;cdom� be a structure hierarchy, let � be a

collection of compatibility relations and let � be a multitrace compatible for �. A global state

��SGS(SH,�,�) is a common global state iff:

�S1,S2�Comp�Lnk: prevm(S2)(�(S1))�sdnextm(S2)(�(S2)). (1)

The formal proof of this proposition can be found in (Fromentin & Raynal, 1995).
Informally, the proposition is most easily understood for the case where Comp�Lnk

has precisely two elements, say A and B. Assume that (1) holds, i.e., for a specific
strict global state �, prevm(A)(�(A))�sdnextm(B)(�(B)) and
prevm(B)(�(B))�sdnextm(A)(�(A)) (note that these two dependencies are symmetric).

This situation is depicted in Figure 8.3. The configuration of symmetrically
crossing dependencies between state transitions (the thick arrows) prevents
specific global states from occurring. For instance, global state �’ cannot occur as
for �’, the transition from �(A) to nextm(A)(�(A)) occurred, while the transition from
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prevm(B)(�(B)) to �(B) did not occur. This is prohibited because the transition from
prevm(B)(�(B)) to �(B) precedes the transition from �(A) to nextm(A)(�(A)). Likewise,
�” cannot occur. Starting from �0, in all sequences of global states, � has to occur
before any global state containing nextm(A)(�(A)) or nextm(B)(�(B)) can occur.

Therefore, � is a common global state.

Figure 8.3: Illustration of Proposition 8.7.

Given a partial order of global states 
SGS(SH,�,�);nextSGS(SH,m,g)�, the restriction

of this partial order to the subset of common global states is a total order. (If it were
not, then some of the common global states would not be in all observations.) The
total order of common global states can be used to formulate requirements on the
relation between a control component and the components it controls. In the rest of
this section, first such a requirement is formally defined. This requirement is then
discussed.

8.5.2.1� Co-ordinated Control Requirement

The co-ordinated control requirement expresses a relation between a control
component and the components it controls. According to this requirement, control
is co-ordinated if control information made available in a specific common global
state, is received in the immediate successor common global state of this specific
state. (The immediate successor relation is the restriction of the partial order on
global states to common global states. As this restriction is a total order, it is
possible to require that control information be received in the immediate successor
common global state.) The co-ordinated control requirement is defined formally as
follows:

Definition 8.8. (Co-ordinated Control Requirement). Let

SH=
Comp�Contr;Lnk�UCLnk�DCLnk;�;dom;cdom� be a structure hierarchy with

control, let � be a collection of compatibility relations and let � be a multitrace compatible

for �. Control in the compositional system represented by SH is co-ordinated if:
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�� ���CSGS(SH,�,�), �C�Contr, �I�DCLnk: if dom(I)=C and


out(�(C));out(�C,j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�cdom(I),i’);in(�cdom(I),j’)����I, then

there is a common global state �’�nextSGS(SH,g,m)(�) such that:

�� �’(cdom(I))=�cdom(I),j’ for any j,i”,j”,k,l,i’ and j’;

�� there is no �” such that �”�nextSGS(SH,g,m)(�) and �’�nextSGS(SH,g,m)(�”).

�� and ���CSGS(SH,�,�), �C�Contr, �I�UCLnk: if cdom(I)=C and


out(�(dom(I));out(�dom(I),j)�;
�I,i”;�I,j”;�I,k;�I,l�;
in(�C,i’);in(�C,j’)����I, then there

is a common global state �’�nextSGS(SH,g,m)(�) such that:

�� �’(cdom(I))=�C,j’ for any j,i”,j”,k,l,i’ and j’;

�� there is no �” such that �”�nextSGS(SH,g,m)(�) and �’�nextSGS(SH,g,m)(�”).

The first part of this requirement resembles the second requirement put forward in
the previous subsection. There are two differences. First, the co-ordinated control
requirement only formulates a requirement on those global states that are
common. (The first universal quantifier ranges over the set of common global
states.) Second, the result of control information transmission must be present in
the first common global state that follows the common global state in which it was
available in the control component. The second part of the co-ordinated control
requirement co-ordinates feedback of control information from controlled
components and links to the control component. To keep the example
requirements in Section 8.5.1 concise, co-ordination of feedback information is not
included in these requirements.

Common global states and the co-ordinated control requirement thus only
involve a subset of all global states associated with a multitrace. It is indeed
possible to formally introduce a restriction of the partial order of global states as an
abstract perspective on a multitrace, in which only specific global states are
represented. This can be appreciated as follows. Suppose that a compositional
system is represented by a structure hierarchy with control SH and that for
multitraces for SH, the co-ordinated control requirement must hold. At an early
stage in the design, it is sufficient to specify that this requirement must hold.
However, at a later stage, mechanisms must be incorporated in the design to
ensure that the requirements hold. As an example, exchange of extra information
may be needed to ensure that control information is received at the first common
global state that follows a common global state in which the control information is
made available. Figure 8.4 below depicts (part of) a partial order of eight global
states (represented by ovals). Two of the global states (depicted in black) are
common global states. The black arrows indicate the total order of these common
global states. The small circles inside the global states depict the local component
states of a control component. The leftmost common global state is a state in which
control is co-ordinated. In the local component state of the control component, new
control information is made available. This control information is transmitted to a
number of controlled components. This information is not received by all
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controlled components at the same time, and moreover, the controlled components
possibly exchange information with each other as well. The resulting behaviour is
depicted by the grey states in Figure 8.4. The behaviour of the individual
components (as represented by sets of local component traces Behloc(S)), however,

is designed such that eventually there is a new common global state in which the
control information is available to all controlled components. In this new common
global state, control is co-ordinated.

Figure 8.4: Common global states.

8.5.2.2� Some perspectives on the co-ordinated control requirement

Some advantages and disadvantages of the co-ordinated control requirement can
be distinguished.

�� The set of common global states is totally ordered. If the local component
traces used to describe the behaviour of the control component are linear,
the ‘actual behaviour’ of the controlled components as described by the
linear order of common global states has the same structure as the
behaviour of the control component. Thus, the envisioned future behaviour
of controlled components as represented in a control component can be
compared to their actual behaviour. (E.g., by viewing the combination of the
local component state of a control component and of a controlled
component in the same common global state as a bisimulation relation.)

�� As stated before, the partial order of global states reflects different
observations of the behaviour of a compositional system. Consequently,
some properties of the behaviour of a compositional system, such as safety
properties, hold for all observations, while other properties do not hold for
all observations. However, under specific circumstances, the latter case
suffices, as is explained in (Katz & Peled, 1990).

�� As Proposition 8.7 indicates, a global state is a common global state iff there
is a mutual dependency between local states of each pair of components and
links in a compositional system. A mutual dependency between states in
essence means that the possible next local state transitions are mutually
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constrained. Components in a common global state are thus synchronised:
from a global time point of view, they are all in this state at the same time.
Consequently, if common global states are required to exist, as is the case for
the co-ordinated control requirement, controlled components are
synchronised with their control component and with one another. Thus, the
co-ordinated control requirement influences to a large extent the possible
behaviour of controlled components. In an implementation, common global
states are a source of concurrency bottlenecks. A possible solution is to
apply the co-ordinated control requirement to a subset of all controlled
components in a structure hierarchy. Fromentin and Raynal (1995) offer a
similar solution, which they call partial common global states.

The paper by Fromentin and Raynal (1995) from which Proposition 8.7 was taken,
introduces abstraction of specific states in a different way. The starting point for
Fromentin and Raynal is a partial order on a set of events, which is assumed to be
given. The set of events is partitioned in ‘primitive level’ events and ‘user level’
events. A primitive level event is not a ‘sub-event’ of a user level event. (This
would not be possible, as events are atomic and do not have any internal
structure.) The partial order of events is then restricted to the set of user level
events. The resulting partial order on (user level) events is then used to define
global states in a similar way as presented in Chapter 7 and common global states
as defined in Section 8.5.2. The restriction of the partial order on global states to
common global states presented in Section 8.5.2.1 is not used by Fromentin and
Raynal (1995).

As an aside, in some approaches, events are not atomic. A hierarchical structure
of events is used to model levels of event abstraction. Lamport (1986) introduces
hierarchies of event abstraction to represent levels of detail of the behaviour of a
system. Kshemkalyani (1998) describes all possible precedence relations between
events that may have sub-events.

In the semantic structure presented in this thesis, control restricts the future of
controlled components and links. The co-ordinated control requirement presented
in Section 8.5.2.1 provides a precise expression of the restriction relation between a
control component and the components and links it controls. It is advised for
applications of the semantic structure to adopt the co-ordinated control
requirement. However, applications are free to adopt alternative requirements to
express how control restricts the future of controlled components and links.
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Chapter 9�

Semantics for the DESIRE Multi-
Agent Modelling Framework

In this chapter, the semantic structure developed in the previous chapters is
applied to the DESIRE multi-agent modelling framework, providing a formal
semantics for DESIRE. (See (Brazier, Jonker & Treur, 1998) for an overview of the
principles behind DESIRE. A generic agent model modelled in DESIRE is
described in (Brazier, Jonker & Treur, 2000). The generic agent model has been
applied in many domains including electricity transportation management
(Brazier, Dunin-Keplicz, Jennings & Treur, 1997), electricity load balance
management (Brazier, Cornelissen, Gustavsson, Jonker, Lindeberg, Polak &
Treur, 2000) and as a basis for the co-operative agent model which has been
applied, for example, in distributed call centre support (Brazier, Cornelissen,
Jonker & Treur, 2000). An earlier version of DESIRE is described in (Langevelde,
Philips & Treur, 1992)).

Section 9.1 provides a general overview of the DESIRE modelling framework.
In Section 9.2, the main DESIRE constructs are introduced. In Section 9.3, a formal
description of the dynamics of DESIRE semantics is given. Section 9.3.2 presents a
discussion of some design choices made in the development of the DESIRE
modelling framework and their relation with specific commitments of the semantic
structure developed in this thesis.

Section 9.1 is a revised version of the introduction of (Brazier, Eck &
Treur, 2001a). The design of the DESIRE modelling framework is presented in
(Brazier, Treur, Wijngaards & Willems, 1999; Brazier, Jonker & Treur, 1998).

9.1� Compositional Development of Multi-Agent Systems

DESIRE is a modelling framework for the compositional design of multi-agent
systems. The modelling framework provides support for the design of multi-agent
systems at three levels: conceptual design, detailed design, and (prototype)
implementation. The three layers are presented in Figure 9.1. At each layer, a
design consists of knowledge of the following three types: process composition,
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knowledge composition, and the relation between process composition and
knowledge composition. These three types of knowledge are discussed in more
detail below.

Figure 9.1: The three layers of the DESIRE modelling framework.

The first type of knowledge is knowledge about process composition. In DESIRE, a
multi-agent system is viewed to be a collection of processes. Process composition
entails the following aspects:

�� Process composition identifies the relevant processes at different levels of
(process) abstraction, and describes how a process can be defined in terms of
(is composed of) lower level processes.

�� Processes can be described at different levels of abstraction; for example, the
process of the multi-agent system as a whole, processes defined within
individual agents and the external world, and processes defined for specific
tasks of individual agents. In conformance with the guideline presented in
Chapter 3, the identified processes are modelled as components. As in
Chapter 2, three aspects of a component are represented in DESIRE: state,
interfaces and composition structure. The levels of process abstraction
identified are modelled as abstraction/specialisation relations between
components: components may be composed of other components or they may
be primitive.

�� The way in which processes at one level of abstraction are composed of
processes at the adjacent lower abstraction level is called composition. This
composition of processes is described by a specification of the possibilities
for information exchange between processes (static view on the composition),
and a specification of task control knowledge used to control processes and
information transmission (dynamic view on the composition).

Second, knowledge composition identifies the knowledge structures at different
levels of (knowledge) abstraction, and describes how a knowledge structure can be
defined in terms of lower level knowledge structures. The knowledge abstraction
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levels may correspond to the process abstraction levels, but this is often not the
case.

�� The two main structures used as building blocks to model knowledge are:
information types and knowledge bases. These knowledge structures can be
identified and described at different levels of abstraction. At higher levels
details can be hidden. An information type defines an ontology (lexicon,
vocabulary) to describe objects or terms, their sorts, and the relations or
functions that can be defined on these objects. Information types can be
represented in order-sorted first-order logic. A knowledge base defines a part
of the knowledge that is used in one or more of the processes. Knowledge is
represented by formulae in order-sorted first-order logic, which can be
normalised by a standard transformation into rules.

�� Information types can be composed of more specific information types,
following the principle of compositionality discussed above. Similarly,
knowledge bases can be composed of other knowledge bases. The
compositional structure is based on the different levels of knowledge
abstraction distinguished, and results in information and knowledge hiding.

Third, each process in a process composition uses knowledge structures. Which
knowledge structures are used by which processes is defined by the relation
between process composition and knowledge composition.

As stated in Chapter 1, the basic assumption adopted in the development of the
semantic structure is that a multi-agent system is represented as a compositional
system. Chapter 3 provided a guideline for the design of a compositional system
that represents a multi-agent system. The relation between Chapter 3 and this
chapter is as follows:

�� DESIRE  supports the guideline put forward in Chapter 3. The modelling
framework provides all facilities to describe a compositional system that
represents a multi-agent system, including the dynamics of such a system.
Moreover, the modelling framework provides tools for automatic prototype
construction and experimentation.

�� DESIRE has a number of additional commitments compared to the
commitments put forward in Chapter 2 and Chapter 3. The most important
commitment is the commitment to a knowledge engineering perspective on the
design of multi-agent systems. Chapter 3 abstracts from the way in which
individual processes are analysed and/or described, as well as from the way
information processed in the multi-agent system is described. The DESIRE
modelling framework, however, contains additional facilities, such as a
knowledge representation language, to support a knowledge engineering
perspective on multi-agent systems design. In DESIRE, in addition to
process modelling, the design of a multi-agent system entails knowledge

modelling (Brazier, Treur & Wijngaards, 1996). Another approach to agent-
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based knowledge modelling is presented in (Iglesias, Garijo, González &
Velasco, 1998). A survey of such approaches can be found in (Iglesias,
Garijo & González, 1999).

�� In DESIRE, existing generic agent models can be used to structure specific
agents. During design, relevant components in a generic model are refined
by (1) more detailed analysis of the tasks of which such components are
comprised and/or (2) inclusion of specific domain knowledge.In fact, a
generic agent model has been developed (Brazier, Jonker & Treur, 2000) in
which all agents have specific knowledge of other agents and of their needs
with respect to information exchange with these other agents. The desired
behaviour of individual agents and their interaction capabilities is the basis
for the design of the system.

Figure 9.2: The running example multi-agent system in the DESIRE software
environment.

The design process is supported by a software environment that includes graphical
design tools and automated support for the translation of a specification to an
operational system. The software environment includes implementation
generators with which formal specifications can be translated into executable code
of a prototype system. The representation at the operational level is automatically
generated from the representation at the detailed level by the DESIRE software
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environment. The software environment is depicted in Figure 9.2. (Note the
resemblance with Figure 4.3).

In the next section, the three type of knowledge with which compositional
systems are described, are further discussed, providing a static view on a DESIRE
model . After that, Section 9.3 provides a dynamic view on a DESIRE model: the
dynamic semantics of the model are described in terms of the semantic structure
developed in this thesis.

9.2� DESIRE Types of Knowledge

In the DESIRE modelling framework, a model of a multi-agent system is described
at three levels as depicted in Figure 9.1: the conceptual level, the detailed level and
the operational level. At each level, three types of knowledge are distinguished:
process composition, knowledge composition and the relation between process
composition and knowledge composition. In this section, these three types of
knowledge are described in detail. Section 9.2.1 discusses knowledge
representation and composition, Section 9.2.2 describes representation of processes
and process composition and Section 9.2.3 describes the relation between process
composition and knowledge composition.

At the conceptual level, all three types of knowledge are represented by
graphical notations supported by the DESIRE software environment. At the
detailed level, sufficient detail is added to the graphical description to allow
automatic prototype generation. The DESIRE modelling framework provides two
alternatives for the detailed level. First, this level can be specified by filling in
parameters of the graphical constructs at the conceptual level. The DESIRE
software environment provides different syntax-directed editors for those
graphical constructs that need additional detail. Second, a formal syntax is defined
to allow specification of the detailed level in textual form. (The software
environment provides a tool to automatically generate a textual representation of
the graphical notation including the additional details provided via the syntax-
directed editors.) The representation of a multi-agent system at the prototype level
is automatically generated by the software environment.

Notwithstanding the different representations, each level contains the same
types of knowledge. This section describes this knowledge avoiding all details of
the precise notation used in the DESIRE modelling framework, although some
examples of the notation used in DESIRE are provided.

9.2.1� Knowledge Representation and Composition

At the conceptual level, the building block for knowledge composition is an
information type. An information type is a definition of data elements (together with
the sort to which they belong) and relations between such elements that together
form a unit of information processed in a specific multi-agent system. The set of
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information types used in a specific model is chosen by the designer of the model.
Information types are illustrated in Example 9.1 below.

Example 9.1. The internal information maintained by the broker agent as shown in
Example 5.2 can be described at the conceptual level by the information type
depicted in Figure 9.3.

Figure 9.3: Information type for the internal information of the broker agent.

The syntactic description of the information type at the detailed level is as follows:

information type belief_info

sorts

ONTOLOGY_2_TERM, QUERY, MATCH;

objects

res_1, res_2: ONTOLOGY_2_TERM,

q: QUERY;

functions

match: ONTOLOGY_2_TERM * QUERY -> MATCH;

relations

belief: MATCH;

end information type

Alternatively, the information type depicted in Figure 9.3 can be specified at the
detailed level in the DESIRE software environment, with the information type
editor shown in Figure 9.4.

As an aside, note that in a DESIRE model, an information type such as belief_info

that defines sorts and objects and functions for these sorts, as well as relations on
these sorts, is usually defined as the composition of a number of simpler sorts. This
is illustrated in Section 9.2.1.3. �
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Figure 9.4: Information type editor of the DESIRE software environment.

At the detailed level, knowledge processed in a multi-agent system is described by
(a restricted form of) order-sorted first-order languages. To support locality,
different languages can be used for different parts of a multi-agent systems. The
different order-sorted first-order languages themselves are determined by the
information types for which they are used. The information types themselves (and
thus, the different order-sorted first-order languages) are specified by signatures,
which are discussed in Section 9.2.1.1. Processing of knowledge is specified by
knowledge bases, which are discussed in Section 9.2.1.2. Knowledge composition is
discussed in Section 9.2.1.3. In DESIRE, a number of standard information types is
pre-defined. These information types are introduced in Section 9.2.1.4.

9.2.1.1� Order-Sorted First-Order Signatures

Order-sorted first-order signatures define sets of atoms for order-sorted first-order
languages. Sets of atoms are used in knowledge bases (defined in Section 9.2.1.2).
An order-sorted first-order signature is defined as follows:

Definition 9.2. (Order-sorted first-order signature). An order-sorted first-order
signature is a tuple ��S;<�;Obj;Func;Pred�, where:

�� �S;<� is a finite, partially ordered set of sort names, with < irreflexive;
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�� Obj is an S-indexed family of finite sets of objects;

�� Func is an S+-indexed family of finite sets of function symbols;

�� Pred is an S*-indexed family of finite sets of predicate symbols.

(The terminology used to capture partially ordered sorts is based on (Sernadas,
Sernadas & Costa, 1995) and the simplified version thereof in (Jungclaus, 1993)).
The families Func and Pred are indexed by infinite index sets (sets of strings over
S). However, it is assumed that members of Func and Pred are only defined for a
finite number of strings. In other words, if the families of sets are viewed as
functions on S+ and S*, respectively, these functions are partial functions. An
order-sorted first-order signature can be used to define a set of order-sorted first-
order terms as follows:

Definition 9.3. (Order-sorted first-order terms). Let �=��S;<�;Obj;Func;Pred� be an

order-sorted first-order signature, let Var be an S-indexed family of variables and let � be

the reflexive closure of <. The family Term(�) of order-sorted first-order terms over � is

the S-indexed family of smallest sets closed under:

�� If o�Objt with t�s then o�Term(�)s;

�� If x�Vart with t�s then x�Term(�)s;

�� If f�FuncÆs0;...;sn;sÖ and t0�Term(�)s0’ and ... and tn�Term(�)sn’ and s0’�s0 and ...

and sn’�sn then f(t0,...,tn)�Term(�)s.

Order-sorted first-order terms are building blocks for order-sorted first-order
atoms, defined as follows:

Definition 9.4. (Order-sorted first-order atoms). Let �=��S;<�;Obj;Func;Pred� be an

order-sorted first-order signature, let Term(�) be the S-indexed family of order-sorted first-

order terms over �, and let � be the reflexive closure of <. Then Atom(�), the set of order-
sorted first-order atoms over �, is the smallest set closed under:

�� If p�PredÆs0;...;snÖ and t0�Term(�)s0’ and ... and tn�Term(�)sn’ and s0’�s0 and ...

and sn’�sn then p(t0,...,tn)�Atom(�).

An atom is called ground iff none of the terms t0,...,tn is a variable. The set of ground

atoms of a signature � is denoted Gratom(�).

Example 9.5. The information type belief_info, defined in the previous example, is
represented at the detailed level by the following signature (as in Example 5.2, two
sets of ontology terms OT1 and OT2 and a set Q of query terms are assumed to be

given): belief_info=��S;<�;Obj;Func;Pred�, with:

�� S={ONTOLOGY_2_TERM,QUERY,MATCH};

�� <=�;
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�� Obj an S-indexed family of sets with the following members:
ObjONTOLOGY_2_TERM=OT2 and ObjQUERY=Q, with OT2 and Q the sets of ontology

terms and query terms introduced in Example 5.2. Assume that
{res_1,res_2}�OT2 and {q}�Q;

�� Func an S+-indexed family of sets with the following member:
FuncÆONTOLOGY_2_TERM;QUERY;MATCHÖ={match}, and

�� Pred an S*-indexed family of sets with the following member:
PredÆMATCHÖ={belief}.

There are no other sets in the families Obj, Func, and Pred.

Thus, S is a set of sort names, which are, as is customary in DESIRE, written in
capitals. The sort named ONTOLOGY_2_TERM corresponds with the set of ontology
terms OT2 used in previous examples. The sort named QUERY corresponds with the

set of query terms Q. The sort named MATCH contains matches between ontology
terms and queries. The sorts in S are not ordered, therefore, < is empty. The set of
terms of the sort MATCH of this signature is {match(t,q)|t�OT2 and q�Q}. As an

example, consider the term match(res_1,q). As res_1�ObjONTOLOGY_2_TERM and
q�ObjQUERY, res_1�Term(belief_info)ONTOLOGY_2_TERM and q�Term(belief_info)QUERY, and
therefore, match(res_1,q)�Term(belief_info)ÆMATCHÖ, because match�

FuncÆONTOLOGY_2_TERM;QUERY;MATCHÖ. The set of ground atoms of this signature is
Gratom(belief_info)={belief(match(t,q))|t�OT2 and q�Q}. As an example, consider

belief(match(res_1,q)). As match(res_1,q)�Term(belief_info)MATCH,
belief(match(res_1,q))�Atom(belief_info) because belief�PredÆMATCHÖ. The atom
belief(match(res_1,q)) is ground because match(res_1,q) does not contain a variable. �

9.2.1.2� Knowledge Bases

The relationship between elements of different information types is described by
knowledge bases, which are sets of knowledge base rules. A knowledge base specifies
which information elements (conclusions) may be derived from which other
information elements (antecedents) according to a specific inference relation. The
inference relation used in DESIRE is chaining. A knowledge base is defined relative
to three signatures: a signature for an information type that contains the input to
the chaining process, a signature for an information type that contains the output
of the chaining process and an information type for intermediary results of the
chaining process.

Definition 9.6. (Knowledge base). Let �1=��S1;<1�;Obj1;Func1;Pred1�,

�2=��S2;<2�;Obj2;Func2;Pred2�, and �3=��S3;<3�;Obj3;Func3;Pred3� be three signatures.

The set of knowledge base formulae for �1, �2, and �3 is the smallest set of formulae

For(�1,�2,�3) that comply with the following requirements:
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�� If a�Atom(�i) for i=1, i=2 or i=3, then a,not a�Lit(�i);

�� If l�Lit(�i) for i=1, i=2 or i=3, then l�Conj,

�� If l�Lit(�i) for i=1, i=2 or i=3, then l�For(�1,�2,�3);

�� If �1,�2�Conj, then �1 and �2�Conj;

�� If �1,�2�Conj, then if �1 then �2�For(�1,�2,�3).

A knowledge base KB(�1,�2,�3) for �1, �2, and �3 is a set of knowledge base formulae.

In this definition, �1 is used for input to the chaining process, �2 for intermediary
results , and �3 for the output.

At the conceptual level, a graphical notation may be used to represent
knowledge bases. Knowledge rules are only represented at the detailed level.

Example 9.7. Suppose that, in addition to the signature belief_info presented in
Example 9.5, two signatures match_communication and resource_communication are
given, with:

�� Atom(match_communication)={communicated_by(match(t,q),p)|t�OT2 and q�Q

and p�Providers};

�� Atom(resource_communication)={to_be_communicated_to(t,u)|t�OT2 and

u�Users};

The following knowledge base can be defined with these signatures: (A variable
x�VarS is denoted x: S)

if communicated_by( M: MATCH, provider_1 )

then belief( M: MATCH );

if belief( match( O: ONTOLOGY_2_TERM, Q: QUERY ))

and communicated_by( Q: QUERY, user_1 )

then to_be_communicated_to( O: ONTOLOGY_2_TERM, user_1);

This set of rules is a subset of For(match_communication,belief_info,belief,

resource_communication). �

9.2.1.3� Knowledge Composition

In DESIRE, knowledge structures can be composed in several ways. Information
types can be composed to form larger information types. Operations on signatures
are defined to represent composition of information types. The first operation
presented in this section defines the union of two signatures by taking the union of
the sets of sorts, the order on the sorts, and the families of object, function and
predicate sets:
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Definition 9.8. (Signature union). Let �1=��S1;<1�;Obj1;Func1;Pred1� and

�2=��S2;<2�;Obj2;Func2;Pred2� be two signatures such that <1	<2 is a strict partial order

on S1	S2. The union �1
�2 of �1 and �2 is the signature

��S1	S2;<1	<2�;Obj1	Obj2;Func1	Func2;Pred1	Pred2�.

In this definition, the union operation for the sets of objects, functions and
predicates is the union of indexed families of sets, which takes the union of
corresponding sets in a family. Note that union is not assumed to be disjoint.
Instead, the fact that union is not disjoint, is used to extend existing sorts. For
instance, suppose the following signature is defined: �1=��{S1};��;Obj;�;��, with
Obj a family of sets with only one member, the set ObjS1={a}. To extend the sort S1

with a new object, b, a new temporary signature �2=��{S1};��;Obj’;�;�� is defined,
with Obj’ a family of sets with only one member, the set Obj’S1={b}. Sort S1 is
extended with object b by taking the signature �1
�2=��{S1}	{S1};��;Obj”;�;��,

with Obj” a family of sets with only one member, the set Obj”S1=ObjS1	Obj’S1={a,b}.
Thus, the extended signature has only one sort (S1), with two objects (a and b). If
union had been disjoint, the extended signature would have two distinct sorts, one
containing object a and the other containing object b.

An important feature of DESIRE is its support for meta-level architectures. In
multi-agent systems (as well as in other knowledge-intensive systems) it is
frequently the case that information about other information is needed. Such
information is represented by lifting atoms of a specific signature to a meta-level,
at which these atoms become terms of some sort MS. A signature in which this sort
is places is called the meta-signature of � with respect to MS. The resulting signature
is called the meta-signature of � with respect to MS, because statements about

predicates in � can be formally represented using the meta signature by specifying
predicates on the sort MS. The term to which a specific atom is lifted need not have
the same function symbol as the predicate symbol of the atom. A family of 1-1-
mappings between function symbols and predicated symbols describes which
atom is lifted to which term.

Definition 9.9. (Meta signature). Let �=��S;<�;Obj;Func;Pred� be an order-sorted first-

order signature, let MS be a sort not in S, let Func’ be an (S	{MS})+-indexed family of

sets disjoint from the members of Func, let Obj’ be an ({MS})-indexed family of sets disjoint

from the members of Obj, let lift be an S*-indexed family of 1-1-mappings between
PredÆs0;…;snÖ and Func’Æs0;…;sn;MSÖ for each �s0;…;sn� for which PredÆs0;…;snÖ is defined and

let lift’ be a 1-1-mapping between PredÆÖ and Obj’MS. The meta-signature
metaMS(�,lift,lift’) of � with respect to MS, lift and lift’ is the signature

��S	{MS};<�;Obj	Obj’;Func	Func’;�� such that:

�� For each �s0;…;sn� and for all p�PredÆs0;…;snÖ, there is an f�Func’Æs0;…;sn;MSÖ such

that f=lift(p), and

�� For each p�PredÆÖ, there is an o�Obj’MS such that o=lift’(p).
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In DESIRE, the function symbol for the term to which an atom is lifted, is always
the same symbol as the predicate symbol of the atom. In other words, in DESIRE,
the functions lift and lift’ are identity functions. In the rest of this chapter, it is
assumed that lift and lift’ are identity functions, and metaMS(�,lift,lift’) is denoted
metaMS(�).

Both forms of knowledge composition can be used directly by users of the
DESIRE modelling framework. (There are some restrictions, e.g. it is forbidden to
lift signatures to a sort in the pre-defined, fixed set of so-called standard sorts

introduced in Section 9.2.1.4.) The following example illustrates knowledge
composition.

Example 9.10. As described in Chapter 4, the broker agent transmits knowledge on
resources to user agents, i.e., it (only) transmits the name or location of a resource.
Assume that, in this example, the broker agent transmits knowledge on its belief
about matches between queries and information provided by brokers to user
agents. In this example, an information type is used that specifies ground atoms of
the form to_be_communicated_to(belief(match(res_1,q)),user_1). This information type is
composed of other information types, one of which is the information type
belief_info presented in the previous example. The information type to describe the
broker’s communication of its beliefs is specified as follows:

information type generic_agent_output

sorts AGENT, INFO_ELEMENT;

relations to_be_communicated_to: INFO_ELEMENT * AGENT;

end information type

information type domain_agent_output

information type generic_agent_output;

objects user_1, user_2, broker, provider_1, provider_2: AGENT;

end information type

information type belief_meta_info

sorts BELIEF;

meta-descriptions belief_info: BELIEF;

end information type

information type belief_output_info

information type domain_agent_output;

information type belief_meta_info;

sub-sorts BELIEF: INFO_ELEMENT;

end information type

The last five lines of this specification declare the information type for the broker’s
communication of its beliefs. It is composed of other information types as follows.

The first four lines, starting with information type generic_agent_output, denote the
following signature:
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generic_agent_output
= ��{INFO_ELEMENT,AGENT};��;�;�;PredÆINFO_ELEMENT;AGENTÖ�, with

 PredÆINFO_ELEMENT;AGENTÖ={to_be_communicated_to}.

As the name of the information type illustrates, this information type is generic: it
consists of concepts such as the names of agents and information elements that
appear not just in the running example, but in almost all multi-agent system. This
information type is therefore placed in the generic agent model and can be reused
by specific agent models.

The second four lines, starting with information type domain_agent_output, denote the
following signature:

domain_agent_output
= generic_agent_output 
 ��{AGENT};��;ObjAGENT;�;��

= ��{AGENT,INFO_ELEMENT};��;ObjAGENT;�;PredÆINFO_ELEMENT;AGENTÖ�,

with ObjAGENT={user_1,user_2,broker,provider_1,provider_2} and
PredÆINFO_ELEMENT;AGENTÖ�={to_be_communicated_to}.

This information type declaration is an example of knowledge composition: the
information type declaration for domain_agent_output references information type
generic_agent_output, resulting in an information type that is the composition of the
referenced information type and the declared information type. The sort AGENT of
signature generic_agent_output is extended with the objects user_1, user_2, broker,
info_provider_1, and info_provider_2 in signature domain_agent_output.

The third group of four lines, starting with information type belief_meta_info, is an
example of knowledge composition by meta-lifting. Atoms of the signature
belief_info given in the previous example are lifted to form elements of the sort
BELIEF. The information type belief_meta_info denotes the following signature:

belief_meta_info
= metaBELIEF(belief_info)

= ��{ONTOLOGY_2_TERM,QUERY,MATCH,BELIEF};��;Obj;Func;��, with Obj a
family of sets with the following members:
ObjONTOLOGY_2_TERM={res_1,res_2} and ObjQUERY={q},

and Func a family of sets with the following members:
FuncÆONTOLOGY_2_TERMS;QUERY;MATCHÖ={match} and FuncÆMATCH;BELIEFÖ={belief}.

The final group of lines, starting with information type belief_output_info, denotes the
following signature:

belief_output_info
= domain_agent_output
belief_meta_info


��{BELIEF,INFO_ELEMENT};{�BELIEF;INFO_ELEMENT�}�;�;�;��

= ��S;<�;Obj;Func;Pred�,

with:



9.2: DESIRE Types of Knowledge

232

�� S={ONTOLOGY_2_TERM,QUERY,MATCH,BELIEF,AGENT,INFO_ELEMENT};

�� <={�BELIEF;INFO_ELEMENT�}�;

�� Obj an S-indexed family of sets with the following members:
ObjONTOLOGY_2_TERMS={res_1,res_2}, and ObjQUERY={q};

�� Func an S+-indexed family of sets with the following members:
FuncÆONTOLOGY_2_TERMS;QUERY;MATCHÖ={match} and FuncÆMATCH;BELIEFÖ={belief}, and

�� Pred an S*-indexed family of sets with the following member:
PredÆINFO_ELEMENT;AGENTÖ�={to_be_communicated_to}.

As belief(match(res_1,q))�TermBELIEF(belief_meta_info) and BELIEF<INFO_ELEMENT,

to_be_communicated_to(belief(match(res_1,q)),user_1)�Gratom(belief_output_info). �

It is possible to define multi-level meta signatures by taking the meta-signature of
a meta signature, and so forth.

It is often the case that a composite information type is needed that consists of a
specific information type, its meta lifting, the meta lifting of this meta lifting, and
so forth. In this case, taking the composition of all these levels collapses the multi-
level structure if (probably by accident) one of the meta sorts has the same name as
a sort on a higher or lower level. To avoid this, a third facility for knowledge
composition is introduced, called level localisation. The level localisation of a
signature takes a signature and adds a level identifier to all sorts, objects, functions
and predicates in the signature. The formal definition is as follows:

Definition 9.11. (Level localisation). Let �=��S;<�;Obj;Func;Pred� be a signature and let
L be a level identifier. The level localisation levL(�) of � is the signature

��S’;<’�;Obj’;Func’;Pred’� with:

�� S’={�s;L�|s�S};

�� <’={��s1;L�;�s2;L��|s1<s2};

�� Obj’ an S’-indexed family of sets with Obj’Æs;LÖ=Objs for each set Objs in the family

Obj;

�� Func’ an S’+-indexed family of sets with Func’ÆÆs0;LÖ;…;Æsn;LÖ;Æs;LÖÖ=FuncÆs0;…;sn;sÖ for

each set FuncÆs0;…;sn;sÖ in the family Func;

�� Pred’ an S’*-indexed family of sets with Pred’ÆÆs0;LÖ;…;Æsn;LÖÖ=PredÆs0;…;snÖ for each

set PredÆs0;…;snÖ in the family Pred.

In the DESIRE modelling framework, this form of knowledge composition is
exclusively used for the specification of the relation between knowledge
composition and process composition. An example of the use of this form of
knowledge composition is therefore postponed.
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9.2.1.4� Standard Information Types

The DESIRE framework provides a number of pre-defined, standard information
types that are (indirectly) available to the user in every DESIRE model. Standard
information types are provided for meta-level information and for control
knowledge. There are four standard information types for meta-level information.
These information types are used as follows. The DESIRE modelling framework
automatically lifts certain user-specified information types to either the sort IA

(which stands for input atoms) or OA (which stands for output atoms), for
information types that are used in the input or output interface of a component.
Both sorts IA and OA are subsorts of the sort IOA, which stands for input and output

atoms. These three sorts, as well as a sort to represent the outcome of tests (i.e.,
positive or negative), are defined in an information type that is referenced by the
standard information types:

Standard information type Standard signature
Information type standard_meta

sorts SIGN, IA, OA, IOA;

subsorts IA, OA: IOA;

objects pos, neg: SIGN;

end information type

standard_meta=��S;<�;Obj;�;��, with:

�� S={SIGN,IA,OA,IOA};

��<={�IA;IOA�,�OA;IOA�};

��Obj an S-indexed family of sets with the
following member: ObjSIGN={pos,neg}.

As indicated by the definition of meta-lifting (Definition 9.9), the lifted signatures
do not contain predicates. The four standard meta-level information types provide
general predicates on the sorts IA, OA, or IOA. These predicates represent (meta-
level) statements about user-defined atoms. Each of the four standard meta-level
information types provides a different kind of meta-level knowledge: knowledge
about which atoms are assumptions, which atoms are targets (of a reasoning
process), which atoms are required (to complete a reasoning process), which atoms
are true, false, or known. The four standard meta-level information types are
presented in Table 9.1.

Note that no objects or functions are defined for the sorts IA, OA, IOA or TCFEC. The
sorts IA, OA and IOA are automatically extended to contain lifted user-defined
atoms. The sort TCFEF (which stands for task control foci and evaluation criteria) is
discussed below.

The second type of standard information types provided by the DESIRE
framework are task control information types. The purpose of these standard
information types is to define a control lexicon as introduced in Chapter 8. The task
control lexicon used by DESIRE is much more detailed than the example provided
in Chapter 8. In this section, the standard task control information types and their
corresponding signatures are presented without further discussion of these
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information types and their semantics. Section 9.3 presents a detailed, formal
semantics of the control lexicon.

Standard information type Standard signature
Information type assumption_info

information type standard_meta;

relations assumption: IA * SIGN;

end information type

assumption_info=standard_meta


��S;��;�;�;Pred�, with:

S={IA,SIGN};

Pred an S*-indexed family of sets with the

following member:
PredÆIA;SIGNÖ={assumption}.

Information type target_info

information type standard_meta;

sorts TCFEC, TARGET_TYPE;

objects confirm, reject, determine:

TARGET_TYPE;

relations target: TCFEC * OA *

TARGET_TYPE;

end information type

target_info=standard_meta


��S;��;Obj;�;Pred�, with:

S={TCFEC,TARGET_TYPE};

Obj an S-indexed family of sets with the

following member:
ObjTARGET_TYPE={confirm,reject,determine};

Pred an S*-indexed family of sets with the

following member:
PredÆTCFEC;OA;TARGET_TYPEÖ={target}.

information type epistemic_info

information type standard_meta;

relations true, false, unknown: IOA;

end information type

epistemic_info=standard_meta


��S;��;�;�;Pred�, with:

S={IOA};

Pred an S*-indexed family of sets with the

following member:
PredÆIOAÖ={true,false,known}.

information type request_info

information type standard_meta;

relations required: IA * SIGN;

end information type

request_info=standard_meta


��S;��;�;�;Pred�, with:

S={IA,SIGN};

Pred an S*-indexed family of sets with the
following member: PredÆIA;SIGNÖ={required}.

Table 9.1: Standard meta-signatures.

information type TCpredefinedSorts

sorts

ActivationType,

NextActivationType,

LinkActivationType,

ExtentType,

TermType;

subsorts
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NextActivationType: ActivationType;

objects

busy: ActivationType;

idle, active, awake: NextActivationType;

idle, uptodate, awake: LinkActivationType;

any, any_new, all_p, every: ExtentType;

succeeded, failed: TermType;

end information type

information type TCparts

sorts

Component,

Link,

LinkList,

SubTaskControlFocus,

SubEvaluationCriterium,

OwnTaskControlFocus,

OwnEvaluationCriterium;

objects

nil: LinkList;

functions

dot: Link * LinkList -> LinkList;

end information type

information type TCcondPrevious

information types

TCparts,

TCpredefinedSorts;

relations

previous_evaluation: Component * SubEvaluationCriterium * ExtentType *

TermType;

previous_component_state: Component * ActivationType ;

previous_task_control_focus: Component * SubTaskControlFocus ;

previous_extent: Component * ExtentType ;

previous_own_evaluation: OwnEvaluationCriterium * ExtentType * TermType ;

previous_own_component_state: ActivationType ;

previous_own_task_control_focus: OwnTaskControlFocus ;

previous_own_extent: ExtentType ;

end information type

information type TCcondCurrent

information types

TCparts,

TCpredefinedSorts;

relations

start;

evaluation: Component * SubEvaluationCriterium * ExtentType * TermType ;

component_state: Component * ActivationType ;

task_control_focus: Component * SubTaskControlFocus ;

extent: Component * ExtentType ;

own_evaluation: OwnEvaluationCriterium * ExtentType * TermType ;

own_component_state: ActivationType ;

own_task_control_focus: OwnTaskControlFocus ;

own_extent: ExtentType ;

end information type
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information type TCinput

information types

TCcondPrevious,

TCcondCurrent;

end information type

information type TCoutput

information types

TCparts,

TCpredefinedSorts;

relations

stop;

next_component_state: Component * NextActivationType ;

next_task_control_focus: Component * SubTaskControlFocus ;

next_extent: Component * ExtentType ;

next_link_state: Link * LinkActivationType ;

next_link_sequence_state: LinkList * LinkActivationType ;

end information type

information type tc_it

information types

TCinput,

TCoutput;

end information type

The standard task control information types correspond with the following
signatures:

TCpredefinedSorts=��S;<�;Obj;�;��, with:

�� S={ActivationType,NextActivationType,LinkActivationType,ExtentType,TermType};

�� <={�NextActivationType;ActivationType�};

�� Obj an S-indexed family of sets with the following members:

�� ObjActivationType = {busy};

�� ObjNextActivationType = {idle,active,awake};

�� ObjLinkActivationType = {idle,uptodate,awake};

�� ObjExtentType = {any,any_new,all_p,every};

�� ObjTermType = {succeeded,failed};

TCparts=��S;��;Obj;Func;��, with:

�� S={Component,Link,LinkList,SubTaskControlFocus,SubEvaluationCriterium,

 OwnTaskControlFocus,OwnEvaluationCriterium};

�� Obj an S-indexed family of sets with the following member:

�� ObjLinkList = {nil};

�� Func an S+-indexed family of sets with the following member:

�� FuncÆLink;LinkList;LinkListÖ = {dot};

TCcondPrevious=TCparts
TCpredefinedSorts
��S;��;�;�;Pred�, with:
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�� S={ActivationType,NextActivationType,LinkActivationType,ExtentType,TermType,

Component,Link,LinkList,SubTaskControlFocus,SubEvaluationCriterium,

OwnTaskControlFocus,OwnEvaluationCriterium};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆComponent;SubEvaluationCriterium;ExtentType;TermTypeÖ = {previous_evaluation};

�� PredÆComponent;ActivationTypeÖ = {previous_component_state};

�� PredÆComponent;SubTaskControlFocusÖ = {previous_task_control_focus};

�� PredÆComponent;ExtentTypeÖ = {previous_extent};

�� PredÆOwnEvaluationCriterium;ExtentType;TermTypeÖ = {previous_own_evaluation};

�� PredÆActivationTypeÖ = {previous_own_component_state};

�� PredÆOwnTaskControlFocusÖ =  {previous_own_task_control_focus};

�� PredÆExtentTypeÖ = {previous_own_extent};

TCcondCurrent=TCparts
TCpredefinedSorts
��S;��;�;�;Pred�, with:

�� S={ActivationType,NextActivationType,LinkActivationType,ExtentType,TermType,

Component,Link,LinkList,SubTaskControlFocus,SubEvaluationCriterium,

OwnTaskControlFocus,OwnEvaluationCriterium};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆÖ = {start};

�� PredÆComponent;SubEvaluationCriterium;ExtentType;TermTypeÖ = {evaluation};

�� PredÆComponent;ActivationTypeÖ = {component_state};

�� PredÆComponent;SubTaskControlFocusÖ = {task_control_focus};

�� PredÆComponent;ExtentTypeÖ = {extent};

�� PredÆOwnEvaluationCriterium;ExtentType;TermTypeÖ = {own_evaluation};

�� PredÆActivationTypeÖ = {own_component_state};

�� PredÆOwnTaskControlFocusÖ = {own_task_control_focus};

�� PredÆExtentTypeÖ = {own_extent};

TCinput=TCcondPrevious
TCcondCurrent.

TCoutput=TCparts
TCpredefinedSorts
��S;��;�;�;Pred� with:

�� S={ActivationType,NextActivationType,LinkActivationType,ExtentType,TermType,

Component,Link,LinkList,SubTaskControlFocus,SubEvaluationCriterium,

OwnTaskControlFocus,OwnEvaluationCriterium};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆÖ = {Stop};

�� PredÆComponent;NextActivationTypeÖ = {next_component_state};

�� PredÆComponent;SubTaskControlFocusÖ = {next_task_control_focus};

�� PredÆComponent;ExtentTypeÖ = {next_extent};

�� PredÆLink;LinkActivationTypeÖ = {next_link_state};

�� PredÆLinkList;LinkActivationTypeÖ = {next_link_sequence_state};
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tc_it=TCinput
TCoutput.

Note that there are no objects or functions for the sorts in information type TCparts.
The objects for these sorts (as well as for the sort TCFEC in the target info standard
meta-level information type) are determined by the composition structure of a
component, as discussed in Section 9.2.2.1.

9.2.2� Processes and Process Composition in DESIRE

In the DESIRE modelling framework, processes distinguished in a multi-agent
system are represented by components. The notion of a component in DESIRE is
similar to the notion introduced in Chapter 2. In Section 9.2.2.1, the composition
structure of DESIRE components is described formally.The representation of
component state in DESIRE is described in Section 9.2.2.2.  In DESIRE, as well as in
the semantic structure developed in this thesis, information links form the glue
between components, the building blocks of compositional systems. DESIRE
information links are described in Section 9.2.2.3.

9.2.2.1� DESIRE Components and Composition Structure

Components are the main constructs with which compositional systems are
built in DESIRE. The conceptual level focuses on the compositional structure of
components and on their interfaces. Figure 9.5 shows a graphical representation of
a DESIRE component. In this figure, the following parts of a component are
depicted:

�� The two boxes on the left side represent the input interface of the
component. The interface consists of two parts, one for control input and
one for domain-specific input;

�� The two boxes on the right side represent the output interface of the
component. The interface consists of two parts, one for control output and
one for domain-specific output;

�� Inside the component, a task control part and a kernel part are
distinguished. In contrast to the semantic structure, task control in DESIRE
is viewed as an integral part of a component. The kernel part of the
component contains the internal knowledge structures of the component if
the component is primitive, or subcomponents and links if the component is
composed;

�� In the graphical representation of a DESIRE component, the boxes that
represent the task control input and kernel input interfaces are often drawn
as one box, which represents the input interface of the component, and
likewise for the output interfaces;

�� The kernel input and output interfaces consist of (at least two) levels of
object/meta-information. These levels are indicated in the graphical
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representation by horizontal division of the boxes that represent the (kernel)
input and output interfaces.

Figure 9.5: Graphical representation of a DESIRE component.

In DESIRE, primitive components may be either reasoning components (i.e., based
on a knowledge base), or, components capable of performing tasks such as
calculation, information retrieval, optimisation.

The composition structure of components is indicated at the conceptual level by
placing components inside other components, and by drawing information links
between components. (Figure 9.2 shows a number of link between components. All
components in Figure 9.2 are subcomponents of a component called toplevel, as
displayed in the title bar of the window shown in Figure 9.2.) At the detailed level,
the compositional structure of components is represented in the textual form of the
detailed level by the block structure of the syntax. In the DESIRE software
environment, the compositional structure at the detailed level is automatically
taken from the conceptual level and is not represented separately.

The composition structure of DESIRE components thus specified resembles the
notion of a structure hierarchy as developed in Chapter 5. There are two
differences:

�� In DESIRE, only private links, import mediating links, export mediating
links and cross-mediating links are allowed. (In a structure hierarchy, two
additional types of links: link monitoring links and link modifier links, are
also allowed);

�� In DESIRE, there is always exactly one component, the toplevel component,
that is not a subcomponent of any other component.

The four types of information links that are allowed in the DESIRE framework
share a property that the other two types of links do not have: both the domain
and the co-domain are components. The composition structure of DESIRE
components can be described by a restricted form of a structure hierarchy, called a
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DESIRE structure hierarchy, in which for each link it is required that both the
domain and co-domain are components. Formally:

Definition 9.12. (DESIRE structure hierarchy). A structure hierarchy

SH=�Comp;Lnk;�;dom;cdom� for a component C is a DESIRE structure hierarchy for C

if for each link I�Lnk, dom(I),cdom(I)�Comp.

Example 9.13. The example structure hierarchy presented in Example 5.10 is also a
DESIRE structure hierarchy. (This structure hierarchy is used in Example 8.3 to
illustrate structure hierarchies with control.) The example structure hierarchy
presented in Example 5.10 is: sh=�Comp;Lnk;�;dom;cdom� with

�� Comp={toplevel,user_1,broker,ASP,OPC};

�� Lnk={user_1_to_broker,broker_to_user_1};

�� � = {�ASP;broker�,�OPC;broker�,�user_1;toplevel�,�broker;toplevel�,

 �user_1_to_broker;toplevel�,�broker_to_user_1;toplevel�};

�� dom = {�user_1_to_broker;user_1�,�broker_to_user_1;broker�};

�� cdom = {�user_1_to_broker;broker�,�broker_to_user_1;user_1�};

This DESIRE structure hierarchy represents only part of the running example
multi-agent system. For brevity, and to comply with the examples presented in
Chapter 8 and the rest of this chapter, only this limited DESIRE structure hierarchy
is used. �

As indicated by the definition, a DESIRE structure hierarchy is always a structure
hierarchy for a specific component. A structure hierarchy for a component is a structure
hierarchy that defines a forest of exactly one tree, or, in other words, a structure
hierarchy in which there is exactly one component that is not a subcomponent of
any other component (see Definition 5.8).

In DESIRE, at the detailed level, both in the textual representation, as well as in
the software environment, additional information for each component and link is
specified by the user (the intended use of these attributes is discussed in
Section 9.2.2.2 and Section 9.3):

�� A list of task control focus names. (A task control focus is a set of ground
atoms on which a reasoning process focuses. The task control focus names
automatically appear as objects of the sort TCFEC of the target standard
meta-level information type);

�� A list of evaluation criterion names. (An evaluation criterion is a set of ground
atoms with which a reasoning process is evaluated. The evaluation criterion
names automatically appear as objects of the sort TCFEC of the target
standard meta-level information type);

�� The name of the initial task control focus;
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�� The initial extent type of the component. (The extent type of a component
determines to what extent reasoning processes inside the component try to
fulfil their current task control focus);

�� A discrete, totally-ordered set of level identifiers;

�� Knowledge structures (Information types used internally by the component
and as input and output, and knowledge bases).

For each link, the user defines a domain and co-domain information type and the
reflection type of the link. The domain and co-domain information types determine
the information that is to be transmitted if no further constraints are specified.
(This is discussed in Section 9.2.2.3.) The reflection type of a link establishes
object/meta relations between interface levels of different component. Reflection
types are discussed in Section 9.2.2.3.

The additional attributes presented above are represented in the semantic
structure by introducing a number of functions on the set of component or links in
a structure hierarchy. Given a DESIRE structure hierarchy
SH=�Comp;Lnk;�;dom;cdom�, the following functions represent the additional
attributes, where C�Comp and I�Lnk:

�� TCF(C,SH) denotes the set of task control focus names;

�� EC(C,SH) denotes the set of evaluation criterion names;

�� TCFinitial(C,SH) denotes the name of the initial task control focus;

�� EXTinitial(C,SH): Comp�{any,any_new,all_p,every} denotes the name of the initial

extent;

�� LEV(C,SH) denotes the set of level identifiers together with its partial order;

�� ��in(C,SH), ��int(C,SH) and ��out(C,SH) denote LEV(C,SH)-indexed families

of sets of signatures;

�� MFinitial(C,SH) denotes an LEV(C,SH)-indexed family of sets of initial meta
facts, where (MFinitial(C,SH))l is a subset of:

Gratoms(target_info
assumption_info
��S;��;Obj;�;��

 metaÆIA,lÖ((��in(C,SH))l’)
metaÆOA,lÖ((��out(C,SH))l’)),

with l’ the predecessor of l and:

�� S={TCFEC};

�� Obj an S-indexed family of sets with one member:
ObjÆTCFECÖ=TCF(C,SH)	EC(C,SH);

�� KB(C,SH) denotes a knowledge base for the following signatures:

�� If C is a primitive component: (��in(C,SH))^, (��int(C,SH))^ and
(��out(C,SH))^, where � is the bottom element of the set LEV(C,SH);
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�� If C is a composed component: TCinput, ���;��;�;�;��, and TCoutput, as
presented in Section 9.2.1.4.

�� (I,SH) denotes an information link mapping description for I.
(Information link mapping descriptions are defined in Section 9.2.2.3.)

In the current version of DESIRE, primitive components use exactly two levels of
knowledge: one object level and one meta-level. A knowledge base can only reason
about object level information. Thus, the function KB(C,SH) denotes a single
knowledge base (not a set of knowledge bases) for the input, internal and output
signatures of the bottom level of C. Composed components may have more than
two levels. A composed component has only one knowledge base, which is the
task control knowledge base. (Other knowledge bases are part of subcomponents
of the composed component.)

In DESIRE, task control is considered to be an integral part of a component.
Task control of a composed component is specified by the user and consists of a
task control knowledge base. Task control for primitive components is standard
and is not explicitly represented. (Task control for primitive components
determines how a primitive component carries out its reasoning tasks. It is
discussed in detail in Section 9.3.) However, as discussed in Chapter 8, in the
semantic structure developed in this thesis, there is no concept of control as an
integral part of components. Instead, control is introduced as a refinement of the
semantic structure: specific components are dedicated to exercising control over
other components, and specific links are dedicated to transmitting control
information. Apart from their dedication, these components and links are normal
components and links.

The gap between task control in DESIRE and control in the semantic structure is
bridged by using structure hierarchies with control (see Definition 8.2). The
definition of a structure hierarchy with control is repeated for ease of reference.

Definition 8.2. (Structure hierarchy with control). Let SH=�Comp;Lnk;�;dom;cdom�

be a structure hierarchy. This structure hierarchy is a  structure hierarchy with control
if:

�� Comp=Contr	Comp’ with Contr and Comp’ disjoint;

�� Lnk=Lnk’	UCLnk	DCLnk	ICLnk	ECLnk with Lnk’, UCLnk, DCLnk, ICLnk

and ECLnk pairwise disjoint;

�� For all C�Contr there is a C’�Comp, a link I1�ICLnk and a link I2�ECLnk such

that C�C’, I1�C’, and I2�C’, dom(I1)=C’, cdom(I1)=C, dom(I2)=C and

cdom(I2)=C’;

�� For all C�Comp’ such that C�Prim(SH), there is exactly one C’�Contr such that
C’�C and for all S in Comp	Lnk, if S�C and S�C’, then there is an I1�DCLnk:

dom(I1)=C’ and cdom(I2)=S and there is an I2�UCLnk: dom(I2)=S and

cdom(I2)=C’;
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�� For all I�DCLnk such that I�C for C�Comp, there is a C’�Contr and an

S�Comp	Lnk such that dom(I)=C’ and cdom(I)=S and S,C’�C;

�� For all I�UCLnk such that I�C for C�Comp, there is a C’�Contr and an

S�Comp	Lnk such that dom(I)=S and cdom(I)=C’ and S,C’�C;

�� For all I�ICLnk, there is a component C�Contr and a component P�Comp such

that C�P, dom(I)=P and cdom(I)=C;

�� For all I�ECLnk, there is a component C�Contr and a component P�Comp such

that C�P, dom(I)=C and cdom(I)=P.

Structure hierarchies with control are used to represent control in DESIRE as
follows:

�� Assume that a description of the composition of a DESIRE model by a
DESIRE structure hierarchy is given. A structure hierarchy with control is
associated with this DESIRE structure hierarchy. There is a dedicated
primitive control component for each composed DESIRE component in this
structure hierarchy with control together with control links to all other
subcomponents. This DESIRE structure hierarchy with control, and not the
DESIRE structure hierarchy (without control), is the representation of the
DESIRE model in the semantic structure;

�� The standard task control associated with a primitive component C
determines the set Behloc(C).

Given a DESIRE structure hierarchy, the DESIRE structure hierarchy with control
is defined as follows:

Definition 9.14. (DESIRE structure hierarchy with control). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy. The DESIRE structure
hierarchy with control for SH is a structure hierarchy with control

�Comp’;Lnk’;�’;dom’;cdom’� with:

�� Comp’=Comp	Compctr, where Compctr is a set of component names disjoint with

Comp such that for each composed component C�Comp, there is a unique
component name Cctr�Compctr;

�� Lnk’=Lnk	Lnkctr, where Lnkctr is a set of link names disjoint with Lnk such that:

�� For each component or link S�Comp	Lnk except the toplevel component, there
are two link names SUTCL,SDTCL�Lnkctr, and

�� For each composed component C�Comp, there are two link names
CITCL,CETCL�Lnk.

�� �’=�	�”, with �” such that for each composed component P�Comp:

�� Pctr�”P, PITCL�”P, and PETCL�”P, and;

�� For all S�P: SUTCL�”P and SDTCL�”P.
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�� dom’=dom	dom”, with dom” such that for each composed component P�Comp:

�� For all S�P, dom”(SUTCL)=S and dom”(SDTCL)=Pctr;

�� dom”(PITCL)=P and dom”(PETCL)=Pctr;

�� cdom’=cdom	cdom”, with cdom” such that for each composed component

P�Comp:

�� For all S�P, cdom”(SUTCL)=Pctr and cdom”(SDTCL)=S;

�� cdom”(PITCL)=Pctr and cdom”(PETCL)=P;

It is straightforward to verify that a DESIRE structure hierarchy with control
complies with the requirements on a structure hierarchy presented in the
definition of a structure hierarchy with control (see Chapter 8, Definition 8.2).

Example 9.15. As stated in Example 9.13, the structure hierarchy sh presented in
Example 5.10 and re-used in Example 8.3 is also a DESIRE structure hierarchy. In
Example 8.3, this structure hierarchy is extended with control components to
constitute a structure hierarchy with control. The resulting structure hierarchy
with control sh’=�Comp’;Lnk’;�’;dom’;cdom’�, which is depicted in Figure 8.2, is also
a DESIRE structure hierarchy with control. (Comp’, Lnk’, �’, dom’, and cdom’ as
specified in Example 8.3.)

�� Comp’ and Lnk’ are partitioned in pairwise disjoint sets as required by the
definition of a DESIRE structure hierarcy with control. For each of the two
composed components in sh, there are two links in ICLnk and ECLnk,
respectively, and a control component in sh’. For each component in sh

except the toplevel component, there are upward and downward control
links;

�� �broker_control;broker���, �toplevel_control;toplevel���, �broker_ICL;broker���,
�broker_ECL;broker���, �toplevel_ICL;toplevel���, and �toplevel_ECL;toplevel���, so
for each composed component P in sh, the control component Pctr of P is a

subcomponent of P, and the import and export control links are also links of
P. Moreover, all upward and downward control links are links of the proper
composed components;

�� All links in DCLnk, UCLnk, ICLnk and ECLnk are connected as requested.

Therefore, the extended structure hierarchy is a structure hierarchy with control. �

For the additional components in a DESIRE structure hierarchy with control,
attributes such as the set of task control foci TCF(C,SH) have default values, as
explained in Section 9.3.

9.2.2.2� The State of DESIRE Components

As explained in Chapter 2 and Chapter 5, a component (and a link) has a state,
which is determined by its information contents. This state changes over time.
Chapter 5 assumes that three sets of states are given for each component: one for
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the input substate of the component, one for the internal substate and one for the
output substate. For the application of the semantic structure to describe the
semantics of multi-agent systems modelled using DESIRE, these sets are defined as
valuations to keep the semantics of DESIRE as simple as possible.

The propositional language used to describe the state of a component is a local
language: the set of atomic propositions of such a language only contains
propositions about this component. For each component, three sets of atomic
propositions are defined:

Definition 9.16. (Component information state description signature). Let C be a
component. A component information state description signature �C of C is a triple

�Propin;Propint;Propout�, where Propin, Propint and Propout are sets of atomic proposition

symbols used to describe the input state, internal state and output state of component C,

respectively.

It is assumed that only one information state description signature is used for each
component C. Based on the component information state description signature of a
component, a local language for the description of component states is defined.
This language enables the description of relations between the input, output and
internal substates that comprise the component state. As the three sets Propin,

Propint and Propout in a component information state description signature are not

assumed to be disjoint, in the component information state description language,
proposition symbols from these sets are coloured.

Definition 9.17. (Component information state description language). Let
�C=�Propin;Propint;Propout� be an information state description signature. The set of

component information state description formulae For(�C) of a component C is the smallest

set closed under the following restrictions:

�� If p�PropX then pX�For(�C) for X�{in,int,out};

�� If ��For(�C) then ���For(�C);

�� If �,��For(�C) then ����For(�C).

The connectives � and � are defined as usual. For each state of a component,
certain propositions about (the information contents of) this state are true, while
others are not, and probably for yet other propositions, the truth value is not
determined. The state of a DESIRE component C is therefore defined as a three-
valued valuation for �C as follows.

Definition 9.18. (DESIRE component state). Let C be a component with component
state description signature �C. The set of input states �C,in is defined as a set of functions

�C,in={�C,in|�C,in: Propin�{0,1,u}}. The set of internal states �C,int is defined as a set of

functions �C,int={�C,int|�C,int: Propint�{0,1,u}}. The set of output states �C,out is defined

as a set of functions �C,out={�C,out|�C,out: Propout�{0,1,u}}.
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By Definition 5.1, the set of DESIRE component states for a component C is
�C=�C,in��C,int��C,out. Relations �3

+��C,X�PropX and �3
-��C,X�PropX which

precisely specify which propositional symbols are true or false in a state,
respectively, can now be defined as follows (for X�{in,int,out}): �C,X�3

+p if and

only if �C,X(p)=1 and �C,X�3
-p if and only if �C,X(p)=0. The interpretation of

formulae ��For(�C) is then defined by extending the relations �3
+ and �3

- for

formulae according to some partial semantics, e.g. strong Kleene semantics. (see
(Langholm, 1988; Turner, 1990) for a discussion of such relations).

As an alternative for partial semantics, it is possible to use epistemic
logic (Fagin, Halpern, Moses & Vardi, 1995) to describe the state of a component.
However, as explained in the next subsection, information link mappings are
characterised directly in terms of truth values. Therefore, partial semantics seems
to be a better choice.

The state of components is thus described by propositional languages, which
are generated from sets of atomic proposition symbols assumed to be given in
Definition 9.16. To describe the semantics of DESIRE, these sets of atomic
proposition symbols are themselves defined as ground atoms of specific
signatures. These signatures are composed of user-defined signatures that
represent domain-dependent or generic information types processes by a
component, and of standard signatures provided by the DESIRE modelling
framework for task control and meta reflection. The state of a DESIRE component
is thus described by a propositional language, the atomic propositions of which are
ground atoms of an extensive, composed signature. A separate signature is defined
for each substate. The structure of these signatures enables differentiation between
parts of the interfaces of a component as follows:

�� The input and the output interface of a component each consist of two parts:
the kernel interface and the task control interface;

�� For the task control parts, fixed signatures are defined, based on the DESIRE
standard task control input signature and standard task control output
signature presented in Section 9.2.1.4;

�� The kernel parts of both the input and output interface are levelled interfaces:
they consist of an arbitrary number (at least two) of (meta) levels (the
number of levels of a component C in a DESIRE structure hierarchy SH as
well as the order of the levels is given by LEV(C,SH));

�� Each level of a levelled interface, except the lowest level, consists of two
parts: the user part, described by a user-supplied signature, and the
standard meta part, described by a standard meta signature. The lowest
level only contains the user part (the user-supplied signatures of a
component C in a DESIRE structure hierarchy SH are given by ��in(C,SH)

and ��out(C,SH), respectively);
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�� The meta part consists of the meta lifting of the user part of the level
immediately below, together with standard meta relations on the lifted user
part. In terms of signatures, suppose that the user part of the output interface
at level 1 is described by a signature �1. The meta part of the output interface
at level 2 is then described by metaÆOA;2Ö(lev1(�1))
�2, where OA is a sort in �2,
and �2 is the standard output meta signature. According to the definition of
metaÆOA;2Ö(lev1(�1)), metaÆOA;2Ö(lev1(�1)) does not contain any predicates.
Signature �2 contains predicates on the sort OA that represent statements on
the atoms defined by �1. Figure 9.6 illustrates levelled interfaces;

�� The signature that describes the input or output substate of a component is
the composition of all user-supplied and standard signatures, where the
kernel signatures are level localised to avoid collapsing the stack of levels;

�� The internal substate of a component is described by a user-supplied
signature, given by ��int(C,SH).

Figure 9.6: Signatures for a levelled output interface.

First, the standard signatures are defined. There are four standard signatures: the
standard input meta signature �in

meta, the standard output meta signature �out
meta, the

task control input signature �C,in
tc, and the task control output signature �C,out

tc. The

standard input and output meta signatures are defined as follows:

Definition 9.19. (Standard input meta signature). The standard input meta
signature is the signature �in

meta=assumption_info
target_info, where assumption_info

and target_info are the signatures presented in Table 9.1.

Definition 9.20. (Standard output meta signature). The standard output meta
signature is the signature �out

meta=epistemic_info
request_info, where epistemic_info

and request_info are the signatures presented in Table 9.1.

Definition 9.21. (Standard task control input signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy and let C�Comp be a

component. The standard task control input signature for C is the signature
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�C,in
tc=TCpredefinedSorts
TCparts
��S;��;Obj;�;Pred�, where TCpredefinedSorts and

TCparts are the standard signatures presented in Section 9.2.1.4 and:

�� S={Link,Component,ExtentType,ActivationType,OwnTaskControlFocus};

�� Obj an S-indexed family of sets with the following members:

�� ObjÆLinkÖ = {L�Lnk|L�C};

�� ObjÆComponentÖ = {C’�Comp|C’�C};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆÖ = {start};

�� PredÆActivationTypeÖ = {own_component_state,};

�� PredÆOwnTaskControlFocusÖ = {own_task_control_focus};

�� PredÆExtentTypeÖ = {own_extent};

Definition 9.22. (Standard task control output signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy and let C be a component.

The standard task control output signature for C is the signature �C,out
tc=

TCpredefinedSorts
 TCparts
��S;��;Obj;�;Pred�, where TCpredefinedSorts and TCparts

are the standard signature presented in Section 9.2.1.4 and:

�� S={Link,Component,OwnEvaluationCriterium,ExtentType,TermType,ActivationType,

      OwnTaskControlFocus};

�� Obj an S-indexed family of sets with the following members:

�� ObjÆLinkÖ = {L�Lnk|L�C};

�� ObjÆComponentÖ = {C’�Comp|C’�C};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆOwnEvaluationCriterium;ExtentType;TermTypeÖ = {own_evaluation};

�� PredÆActivationTypeÖ = {own_component_state,};

�� PredÆOwnTaskControlFocusÖ = {own_task_control_focus};

�� PredÆExtentTypeÖ = {own_extent};

�� PredÆÖ = {stop}.

Given the four standard signatures, the composed signatures that are used to
describe the state of a DESIRE component are defined as follows:

Definition 9.23. (DESIRE component signatures). Let SH be a DESIRE structure

hierarchy, let C be a component and let prev be the immediate predecessor function for

LEV(C,SH). Let �C,in
tc be the standard task control input signature for C and let �C,out

tc

be the standard task control output signature for C. Then:

�� The level l kernel input interface for C is the signature

�C,in,l
ker=levl((��in(C,SH))l)
levl(�in

meta)
metaÆIA;lÖ(levprev(l)((��in(C,SH))l)), if

l>�, and �C,in,l
ker=levl((��in(C,SH))l) if l=�;

�� The kernel input interface for C is the signature �C,in
ker=l³LEV(C,SH)


 �C,in,l
ker;
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�� The input signature for C is the signature �C,in=�C,in
tc
�C,in

ker;

�� The internal signature for C is the signature �C,int=��int(C,SH);

�� The level l kernel output interface for C is the signature

�C,out,l
ker=levl((��out(C,SH))l)
levl(�out

meta)
metaÆOA;lÖ(levprev(l)((��out(C,SH))l))

, if l>�, and �C,out,l
ker=levl((��out(C,SH))l)) if l=�;

�� The kernel output interface for C is the signature �C,out
ker=l³LEV(C,SH)


 �C,out,l
ker;

�� The output signature for C is the signature �C,out=�C,out
tc
�C,out

ker.

Definition 9.23 precisely specifies the signatures used to describe the state of those
DESIRE components that are available to users. However, a DESIRE model is
represented in the semantic structure by a structure hierarchy with control, which
not only contains these components, but also contains links and additional
components. The following signatures are used to describe the state of the
additional components. Signatures to describe the state of links are described in
Section 9.2.2.3.

Definition 9.24. (DESIRE control component state description signatures). Let SH

be a structure hierarchy with control for a DESIRE structure hierarchy SH’. Let C be a

control component. The input signature for C is the signature �C,in=TCinput�in
tc, where

�in
tc is the standard task control input signature given in Defintion 9.21. The output

signature for C is the signature �C,out=�out
tc, where �out

tc is the standard task control

output signature given in Defintion 9.22.

Ground atoms of the input, internal and output signatures for a component C are
used as proposition symbols to describe the state of C as follows:

Definition 9.25. (DESIRE component state description signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a structure hierarchy with control for a DESIRE
structure hierarchy SH’ and let C�Comp be a component with input signature �C,in,

internal signature �C,int, and output signature �C,out. The DESIRE component state
description signature for component C is a triple �C=�PropC,in;PropC,int;PropC,out� with

�� PropC,in=Gratom(�C,in);

�� PropC,out=Gratom(�C,out);

�� If C is a composed component: PropC,int=�;

�� If C is a primitive component: PropC,int=Gratom(�C,int).

All signatures used to describe the state of a component are depicted in Figure 9.5.

Example 9.26. Suppose that a user of the DESIRE modelling framework has
defined a component C with a two-level output interface. The levels are identified
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with the identifiers L1 and L2, with L1<L2. The user-supplied signatures for the
two levels are: �C,out,L1

user=belief_info (defined in Example 9.5) and

�C,out,L2
user=metaBELIEF(belief_info)
��S;<�;Obj;�;Pred�, with:

�� S={BELIEF,INFO_ELEMENT,AGENT};

�� <={�BELIEF,INFO_ELEMENT�};

�� Obj an S-indexed family of sets with the following member:

�� ObjAGENT={user_1,user_2,broker,provider_1,provider_2};

�� Pred an S*-indexed family of sets with the following member:

�� PredÆINFO_ELEMENT;AGENTÖ={to_be_communicated_to}.

Figure 9.7: DESIRE signatures.

The complete signature for level L2 of the output interface of C is the following
signature:

�C,out,L2
ker = levL2(�C,out,L2

user)
levL2(�out
meta)
metaÆOA;L2Ö(levL1(�C,out,L1

user))

= ��S;<�;Obj;Func;Pred�,

with:

�� S={�SIGN;L2�;�IA;L2�;�OA;L2�;�IOA;L2�;�ONTOLOGY_2_TERM;L1�;

�ONTOLOGY_2_TERM;L2�;�QUERY;L1�;�QUERY;L2�;�MATCH;L1�;�MATCH;L2�;

�BELIEF;L2�;�INFO_ELEMENT;L2�;�AGENT;L2�};
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�� <={��IA;L2�;�IOA;L2��;��OA;L2�;�IOA;L2��;��BELIEF;L2�;�INFO_ELEMENT;L2��};

�� Obj an S-indexed family of sets with the following members:

�� ObjÆONTOLOGY_2_TERM;L1Ö={res_1,res_2};

�� ObjÆONTOLOGY_2_TERM;L2Ö={res_1,res_2};

�� ObjÆQUERY;L1Ö={q};

�� ObjÆQUERY;L2Ö={q};

�� ObjÆSIGN;L2Ö={pos,neg};

�� ObjÆAGENT;L2Ö={user_1,user_2,broker,provider_1,provider_2};

�� Func an S+-indexed family of sets with the following members:

�� FuncÆÆONTOLOGY_2_TERM;L1Ö;ÆQUERY;L1Ö;ÆMATCH;L1ÖÖ={match};

�� FuncÆÆONTOLOGY_2_TERM;L2Ö;ÆQUERY;L2Ö;ÆMATCH;L2ÖÖ={match};

�� FuncÆÆMATCH;L1Ö;ÆOA;L2ÖÖ={belief};

�� FuncÆÆMATCH;L2Ö;ÆBELIEF;L2ÖÖ={belief};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆÆIOA;L2ÖÖ={true,false,unknown};

�� PredÆÆIA;L2Ö;ÆSIGN;L2ÖÖ={required};

�� PredÆÆINFO_ELEMENT;L2Ö;ÆAGENT;L2ÖÖ={to_be_communicated_to};

Thus, the sorts ONTOLOGY_2_TERM, QUERY and MATCH appear twice as level-
localised versions of this signature. �

9.2.2.3� Information Links

In DESIRE, as well as in the semantic structure developed in this thesis,
information links are the glue between components in a compositional system. In
this section, the representation of DESIRE links in the semantic structure is
discussed. According to Chapter 5, the state, the domain and co-domain, and the
information link mapping of a link have to be described. The domain and co-
domain of an information link are described by the notion of a structure hierarchy.
As discussed in Chapter 5, in the semantic structure for each information link I, a
set of information link states �I is distinguished. For each information link state,

certain propositions about (the information contents of) this state are true, while
others are not, and probably for yet other propositions, the truth value is not
known. The state of an information link is described by the information link state

description signature for the link, which is assumed to be unique:

Definition 9.27. (Information link state description signature). Let I be an
information link. The information link state description signature �I is a set of atomic

proposition symbols.

In DESIRE, the information link state description signature is fixed and cannot be
specified by users of the DESIRE modelling framework. The precise set of atomic
proposition symbols chosen for DESIRE is defined as follows:
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Definition 9.28. (DESIRE link state description signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a structure hierarchy with control for a DESIRE

structure hierarchy SH’ and let I�Lnk be an information link. The DESIRE link state
description signature for information link I is the set Gratoms(�I), where

�I=��S;��;Obj;�;Pred�, with:

�� S={LinkActivationType,Link};

�� Obj an S-indexed family of sets with the following members:

�� ObjLinkActivationType={idle,uptodate,awake};
�� ObjLink={I};

�� Pred an S*-indexed family of sets with the following member:
PredÆLink;LinkActivationTypeÖ={link_state}.

This definition is analogous to Definition 9.25, which defines the component state
description signatures used in DESIRE. The sort LinkActivationType in �I contains

exactly the same elements as the sort LinkActivationType in information type
TCpredefinedSorts given in Section 9.2.1.4.

Using the information link state description signature, states of an information
link are described by the following language:

Definition 9.29. (Information link state description language). Let �I be an

information link state description signature. The set of information link state description
formulae For(�I) of a link I is the smallest set closed under the following restrictions:

�� If p�Gratoms(�I) then p�For(�I);

�� If ��For(�I) then ���For(�I);

�� If �,��For(�I) then ����For(�I).

The connectives � and � are defined as usual. In the semantic structure, as set of
link states is assumed to be given. Thus, such a set has to be defined to fully
describe the semantics of DESIRE. Similar to component states, the set of link states
�I for a link I defined as a set of valuations of the atomic propositions generated by

�I as follows: �I={�I|�I: Gratoms(�I)�{0,1}}. As this definition indicates, in DESIRE,

links states are not partial, therefore a link state is a mapping into {0,1} instead of
{0,1,u}. To keep the semantics of components and links uniform, relations
�3

+��I�For(�I) and �3
-��I�For(�I,m) are used to interpret the information link state

description language. These relations are defined as follows (for p�Gratoms(�I)):

�I�3
+p if and only if �I(p)=1 and �I�3

-p if and only if �I(p)=0. The interpretation of

formulae ��For(�I) is then defined by extending the relations �3
+ and �3

- for

formulae according to some partial semantics, similar to component states.
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The information link mapping is described by a information link mapping

description. Before this notion is defined, first the definition of an information link
mapping is repeated for ease of reference.

Definition 5.6. (Information link mapping). Let I be an information link. An

information link mapping for I is a relation defined as follows:

�� �I�(�dom(I),out��dom(I),out)��I
4�(�cdom(I),in��cdom(I),in), if I is a private link, or

�� �I�(�dom(I),in��dom(I),in)��I
4�(�cdom(I),in��cdom(I),in), if I is an import mediating

link, or

�� �I�(�dom(I),out��dom(I),out)��I
4�(�cdom(I),out��cdom(I),out), if I is an export mediating

link, or

�� �I�(�dom(I),in��dom(I),in)��I
4�(�cdom(I),out��cdom(I),out), if I is a cross-mediating link,

or

�� �I�(�dom(I),out��dom(I),out)��I
4�(�cdom(I)��cdom(I)), if I is a link modifier link, or

�� �I�(�dom(I)��dom(I))��I
4�(�cdom(I),in��cdom(I),in), if I is a link monitoring link.

An information link mapping is a set of octets of states. Such a set can be
determined by propositions about the states that constitute (the octets in) the set.
An information link mapping description consists of octets of proposition symbols,
together with a truth value for each proposition symbol. The truth value further
specifies which states are to be part of the information link mapping as follows: if
an information link mapping description I for a link I contains a proposition

symbol p together with truth value 1, then all states for which p is true have to be
part of the information link mapping described by I. If I contains a proposition

symbol p together with truth value 0, then all states for which p is false have to be
part of the information link mapping described by I. If I contains a proposition

symbol p together with truth value u, then all states for which p is neither true nor
false have to be part of the information link mapping described by I. A pair

consisting of a proposition symbol (from a specific set of propositions) together
with a truth value is called a basic information element and is defined as follows:

Definition 9.30. (Basic information element). A basic information element IE(P) of a

set of proposition symbols P is an element of (P	{T})�{0,1,u}. The set of all basic

information elements of a set of proposition symbols P is denoted ��(P)=(P	{T})�{0,1,u}.

For notational convenience, a basic information element such as e.g. �p;1� is denoted [p:1].

The special proposition symbol T, which stands for ‘true’, can be used to specify
that any state from a set has to be part of an information link mapping.

Basic information elements denote states. The following definition precisely
specifies which states are denoted by a basic information element:
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Definition 9.31. (Satisfaction of information elements). A (sub)state � satisfies an
information element IE, denoted ��ieIE, iff:

�� IE=[p:1] and ��3
+p, or

�� IE=[p:0] and ��3
-p, or

�� IE=[p:u] and ��3
+p and ��3

-p, or

�� ��ie[T:t] for any � and t�{0,1,u}.

The stage is now set to define the notion of an information link mapping description.
An information link mapping description is a set of octets of basic information
elements for specific sets of proposition symbols, which depends on the type of the
information link:

Definition 9.32. (Information link mapping description). Let I be an information link.

An information link description for I is a relation defined as follows:

�� I�(��(Propdom(I),out)���(Propdom(I),out))���(PropI)4�(��(Propcdom(I),in)�

��(Propcdom(I),in)), if I is a private link, or

�� I�(��(Propdom(I),in)���(Propdom(I),in))���(PropI)4�(��(Propcdom(I),in)�

��(Propcdom(I),in)), if I is an import mediating link, or

�� I�(��(Propdom(I),out)���(Propdom(I),out))���(PropI)4�(��(Propcdom(I),out)�

��(Propcdom(I),out)), if I is an export mediating link, or

�� I�(��(Propdom(I),in)���(Propdom(I),in))���(PropI)4�(��(Propcdom(I),out)�

��(Propcdom(I),out)), if I is a cross-mediating link, or

�� I�(��(Propdom(I),out)���(Propdom(I),out))���(PropI)4�(��(Propcdom(I))�

��(Propcdom(I))), if I is a link modifier link, or

�� I�(��(Propdom(I))���(Propdom(I)))���(PropI)4�(��(Propdom(I),in)�

��(Propdom(I),in)), if I is a link monitoring link.

An information link mapping description describes the information link mapping
that satisfies the description. An information link mapping satisfies an information
link mapping description if for each octet of states in the information link mapping
there is at least one octet of basic information elements in its description such that
(i) the first, third and seventh states in the octet of states satisfies the first, third and
seventh basic information elements in the octet of basic information elements, and
(ii) if the first, third and seventh state satisfy the corresponding basic information
elements, then the other states satisfy their corresponding basic information
elements. The second requirement shows that in an information link mapping, the
first, third and seventh states are states in which enabling conditions for
information transmission must hold, while in the other states, results of
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transmission are present. Satisfaction of an information link mapping description
as described above is formalised as follows:

Definition 9.33. (Satisfaction of an information link mapping description). An
information link mapping �L for a link L satisfies an information link mapping description

L, denoted �L�LnkL, if each octet ���1;�2�;��3;�4;�5;�6�;��7;�8����L fulfills the

following requirements:

�� There is an octet ��IE1;IE2�;�IE3;IE4;IE5;IE6�;�IE7;IE8���L such that �1�ieIE1,

�3�ieIE3 and �7�ieIE7;

�� If �1�ieIE1, �3�ieIE3 and �7�ieIE7, then �2�ieIE2, �4�ieIE4, �5�ieIE5, �6�ieIE6

and �8�ieIE8.

Example 9.34. In Chapter 5, example 5.2 presents an information link mapping for
the link broker_to_user_1 from broker to user_1 in the running example. For ease of
reference, the definition of the information link mapping is repeated (where trans is
a function from OT2 to OT1 that translates ontology terms in OT2 to OT1, which is

assumed to be given):

�broker_to_user_1 ={��to_be_communicated_to(t,user_1);just_communicated_to(t,user_1)�;

�awake_and_empty;active_and_contents(t);active_and_contents(t);

awake_and_empty�;�ready_for_information;

communicated_by(t’,broker)�� | t�OT2, t’�OT1 and t’=trans(t)}.

As �broker_to_user_1 is a private link, an information link mapping description for
�broker_to_user_1 contains basic information elements to describe the output state of the
broker, the link itself and the input of user_1. The following sets of proposition
symbols are used to describe these states. As in Example 5.2, two sets of ontology
terms OT1 and OT2 and a set Q of query terms are assumed to be given. The sets

Users and Providers are defined as follows: Users={user_1,user_2} and
Providers={provider_1,provider_2}.

�� Propbroker,out = {to_be_communicated_to(t,u) | t�OT2 and u�Users}	

 {just_communicated_to(t,u) | t�OT2 and u�Users}.

�� Propbroker_to_user_1 = {awake_and_empty,active_and_contents(t) | t�OT2}.

�� Propuser_1,in = {communicated_by(t,broker) | t�OT1}	

 {ready_for_information}.

A relation �3
+ is defined such that ��3

+p if and only iff the name of state � exactly
matches p, i.e., for all t�OT2 and for all u�User,

to_be_communicated_to(t,u)�3
+to_be_communicated_to(t,u), and likewise for the other

states and propositions. A relation �3
- is defined such that ��3

-p if and only iff the
name of state � differs from p, i.e., for all t,t’�OT2 and for all u,u’�User,
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to_be_communicated_to(t,u)�3
-to_be_communicated_to(t’,u’) for t�t’ and u�u’, and likewise

for the other states and propositions.

The information link mapping given above can be described by the following
information link mapping description:

broker_to_user_1 ={��[to_be_communicated_to(t,user_1):1];[just_communicated_to(t,user_1):1]�;

�[awake_and_empty:1];[active_and_contents(t):1];[active_and_contents(t):1];

[awake_and_empty:1]�;�[ready_for_information:1];

[communicated_by(t’,broker):1]�� | t�OT2, t’�OT1 and t’=trans(t)}.

It is straightforward to check that �broker_to_user_1�Lnkbroker_to_user_1.  �

Example 9.35. As stated in Example 5.2 in Chapter 5, the broker agent maintains
beliefs about matches between ontology terms from the set OT2 and query terms
from the set Q. The set �broker,int  of internal states of the broker agents is defined in
Example 5.2 as: �broker,int={belief(match(t,q))|t�OT2 and q�Q}. The set

Gratom(belief_info), with belief_info as defined in Example 9.5, is used to describe the
internal state of the broker agent. The relations �3

+ and �3
- are defined as follows:

�� �3
+ is the smallest relation such that for all t�OT2 and for all q�Q,

belief(match(t,q)�3
+belief(match(t,q).

�� �3
- is the smallest relation such that for all t,t’�OT2 and for all q,q’�Q,

belief(match(t,q) �3
- belief(match(t’,q’) if t�t’ and q�q’.

Thus, this example assumes that the broker agent can only believe one match at a
time. (This assumption enables a direct connection between proposition symbols
and names of states.)

Suppose that there is a sixth component, called exernal_world, in the running
example multi-agent system, and that this component contains a database of
matches between ontology terms and query terms. The state of the external world
can (partially) be described by proposition symbols match(t,q) for t�OT2 and q�Q.

Moreover, suppose that there are links from external_world to the broker such that (a
subcomponent of) the broker agent can consult the database in external_world to
maintain beliefs about matches. (The precise configuration of links from
external_world to (a subcomponent of) broker is deliberately omitted to keep the
example concise.) The broker agent believes that there is a match between an
ontology term t and a query term q if and only if there is a state of external_world for
which match(t,q) is true. Thus, the broker does not believe that there is a match
between t and q either if there is a state of external_world for which match(t,q) is false, or
if there is a state of external_world for which match(t,q) is not true and not false.

In this example, in which the exact structure of the links is omitted, focus is on
the first and eighth state in an information link mapping that connects the database
to the internal beliefs of the broker agent. (As stated in Chapter 5, the first and
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eighth state of an information link mapping specify which information is
transmitted, while the other states specify enabling conditions, results and details
of the transmission process.) Consequently, in this example the information link
mapping description is presented as a binary relation as follows:

 = { �[match(t,q):1];[belief(match(t,q)):1]� | t�OT2, q�Q } 	

 { �[match(t,q):0];[belief(match(t,q)):0]� | t�OT2, q�Q } 	

 { �[match(t,q):u];[belief(match(t,q)):0]� | t�OT2, q�Q }.

This information link mapping description is satisfied by the following
information link mapping: (In this example, also for information link mappings
focus is on the first and eighth factors. Consequently, the information link
mapping is presented as a binary relation.)

� = { ��;belief(match(t,q))� | ��3
+match(t,q) for t�OT2, q�Q and

   ��3
-match(t’,q’) or ��3

+match(t’,q’) and ��3
-match(t’,q’) for t� t’�OT2

   and q�q’�Q }.

Thus, ��Lnk, which can be proven as follows. Let ��;belief(match(t,q))� be an element
of �, for arbitrary t�OT2 and q�Q. Take IE1=[match(t,q):1] and
IE2=[belief(match(t,q)):1]. Then �IE1;IE2��, ��ieIE1 because by the definition of �

given above, ��3
+match(t,q), and belief(match(t,q))��ieIE2 because by the definition of

�3
+ at the beginning of this example, belief(match(t,q))��3

+belief(match(t,q)). Thus, for
each pair of states ��1;�2� in �, there is a pair of basic information elements �IE1;IE2�

in  such that �1�ieIE1, and if �1�ieIE1, then �2�ieIE2. �

In DESIRE, at the conceptual level, for a link only the name, domain, co-domain
and the object/meta level of both the domain and co-domain to which the link
connects, is represented. At the detailed level, the reflection type of the link is
represented, as well as, for some reflection types, the names of the signatures to
which it is constrained, either in textual form or by fill-in forms in the software
environment. Additionally, a restricted form of an information link mapping is
provided in textual form (The software environment uses a segment of the syntax
for the textual form of the detailed level here.)

As stated in Section 9.2.2.1, the reflection type of a link establishes object/meta
relations between levels of the interfaces of the domain and co-domain of a link.
The reflection type also partly determines to which signatures a link is restricted.
(Restriction of a link to a specific information type is used in the specification of the
information link mapping description, discussed below.) The table below lists
examples of link types for all reflection types. Some reflection types are only
allowed for specific links, i.e. private links or mediating links. The reflection types
differ in the object/meta relation between the levels of the domain and co-domain
they specify. Some reflection types, e.g. links of the O-O type, specify that the
specific object/meta level of the domain of the link is at the same level as the
object/meta level of the co-domain. Other reflection types, e.g. links of the type O-
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A, specify downward reflection: the object/meta level of the domain of the link is at a
higher level than the object/meta level of the co-domain. Yet other reflection types,
e.g. links of the type E-O, specify upward reflection: the object/meta level of the
domain of the link is at a lower level than the object/meta level of the co-domain.
The signature names for the domain and co-domain refer to the standard
signatures introduced in Section 9.2.1.4.

Reflec
tion
Type

Link type Domain
signature

Co-domain
signature

Reflection

O-O Private, mediating (user-selected) (user-selected) None

O-A Private, import
mediating

(user-selected) assumption_info Downward

O-T Private, import
mediating

(user-selected) target_info Downward

E-O Private, export
mediating

epistemic_info (user-selected) Upward

E-A Private epistemic_info assumption_info None

E-T Private epistemic_info target_info None

R-O Private, export
mediating

request_info (user-selected) Upward

R-A Private request_info assumption_info None

R-T Private request_info target_info None

Table 9.2: reflection types.

The DESIRE framework does not support a notion of state for information links
available for users. Moreover, the user cannot specify if and how the domain
records the result of information transmission or enabling conditions for receipt of
information to be possible. As a consequence, information link mapping
descriptions for a DESIRE link only need to contain two basic information
elements (instead of eight): a basic information element that describes the state of
the domain in which information is to be transmitted, and a basic information
element that describes the state of the co-domain in which the information is
received. (These two basic information elements correspond with the first and the
eighth basic information element in an information link mapping description as
defined by Definition 9.32.)

In DESIRE, the state of components is described by ground atoms that act as
proposition symbols of a propositional language. According to the definition, an
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information link mapping description for a DESIRE link is a set of tuples of basic
information elements, where each basic information element is a ground atom
together with a truth value. In the DESIRE framework, the user does not have to
directly enumerate such sets of tuples of ground atoms. (Such sets may have a
large number of elements.) Instead, the user may describe the set by giving a
sufficient number of constraints on all possible information link mapping
descriptions. The constraints should specify a unique information link mapping.
For both basic information elements in a DESIRE information link mapping
description, one constraint is always present: for both the domain and co-domain
of the link, a specific signature in the domain interface and co-domain interface,
respectively, is given. (Table 9.1 lists which signatures are given for a specific
reflection type.) Basic information elements in the information link mapping
description are at least constrained to ground atoms of these signatures.

To present the facilities offered by the DESIRE framework for describing
additional constraints, an example of the DESIRE description of a link of type O-A
is given:

sort links

(OA,IA)

rest identity

object links identity

term links identity

atom links

(known(X: OA),assumption(X: IA, pos)): <<false, true>>;

This description is best read from bottom to top. The last line states that all basic
information elements in the description are of the form
�[known(…):0];[assumption(…,pos):1]�. The other lines specify what terms may appear
at the positions indicated by the dots. The second line specifies the constraint that
for terms of the sort OA, corresponding terms of the sort IA have to be found. The
constraints specified are then applied recursively to the structure of terms in the
sorts OA and IA to determine which terms of the sort OA correspond to which terms
of the sort IA. Assume that OA and IA are defined as metaOA(belief_info) and
metaIA(belief_info), respectively. (The signature belief_info is defined in Example 10.5.)

Thus, the term belief(M: MATCH) is a term of both OA and IA. The outermost symbol is
the symbol belief, which is a function symbol. Constraints for function symbols are
listed in the line starting with term links. The expression identity specifies that (only)
lexically equivalent function symbols (i.e., equal strings) in the sorts OA and IA

match. This is the case for the terms belief(M: MATCH) in the sorts OA and IA, as these
terms all start with the same symbol, belief. The process then continues. The
argument of belief is a term of the sort MATCH. According to the expression rest

identity on the third line, all matching sort names except the ones listed on the
second line have to be lexically equivalent. This is the case for the name MATCH,
after which the process continues with the function and object symbols in the sort
MATCH, and so on. The information link mapping description specified by the
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constraints given above is the set
{�[known(belief(match(t,q))):0];[assumption(belief(match(t,q)),pos):1]�|t�OT2 and q�Q}. As

an aside, this description is an example of how a closed world assumption is
represented in DESIRE: if the truth of atoms belief(match(t,q)) is not known at the
domain side of the link, then at the co-domain side it is assumed that such atoms
are positive (pos), i.e., they are true.

The process outlined above only establishes an information link mapping
description for two of the eight basic information elements in an information link
mapping description. A pair of basic information elements �[p:s];[q,s’]� as defined
by a user denotes the following complete information link mapping description:

{��[p:s];[T:1]�;�[link_state(uptodate):1];[T:1];[T:1];[link_state(idle):1]�;�[T:1];[q,s’]��,.
 ��[p:s];[T:1]�;�[link_state(awake):1];[T:1];[T:1];[T:1]�;�[T:1];[q,s’]��}.

Thus, there is no constraint on the second and seventh states and most of the link
states. The constraints on the third state indicate that information is only
transmitted if a link is in state uptodate or awake. After information transmission has
finished, a link that was in state uptodate at the beginning of the transmission
becomes idle. This is not the case for links that are awake.

9.2.3� The Relation between Process Composition and Knowledge Composition

Section 9.2.1 and Section 9.2.2 presented knowledge structures and process
composition, respectively. In the current section, the relations between knowledge
structures and process composition mentioned in Section 9.2.1 and Section 9.2.2 are
summarised.

�� DESIRE knowledge structures are defined almost independently of process
composition. However, some of the standard information types given in
Section 9.2.1.4 represent knowledge of process composition. This is the case
for the standard meta information type target_info and for the task control
information type TCparts.

�� For the individual components that represent processes in a process
composition, knowledge structures are specified for the input, output and
internal state of components. Moreover, for each component a knowledge
base is given that relates the input, output and internal state of a component.
Functions ��in(C,SH), ��int(C,SH), ��out(C,SH), and KB(C,SH), specify which

knowledge structures are used by which components in a structure
hierarchy SH.

9.3� DESIRE dynamics

The goal of this chapter is to describe the dynamics of multi-agent systems
modelled in DESIRE using the semantic structure developed in this thesis. In
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conformance with the basic assumption adapted in this thesis (presented in
Chapter 1), a multi-agent system modelled using DESIRE is represented as a
compositional system. The previous sections showed how the (static)
compositional structure of a DESIRE model of a multi-agent system is represented
using the semantic structure. The three views on the behaviour of a compositional
system defined in Chapter 5 are used to describe the dynamics of such a
compositional system. As explained in Chapter 5, these views are relative to:

�� A composition structure (in the case of the white box view) or a structure
hierarchy (in the case of the black box view or the glass box view). A
structure hierarchy with control (as defined in Definition 9.14) can be used
to describe the dynamics of the corresponding DESIRE model;

�� A family of sets of local component and link traces Behloc(S) for specific

components and links S is the DESIRE model. (As indicated in Chapter 5,
the specific components and links for which sets of local component and
link traces have to be specified, differ for the three views on the behaviour of
a compositional system);

�� A collection of compatibility relations.

Thus, to describe the dynamics of DESIRE models using the three views defined in
Chapter 5, it suffices to define sets of local behaviour and collections of
compatibility relations for these models. Sets of local component and link traces for
DESIRE components are defined in Section 9.3.1. Collections of compatibility
relations for DESIRE are defined in Section 9.3.2.

9.3.1� Local Component and Link Traces

This section uses temporal logic as a means to describe sets of local component and
link traces. In Section 9.3.1.1, a temporal logic is defined for this purpose as an
extension of the (non-temporal) logic language used for the description of
individual component states (Definition 9.17) and for link states (Definition 9.29).
Local component traces of a component C consist of local component states.
Definition 9.25, presented in Section 9.2.2.2, defines signatures that describe the
sets of local components states that constitute local component traces. The
standard information types TCinput and TCoutput (presented in Section 9.2.1.4) are
part of the state of all components in a DESIRE model. Moreover, the state of
control components in a DESIRE structure hierarchy with control is fully described
by these information types. Temporal logic formulae based on these information
types describe behaviour of DESIRE components in terms of the predicates, sorts,
objects and functions defined by TCinput and TCoutput. In Section 9.3.1.2, the
intended use of these information types is described by presenting an informal
description of the dynamics of a DESIRE model. The stage is then set to define
local behaviour of DESIRE components. Section 9.3.1.3 defines, for each component
C in a DESIRE structure hierarchy with control, a set of formulae that specify the
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local behaviour of the component. The set of local component traces Behloc(C) for C

is defined as the set of local component traces that satisfy the set of formulae.
Section 9.3.1.4 defines a set of local link traces for each link in a DESIRE structure
hierarchy with control in a similar way.

9.3.1.1� Specification of Local Component and Link Traces

In this section, the specific temporal language used to describe sets of local
component and link traces is defined. Section 9.2.2.2 presented a (non-temporal)
logic language for the description of individual component states (Definition 9.17)
and for link states (Definition 9.29). The (temporal) language for description of
local component and link traces is defined as an extension of these languages To
describe the semantics of DESIRE, discrete time frames are used. This enables the
use of ‘previous’ and ‘next’ modalities in the temporal language. As described in
Section 9.3.1.3, ‘previous’ and ‘next’ modalities are important in the formal
description on the behaviour of control components. The temporal language is
formally defined as follows:

Definition 9.36. (Local behaviour specification language). Let S be a component or
link and let For(�S) be the set of information state description formulae for S

(Definition 9.17). The set of local behaviour specification formulae Spec(�S) is the

smallest set closed under the following restrictions:

�� If S is a component and ��For(�S) then CS,in�,CS,int�,CS,out��Spec(�S);

�� If S is a link and ��For(�S) then CS��Spec(�S);

�� If �,��Spec(�S) then ��,����Spec(�S);

�� If ��Spec(�S) then P��Spec(�S), X��Spec(�S), and F��Spec(�S).

The intended meaning of the connectives is as follows. A formula CS,in� is true at a

time point t iff the formula � is true at time point t for the input state of component
S, and is to be read as ‘currently �‘. The intended meaning of CS,int�, CS,out� and
CS� is similar. A formula CS� is true at a time point t iff the formula � is true at

time point t for the state of link S. A formula P� is true at a time point t iff the
formula � is true at the previous point in time. A formula X� is true at a time point
t iff the formula � is true at the next time points. A formula F� is true at a time
point t iff a time point t’>t exists such that formula � is true at time point t’. The
connectives �, �, T and � are defined as usual.

Definition 9.37. (Non-temporal subformulae). Let ��Spec(�S) be a local specification

formula. A subformula �’ of � is called non-temporal iff �’ nor the subformulae of �’

contain B or W connectives.

Sets of local component and link traces for DESIRE are described by local behaviour

specifications, which are specific sets of local component specification formulae
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from the set Spec(�S). These sets are defined in Section 9.3.1.3. An example of a

local behaviour specification formula is presented below.

Example 9.38. As an example of such temporal formulae, consider the following
formula, which formalises the requirement given in Chapter 4: once a broker agent
receives a query from a user, information matching the query has to be
communicated to the user at the next moment in time if this information was
already available to the broker, or some time in the future in all other cases. (In this
formula, q�Q, t�T2, u�Users and p�Providers as in Example 5.2):

(communicated_by(q,u) � belief(match(t,q))) �

 ((Pcommunicated_by(t,p) � Xto_be_communicated_to(t,u)) �

 (F(communicated_by(t,p) � Fto_be_communicated_to(t,u)))) �

The local behaviour specification language of a component or link S is interpreted
relative to a local trace LTS of S as follows:

Definition 9.39. (Local satisfaction and local behaviour). Let LTS=��TS;<S�;VS� be a

local component or link trace, let �3
+,�3

-��S�For(�S) be the satisfaction relations for

formulae ��For(�S) defined in Section 9.2.2.2 and let ��Spec(�S) be a local specification

language formula. Then local satisfaction of � by LTS at state �S,t, state at point t�TS,

denoted LTS,�S,t��l�, is defined by induction on the structure of � as follows:

�� LTS,�S,t��lCS,X� � (�S,t),X�3
+� for X�{in,int,out}, if S is a component;

�� LTS,�S,t��lCS� � �S,t�3
+�, if S is a link;

�� LTS,�S,t��l�� � LTS,�S,t��l��

�� LTS,�S,t��l��� � LTS,t�l� and LTS,t�l�.

�� LTS,�S,t��lP� � LTS,prevLTS(�S,t)�l�;

�� LTS,�S,t��lX� � LTS,nextLTS(�S,t)�l�;

�� LTS,�S,t��lF� � there is a t’ with t’>t such that LTS,�S,t’�l�.

A local component trace satisfies a formula �, denoted LTS�l�, if for all t, LTS,�S,t��l�. A

local component trace satisfies a set of formulae Spec if for all ��Spec, LTS�l�.

The notion of satisfaction is used to define sets of local component and link traces
for DESIRE as follows:

Definition 9.40. (DESIRE local behaviour). Let S be a component or link and let

Spec(S) be the local behaviour specification of S, (i.e., the set of local behaviour specification

formulae defined for S in Section 9.3.1.3 below). The set of DESIRE local behaviour traces
is the set Behloc(S)={LT���S|LT�l� for all ��Spec(S)}.
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9.3.1.2� Control Knowledge in DESIRE

Control in DESIRE is centred around the control lexicon consisting of the
information types TCinput and TCoutput presented in Section 9.2.1.4. These
information types are used for both types of components in a DESIRE model. A
knowledge base containing knowledge rules for the information types TCinput and
TCoutput is associated with each composed component. Thus, these knowledge
rules express control knowledge completely in terms of TCinput and TCoutput. A
knowledge base for (only) user-supplied information types is associated with each
primitive component. The information types TCinput and TCoutput are part of the
full signatures �C,out and �C,in (see Definition 9.23) that describe the state of

primitive components and are used to control how the knowledge base rules
associated with a primitive component are used. This section presents an informal
description of the behaviour of DESIRE components and links in terms of the
predicates, sorts, objects and functions defined by TCinput and TCoutput to provide
insight in their intended meaning.

Each component in a DESIRE model represents a process in a multi-agent
system. The activity of such a process results in state changes of the component. As
the state of a DESIRE process is described by a propositional language (explained
in Section 9.2.2.2), the truth values of propositions that describe the state of a
component change as well. Truth values of propositions that describe the state of a
component thus form a means to describe and evaluate the activity of a process in
DESIRE. A description in terms of truth values is generic for DESIRE: each DESIRE
model is committed to the use of propositional logic to describe the state of a
component.

A DESIRE model consists of primitive and composed components. There is one
composed component, the toplevel component, that is not a subcomponent of any
other component. A knowledge base for the information types TCinput and
TCoutput is associated with each composed component. As an example, consider
the following rule that may be specified for the toplevel component:

if start

then next_component_state( user_1, active )

and next_task_control_focus( user_1, default_focus )

and next_extent( user_1, all_p );

The process represented by the toplevel component is the first component that is
active in a DESIRE model. It starts by evaluating its own current state. In this state,
the formula start is true. Therefore, the toplevel component applies the knowledge
rule given above and derives next_component_state(user_1,active),
next_task_control_focus(user_1,default_focus), and next_extent(user_1,all_p) which are atoms of
TCoutput.

The atom next_component_state(user_1,active) states that the next activation type of
component user_1 is active. At each moment in time, a component is either idle, active,
or awake. As indicated by the definitions of TCinput and TCoutput, a fourth
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activation type is distinguished: busy. The activation type busy indicates whether the
component is actually performing anything. If the activation type of a component
is idle, it is not performing anything. To indicate this, in this case, the activation
type busy is not true for the component. Activation type active means that the
component is busy to apply its knowledge base in a way explained below. It will do
so once. Activation type awake means that the component, whether it is currently
busy or not, will become busy whenever its domain substate changes. In this case, it
is guaranteed to apply its knowledge base at least once. By default, all components
and links are idle. The toplevel component automatically becomes active at the first
moment in time. Note that the predicate symbols in the conclusion of the example
control rule begin with next. The component behaviour described by the activation
type is realised at the next moment in time.

A downward control link to component user_1 links the atoms derived by the
toplevel component to atoms own_component_state(active),
own_task_control_focus(default_focus), and own_extent(all_p), which are atoms of TCinput.
(TCinput is part of the full information type �C,in (see Definition 9.23) that describes

the input substate of the primitive component user_1.) As a result, component user_1

becomes active.
Component user_1 is a primitive component and has an associated knowledge

base for user-supplied information types. In the running example, a knowledge
rule for this component is, for example:

if not communicated_by( t, broker )

then to_be_communicated_to( q, broker );

As soon as component user_1 becomes active, it starts to derive conclusions from
information present in its input interface by forward chaining. The chaining
process is controlled by task control foci and extents, which are described using
several predicates defined in TCinput and TCoutput. A task control focus is a set of
pairs consisting of an output atom and a target type. Each task control focus has a
name, for instance, default_focus in the example control rule presented in this section.
A target type is either confirm, reject or determine. The contents of a task control focus
is specified by the standard information type target_info presented in Table 9.1.
Atoms of this information type are transmitted via information links or specified as
initial meta-facts.

For component user_1, the initial meta-fact
target(default_focus,to_be_communicated_to(q,broker), confirm) specifies that the pair
�to_be_communicated_to(q,broker);confirm� is an element of task control focus default_focus.
As a result of information transmission by the downward control link to user_1,
default_focus is the current task control focus of user_1. The chaining process is
executed with the goal to confirm to_be_communicated_to(q,broker), i.e., to derive that
to_be_communicated_to(q,broker) is true. (If the target type of
to_be_communicated_to(q,broker) were reject, the goal would have been to derive that
to_be_communicated_to(q,broker) is false. If the target type of
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to_be_communicated_to(q,broker) were determine, the goal would have been to determine
which of the two truth values for to_be_communicated_to(q,broker).)

As a result of information transmission by the downward control link to user_1,
the current extent of user_1 is all_p. The extent controls the effort spent by the
chaining process to derive truth values for the atoms in the current task control
focus as follows:

�� Extent any: the process stops after a truth value is found for at most one atom
in the current task control focus;

�� Extent any_new: the process stops after a truth value is found for at most one
atom in the current task control focus that has not been derived before;

�� Extent all_p: the process stops after a truth value is found for as many atoms
in the current task control focus as possible;

�� Extent every: the process stops after a truth value is derived that makes it
impossible to find a truth value as specified by the current task control
focus. I.e., if the current task control focus is to confirm truth of an atom a(T),
and for some term t, truth value false is derived for a(t), then the process
stops in the case of extent every.

After the chaining process stops, the result of the process is evaluated. For this
purpose, evaluation criteria are defined. An evaluation criterion is a set of pairs
consisting of an output atom and a target type, similar to a task control focus. Each
evaluation criterion has a name. Suppose that for user_1, an evaluation criterion
default_ec is defined, which contains the pair �to_be_communicated_to(q,broker);confirm�.
The termination type for user_1, which is either succeeded or failed, with respect to
default_ec, is now determined as follows:

�� If the current extent is any, the termination type is succeeded if for at least one
atom in default_ec, truth value true (because the target type is confirm) has been
derived;

�� If the current extent is any_new, the termination type is succeeded if for at least
one atom in default_ec, truth value true (because the target type is confirm) has
been derived, and for this atom, the truth value was not known before the
chaining process started;

�� If the current extent is every, the termination type is succeeded if for all atoms
in default_ec, truth value true (because the target type is confirm) has been
derived;

�� If the current extent is all_p, the termination type is always succeeded: for as
many atoms as possible in default_ec, truth value true (because the target type
is confirm) need to be derived.

�� For each extent, the termination type is failed if the above condition is not
fulfilled, while an exhaustive effort to fulfil the condition has been



9.3: DESIRE dynamics

267

performed. E.g., if the extent is any, and for every atom in the current task
control focus, derivation of the truth value given by the task control focus
did not produce the truth value requested, then the termination type is failed.
As a consequence, in the case of extent type all_p, the termination type
cannot be failed, as it is always the case that as many truth values are derived
‘as possible’.

The control part of the output substate contains the result of the evaluation,
described by, for instance, the atom own_evaluation(default_ec,all_p,succeeded). This
information is transmitted by an upward control link to the task control
knowledge base of the toplevel component (as user_1 is a subcomponent of the
toplevel component). The toplevel component may contain the following example
rule:

if evaluation( user_1,default_ec,all_p,succeeded )

and not previous_evaluation( user_1,default_ec,all_p,succeeded )

then next_component_state( broker, active )

and next_link_state( user_1_to_broker, uptodate );

The conjunctive premise of this rule evaluation(user_1,default_ec,all_p,succeeded) and not

previous_evaluation(user_1,default_ec,all_p,succeeded) is true at the moment at which the
evaluation of user_1 becomes succeeded. Thus, at that moment, the toplevel
component derives next_component_state(broker,active) and next_link_state(user_1_to_broker,

uptodate). These activation types are transmitted to broker and user_1_to_broker,
respectively, by downward control links. The activation type of a link is either idle,
awake, or uptodate. Activation type uptodate means that information transmission as
specified by the information link mapping description has been carried out (once).
Activation type awake means that the link is continuously able to carry out
information transmission as specified by the information link mapping description,
as soon as the state of the domain component changes.

In this scenario, link user_1_to_broker links the newly derived atom
to_be_communicated_to(q,broker) to input atom communicated_by(q,user_1) of component
broker. This component broker is in state active, which means that it will become busy

(once) as soon as the truth value of input atoms change (reflecting a new input
substate). As link user_1_to_broker is in state uptodate, it updates the input substate of
its co-domain (component broker) according to its information link description,
possibly resulting in a state change of the input substate of broker. Thus, broker

becomes busy. However, as broker is a composed component (as opposed to user_1),
there is no knowledge base for which a chaining process has to be executed.
Instead, the task control knowledge base associated with broker is applied in the
same way as the task control knowledge base of the toplevel component. In other
words, the general DESIRE dynamics described informally in this section is
recursively applicable.
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9.3.1.3� Local Behaviour

As stated at the beginning of Section 9.3.1, sets of local component and link traces
have to be defined to describe the dynamics of DESIRE models. Such sets are
defined as those sets of local component or link traces that satisfy a local behaviour
specification (Definition 9.40). Consequently, to describe the dynamics of DESIRE
models, local behaviour specifications have to be defined for all components. This
is the topic of this section.

In the specification of the behaviour of a DESIRE model, three different kinds of
components have to be considered, for the following reason. As stated before, a
DESIRE model contains two kinds of components: primitive and composed. A
DESIRE model is described by a DESIRE structure hierarchy SH. A knowledge
base for (��in(C,SH))^, (��int(C,SH))^ and (��out(C,SH))^, where � is the bottom

element of the set LEV(C,SH) of level identifiers, is associated with each primitive
component C. (However, a primitive component in DESIRE may be described in
some other way, e.g. in a specification language such as Z or in a programming
language. In such cases, there is no knowledge base associated with the primitive
component.) A knowledge base for TCinput, ���;��;�;�;��, and TCoutput is
associated with each composed component C. A DESIRE model is represented in
the semantic structure by a DESIRE structure hierarchy with control SH’, which
introduces a third kind of component: control components. In a structure hierarchy
with control, there is a control component Cctr for each composed component C. In

a structure hierarchy with control that represents a DESIRE model, no knowledge
base is associated with composed components: control knowledge bases associated
with composed components in a DESIRE model are moved to the corresponding
control component in a structure hierarchy with control, i.e. KB(Cctr,SH’)=KB(C,SH)

for C a composed component.
Primitive and control components share some common characteristics: neither

can have subcomponents, and knowledge bases may be associated with both.
(Moreover, primitive and control components are the only kinds of components in
a DESIRE structure hierarchy with control with which knowledge bases can be
associated.) Some differences can also be distinguished. For primitive components,
initial meta-facts, task control foci, extents, and kernel input and output
information types are defined by the user and are therefore in general not the same
for all models. For control components, initial meta-facts, task control foci, extents,
as well as the kernel input and output information types are pre-defined and the
same for all DESIRE models. These pre-defined initial meta-facts, task control foci,
and extents are defined as follows:

�� Each control component has one task control focus, called default_focus. This
task control focus is always the current task control focus. It contains all
possible output atoms of the control component, i.e.,
target(default_focus,Ai,determine) is always true for each output atom Ai;



9.3: DESIRE dynamics

269

�� The extent of a control component is always all_p. Therefore, the evaluation
is always succeeded for any possible evaluation criterion.

�� The kernel part of the input and output substate of a control component
consists of gratoms(TCinput) and gratoms(TCoutput), respectively.

Notwithstanding the differences between composed on the one hand, and
primitive and control components on the other hand, important similarities can
also be observed. These similarities consist of the use of delegation to perform
tasks and the use of control signatures:

�� A composed component delegates the determination of truth values for its
kernel output atoms to its subcomponents;

�� A primitive component or control component delegates the determination of
truth values for its kernel output atoms to a reasoning engine, the behaviour
of which is specified either by a knowledge base or by some alternative
means;

�� All three kinds of components use the same input and output control
signatures, which influence the delegation of functions to subcomponents or
a reasoning engine and describe the result of the delegation.

These similarities are employed to specify the behaviour of DESIRE components as
follows:

�� As stated in Section 9.2.2.2, the input and output substates of a DESIRE
component (either primitive or composed) consists of two parts: a kernel
part and a control part. The kernel part itself consists of levels, and each
level consists of a user-defined part and a part described by the standard
meta-signatures. (See Figure 9.6). The user-defined parts of the output
substates in a local component trace for a composed component are
unconstrained from a local point of view. In other words, all possible
sequences of user-defined output substates may occur in Behloc(C).

Consequently, no specification for this part is given. However, from a more
global point of view, the kernel part of output substates is determined by the
subcomponents via export mediating links. Thus, determination of this part
is delegated to the subcomponents;

�� The part described by the standard meta-signatures of the output substate is
completely determined locally, as it contains information lifted from user-
defined parts. The relation between the user-defined parts and the lifted
standard information is static: it can be fully defined per state. It is not
necessary to consider states in the context of traces in which they occur. The
relation between user-defined parts and the lifted standard information is
described in (Brazier, Treur, Wijngaards & Willems, 1999). As an aside,
please take note that on the input side, the state of the user-defined part is
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partly determined by the truth values of assumption(A,S) atoms (where A is an
atom used to describe a user-defined part, and S is either pos or neg).
However, these truth values are themselves unconstrained from a local
point of view, similar to the user-defined parts.

�� The kernel part of the output substates in a local component trace for a
primitive component or control component is determined by a reasoning
engine. As many reasoning engines are conceivable, no specification of this
part is given. (For primitive components and control components with
which a knowledge base is associated, a specification is sketched in
Section 9.3.5.) Thus, determination of this part is delegated to a reasoning
engine that is assumed to be available. In other words, a primitive
component or control component is viewed as if it were a composed
component with one subcomponent that contains the reasoning engine;

�� A general specification (set of formulae) is developed to describe the control
output part of local component traces for all three kinds of components. This
specification describes how the control part of the output substates makes
information on the results of the delegation available to other components in
a standard way;

�� The input substates in local component traces (both the control part and the
kernel part) are unconstrained from a local point of view for all three kinds
of components. (The input substates are determined by information
transmission.) Therefore, no specification is needed for the input substates.

To summarise, the specification of the standard behaviour of DESIRE components
only needs to describe the control part of the output substate of a component. The
specification describes the result of the delegation to either subcomponents or a
reasoning engine in relation to control information received as input. This control
information is represented by the signature �C,in

tc defined in Section 9.2.2.2

(Definition 9.21), which is repeated here for ease of reference:

Definition 9.21. (Standard task control input signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy and let C�Comp be a

component. The standard task control input signature for C is the signature

�C,in
tc=TCpredefinedSorts
TCparts
��S;��;Obj;�;Pred�, where TCpredefinedSorts and

TCparts are the standard signatures presented in Section 9.2.1.4 and:

�� S={Link,Component,ExtentType,ActivationType,OwnTaskControlFocus};

�� Obj an S-indexed family of sets with the following members:

�� ObjÆLinkÖ = {L�Lnk|L�C};

�� ObjÆComponentÖ = {C’�Comp|C’�C};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆÖ = {start};
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�� PredÆActivationTypeÖ = {own_component_state,};

�� PredÆOwnTaskControlFocusÖ = {own_task_control_focus};

�� PredÆExtentTypeÖ = {own_extent};

The control part of the output substate is described by the signature �C,out
tc defined

in Section 9.2.2.2 (Definition 9.22), which is also repeated here for ease of reference:

Definition 9.22. (Standard task control output signature). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy and let C be a component.

The standard task control output signature for C is the signature �C,out
tc=

TCpredefinedSorts
 TCparts
��S;��;Obj;�;Pred�, where TCpredefinedSorts and TCparts

are the standard signature presented in Section 9.2.1.4 and:

�� S={Link,Component,OwnEvaluationCriterium,ExtentType,TermType,ActivationType,

      OwnTaskControlFocus};

�� Obj an S-indexed family of sets with the following members:

�� ObjÆLinkÖ = {L�Lnk|L�C};

�� ObjÆComponentÖ = {C’�Comp|C’�C};

�� Pred an S*-indexed family of sets with the following members:

�� PredÆOwnEvaluationCriterium;ExtentType;TermTypeÖ = {own_evaluation};

�� PredÆActivationTypeÖ = {own_component_state,};

�� PredÆOwnTaskControlFocusÖ = {own_task_control_focus};

�� PredÆExtentTypeÖ = {own_extent};

�� PredÆÖ = {stop}.

The stage is now almost set to present the specification of the standard behaviour
of DESIRE components. However, first the temporal language presented in
Section 9.3.1.1 that will be used to specify the behaviour of a composed component
has to be precisely specified itself. This language is defined as an extension of the
(non-temporal) propositional languages defined in Definition 9.17 and
Definition 9.29. Consequently, sets of proposition symbols are needed for such
specifications. The standard task control input and outpus signatures are likely
candidates, as they consist of terms suited for the description of behaviour. (They
constitute a control lexicon in the terms of Chapter 8.) However, �C,out

tc and �C,in
tc

are first-order signatures, as opposed to sets of proposition symbols. Thus, they
cannot be used directly. Definition 9.17 and Definition 9.29 do not require the use
of specific sets of propositional symbols for the atomic formulae. Thus, to describe
the behaviour of DESIRE components, any set of propositional symbols can be
used. Therefore, sets of ground atoms determined by �C,out

tc and �C,in
tc can be

used. In this way, the relatively complex formulae are more readable for the
human reader, while use of first-order temporal logic is avoided. In other words,
the order-sorted first-order signatures used to describe the state of DESIRE
components are also used to provide structure for formulae that describe the
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behaviour of DESIRE. (Formulae that describe the behaviour of DESIRE can be
considered to be meta-level formulae with respect to DESIRE itself.)

According to Definition 9.40, the set Behloc(C) for a component C is defined as

the set of local component traces that satisfy the set of formulae defined as follows:

Definition 9.41. (DESIRE local behaviour specification). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy with control and let

C�Comp be a component. Let:

�� E range over the set EC(C,SH) of evaluation criteria of C;

�� Ai range over the set of terms generated by the signature l³LEV(C,SH)



(metaÆOA,l’Ö(�C,out,l
ker)), where l’ is the successor of l;

The DESIRE local behaviour specification for components is a specification Spec(C)

with the following formulae:

�� If C is a composed component: finished�
n
�
i=1

stopped(Ci) for Ci�Subc(C);

�� For each evaluation criterion E in EC(C,SH), the specification of C contains the

following formulae:

�� (PC(own_extent(any) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm) �

           true(Ai))))

   � C( own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed));

�� (PC(own_extent(any) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject) �

           false(Ai))))

   � C( own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed));

�� (PC(own_extent(any) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           known(Ai))))

   � C( own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed));

�� (PC(own_extent(any) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm) �

           �true(Ai))))

   � C( own_evaluation(E,any,failed) �

 �own_evaluation(E,any,succeeded));
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�� (PC(own_extent(any) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject) �

           �false(Ai))))

   � C( own_evaluation(E,any,failed) �

 �own_evaluation(E,any,succeeded));

�� (PC(own_extent(any) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           �true(Ai) � �false(Ai))))

   � C( own_evaluation(E,any,failed) �

 �own_evaluation(E,any,succeeded));

�� (PC(own_extent(any_new) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm) �

           true(Ai)) � �PC(true(Ai)))

   � C( own_evaluation(E,any_new,succeeded) �

 �own_evaluation(E,any_new,failed));

�� (PC(own_extent(any_new) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject) �

           false(Ai)) � �PC(false(Ai)))

   � C( own_evaluation(E,any_new,succeeded) �

 �own_evaluation(E,any_new,failed));

�� (PC(own_extent(any_new) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           known(Ai)) � �PC(known(Ai)))

   � C( own_evaluation(E,any_new,succeeded) �

 �own_evaluation(E,any_new,failed));

�� (PC(own_extent(any_new) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm)) �

           (�Ctrue(Ai) � (Ctrue(Ai) � PCtrue(Ai)))))

   � C( own_evaluation(E,any_new,failed) �

 �own_evaluation(E,any_new,succeeded));

�� (PC(own_extent(any_new) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject)) �

           (�Cfalse(Ai) � (false(Ai) � PCfalse(Ai)))))

   � C( own_evaluation(E,any_new,failed) �

 �own_evaluation(E,any_new,succeeded));
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�� (PC(own_extent(any_new) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           (�Cknown(Ai) � (known(Ai) � PCknown(Ai)))))

   � C( own_evaluation(E,any_new,failed) �

 �own_evaluation(E,any_new,succeeded));

�� (PC(own_extent(every) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm) �

           true(Ai))))

   � C( own_evaluation(E,every,succeeded) �

 �own_evaluation(E,every,failed));

�� (PC(own_extent(every) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject) �

           false(Ai))))

   � C( own_evaluation(E,every,succeeded) �

 �own_evaluation(E,every,failed));

�� (PC(own_extent(every) � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           known(Ai))))

   � C( own_evaluation(E,every,succeeded) �

 �own_evaluation(E,every,failed));

�� (PC(own_extent(every) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,confirm) �

           �true(Ai))))

   � C( own_evaluation(E,every,failed) �

 �own_evaluation(E,every,succeeded));

�� (PC(own_extent(every) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,reject) �

           �false(Ai))))

   � C( own_evaluation(E,every,failed) �

 �own_evaluation(E,every,succeeded));

�� (PC(own_extent(every) � finished � own_task_control_focus(E)) �

 
n
�
i=1

(C(target(E,Ai,determine) �

           �known(Ai))))

   � C( own_evaluation(E,every,failed) �

 �own_evaluation(E,every,succeeded));
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�� (PC(own_extent(all_p) � own_task_control_focus(E))

   � C( own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed));

The first formula in Definition 9.41 defines, for the case that C is a composed

component, finished as the expression 
n
�
i=1

stopped(Ci), for Ci�Subc(C). Truth values for

stopped(Ci) are transmitted from the subcomponents to C by upward control links.

For primitive components and control components, finished is not defined in terms
of another proposition symbol. Instead, the reasoning engines associated with
these components are expected to set truth values for finished directly. (In other
words, truth values for finished are transmitted via implicit upward control links.)

Except for the first formula, all formulae given in Definition 9.41 are
implications with a condition consisting of subformulae PC� or C� (for � a non-
temporal formula) and a conclusion of the form C� (for � a non-temporal formula).
By Definition 9.40, all local component traces for a component C that satisfy the
formulae presented in Definition 9.41 are elements of Behloc(C). Many local

component traces satisfy the formulae presented in Definition 9.41: because of the
form of these formulae, the only requirement for local component traces in
Behloc(C) is that if two consecutive states satisfy the condition, than the latest of

these states must satisfy the conclusion. However, in a set of compatible
multitraces that describe the behaviour of a compositional system, the set of local
component traces for C that actually occur in these multitraces is, in general, a true
subset of Behloc(C): in compatible multitraces, the set of all local component traces

that occur is constrained by information transmission. In other words, the
formulae that constitute the DESIRE local behaviour specification for components
as defined in Definition 9.41 only partially describe the behaviour of a component.

In Figure 9.8, the behaviour of a composed component C in relation with other
components is illustrated. Figure 9.8 depicts a local component trace for a
composed component C, its control component Cctr, a subcomponent A, the
reasoning engine REctr associated with Cctr, and an export mediating link EL from

A to C. (As this link plays only a small role in the figure, most of it is depicted in
light gray to avoid unnecessary cluttering of the figure.) Assume that the
knowledge base associated with Cctr contains the following rules:

if start

then next_component_state( A, active );

if evaluation( A, tcf_2, any, succeeded )

and not previous_evaluation( A, tcf_2, any, succeeded )

then next_link_state( EL, uptodate );

Furthermore, assume that the default extent of A is any and that for C, a task
control focus named tcf_1 is defined which contains an atom a.
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Figure 9.8: Example of component behaviour.

Figure 9.8 follows a number of conventions to illustrate the behaviour of a
component. Local component states are depicted as rectangles, while transitions
between states are depicted as solid, horizontal arrows. The rectangles, together
with the solid, horizontal arrows that connect them, depict local component or link
traces. The valuation of each state is indicated by listing the propositional symbols
that are true. The names of some proposition symbols are abbreviated as follows:
own_cs(act) for own_component_state(active), own_e for own_extent, and similarly for some
other symbols. Furthermore, some arguments are omitted. Groups of proposition
symbols that together determine the valuation of a specific state are indicated by a
thick horizontal bar connected to that state by a dashed line. A short, thick vertical
bar connected to the horizontal bar indicates which symbols describe the control
part (left hand side of the vertical bar) and which symbols describe the kernel part
(right hand side of the vertical bar). If no vertical bar is present, all symbols are
used for the control part. To avoid cluttering the figure too much, input and output
substates are not indicated. A broken arrow in Figure 9.8 depict a transmission
octet consisting of the two states at the beginning and end of the horizontal arrow
from which the broken arrow departs to the two states at the beginning and end of
the horizontal arrow to which the broken arrow points. (The four link states that
are also present in a transmission octet are not depicted in Figure 9.8.) The
numbers in Figure 9.8 depict the following events:

�� 1: Control information arrives via a downward control link from the parent
of C to C. The arrival of this information triggers an import control link from
C to its control component Cctr, because the combination of the state

immediately before and after the transmission labelled ‘1’ form the first two
states of a transmission octet for the import control link;
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�� 2: The control component receives control information. The arrival of this
information triggers a downward control link from Cctr to its reasoning

engine;

�� 3: Control information is transmitted to the reasoning engine of Cctr. As a

result, in the input information state of the reasoning engine, start gets truth
value 1.

�� 4: Based on the control knowledge rules associated with Cctr, the reasoning

engine derives new information (next_component_state(A,active)), which may
take more than one step (depending on how the behaviour of the reasoning
engine is modelled). Therefore, the arrow labelled ‘4’ is dashed;

�� 5: New information derived by the reasoning engine is transmitted to Cctr.
The arrival of this information triggers a downward control link from Cctr to

the controlled subcomponent A;

�� 6: The newly derived control information (arrow labelled ‘5’) is forwarded to
subcomponent A;

�� 7: Subcomponent A performs its tasks. As A can itself be either a composed
component or a primitive component, no details on the internal behaviour
of subcomponent A are depicted in Figure 9.8. Similar to component C itself,
A completes its work in two steps (this is elaborated below). Note that in the
state at the end of the transitions that constitute step ‘7’,
own_evaluation(tcf_2,any,succeeded) (abbreviated as own_eval(s)) is true, as
specified in Definition 9.41;

�� 8: The evaluation information on A’s work is transmitted to Cctr via an

upward control link;

�� 9: The arrival of information on the evaluation of A triggers the transmission
of this new information to the reasoning engine of Cctr;

�� a: New information (next_link_state(EL,uptodate)) derived by the reasoning
engine of Cctr arrives in Cctr;

�� b: Link EL receives control information stating that it should transmit
information from its domain (component A) to its co-domain (the output
interface of C);

�� c: The curved, solid arrow labelled ‘c’ does not depict a transmission octet.
Instead, it indicates how the actual transmission of information by link EL

results in a new state of C. In this state, the (linked) kernel output atom a

becomes true. By one of the formulae of Definition 9.41, also
own_evaluation(tcf_1,any,succeeded) (abbreviated as own_eval(s)) becomes true.
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Figure 9.8 shows two key characteristics of the application of the semantic
structure to DESIRE. First, the local component traces for C and its subcomponent
A are similar: both consist of four states, and the transitions between these states
are caused by similar events: the arrival and sending of control information and
delegation to a reasoning engine or subcomponents. Such similarity is needed to
support compositionality: as in each level of the subcomponent hierarchy,
behaviour is modelled in the same way, it is possible to embed components in
other components while retaining their behaviour. Second, Figure 9.8 shows that if
a composed component has been made active, the evaluation of the component is
available at the next moment, regardless of the number of subcomponents that
have to be activated. This characteristic is a consequence of the fact that in the
semantic structure, for each component, a set of local component traces is
distinguished. The notion of next state in the local component traces of a
component is independent of the notion of next state of any other component,
including subcomponents. In other words, if global time were available, it is
possible to observe that the clocks implied by the notion of next state for each
component tick at different rates, and that in general, the clocks of subcomponents
tick faster than the clock of their parent component. An advantage of this
characteristic is that it is possible to define a relatively simple specification of the
local behaviour of a composed component, which is not cluttered by timing
considerations of subcomponents. (If such considerations were to be taken into
account in a local trace, than it is in general no longer possible to state that an
evaluation is available at the next moment. In this case, it is difficult to specify the
correct moment in time at which evaluations are available.)

Figure 9.8 illustrates how the presence of a rule if start then next_component_state( A,

active ) via control links actually results in subcomponent A becoming active. An
interesting question is: how does the intuitive reading of if start then

next_component_state( A, active ) (which is a knowledge base rule) as a the temporal
formula start�Xcomponent_state(A,active) relate to the multitrace depicted in Figure
9.8? In general, the intuitive reading of knowledge rules for control components as
temporal formulae calls for a global language that has not been defined in this
thesis. For example, consider the rule if start then next_component_state( A, active ) and

next_component_state( B, active ). The temporal reading corresponds to the formula
start�Xcomponent_state(A,active)�Xcomponent_state(B,active), which refers to two
components, A and B. Although it is possible that this formula is a local formula
(i.e., by choosing the right sets of proposition symbols, this formula conforms to
the language defined in Definition 9.36), the formula is not interesting if it is
interpreted with respect to a local component trace, as the intuitive reading calls
for a global interpretation.

However, it is possible to support the temporal reading of control knowledge
rules using the notion of common global states presented in Chapter 8. As stated in
Chapter 8, common global states are linearly ordered. This enables the
interpretation of the language defined in Definition 9.36 with respect to the subset
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of all global states for a structure hierarchy that are common global states. (A
number of details have to be solved, such as which proposition symbols are
interpreted in case the local languages are not disjoint.) With such an
interpretation, it is possible to evaluate whether the formula
start�Xcomponent_state(A,active) is true for the multitrace depicted in Figure 9.8 (the
multitrace that, as explained above, corresponds to the control knowledge rule if

start then next_component_state( A, active )).
In Figure 9.9, four possible common global states for the combination of the

local traces of Cctr, EL and A are indicated, �1 to �4. The order of these states is as
follows: �1 is the earliest common global state, followed by �2, followed by �3 and
finally �4. As indicated by the valuations depicted in Figure 9.9, �1 satisfies start,
while �2 satisfies component_state(A,active). Therefore, �1 and �2 together satisfy the
formula start�Xcomponent_state(A,active), interpreted at state �1. Likewise, as �2 does
not satisfy evaluation(A,tcf_2,any,succeeded) while �3 does and �4 satisfies
link_state(EL,uptodate), at state �3 the formula (�PCevaluation(A,tcf_2,any,succeeded) �

Cevaluation(A,tcf_2,any,succeeded))�Xlink_state(EL,uptodate). This shows that the
multitrace depicted in Figure 9.8 and Figure 9.9 satisfy the intuitive temporal
reading of the control knowledge rules associated with Cctr.

Figure 9.9: Common global states.

The questions is whether the common global states depicted in Figure 9.9 are
indeed common global states, and whether there are no other common global
states in between the common global states depicted in Figure 9.9. As explained in
Chapter 8, a global state � is a common global state if for each disjoint pair �S1,S2�
of components, where S1,S2�{Cctr,EL,A}, prevm(S1)(�(S1))�sdnextm(S2)(�(S2)). To

ensure that the global states depicted in Figure 9.9 are common global states, and
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that they are the only common global states, the implementation of DESIRE has to
be carefully constructed in such a way that no unnecessary dependencies are
introduced.

To conclude, the concepts developed in this thesis, particularly in Chapter 8, in
principle enable the formal definition of a global interpretation of formulae such as
start�Xcomponent_state(A,active). However, additional constraints on the
implementation of DESIRE have to be imposed solely for this purpose that may
restrict the efficiency of the implementation.

9.3.1.4� Local Link Traces

The three views on the behaviour of a composed component defined in Chapter 5
are defined relative to sets of local link traces Behloc(I) for (a subset of) the links in a

structure hierarchy. In this section, such sets are defined for links in DESIRE.
The elements of Behloc(I) for a link I are local link traces, which consist of local

link states. Local link states are defined in Section 9.2.2.3 as valuations for the
DESIRE link state description signature (Definition 9.28). In other words, the state
of a link in DESIRE is described by a local language defined over this signature.

With the temporal language defined in Section 9.3.1.1, a specification for the
behaviour of links in DESIRE can be developed. Such a specification consists of
temporal formulae that describe the behaviour of a link in terms of the DESIRE
link state description signature. In DESIRE, from a local perspective, the behaviour
of a link that is not a control link is almost not constrained. The only constraint is
that a link cannot be idle and awake at the same time. So, for each link I in a DESIRE
structure hierarchy with control that is not a control link,
Behloc(I)={lt���I|lt���link_state(idle)��link_state(awake))}. Note that link_state(uptodate)

can be true at any time. The state of a control link is always awake, i.e., for a control
link I, Behloc(I)={lt���I|lt��link_state(awake)}.

From a more global perspective, the behaviour of links that are not control links
is constrained by downward control links. The downward control links fully
determine the state of links that are not control links. The three views on the
behaviour of a composed component defined in Chapter 5 consist of compatible
multitraces. Compatibility ensures that only local link traces that take information
transmitted to them into account (in this case: information on their own state) are
part of the overall behaviour of a composed component.

9.3.2� Compatibility Relations for DESIRE

As stated at the beginning of Section 9.3, each of the three views on the behaviour
of a compositional system is relative to (i) a composition structure or a structure
hierarcy, (ii) a family of sets of local component and link traces, and (iii) a
collection of compatibility relations. Composition structures and structure
hierarchies for DESIRE are defined in Section 9.2.2.1. Families of sets of local
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component traces are defined in the previous section. In this section, collections of
compatibility relations for DESIRE are presented.

As stated in Chapter 5 and Chapter 6, a compatibility relation for a link I is a
ternary relation on the set of local component traces of the domain of I, the set of
local link traces of I, and the set of local component traces of the co-domain of I.
Chapter 6 defined properties of compatibility relations such as the lossless
transmission property and the order-preserving transmission property. In DESIRE,
information transmission is lossless and order-preserving, but not logically
instantaneous. In (Brazier, Eck & Treur, 1996), an early inventory of possible
choices with respect to properties of information transmission for DESIRE is
reported. This inventory is summarised at the end of this chapter.

In Chapter 6, properties of compatibility relations are defined in terms of
compatible state octets. Compatible state octets are defined in terms of information
link mappings. To define compatibility relations for DESIRE, first information link
mappings for control links are defined. In Section 9.2.2.3, information link
mapping descriptions are defined as a means to specify information link
mappings. The definition of compatibility relations for DESIRE therefore starts
with the definition of information link mapping descriptions for DESIRE.

Information link mapping descriptions are octets of basic information elements.
However, to describe information link mappings for control links in DESIRE, only
the first and eighth basic information element are relevant, for the following
reasons. First, In DESIRE, control links are always ready to transmit information.
To describe the behaviour of multi-agent systems specified using DESIRE, it is not
necessary to pay attention to the state of the control links themselves.
Consequently, the third, fourth, fifth and sixth basic element, which are used to
describe conditions on the state of the link itself, are not relevant. (The state of
control links may be important to describe a specific implementation of DESIRE.)
Second, components that transmit control information (the domain components of
control links) do not evaluate the result of such information transmission.
Therefore, the result of information transmission for the domain (e.g., whether
control information has been succesfully sent) is not taken into account.
Consequently, the second basic information element, which is used to describe
results of information transmission at the domain of the link, is not relevant. Third,
components that receive control information are always enabled for receipt of such
control information. The seventh basic information element in an information link
mapping description, which is used to specify enabling conditions, is therefore not
relevant.

As only the first and eighth state of information link mappings are of
importance, DESIRE control information link mapping descriptions are binary
relations, defined as follows:

Definition 9.42. (DESIRE control information link mapping descriptions). Let

SH=�Comp	Ctr;Lnk	UCLnk	DCLnk	ECLnk	ICLnk;�;dom;cdom� be a DESIRE

structure hierarchy with control, with Ctr a set of control components, UCLnk a set of
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upward control links, DCLnk a set of downward control links, ECLnk a set of export

control links and ICLnk a set of import control links. Let C�Comp be a component with
control component Cctr. Let TCF(S,SH) be the set of task control foci for S and let

EC(S,SH) be the set of evaluation criteria for S (for S�Comp).

�� Let UTCL�UCLnk be an upward control link from a component or link S to Cctr.

The DESIRE upward control information link mapping description UTCL is

defined as follows:

�� If S is a component, then:

UTCL= {�[own_evaluation(ec,et,tt):s];[evaluation(S,ec,et,tt):s]�|

   ec�EC(S,SH),et�{any,any_new,all_p,every},tt�{succeeded,failed},

   s�{0,1,u}} 	
{�[own_component_state(at):s];[component_state(S,at):s]�|

   at�{idle,active,awake},s�{0,1,u}} 	
{�[own_task_control_focus(tcf):s];[task_control_focus(S,tcf):s]�|

   tcf�TCF(S,SH),s�{0,1,u}} 	
{�[own_extent(et):s];[extent(S,et):s]�|

   et�{any,any_new,all_p,every},s�{0,1,u}}
�� If S is a link, then UTCL=� (currently, DESIRE does not use link monitoring

links.)

�� Let DTCL�DCLnk be a downward control link from Cctr to a component or link S.

The DESIRE downward control information link mapping description DTCL

is defined as follows:

�� DTCL= {�[next_component_state(S,at):s];[own_component_state(at):s]�|

   at�{idle,active,awake},s�{0,1,u}} 	
{�[next_task_control_focus(S,tcf):s];[own_task_control_focus(tcf):s]�|

   tcf�TCF(S,SH),s�{0,1,u}} 	
{�[next_extent(S,et):s];[own_extent(et):s]�|

   et�{any,any_new,all_p,every},s�{0,1,u}}
�� If S is a link, then:

DTCL= {�[next_link_state(S,at):s];[link_state(at):s]�|

   at�{idle,up_to_date,awake},s�{0,1,u}} 	
{�[next_link_sequence_state([…,S,…],at):s];[link_state(at):s]�|

   at�{idle,uptodate,awake},s�{0,1,u}}

�� Let ITCL�ICLnk be an import control link from C to Cctr. The DESIRE import
control information link mapping description ITCL is defined as follows:

�� ITCL = {�[start:s];[start:s]�|s�{0,1,u}} 	

{�[own_component_state(at):s];[own_component_state(at):s]�|

   at�{idle,active,awake},s�{0,1,u}} 	
{�[own_task_control_focus(tcf):s];[own_task_control_focus(tcf):s]�|

   tcf�TCF(C,SH),s�{0,1,u}} 	
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{�[own_extent(et):s];[own_extent(et):s]�|

   et�{any,any_new,all_p,every},s�{0,1,u}}

�� Let ETCL�ECLnk be an export control link from Cctr to C. The DESIRE export
control information link mapping description ETCL is defined as follows:

�� ETCL = {�[stop:s];[stop:s]�|s�{0,1,u}} 	

{�[own_evaluation(ec,et,tt):s];[own_evaluation(ec,et,tt):s]�|

   ec�EC(C,SH),et�{any,any_new,all_p,every},tt�{succeeded,failed},

   s�{0,1,u}} 	
{�[own_component_state(at):s];[own_component_state(at):s]�|

   at�{idle,active,awake},s�{0,1,u}} 	
{�[own_task_control_focus(tcf):s];[own_task_control_focus(tcf):s]�|

   tcf�TCF(C),s�{0,1,u}} 	
{�[own_extent(et):s];[own_extent(et):s]�|

   et�{any,any_new,all_p,every},s�{0,1,u}}.

Compatibility relations for DESIRE can now be defined in terms of DESIRE control
information link mapping descriptions. To simplify the definition of compatibility
relations for DESIRE, the function  (introduced in Section 9.2.2.1) that associates
user-defined information link mapping descriptions with a DESIRE structure
hierarchy (without control) is extended to DESIRE structure hierarchies with
control. Given a DESIRE structure hierarchy with control
SH’=�Comp;Lnk	CLnk;�;dom;cdom� generated from a DESIRE structure hierarchy
SH, (I,SH’)=(I,SH) for I in Lnk and (I,SH’) is as defined in the previous
definition for I in CLnk.

For a DESIRE structure hierarchy with control
SH’=�Comp;Lnk	CLnk;�;dom;cdom�, all information link mapping descriptions
denoted by (I,SH’) are sets of pairs of basic information elements. However, in
the general semantic structure, information link mapping descriptions consist of
octets of eight basic information elements. For links I�Lnk, the extension to octets
of eight states is presented at the end of Section 9.2.2.3. For I�CLnk, a pair of basic
information elements �[p:s];[q,s’]� as defined above for control links in DESIRE
denotes the following complete information link mapping description:

{��[p:s];[T:1]�;�[link_state(awake):1];[T:1];[T:1];[T:1]�;�[T:1];[q,s’]��}.

Compatibility relations for DESIRE are defined as follows, where (similar to
Chapter 6) a state VC(i) in a local trace is abbreviated to �C,i:

Definition 9.43. (DESIRE compatibility relations collection). Let

SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy with control. The DESIRE
compatibility relations collection is the smallest collection �=(�I)I³Lnk of compatibility

relations such that for each �I=�LTdom(I);LTI;LTcdom(I)� with LTdom(I)=��Tdom(I);<dom(I)�;

Vdom(I)�, LTI=��TI;<I�;VI�, and LTcdom(I)=��Tcdom(I);<cdom(I)�;Vcdom(I)�:
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�� For all i�Tdom(I): ���dom(I),i;�dom(I),j�;��I,i”;�I,j”;�I,k;�I,l�;��cdom(I),i’;�cdom(I),j’���Lnk

(I,SH), for some j�Tdom(I), i”,j”,k,l�TI, i’,j’�Tcdom(I) with �dom(I),j=nextLTI

(�dom(I),i), �cdom(I),j’=nextLTI(�cdom(I),i’) and i”<Ij”<Ik<Il;

�� For all j’�Tcdom(I): ���dom(I),i;�dom(I),j�;��I,i”;�I,j”;�I,k;�I,l�;��cdom(I),i’;�cdom(I),j’���Lnk

(I,SH), for some j�Tdom(I), i”,j”,k,l�TI, i’,j’�Tcdom(I) with �dom(I),j=nextLTI

(�dom(I),i), �cdom(I),j’=nextLTI(�cdom(I),i’) and i”<Ij”<Ik<Il;

�� For all i,m�Tdom(I): if

���dom(I),i;�dom(I),j�;��I,i”;�I,j”;�I,k;�I,l�;��cdom(I),i’;�cdom(I),j’���Lnk (I,SH)

and ���dom(I),m;�dom(I),n�;��I,m”;�I,n”;�I,o;�I,p�;��cdom(I),m’;�cdom(I),n’���Lnk (I,SH)

then j’<cdom(I)m’.

The first and second clause of this definition state that for a triple of traces
�LTdom(I);LTI;LTcdom(I)� in a DESIRE compatibility relation, each state in LTdom(I) and
LTcdom(I), respectively, must be part of a compatible state octet that satisfies

(I,SH), the information link mapping description of I. In other words, according
to the definition of satisfaction of information link mapping descriptions given in
Section 9.2.2.3, the first clause states that for any state in LTdom(I), one of the

following conditions hold:

�� According to the information link mapping of I, the state is not involved in
information transmission via link I, or

�� The state is involved in information transmission via link I, and in the trace
related by compatibility for the co-domain of I, a pair of states occurs in
which the information is received.

The second clause states that for any state in LTcdom(I), one of the following

conditions hold:

�� According to the information link mapping of I, the state is not involved in
information transmission via link I, or

�� The state is involved in information transmission via link I, and in the trace
related by compatibility for the domain of I, a pair of states occurs in which
the information is sent.

The third clause of the definition is exactly the order-preserving transmission
property defined in Chapter 6.

9.3.3� Sequential link activations

In DESIRE, groups of link activations can be performed in a user-specified order,
which is called sequential link activation. In task control rules, sequential link
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activation is specified using the predicate next_link_sequence_state(LinkList,

ActivationType), as in the following example rule:

if evaluation(OPC,default_targets,any,succeeded)

and not previous_evaluation(OPC,default_targets,any,succeeded)

then next_link_sequence_state([L1,L2],uptodate);

In this rule, a typical condition (which denotes a new evaluation result becoming
available for a component called OPC) is followed by conclusion
next_link_sequence_state([L1, L2],uptodate). The square brackets indicate that the two link
activations are grouped and will be performed in the order specified: first link L1,
then link L2. This means that information transmission by link L2 only starts after
information transmission by link L1 has finished.

The DESIRE compatibility relations defined in the previous subsection do not
ensure that sequential link activations are executed in the right order. As there are
no links between the links that are to be activated sequentially (i.e., L1 and L2 in the
example), there are no compatibility relations that relate the occurrence of states
for L1 and L2 or their co-domains. To ensure that sequential link activations are
executed in the right order, several adaptions to the definitions presented in this
chapter can be considered.

First, the global perspective developed in Chapter 7 and Chapter 8 can be used.
Sequential link activation is a global-level phenomenon: it relates the order of
occurrences of specific states at different locations in a multi-agent system.
Sequential link activation is comparable to the intuitive global reading of task
control rules discussed at the end of Section 9.3.1.3. The formal definition of the
requirement below expresses the correct activation order for sequential link
activations in terms of common strict global states, similar to the intuitive reading
of task control rules.

Definition 9.44. (Correct link sequence activation property). Let

SH=�Comp	Contr;Lnk;�;dom;cdom� be a DESIRE structure hierarchy with control, let �

be a collection of DESIRE compatibility relations and let � be a multitrace compatible for �.
Then �CSGS(SH,�,�);nextCSGS(SH,m,g)� has the correct link sequence activation
property if for each �,�’,�” in CSGS(SH,�,�) and for each Cctr in Contr:

if �(Cctr)�3
+next_link_sequence_state([…,L1,L2,…],at) and �’(L1)��3

+link_state(at) and

�’(L2)��3
+link_state(at), then ��;�’��nextCSGS(SH,m,g) and ��’;�”��nextCSGS(SH,m,g).

Note that the partial order relation nextCSGS(SH,m,g) is linear for common strict

global states.
Second, a seventh kind of information links can be introduced. This kind of

links would have other links as domain and as co-domain. With carefully defined
compatibility relations for these links, it is probably possible to ensure sequential
link activation in the correct order. However, the seventh kind of information link
has to be introduced at the level of the general semantic structure, only to address
an issue arising for this specific application;
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The third alternative is to establish an indirect relation via link monitoring links
and the control component that controls L1 and L2 instead of a direct relation. In
this case, additional rules are needed for the behaviour of the control component.
This is beneficial, as a rule in which next_link_sequence_state occurs can be viewed as
an abbreviation for these additional rules. In fact, the normal, non-formal meaning
of next_link_sequence_state is an abbreviation for rules that do not use
next_link_sequence_state. However, for a precise, formal definition of the meaning of
next_link_sequence_state in the form of an abbreviation of other rules, additional
details have to be taken care of. For instance, sequential link activations are atomic
in the sense that during the entire transmission via L1 and L2, no other task control
rules can fire. Consequently, all rules in Definition 9.41 need an additional
condition to ensure that the behaviour specified by them does not interfere with
sequential link activations.

As the third alternative closely matches the normal, non-formal meaning of
next_link_sequence_state, it is the best way to incorporate link sequence activations in
the semantic structure.

9.3.4� Summary: The Dynamics of DESIRE

The previous subsections defined a family of sets of local component and link
traces and a collection of compatibility relations for DESIRE. These definitions
suffice to describe the dynamics of multi-agent systems specified using DESIRE.
Given a DESIRE structure hierarchy SH, together with task control foci TCF(C,SH),
evaluation criteria EC(C,SH), default extent EXT(C,SH) and other additional
information associated with SH as described in Section 9.2.2.1, a DESIRE structure
hierarchy SH’ with control can be constructed from SH. The dynamics of the multi-
agent system described by SH is defined by the three views on behaviour defined
in Chapter 5: the black box view, the white box view and the glass box view, such
that the input persistence (defined in Chapter 6) property holds. The three views
on behaviour are defined relative to SH’ and to a family of sets of local component
and link traces and a collection of compatibility relations which are given in the
previous sections.

9.3.5� Local Behaviour of Primitive Components with a Knowledge Base

As stated in Section 9.3.1.3, reasoning engines are responsible for carrying out
computations in primitive and control components. It is interesting to describe
more precisely the behaviour of reasoning engines for primitive and control
components with which a knowledge base is associated, as such components are
most commonly used in DESIRE. In this section, the relation between task control
and the execution of knowledge rules is discussed.

Knowledge rules in primitive components as well as in control components are
(non-temporal) logical implications of the form defined in Definition 9.6. In
general, in DESIRE the chaining process outlined Section 9.3.1.2 does not compute
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all logical consequences of the input information and knowledge rules. Instead, a
subset determined by task control foci and extents is computed. As a consequence,
knowledge rules cannot be directly incorporated in the specification of behaviour
of a component: the (classical) interpretation of these rules would specify that all

consequences of a specific input substate (its deductive closure) are immediately

available regardless of task control foci and extents.
The solution to this problem is taken from (Engelfriet & Treur, 1994;

Engelfriet, 1999). The general form of the solution is as follows. For each
knowledge rule if � then � in a knowledge base of a component, an atomic
proposition symbol atj�y can be used in the specification of the behaviour of the
component. Thus, the knowledge rule if � then � is lifted to a meta level, where it is
represented by the symbol atj�y. For each rule, a formula of the following form is
added to the specification: C(��atj�y)�X�, which is read as: if currently � holds
and a rule if � then � is present, then in the next state, � holds. Thus, this rule
describes how conclusions are drawn over time. (In practise, detailed control over
the reasoning process is often added, in which case not every � is derived at the
next moment in time.)

In the semantic structure, the behaviour of a DESIRE component C is described
by propositional temporal formula, which determine the set Behloc(C). The set of

atomic formulae is defined as the set of ground atoms of a specific signature. For
knowledge rules, an important part of this signature consists of sorts, objects and
functions used to lift knowledge rules to a meta level. These sorts, objects and
functions form the primitive component meta signature, which is defined as follows:

Definition 9.45. (Primitive component meta signature). The primitive component
meta signature �prim is a signature ��S;<�;Func;Pred� with:

�� S={PREM,CONC,FOR,LIT,IOA,ATOM};

�� <={�PREM;FOR�,�CONC;FOR�,�IOA;ATOM�,�ATOM;LIT�,�LIT;FOR�};

�� Func is an S+-indexed family of sets with the following members:

�� FuncÆATOM;LITERALÖ = {not};

�� FuncÆLITERAL;FOR;FORÖ = {conj};

�� FuncÆFOR;PREMÖ = {prem};

�� FuncÆFOR;CONCÖ = {conc};

�� Pred is an S*-indexed family of sets with the following members:

�� PredÆLITERALÖ = {fact};

�� PredÆFORÖ = {true,false};

�� PredÆPREM;CONCÖ = {rule};

The reasoning process is described in a way similar to the description of DESIRE
local component behaviour presented in Section 9.3.1.3. Thus, a temporal language
is used which is defined in terms of the local component specification language.
The local component specification language, in turn, assumes that three sets of
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propositional symbols are given. To describe the reasoning process executed by
chaining in a primitive DESIRE component or control component C, the following
sets are used:

Definition 9.46. (DESIRE meta level description). Let SH=�Comp;Lnk;�;dom;cdom� be

a DESIRE structure hierarchy with control that represents a DESIRE model, let C�Comp

be a primitive or control component with which a knowledge base is associated and let

speclevel be a level identifier not in LEV(C,SH) such that speclevel is the top element in the

partial order associated with LEV(C,SH). To describe the behaviour of a component in SH,

the following sets of proposition symbols are used:

�� If C is a primitive component that is not a control component:

�� Propspec,C,in = Gratom(�prim


 metaÆIOA,speclevelÖ(��in(C,SH)
��int(C,SH))
�C,in
tc);

�� Propspec,C,int = �;

�� Propspec,C,out = Gratoms(�prim


 metaÆIOA,speclevelÖ(��out(C,SH)
��int(C,SH))
�C,out
tc);

�� If C is a control component:

�� Propspec,C,in = Gratom(�prim
metaÆIOA,speclevelÖ(�C,in
tc));

�� Propspec,C,int = �;

�� Propspec,C,out = Gratoms(�prim
metaÆIOA,speclevelÖ(�C,out
tc)).

As this definition show, user-supplied signatures ��in(C,SH), ��int(C,SH), and
��out(C,SH) are lifted to the sort IOA, which is a subsort of ATOM in �prim. Thus,

atoms used to describe the kernel part of DESIRE components and used in
knowledge bases of DESIRE primitive components, are incorporated in the meta-
level signature �prim.

All rules in the knowledge base KB(C,SH) of a primitive component C are lifted
to the specification meta-level to form atoms of the form rule(…,…). (These atoms
play the same role as atoms atj�y in (Engelfriet & Treur, 1994; Engelfriet, 1999).)
The exact translation of knowledge base rules to atoms of the form rule(…,…) is
straightforward and is not presented in this thesis. Instead, an example shows the
result of the meta-lifting.

Example 9.47. A knowledge base rule

if P1 and … and Pn and not P’1 and … and not P’n’

then C1 and … and Cn and not C’1 and … and not C’n’;

is represented at the specification level as:

rule( prem(conj(P1,conj(…,conj(Pn,conj(not(P’1),conj(…,not(P’n’)…)))…))),

 conc(conj(C1,conj(…,conj(Cn,conj(not(C’1),conj(…,not(C’n’)…)))…))))) �
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The following serves as a description of the relation between task control and the
reasoning process by chaining for a primitive or control component. The
description consists of a number of propositional temporal formulae. The variables
and quantification over these variables used in the definition below is not part of
the temporal language. Instead, these variables and quantification are part of the
notation used in this thesis to define mathematical notions. The definition is
followed by an example, which shows the propositional structure of the
specification.

Definition 9.48. (DESIRE behaviour of knowledge base components specification).
Let SH=�Comp;Lnk;�;dom;cdom� be a DESIRE structure hierarchy with control and let

C�Comp be a primitive component or control component with which a knowledge base is

associated. Let:

�� T range over the set TCF(C,SH) of task control foci of C;

�� E range over the set EC(C,SH) of evaluation criteria of C;

�� P range over the set of premises of all rules in KB(C,SH);

�� Each L, Lpj, and each Lci range over sets of terms of �prim, where each set only

contains terms of the appropriate function symbol1;

The DESIRE behaviour of knowledge base components is described by a specification

Spec(C) with the following formulae:

�� For each fact L in the knowledge base of C, there is a formula Cfact(L);

�� For each rule if Lp1 and … and Lpn then Lc1 and … and Lcn’ in KB(C,SH), the

specification of C contains the following formulae:

�� rule( prem(conj(Lp1,conj(…,Lpn)…))),

 conc(conj(Lc1,conj(…,Lcn’)…))));

�� For each premise P: satisfied(P) � true(A1) � true(An) � false(A’1) � false(A’n’) if P is

the term conj(A1,conj(…,conj(An,conj(not(A’1),conj(…,not(A’n’)…)))…)));

�� For each rule if Lp1 and … and Lpn then Lc1 and … and Lci and … and Lcn’ in

KB(C,SH), for each target T in TCF(C,SH), the specification of C contains the
following formulae (with Lci an atom):

��
n'
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 satisfied(P) �

 own_task_control_focus(T) �

                                                          
1 Consider a rule if a(X:INT) and b(Y:INT) then … This rule is represented as

rule(prem(conj(a(x),b(y))),conc(…)). In an expression ‘rule(prem(conj(Lp1,Lp2)),conc(…))’, Lp1

ranges over the set {a(0),a(1),…} and Lp2 ranges over the set {b(0),b(1),…}.
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(target(T,Lci,confirm) � target(T,Lci,determine)) �

(target(E,Lci,confirm) � target(E,Lci,determine)) �

 own_extent(any)))
   � XC(true(Lci) �

 own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed)));

��
n’
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Ai,conj(…,Lcn’)…)…)))) �

 satisfied(P) �

 own_task_control_focus(T) �
(target(T,Ai,confirm) � target(T,Ai,determine)) �

(target(E,Ai,confirm) � target(E,Ai,determine)) �

 own_extent(any_new)) �
 �YCknown(Ai))

   � XC(true(Ai) �

 own_evaluation(E,any_new,succeeded) �

 �own_evaluation(E,any_new,failed)));

��
n’
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Ai,conj(…,Lcn’)…)…)))) �

 satisfied(P) �

 own_task_control_focus(T) �
(target(T,Ai,confirm) � target(T,Ai,determine)) �

(target(E,Ai,confirm) � target(E,Ai,determine)) �

 (own_extent(every) � own_extent(all_p))))
   � XC(true(Ai) �

 own_evaluation(E,every,succeeded) �

 �own_evaluation(E,every,failed)));

�� For each rule if Lp1 and … and Lpn then Lc1 and … and Lci and … and Lcn’ in

KB(C,SH), for each target T in TCF(C,SH), the specification of C contains the
following formulae (with Lci a literal not(A) for some atom A):

��
n'
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 satisfied(P) �

 own_task_control_focus(T) �
 (target(T,Lci,reject) � target(T,Lci,determine)) �

(target(E,Lci,reject) � target(E,Lci,determine)) �

 own_extent(any)))
   � XC(false(Lci) �
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 own_evaluation(E,any,succeeded) �

 �own_evaluation(E,any,failed)));

��
n’
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 satisfied(P) �

 own_task_control_focus(T) �
(target(T,Lci,reject) � target(T,Lci,determine)) �

(target(E,Lci,reject) � target(E,Lci,determine)) �

 own_extent(any_new)) �
 �YCknown(Lci))

   � XC(false(Lci) �

 own_evaluation(E,any_new,succeeded) �

 �own_evaluation(E,any_new,failed)));

��
n’
�
i=1

((C( rule( prem(P),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…))))�

 satisfied(P) �

 own_task_control_focus(T) �
(target(T,Lci,reject) � target(T,Lci,determine)) �

(target(E,Lci,reject) � target(E,Lci,determine)) �

 (own_extent(every) � own_extent(all_p)))
   � XC(false(Lci) �

 own_evaluation(E,every,succeeded) �

 �own_evaluation(E,any,failed)));

�� For each rule if Lp1 and … and Lpj and … and Lpn then Lc1 and … and Lci and … and

Lcn’ in KB(C,SH), for each target T in TCF(C,SH), the specification of C contains

the following formulae (with Lpj and Lci atoms):

��
n
�
j=1

n'
�
i=1

((C( rule( prem(conj(Lp1,conj(…,conj(Lpj,conj(…,Lpn)…)…))),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 own_task_control_focus(T) �
 (target(T,Lci,confirm) � target(T,Lci,determine)) �

 �known(Lci) �

 �known(Lpj)))

   � XC(required(Lpj,pos)));

�� For each rule if Lp1 and … and Lpj and … and Lpn then Lc1 and … and Lci and … and

Lcn’ in KB(C,SH), for each target T in TCF(C,SH), the specification of C contains

the following formulae (with Lpj a literal not(A) for some atom A and Lci an atom):
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��
n
�
j=1

n’
�
i=1

((C( rule( prem(conj(Lp1,conj(…,conj(Lpj,conj(…,Lpn)…)…))),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 own_task_control_focus(T) �
 (target(T,Lci,confirm) � target(T,Lci,determine)) �

 �known(Lci) �

 �known(Lpj)))

   � XC(required(A,neg)));

�� For each rule if Lp1 and … and Lpj and … and Lpn then Lc1 and … and Lci and … and

Lcn’ in KB(C,SH), for each target T in TCF(C,SH), the specification of C contains

the following formulae (with Lpj an atom and Lci a literal not(A) for some atom A):

��
n
�
j=1

n'
�
i=1

((C( rule( prem(conj(Lp1,conj(…,conj(Lpj,conj(…,Lpn)…)…))),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 own_task_control_focus(T) �

 (target(T,A,reject) � target(T,A,determine)) �

�known(A) �
 �known(Lpj)))

   � XC(required(Lpj,pos)));

�� For each rule if Lp1 and … and not APj and … and Lpn then Lc1 and … and not Ai and

… and Lcn’ in KB(C,SH), for each target T in TCF(C,SH), the specification of C

contains the following formulae (with Lpj and Lci literals not(A), not(A’) for some

atoms A and A’):

��
n
�
j=1

n’
�
i=1

((C( rule( prem(conj(Lp1,conj(…,conj(Lpj,conj(…,Lpn)…)…))),

  conc(conj(Lc1,conj(…,conj(Lci,conj(…,Lcn’)…)…)))) �

 own_task_control_focus(T) �

 (target(T,A’,reject) � target(T,A’,determine)) �

 �known(A’) �

 �known(A)))

   � XC(required(A,neg)));

�� Furthermore, for each T and E, the specification of C contains the following

formulae:

�� (Y�Cbusy � Cbusy)

   � (own_evaluation(T,any,failed) � �own_evaluation(T,any,succeeded) �

 own_evaluation(T,any_new,failed)� �own_evaluation(T,any_new,succeeded)�

 own_evaluation(E,every,failed) � �own_evaluation(E,every,succeeded) �

 own_evaluation(E,all_p,succeeded) � �own_evaluation(E,all_p,failed))
�� start � Cown_task_control_focus(TCFinit(C,SH))

�� start � Cown_extent(EXTinit(C,SH))
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�� start � Ctarget(T,A,Ext) for each element target(T,A,Ext)�MFinit(C,SH), with

A an atom and Ext an extent type;
�� start � Cassumption(A,S) for each element assumption(A,S)�MFinit(C,SH), with

A an atom and S�{pos,neg};

If C is a control component, then TCFinit(C,SH)={default_focus}, EXTinit(C,SH)= {all_p}

and MFinit(C,SH)={target(default_focus,A,determine)|A�TCoutput}.

Example 9.49. Example 9.7 presented the following knowledge rule as an example
rule in a knowledge base:

if communicated_by( M: MATCH, provider_1 )

then belief( M: MATCH );

A the specification level, this rule is represented by a set of ground atoms as
follows:

{ rule(communicated_by(match(t,q),provider_1),belief(match(t,q))) | t�OT2 and q�Q };

This set is formed by taking all ground atoms for the predicate rule. Suppose
TCH(C,SH)={default_tcf} and EC(C,SH)={default_ec}. In this example, the first rule
scheme presented in Definition 9.48 is instantiated for the knowledge rule and the
sets of task control foci and evaluation criteria given above. Instantiation of the
first rule scheme presented in Definition 9.48 results in the following rule:

�
t³OT2

 �
q³Q

 ( C( rule(communicated_by(match(t,q),provider_1),belief(match(t,q))) �

 true(communicated_by(match(t,q),provider_1)) �

 own_task_control_focus(default_tcf) �

( target(default_tcf,belief(match(t,q)),confirm) �

 target(default_tcf,belief(match(t,q)),determine)) �

( target(default_ec,belief(match(t,q)),confirm) �

 target(default_ec,belief(match(t,q)),determine)) �

 own_extent(any)))

� XC( true(belief(match(t,q))) �

 own_evaluation(default_ec,any,succeeded) �

 �own_evaluation(default_ec,any,failed));

Quantification over t and q is at the level of the mathematical presentation
employed in this thesis. The formula given above is strictly a (temporal)
propositional formula. The rule can be rewritten as follows:

( �
t³OT2

 �
q³Q

 C( rule(communicated_by(match(t,q),provider_1),belief(match(t,q))) �

 true(communicated_by(match(t,q),provider_1)) �

 own_task_control_focus(default_tcf) �

( target(default_tcf,belief(match(t,q)),confirm) �
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 target(default_tcf,belief(match(t,q)),determine)) �

( target(default_ec,belief(match(t,q)),confirm) �

 target(default_ec,belief(match(t,q)),determine)) �

 own_extent(any))

) � XC( �
t³OT2

 �
q³Q

true(belief(match(t,q))) �

 own_evaluation(default_ec,any,succeeded) �

 �own_evaluation(default_ec,any,failed));

This formula captures the meaning of own_extent(any) as follows. Suppose that for a
specific state in a local component trace, communicated_by(match(t,q),provider_1) is true
for all t and q. To satisfy the rule presented above, in the next state belief(match(t,q))

only has to be true for one t and q. �

The previous definition and example describe the relation between task control
information and the chaining process executed for DESIRE components with
which a knowledge base is associated. For a precise description of the behaviour of
such components in DESIRE, more detail has to be added to Definition 9.48, for
instance for truth maintainance and persistency. (See Gavrila and Treur, 1994, for a
formal description of truth maintainance in DESIRE. See Engelfriet, 1999, for a
formal description of persistency using temporal completion.)

9.4� Discussion

In this chapter, the dynamics of DESIRE are described in terms of the semantic
structure developed in this thesis: a DESIRE model is represented by a
compositional system that is described using the semantic structure. As a
consequence, the dynamics of DESIRE shares all properties committed to for the
semantic structure as described in Chapter 2 and Chapter 8 (Section 8.2). A number
of these properties are discussed again in this section to describe their
ramifications in terms of DESIRE. At the end of this section, some general
conclusions with respect to DESIRE and the application of the semantic structure
are drawn.

9.4.1� Control and Autonomy

The most important feature of an agent is its autonomy. Section 8.3.1 indicated
that, at first sight, control over agents is impossible as such control is in conflict
with an agent’s autonomy. However, as stated in Section 8.3.1, control over an
agent should be viewed as an attempt to influence the agent such that it adopts
goals wanted by the controlling agent, without any guarantee that the agent will
comply.

As stated before in this chapter, in a DESIRE model, all agents are represented
by (often composed) components that are subcomponents of the toplevel
component. The toplevel component is a normal composed component, which
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implies that, as for all composed components, task control knowledge is associated
with the toplevel component. As a consequence, the behaviour of agents can be
directly controlled by the task control of the toplevel component.

In Section 8.3.1, two options for control over subagents were discussed. The
option chosen in DESIRE (at some levels, control is possible, at others, it is not: see
Section 3.3.1) implies that Task control knowledge for the toplevel component is,
similar to other composed components in DESIRE, expressed in the form of
knowledge rules for TCinput and TCouput. With these signatures, control can be
specified at great detail. It is possible to directly state which tasks should be
performed (using task control foci) and to what extent. Moreover, the semantics of
DESIRE ensures that the controlled components (the agents) will indeed behave as
specified by the task control knowledge of the toplevel component. This level of
control is clearly in conflict with the autonomy of the agents. In fact, task control of
the toplevel component introduces a new agent in the multi-agent system. This
agent is not present in the multi-agent system that is modelled, but is an artefact of
the DESIRE modelling framework. The presence of the toplevel task control (which
is ubiquitous in the framework DESIRE), if used with all its possibilities, makes all
‘real’ agents subordinate to a ‘supervising agent’ that itself cannot be directly
influenced and has almost divine power over the agents it controls. Thus, it
becomes impossible to model situations in which the existence of such a deity is
denied.

To avoid the unintended introduction of a supervising agent, users of the
DESIRE framework constrain the toplevel task control structure: they only use
rules of the form:

if start

then next_component_state(A_1,awake) and … and next_component_state(A_n,awake)

and next_link_state(I_1,awake) and … and next_link_state(I_m,awake);

Thus, all agents A_1 to A_n and all information links I_1 to I_m are made awake, and
no more control is specified. With this solution, the toplevel’s only role is to
activate the agents, which it cannot control any further. In a sense, the toplevel task
control becomes superfluous: if it is assumed that agents exist at all times, or if
another means of creating them is introduced, there is no longer any function for
the toplevel task control.

9.4.2� Link Granularity

The semantic structure describes information transmission as a relation between
states, as is indicated by the definition of information link mappings in Chapter 5.
More precisely, the semantic structure describes information transmission as a
relation between the output substate of the domain of an information link and the
input substate of the co-domain of the link. In [[[Chapter 8]]], input and output
substates are further divided in control and domain parts. These parts do not have
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any internal structure. As a consequence, it is not possible to describe information
transmission of a ‘subpart’ of the domain or control part of a substate.

In this chapter, states are described by propositions that are true in these states.
Moreover, information transmission is described by information link mapping
descriptions, which are sets of octets of propositions that describe the input and
output substates related by information transmission. These sets of octets may
suggest that substates have internal structure beyond the division in a control part
and a domain part, i.e., that a state consists of propositional symbols that are
transmitted one by one. Indeed, experience with DESIRE has shown that users
tend to view information transmission in this way. As an aside, in prototypes
generated by the current implementation generator, component states are indeed
represented by sets of propositional symbols.

If states are viewed as sets of propositional symbols and information
transmission as the sequential transmission of these symbols, then such
transmission is atomic, or, in other words, indivisible in the semantics of DESIRE.
This is automatically enforced by the semantic structure: these sets of symbols
describe one specific (domain or control part of a) substate, which is linked to one
specific other (domain or control part of a) substate. Indeed, it is not even possible,
using the semantic structure, to speficy partial transmission of such sets of
symbols. In other words, no temporal logic specification formulae or properties of
compatibility relations have to be given to constrain information transmission such
that sets of symbols are transmitted atomically.

Although information transmission is atomic, in implementations it generally takes
time to transmit information over information links, which, moreover, takes place
simultaneously with other activities in a multi-agent system. Consequently,
implementations have to ensure that link activations are guaranteed to run without
interference of other agent activities.

Alternative options for the granularity of indivisible information transmission
can be distinguished:

�� While the input interface of a specific component is being modified by an
information transmission, subcomponents of that component have access to
the interface;

�� Information transmission for one link activation is atomic. However, link
sequence activations are not atomic.

With the first option, no indivisible part in a link activation is distinguished. This
option has an enormous impact on the specification, e.g., of an agent. If it is
possible to use truth values that are being updated at that moment, chances are
that sets of values which describe both old facts and new are encountered. The
agent may not know this is the case, so it may interpret this set as valid
information. However, this information does not correspond to any real world
state. So, the agent has to be able to reason about states which in fact may not occur
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in the real world. This is clearly undesirable. The second option defines the size of
the indivisible part of information transmission to be a single link activation.

9.4.3� Concluding Remarks with respect to DESIRE

As stated in Chapter 1, the aim of this thesis is to develop a formal, compositional,
semantic structure for multi-agent systems dynamics. In this chapter, the semantic
structure is applied to describe the dynamics of models of multi-agent systems
modelled using the DESIRE modelling framework. The design of the DESIRE
modelling framework itself is not part of this thesis. However, some concluding
remarks with respect to DESIRE are presented to support the general assumption
adopted in this thesis: multi-agent systems are represented as compositional
systems.

�� Extensive experience with DESIRE shows that it is possible to design multi-
agent systems as compositional systems. Examples are presented in various
papers, including (Brazier, Dunin-Keplicz, Jennings & Treur, 1997; Brazier,
Jonker, Jungen & Treur, 1999; Jonker, Lam & Treur, 1999). An extensive
overview of papers presenting applications of DESIRE can be found at the
World Wide Web2;

�� In DESIRE, the functionality of agents is specified (as knowledge) in a
declarative, implementation-independent specification language (that
resembles natural language). As a result, extension and/or modification of
parts of specifications is straightforward. The example DESIRE models of
multi-agent systems presented in Chapter 10 and Chapter 11 further
illustrate this point;

�� Not only numerical formalisms (such as, e.g., in the mathematical toolkit
described in (Gaylford & D’Andria, 1998)), but also logical and knowledge
based formalisms can be used to (declaratively) specify the often
knowledge-intensive functionality of agents. This characteristic
distinguishes a the DESIRE modelling framework from the more
conventional system development methods and modelling frameworks,
such as the UML (Booch, Rumbaugh & Jacobson, 1998). In addition to the
language within which knowledge is represented, the compositional
structures within DESIRE provide a means to group functionality;

�� A graphical design support environment is available and executable
prototype systems can be generated automatically from a detailed design.

The main contribution of the application of the semantic structure presented in this
chapter is the use of temporal logic to specify sets of local component and link
traces, which are assumed to be given in previous chapters. Control within

                                                          
2 http://www.cs.vu.nl/~treur/
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DESIRE models is also specified using temporal logic (in the form of knowledge
base rules for the signatures TCinput and TCoutput). The use of temporal logic for
the specification of control is not new. Important examples are Temporal Logic of
Actions (TLA; Lamport, 1994), Troll (Jungclaus, Saake, Hartmann &
Sernadas, 1996, the semantics of which is defined as a translation to OSL (Sernadas,
Sernadas & Costa, 1995), discussed in Chapter 12) and Concurrent MetateM
(Fisher & Wooldridge, 1997, also discussed in Chapter 12). However, the
combination of temporal logic as a specification language for control together with
the principles of compositionality and locality as presented in the previous
chapters is to the best of the author’s knowledge, new.

Locality and compositionality are the key features of the semantic structure
employed in this chapter to describe the dynamics of DESIRE models. Locality
enables the description of the behaviour of single components in isolation, which is
necessary to cope with the complexity of a detailed description of the behaviour of
a flexible, real-world framework such as DESIRE. Compositionality is needed to
put such local descriptions in their overall context.
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Chapter 10�

Example: Exclusive Access

In this chapter, the use of DESIRE is illustrated for competitive interaction, such as
the interaction required to access limited resources. A reusable generic model for a
competitive agent is presented together with a model of interaction between such
agents. The generic model for competitive interaction introduced in this chapter, is
based on analysis of competitive agent in knowledge-intensive situations. An
example of a knowledge intensive situation is the situation in which a number of
information agents can access a given information agent and explicit knowledge is
available (to either the accessing agents, or the agent to be accessed, or all agents
involved) on appropriate orderings or priorities between the transactions from the
different agents. In this chapter, an example of a knowledge intensive situation is
described and used to illustrate the types of knowledge used to instantiate a
generic model of a competitive agent.

This chapter is outlined as follows. In Section 10.1, competitive co-ordination is
introduced and sketched for the example domain of human resource allocation.
Section 10.3 shows how a formal model for limited resource acquisition has been
modelled and specified in DESIRE, illustrated for the example presented in
Section 10.1. In Section 10.3, an algorithmic approach to limited resource access in
the domain of operating systems is presented based on algorithms for mutual
exclusion (see for example (Ricart & Agrawala, 1981). Such algorithms describe a
solution to a specific type of interaction for situations in which a number of
additional assumptions can be made. These assumptions are included in the
discussion in Section 10.4. Discussion and further research, as well as the relation
with the semantic structure, are presented in Section 10.4. A preliminary version of
this chapter has been published as (Brazier, Eck & Treur, 1997b).

10.1� Competitive Agents

A common phenomenon in many real life situations is the phenomenon of limited
availability of resources. Resources can be tangible such as books in libraries, seats
in aircraft, frequencies for transmission, articles produced by manufacturers, but
also time and space are often resources upon which restrictions are placed. To
model situations in which limited access to resources plays a role, not only the
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resources, but also the participants are of importance. Participants, in general, have
different goals, needs and ambitions, but also vary with respect to the degree with
which they are willing to acknowledge other participants’ needs, and to act upon
them. The degree to which participants are willing to co-operate often depends on
the situation within which they are placed.

In everyday practice many situations are solved by ‘one’ of the participants (or
class of participants): in a library the librarian decides in which sequence requests
are granted, airlines decide which categories of clients are served first, etc. Central
co-ordinating participants often strive for collective user satisfaction: they try to
achieve as much satisfaction as possible (according to some measure) for as many
users as possible (see also (Brazier & Ruttkay, 1993)).

In other situations, however, participants must come to mutual agreement on
the designation of resources. For example, allocation of space is one of the
important aspects in complex engineering design, for instance of industrial
products. Robot co-ordination is another example. The example used in this
chapter to illustrate how agent co-operation of this type can be formally modelled
and specified in DESIRE, is related to human resource allocation. In many
companies, open applications are considered once every n months. Applicants are
informed about the organisation and about the positions the company offers.
Applicants are given the opportunity to acquire more information about relevant
positions and to indicate in which positions they would be most interested. The
opposite holds for the heads of departments with vacancies: the managers. They
acquire more information about the candidates and decide whom they would be
most interested in offering a position. In an ‘ideal’ situation the candidates’ choices
would be mutually exclusive and would match the preferences of the managers.
This is, however, not frequently the case. Most often the managers negotiate how
the limited resources (the applicants) are to be allocated. The process is often not
predictable: the managers must come to some agreement, on the basis of the
information available. Not only the individual manager’s interests play a role, but
also the interests of the organisation. Career perspectives of very well qualified and
promising candidates may be considered of more importance in allocating a
position for these candidates than a strong ‘local’ need of a specific department.
Factors such as how long a position has been open, how qualified an applicant is,
how well an applicant is perceived to fit into a particular group, etc., all play a role.
Within an organisation not all managers (c.q. departments) are assigned equal
‘rights’. In practice this means that some managers will have more right to a
specific applicant than other managers. Managers differ in their interpretation of
the factors involved, but they also vary in the degree to which they are willing to
co-operate with other managers.

In situations in which one manager clearly has more right to an applicant than
another, this, in general, will be acknowledged. The manager will most often wait
for approval from all other potentially interested managers before offering the
applicant a position, to minimise the chance that an applicant receives conflicting
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offers. In situations in which managers have equal rights, once all objective criteria
have been examined, the managers’ characters may be the decisive factor. A more
assertive manager may be more convincing than a less assertive manager, in which
case the assertive manager may be more effective. The more assertive manager will
also need approval from all potentially interested managers before offering an
applicant a position. If all interested managers are equally convincing, a deadlock
situation occurs. In such situations the personnel manager often decides which
department is granted the right to offer an applicant a position.

10.2� A Model of a Competitive Agent

In this section, the generic agent model introduced in Chapter 3 is refined to
support the design of a multi-agent system that models competitive agents. The
three types of knowledge described in Section 9.1 are illustrated for the domain
described in Section 10.1. For the purpose of explanation, process composition and
knowledge structures are described together, followed by information exchange,
control knowledge and the relation between agents and processes.

10.2.1�Process Composition and Knowledge Structures

In Figure 10.1, the process composition for this example is depicted. The six top
level components are described below in Section 10.2.1.1 to Section 10.2.1.6
together with the knowledge structures involved (input atoms, output atoms and
knowledge bases).

Figure 10.1: Composition structure of the specialised task model.
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10.2.1.1� Maintain World Information (MWI)

The only component modelled for the process Maintain World Information is the
component update_current_world_state:

Component: update_current_world_state (MWI/UCWS)

The component update_current_world_state stores the information the agent has about
the world state. This information can be acquired by observation of the world,
communication with other agents, or (defeasible) reasoning. For resource access
competition, only information on the presence of agents and resources is
maintained. This component only maintains information. Therefore, its knowledge
base is empty.

Input atoms from comp. Output atoms to comp.

agent_present(A: Agents) (from world) agent_present(A: Agents) CM/DA

resource_present (from world) resource_present OPC

10.2.1.2� Agent Specific Processes (ASP)

The most relevant process specific for a particular agent for which limited access of
resources is modelled in this example is represented by the component
obtain_resource. This process is characterised for a specific agent (‘self’) in the
specifications of the related components below. Other subprocesses of
agent_specific_tasks are responsible for determining whether access to a specific
resource is required for the agent. These specific tasks are not specified in this
chapter.

Component: obtain_resource (ASP/OR)

The component obtain_resource has the following input and output atoms, which are
transmitted as indicated by the table below:

Input atoms from
comp.

Output atoms to
comp.

action_performed(
  communicate_need)

WIM proposed_action(communicate_need) WIM

action_performed(
  observe_presence_agents)

WIM proposed_action(
  observe_presence_agents)

WIM

action_performed(take_resource) WIM proposed_action(take_resource) WIM

access_to_be_forced CM query(access_allowed) CM

is_known(access_allowed) CM resource_obtained OPC

Internal atoms: to_be_obtained(access_allowed)

The knowledge base of the component obtain_resource specifies the knowledge
required to propose new actions on the basis of the input:

if not is_known(access_allowed)
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then to_be_obtained(access_allowed);

if to_be_obtained(access_allowed)

and not action_performed(communicate_need)

then proposed_action(communicate_need);

if to_be_obtained(access_allowed)

and not action_performed(observe_presence_agents)

then proposed_action(observe_presence_agents);

if access_allowed

and not action_performed(take_resource)

then proposed_action(take_resource)

and resource_obtained;

if access_to_be_forced

then proposed_action(take_resource)

and resource_obtained;

10.2.1.3� Cooperation Management (CM)

Within the process of Cooperation Management, four subprocesses are

distinguished, namely Update Current Agent Information, Determine Access,
Determine Priority and Determine Cooperation. These subprocesses appear as
subcomponents of the component cooperation_management in the specification.

Component: update_current_agent_information (CM/UCAI)

The component update_current_agent_information stores the information the agent has
about other agents. This information is usually obtained by communication or
(defeasible) reasoning. This component has the following input and output atoms.
(The knowledge base of this component is empty, as the component is only used as
an information store.)

Input atoms from comp. Output atoms to comp.

irrelevant(A: Agents) (defeasible) irrelevant(A: Agents) CM/DA

wants_resource(A: Agents) (communication) wants_resource(A: Agents) CM/DA

to_leave_resource_for(
  A: Agents, self)

(communication) to_leave_resource_for(A: Agents,
  self)

CM/DA

Component: determine_access (CM/DA)

The component determine_access receives input facts about the world; e.g., obtained
by observations, communications, or (default or closed world) assumptions.
Moreover, it uses input about priorities between agents from the component
determine_priority and information about the co-operativeness of other agents from the
component determine_cooperation. The component determine_access analyses a world
state (no matter how it was reached) and draws conclusions about access to the
resource: which agent(s) should be allowed access to a resource and which should
not. The component has the following input and output atoms:
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Input atoms from comp. Output atoms to comp.

agent_present(A: Agents) MWI/UCWS access_allowed ASP/OR

irrelevant(A: Agents) CM/UCAI to_leave_resource_for(self,
  A: Agents)

CM/DC

wants_resource(A: Agents) CM/UCAI

to_leave_resource_for(
  A: Agents, self)

CM/UCAI

has_priority_over(A: Agents,
  B: Agents)

CM/DP

cooperative(A: Agents) CM/DC

Most of the knowledge in the knowledge base of determine_access specifies under
which conditions access to the resource is not granted. The first two rules below
determine whether there is a conflict in the sense that another agent and the agent
itself are both interested in accessing the resource. Note that the knowledge
specified in this knowledge base does not refer directly to the application domain
described in Section 10.1. It is generic in the sense that it can in principle be used
for all domains in which limited access to resources plays a role.

if agent_present(A: Agents)

and not irrelevant(A: Agents)

then relevant(A: Agents);

if relevant(A: Agents)

and wants_resource(A: Agents)

and wants_resource(self)

then conflicting_needs(A: Agents, self);

In some situations, the conditions in which the other agent (A) blocks access to the
resource for the agent itself are known:

if conflicting_needs(A: Agents, self)

and has_priority_over(A: Agents, self)

then access_blocked_by(A: Agents);

The consequence of the other agent blocking the resource is that the agent itself
cannot access the resource and leaves the resource for A. This is expressed by the
following rule:

if access_blocked_by(A: Agents)

then not access_allowed

and to_leave_resource_for(self, A: Agents);

If agent self knows that the other agent A is co-operative, but that agent A has not
let agent self know that agent self may access the resource, agent self is assumed to
not be allowed access to the resource. (This rule is discussed in more detail at the
end of the description of this component).

if conflicting_needs(A: Agents, self)

and cooperative(A: Agents)

and not to_leave_resource_for(A: Agents, self)
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then not access_allowed;

Priority for agent ‘self’ with respect to the other agent can not always be
determined. In this case, the determine_access component concludes that it cannot
derive whether access is allowed and defers this decision to the component
determine_cooperation.

if conflicting_needs(A: Agents, self)

and not has_priority_over(A: Agents, self)

and not has_priority_over(self, A: Agents)

then no_access_decision;

In situations in which nothing is known about allowed access to the resources, the
conclusion (by assumption) can be drawn that access is allowed by employing a
closed world assumption (CWA). The CWA is modelled using explicit meta-
knowledge in the separate meta-component determine_access_CWA depicted in Figure
10.1:

if not false(access_allowed)

then to_assume(access_allowed, positive);

This closed world assumption expresses the assumption that all relevant agents
have been observed (if one agent is overlooked, the CWA leads to an incorrect
conclusion). Another closed world assumption is made on the basis of
communication. This closed world assumption expresses that if no information is
received from a co-operative colleague with respect to resource allocation to the
agent itself then it is safe to assume that the resource will not be made available to
itself.

if not true(to_leave_resource_for(A: Agents, self))

then to_assume(to_leave_resource_for(A: Agents, self), negative);

The conclusion drawn by this CWA may be incorrect if communication problems
occur.

Component: determine_priority (CM/DP)

The task of the component determine_priority is to determine which of two agents may
access the resource first, if a conflict is detected by evaluating the world state. As
stated before, the knowledge in this component is domain-specific. The
instantiation of determine_priority presented contains knowledge as outlined in
Section 10.1. It is important to note that this instantiation of the component is not
always able to derive a conclusion: there may be circumstances in which no
priority can be assigned. The component determine_priority has the following input
and output atoms:

Input atoms from comp. Output atoms to comp.

has_priority_over(A1: Agents,
  A2: Agents)
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The knowledge base of component determine_priority contains the following rules:

if manager_rights(M1: Agents, low)

and manager_rights(M2: Agents, high)

then has_priority_due_to_manager_rights(M2: Agents, M1: Agents);

if vacancy_duration(P1: Positions, short)

and manager_of(M1: Agents, P1: Positions)

and vacancy_duration(P2: Positions, long)

and manager_of(M2: Agents, P2: Positions)

then has_priority_due_to_vacancy_duration(M2: Agents, M1: Agents);

if suitable(A: Agents, P1: Positions, low)

and manager_of(M1: Agents, P1: Positions)

and suitable(A: Agents, P2: Positions, high)

and manager_of(M2: Agents, P2: Positions)

then has_priority_due_to_suitability(M2: Agents, M1: Agents);

if has_priority_due_to_suitability(M1: Agents, M2: Agents)

then has_priority_over(M1: Agents, M2: Agents);

if not has_priority_due_to_suitability(M2: Agents, M1: Agents)

and has_priority_due_to_vacancy_duration(M1: Agents, M2: Agents)

then has_priority_over(M1: Agents, M2: Agents);

if not has_priority_due_to_suitability(M2: Agents, M1: Agents)

and not has_priority_due_to_vacancy_duration(M2: Agents, M1: Agents)

and has_priority_due_to_manager_rights(M1: Agents, M2: Agents)

then has_priority_over(M1: Agents, M2: Agents);

if has_priority_over(M1: Agents, M2: Agents)

then not has_priority_over(M2: Agents, M1: Agents);

Component: determine_cooperation (CM/DC)

The component determine_cooperation contains facts describing the agent’s knowledge
of which agents are willing to co-operate with which other agents. In general, these
are instances (or negated instances) of the atom is_cooperative_for(A: Agents, B: Agents).

Note that the truth values for this atom are the result of observations and related
conclusions. Below, in the knowledge base, three options for static facts about the
agent self are specified: one for a shy agent, one for a bold agent and one for a
moderate agent. The component determine_cooperation has the following input and
output atoms and knowledge base:

Input atoms from comp Output atoms to comp

is_cooperative_for(A, B: Agents) WIM is_cooperative(A: Agents) CM/DA

concluded(to_leave_resource_for(self,
A: Agents)

CM/DA to_communicate_to(A:
Agents, ok)

AIM

no_access_decision CM/DA force_access AST/OR

Knowledge base:

bold(self); /* for the bold agent */
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modest(self); /* for the modest agent */

moderate(self); /* for the moderate agent */

if concluded(to_leave_resource_for(self, A: Agents))

and is_cooperative_for(self, A: Agents)

then to_communicate_to(A: Agents, ok);

if concluded(no_access_decision)

and bold(self)

then access_to_be_forced;

if concluded(no_access_decision)

and modest(self)

then to_communicate_to(A: Agents, ok);

if not is_cooperative_for(A: Agents, B: Agents)

then not is_cooperative(A: Agents);

By the closed world assumption an agent that is not known to be uncooperative is
assumed to be co-operative (the positive view on agenthood); the following meta-
knowledge is used:

if not false(cooperative(A: Agents))

then to_assume(cooperative(A: Agents),positive);

10.2.1.4� World Interaction Management (WIM)

The subprocesses of world_interaction_management are (1) to perform observations
(including observation of the presence and relevance of other agents) and (2) to
perform the action proposed by the task of obtaining a resource. The precise
specification of these subprocesses is not relevant for mutually exclusive resource
access. Moreover, the precise specification of these processes depends on details of
the external world component in the multi-agent systems. Specifications of a
component designed for a similar subprocesses in another domain can be found in
(Brazier, Dunin-Keplicz, Jennings & Treur, 1997).

10.2.1.5� Agent Interaction Management (AIM)

The component agent_interaction_management manages communication between an
agent and other agents. Below, in addition to the input and output atoms, a
relevant part of the knowledge base is specified.

Input atoms from Output atoms to

Communicated(
  wants_resource(
    A: Agents))

(communication) query(next_communication(
  A: Agents, ok))

OPC

next_communication(
  A: Agents, ok)

OPC communicate(A: Agents, ok) (communication)
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Knowledge base:

if communicated(wants_resource(A: Agents))

and next_communication(A: Agents, ok)

then communicate(A: Agents, ok);

Further details of how communication takes place is not relevant for mutually
exclusive resource access, and depends on details of the agents not provided in
Section 10.1. Therefore, a complete specification of the knowledge base of this
component has been omitted. For examples of specifications of similar tasks in
another domain: see e.g. (Brazier, Dunin-Keplicz, Jennings & Treur, 1997).

10.2.1.6� Own Process Control (OPC)

The role of own_process_control is to determine which information is needed to decide
whether access to a resource is allowed, and where this information is to be found.
The input, output and knowledge base for the component own_process_control is as
follows:

Input atoms from Output atoms to

to_leave_resource_for(A: Agents,
  B: Agents)

CM decided(resource_assigned) ASP/OR

only_agent_present(self) MWI decided(next_communication(
  A: Agents,ok))

AIM

resource_present MWI query(resource_obtained) ASP

determined(holding_resource, S: Signs) ASP/OR

info_needed(to_communicate_to(
  A: Agents, ok))

AIM

info_needed(resource_assigned) ASP/OR

Knowledge base:

if info_needed(to_communicate_to(A: Agents, ok))

and determined(holding_resource, pos)

then decided(next_communication(A: Agents, ok), neg);

if info_needed(to_communicate_to(A: Agents, ok))

and determined(holding_resource, neg)

and determined(to_leave_resource_for(self, A: Agents))

then decided(next_communication(A: Agents, ok), pos);

if info_needed(to_communicate_to(A: Agents, ok))

and determined(holding_resource, neg)

and not determined(to_leave_resource_for(self, A: Agents))

and determined(to_communicate_to(A: Agents, ok)

then decided(next_communication(A: Agents, ok), pos);

if info_needed(resource_assigned)

and only_agent_present(self)

and resource_present

then decided(resource_assigned, pos);
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if info_needed(resource_assigned)

and not only_agent_present(self)

and resource_present

and determined(to_leave_resource_for(A: Agents, self)

and resource_obtained

then decided(resource_assigned, pos);

10.2.2�Control Knowledge

Knowledge of the sequencing of processes is represented as control knowledge.
The component own_process_control determines which information is needed to
decide whether access to a resource is allowed, and where this information is to be
found. Control knowledge is used to evaluate the conclusions drawn by the
component own_process_control. The component own_process_control is activated in one
of the following ways:

�� The component agent_interaction_management notices that one of the other
agents requests attention, for example to access a resource. Component
agent_interaction_management notifies the component own_process_control of the
fact that new information has been received. On the basis of this new
information, the component own_process_control decides to activate the
component cooperation_management to determine whether access is granted
(the truth value of the atom to_leave_resource_for(self, A)).

�� To perform one of its own specific tasks, an agent determines a need for
information. The component agent_specific_tasks expresses this need to the
component own_process_control, which decides which specific information is
needed and where it is to be found. If the component own_process_control

recognises the need to access a limited resource, it first activates the
component cooperation_management to determine whether access is allowed or
not (the truth value of the atom access_allowed). If access is allowed, the
component own_process_control activates the component obtain_resource.

10.2.3�Relation between Processes and Agents

In the preceding sections, resource access is modelled on the basis of a top-level
composition (generic agent model) as given in Chapter 3 for one specific agent. In
this section, the process of mutually exclusive access acquisition described in
Section 10.1 is modelled as a whole with respect to the delegation of subprocesses
to agents. Three managers, called ‘manager 1’, ‘manager 2’, and ‘manager 3’ are
modelled as agents with different characteristics (bold, modest, moderate). These
agents, depicted in Figure 10.2 below as agent_1, agent_2 and agent_3, each
correspond to specialisations (further decomposition) and instantiations (definition
of (domain) specific instances of knowledge structures) of the agent model
described by the composition depicted in Figure 10.1, with slightly different co-
operation knowledge reflecting their characteristics.
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Figure 10.2: Relation between processes and agents.

The specification of the relation between processes and agents concludes the
description of the example DESIRE model. In the rest of this chapter, the example
DESIRE model is first compared with an algorithmic approach for mutually
exclusive access acquisition. The relation between the example presented in this
chapter and the semantic structure developed in this thesis is discussed in the final
section of this chapter.

10.3� Comparison with an Algorithmic Approach

The specification of the mutually exclusive access process presented in this chapter
can be compared to approaches to mutual exclusion in more conventional
environments, such as the algorithm described by Ricart and Agrawala (1981).
Ricart and Agrawala’s algorithm assumes the following conditions hold: (1) each
agent notices each other agent’s presence; (2) communication never fails; (3) each
agent has the same complete knowledge of priorities between agents and (4) if agent
A has higher priority than agent B, agent B is assumed to communicate that it
grants access to the resource to agent A.

If these conditions hold, the model described in this chapter specifies the same
process as the algorithm. The conditions describe a rather strictly defined domain
of application, as found in, for example, the domain of operating systems. For less
strictly defined real world domains, however, incompleteness of observations,
defeasible communications, incomplete knowledge of priorities, inconsistencies
between conclusions drawn by different agents, uncooperative agents, etc. are
most common. Modelling practise in these domains reveals the strengths of the
compositional approach presented in this chapter. A compositional approach is
particularly suitable in these domains for the following reasons: (1) by virtue of the
reflective structure of the task model, different strategies can be modelled with
minimal effort. (2) assumptions with respect to for instance communication,
priorities and co-operation appear explicitly in the task model and (3) the different
types of knowledge are explicitly distinguished. The distinction between different
types of knowledge and different types of behaviour results in flexibility,
adaptability and transparency: essential characteristics of a knowledge-based
approach.
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10.4� Discussion

This chapter presented, for the purpose of illustrating the semantic structure
developed in this thesis, a generic DESIRE model for mutually exclusive resource
access and instantiated this model for the domain of human resource management.
Chapter 9 explains how the behaviour of such a DESIRE model can be represented
using the semantic structure. Before the behaviour of the specific model presented
in this chapter is discussed, first some remarks with respect to the purpose of using
DESIRE and the semantic structure are made:

�� A modelling framework such as DESIRE can be used for purposes of
knowledge management, understanding, and design in the early stages of a
software engineering process. The use of a formal modelling framework
helps in achieving a clear picture of the software system that is to be created.
The advantages are well known. Compared to conventional application
areas, in the area of multi-agent systems it is often not possible to make very
strict assumptions about the environment of agents. (Such as the
assumptions made by Ricart and Agrawala (1981), as presented in the
previous section.) Instead, knowledge is used more intensively, first because
the environment is more complex, and second to react to unexpected events
in the environment. (As an example of the first more intensive use of
knowledge, in this chapter resource access is granted first on the basis of
(given) priorities, and (if no decision can be taken) on the basis of
dynamically observed co-operativeness of other agents.) However, the
modularity of the model, in which both static and dynamic behaviour are
explicitly specified, allows for flexible adaptability to other strategies. The
DESIRE modelling framework has extensive support for such knowledge
intensive applications. The semantic structure facilitates this use of a
modelling framework by supplying a precisely defined domain for the
interpretation for specifications of the system that is designed. Such an
interpretation may help to further understand complex and important
details of the system;

�� A modelling framework can also be used in a rapid prototyping approach to
software design. In this case, in the early stages of a software engineering
process, experiments are carried out with a prototype implementation of the
system that is to be designed to evaluate the results of the design process so
far. The DESIRE modelling framework supports this approach by its
automatic prototype generator. The semantic structure presented in this
thesis is not directly used. However, it is used in the design and evaluation
of the prototype generator;

�� Finally, a use specific for formal modelling frameworks is evaluation of
properties of a multi-agent system. A formal specification of a multi-agent
system enables proving that specific safety properties hold. If (the
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specification language in) the modelling framework is equipped with a
logic, this can be done formally and probably even computer-assisted or
automatically. However, it is also possible to evaluate (safety) properties
semantically, i.e., at the level of the interpretation of the model in a specific
semantic structure. As the semantic structure defined in this thesis is
mathematically defined, a rigorous, mathematical proof can be developed. If
the semantic structure is itself equipped with a logic that enables proving
properties of constructs in the interpretation of a model, (safety) properties
of the multi-agent system can be formally proved, probably even computer-
assisted or automatically.

For the model presented in this chapter, all three purposes apply. In the rest of this
chapter, the model presented in this chapter is evaluated and the use of the
semantic structure in such an evaluation is discussed. Emphasis is put on the third
purpose, the evaluation of properties of the model.

To start, the context of the model is further elaborated. As stated at the
beginning of this chapter, mutually exclusive access is a common phenomenon in
many multi-agent systems. In general, there are a number of agents that are willing
to access a specific resource. (An applicant in the example domain used in this
chapter). The resource to which mutually exclusive access is wanted may be an
agent, or it may be a part of the external world. In the first case, actually accessing
the resource consists of information exchange with this agent. In the second case,
actually accessing the resource consists of executing specific actions in the external
world. In both cases, the agents that seek mutually exclusive access as well as the
(agent that is) the resource represented as subcomponents of a component called
toplevel, which is itself not a subcomponent of any other component. In Figure
10.3, the context is illustrated in DESIRE for two agents, A and B, which try to
access a resource represented by an agent or the external world. Both agents are
assumed to be instances of the generic model presented in this chapter.

Figure 10.3: Simple representation of resource access.
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In the detailed model presented in Section 10.2.1, the subprocess that actually
accesses the resource is not specified. However, it is assumed that access of the
resource starts with executing an action called obtain_resource in the external world.
Execution of this action is represented in the model by the occurrence of an atom
action_to_be_performed(obtain_resource) in the output interface of the agent that executes
the action. (It is placed there via an export mediating link from the output interface
of the World Interaction Management component. After the resource is obtained,
additional actions may be executed. If an agent is done with the resource, an action
called give_back_resource is executed, which is represented by the occurrence of an
atom action_to_be_performed(give_back_resource) in the output interface of the agent that
executes the action.

As explained in Chapter 9, the DESIRE model presented in Figure 10.3 is
represented in the semantic structure by a DESIRE structure hierarchy with
control. This control structure contains the components presented in this chapter as
well as additional control components that correspond to the composed DESIRE
components. In this chapter, for all primitive components, knowledge bases are
given. Chapter 9 explains how, using these knowledge bases, sets Behloc(C) for the

primitive components can be found. Together with the standard DESIRE
compatibility relations and the control structure that represents the DESIRE model
in the semantic structure, the sets Behloc(C) are used to determine the three views

on the behaviour of the model. For the evaluation of the model for mutually
exclusive access presented in this chapter, the white box view on the toplevel
component is the most appropriate view, as it contains the behaviour of both
agents and the resource component in their context, without unnecessary details
on the behaviour of the subcomponents of the agents. (The white box view on the
behaviour of the toplevel component is a set of compatible multitraces. Each
multitrace consists of local traces for the toplevel component, both agents, the
component in which the resource resides, and the links between the agents and
this component.)

The stage is now set to discuss the evaluation of the model presented in this
chapter and the role of the semantic structure in this evaluation. The most evident
question to ask in the evaluation of the model is whether exclusive access can be
guaranteed. First of all, in a multi-agent systems, it may not be possible to provide
an unqualified ‘yes’ or ‘no’ for this question (as is assumed in conventional
approaches, where (explicitly or implicitly), strict assumptions are made, cf. the
approach presented by Ricart and Agrawala (1981)). For instance, the domain
knowledge presented for the domain of human resource management presented in
this chapter is not complete, as is often the case in real-world environment: priority
relations between managers are not always established. Nevertheless, evaluation
of the model is centred on the question whether exclusive access is guaranteed
(under specific assumptions).

As explained above, it is possible to obtain the white box view on the behaviour
of the toplevel component in Figure 10.3. Elements of the white box view are
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compatible multitraces that consist of local component and link traces for
components A, B, the world, the toplevel component that represents the complete
multi-agent system, and links between these components. An element of the white
box view on the behaviour of the toplevel component is depicted in Figure 10.4.
Local link traces for the links between these components are not depicted in Figure
10.4. In Figure 10.4, boxes denote local component states. Horizontal, solid arrows
between boxes denote state transitions. Diagonal, dashed arrows denote
information transmission. A number of the input and output atoms for most states
are also depicted in Figure 10.4. Atoms at the left side of the small vertical bars are
input atoms, atoms at the right side are output atoms. Atoms without a bar are
internal atoms (e.g., priority(self,B)). The names of input and output atoms are
abbreviated as follows: to_be_c_to(…,…) for to_be_communicated_to(…,…), comm’ed_by for
communicated_by, a_to_be_perf for action_to_be_performed, and res for resource. In the
example element, both A and B try to obtain access to a resource. Upon receipt of
information from the other agent that access is sought, both agent A and B

determine that A has priority over B. Therefore, B grants access to A.
Consequently, A takes the resource (an action in the world), and releases the
resource some time later. Finally, agent A again tries to obtain the resource.

Figure 10.4: element of the white box view on the behaviour of the example system.

The local component traces for the agents A and B in such multitraces do not
directly provide an answer to the question whether the agents access the resource
in a mutually exclusive way. Consider the local component trace for component A,
as depicted in Figure 10.4:

trA = …|…|to_be_communicated_to(I_want_resource,B)�…�

communicated_by(I_want_resource,B)|…|…�…|priority(self,B)|…�

communicated_by(ok,B)|…|…�

…|…|action_to_be_performed(obtain_resource)�…�
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…|…|action_to_be_performed(give_back_resource)�…�

…|…|to_be_communicated_to(I_want_resource,B)�…�…

In this trace, A transmits to B a request for access to the resource. After some time,
B grants access. Agent A then obtains the resource, probably executes other
actions, and returns the resource. Some time later, A again wants access to the
resource and transmits a request to B. The process may be repeated several times.
A trace trB for B is of similar structure. If trA and trB are compatible, they may

appear as elements of one multitrace in the white box view on the behaviour of the
toplevel component. However, in the multitrace, the time points of trA are not
directly related to the time points of trB. It is therefore not possible to determine if,

for instance, between the occurrence of action_to_be_performed(obtain_resource) and the
first occurrence of action_to_be_performed(give_back_resource) after the occurrence of
action_to_be_performed(obtain_resource) for agent A, there is an occurrence of
action_to_be_performed(obtain_resource) for agent B. (This situation clearly violates
exclusive access.)

However, the trace of the external world can be used to distinguish violations
of exclusive access. The following trace for the external world clearly is a violation
of exclusive access:

trworld = …�action_to_be_performed_for(obtain_resource,A)|…|…�

action_to_be_performed_for(obtain_resource,B)�…

Note that receipt of the atom action_to_be_performed_for(obtain_resource,A) is
immediately followed by the receipt of the atom
action_to_be_performed_for(obtain_resource,B).

Thus, the answer to the question whether access is indeed mutually exclusive
can be obtained by proving (or disproving) that in no multitrace in the white box
view on the behaviour of the toplevel component, there is a trace such as trworld.

There are, however, some additional issues:

�� The safety of the system can be evaluated, as indicated in this section,
because there is a trace available that records access to the resource (the local
component trace of the external world). Both in DESIRE as well as in the
semantic structure, transitions from one state to the next (i.e., the activity of
components and links) cannot have side effects. (To be more precise, side
effects are not represented in any way by DESIRE and the semantic
structure. In prototypes of DESIRE models generated by the DESIRE
software environment, side effects are not possible, except for one case,
which is discussed at the end of this section.) As there are no side effects,
access to the resource has to be explicitly modelled as action performance.
The benefit is that the dynamics of resource access is represented by a trace
for the resource and that it is possible to prove properties of resource access.
Metaphorically speaking, the property is checked locally, for the resource in
applications of the semantic structure. On the one hand, this aspect of
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support for locality provided by the semantic structure probably reduces
complexity of proofs. On the other hand, the model itself is more complex as
it has to represent the resource itself;

�� The central question of the evaluation of the model presented in this chapter
can be approached by means of the global perspective presented in
Chapter 7. As explained in Chapter 7, starting from e.g. the white box view
on the behaviour of a component, a partial order of global states can be
constructed. Different observers of the component observe different
behaviour, where each observation corresponds with a path in the partial
order of states. To ensure that access to the resource is mutually exclusive,
there should be no path in the partial order in which there is a global state
such that for (the output substate of) the local states of both A and B,
action_to_be_performed(obtain_resource) is true3. In other words, not a single
possible observer should observe a violation of mutually exclusive access.
(See (Schwarz & Mattern, 1994) for a discussion of the relevance of different
observers. See (Katz & Peled, 1990) for a logic that enables distinguishing
properties observed by all observers from properties observed by a proper
subset of all observers.) This approach resembles the usual approach to
verification in concurrent systems. For instance, in Concurrent MetateM
(Fisher & Wooldridge, 1997), resource access can be represented by a
transition from a state in which the resource is not accessed to a state in
which it is, for the agent that accesses the resource. The resource itself need not
be explicitly represented as a Concurrent MetateM object. In other words,
actually accessing the resource is a side effect of the state transition. The
question whether such access is mutually exclusive is answered by proving
that there is no global trace in which more than one agent performs this state
transition at the same time. (As Concurrent MetateM assumes that global
time is available, there is no need to distinguish different observations.);
Metaphorically speaking, the property is checked globally.

�� Similar evaluations as the evaluation proposed in this section have been
performed for DESIRE models (based on an alternative semantic structure in
which global states are assumed, see (Jonker & Treur, 1998a)). These
evaluations consist of rigorous, mathematical proofs of the existence or non-
existence of specific global traces. The complexity of these proofs calls for a
method for compositional verification, which is presented in (Jonker &
Treur, 1998a). The reader is referred to this publication for details. Providing
similar proofs for the model provided in this chapter requires a refinement
of the compositional verification method, as well as additional detail with
respect to how a resource is accessed and how agents communicate;

                                                          
3 Actually, the proper requirement is more complicated.
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�� The question whether access is indeed exclusive is not the only question that
needs to be answered. Manna and Pnueli (1992) present a hierarchy of
temporal formulae that represent properties for concurrent systems. The
highest level divides the class of all formulae in safety formulae (‘something
bad will never happen’) and liveliness formulaes (‘something good will
eventually happen’). Manna and Pnueli provide a formal proof that each
formulae is either a safety property or a liveliness formulae. Probably the
most evident liveliness formulae to require for the model presented in this
chapter is a fairness formulae, e.g., each agent that requests the resource is
eventually granted the resource;

�� In the discussion presented in this section, it is assumed that the resource is
represented by (a subcomponent of) the external world. If the resource is an
agent, similar remarks apply: the trace of this resource agent reveals
whether agents A and B mutually exclusively transmit information to it.

To conclude this chapter, as an aside the following remark is made. In DESIRE, it is
possible that primitive components of a specific type have side effects. This is the
case for primitive components that do not have a knowledge base. Instead, the
functionality of such a component is specified by some other means chosen by the
user of the DESIRE framework. If the functionality is specified by a computer
program, the DESIRE software environment executes this program whenever the
associated component is made active. Such a program may alter the output
interface of its component, but it may also execute actions that create side effects.
For the evaluation of a model that relies on such side effects, the approach utilising
the global perspective presented in Chapter 7 has to be followed.
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Chapter 11�

Example: A Society of Small
Agents

Much research concerning the design of multi-agent systems (at a conceptual level)
addresses complex agents that exhibit complex interaction patterns. Due to this
complexity, it is difficult to perform rigorous experimentation. On the other hand,
systematic experimental work regarding behaviour of societies of more simple
agents, while reporting valuable results, often lacks conceptual specification of the
system under consideration. In this chapter, the DESIRE modelling framework is
not only used to develop a conceptual specification of the simple agents discussed
in (Cesta, Micelli & Rizo, 1996a), but also to simulate the behaviour in a dynamical
environment. The prototype automatically generated implementation of the
conceptual specification of the simple agents has been used to replicate, and
extend, one of the experiments reported in (Cesta et al., 1996a).

This chapter is outlined as follows. Section 11.1 introduces the problem
approached in this chapter. Section 11.2 provides a description of the multi-agent
system examined in (Cesta et al., 1996a), for which a conceptual specification using
DESIRE is introduced in Section 11.3. In Section 11.4, the conceptual specification is
further developed, showing a level of detail suitable for automatic prototype
generation. Section 11.5 presents results obtained by experimenting with the
generated prototype. Section 11.6 discusses the results obtained as well as the
relation with the semantic structure developed in this thesis. Section 11.7 provides
a complete listing of all knowledge bases used in the primitive components.
Preliminary versions of this chapter appeared at the International Conference on
Computer Simulations and Social Sciences, ICCS&SS ’97, (Brazier, Eck and
Treur, 1997a) and in Applied Intelligence (Brazier, Eck and Treur, 2001a).

11.1� Introduction

Although much research within the multi-agent community has focused on the
design of individual agents and their interaction, other research has addressed
emergent behaviour within societies of agents (see for instance the three papers in
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the chapter on emergence in (Velde et al., 1996)). The behaviour of an individual
agent can often be conceptually specified, as can the interaction between
individual agents. The result of interaction between larger numbers of agents in a
dynamic environment is often not easy to predict (Axelrod, 1997). Experimental
research, in which interaction between agents is studied in a simulated dynamic
environment, provides a means to actually test and compare results of interacting
agents (Hanks, Pollack & Cohen, 1993). As stated in (Axelrod, 1997), the KISS
principle is of utmost importance: the elements of a model need to be fully
understood to be able to interpret results of experimentation.

In this chapter, the DESIRE modelling framework is used to conceptually
specify individual agents and to examine the behaviour of relatively simple agents
within a large group of agents. This method is supported by tools with which
detailed specifications (with which the behaviour of individual agents and their
interactions is defined) are automatically translated into prototype
implementations. To examine such behaviour, experiments reported by (Cesta et

al., 1996a) that test social theories by simulating interaction between different types
of simple agents (i.e., agents with limited knowledge and capabilities), have been
repeated and extended.

Due to the nature of the environment in which the experimentation of (Cesta et

al., 1996a) was originally performed (using the MICE testbed (Montgomery &
Durfee, 1990)), most information about agent characteristics and behaviour is
implicitly defined by the implementation and simulation environment. On the
basis of the informal, textual descriptions provided by (Cesta et al., 1996a), a
generic model of a simple agent is defined and refined for each of the four types of
agents (Cesta et al., 1996a) distinguished: social, solitary, selfish and parasite. One
of the aims of this chapter is to show how this approach leads to a flexible,
conceptual-level specification, from which prototypes can be generated
automatically for experimentation.

The conceptual models of the different agents are fully specified within
DESIRE, including knowledge about how each individual agent interacts with its
environment, and with other agents. One of the advantages of a conceptual
description of an agent and its behaviour is that not only does a conceptual
specification define the behaviour of an individual agent explicitly, it can also be
easily adapted at a conceptual level (without having to rewrite low-level code for
each agent). In the experiments described in (Cesta et al., 1996a), agents could
move in four different directions. In this chapter, not only are these experiments
repeated with agents automatically implemented from the conceptual DESIRE
specifications, additional experimentation is performed to examine the influence of
an increase in the number of directions (8 instead of 4) in which agents can move.

11.2� The Original Experiment

(Cesta et al., 1996a) examined the behaviour of different types of agents in
interaction. Four types of agents are distinguished on the basis of their social
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characteristics: social agents, parasite agents, solitary agents and selfish agents. The
effect of an agent’s social characteristic on interaction with other agents is
measured by simulating agent behaviour in a situation in which 30 agents try to
survive on a 15 * 15 grid in which 60 pieces of food are continually available in
random positions. An agent’s welfare is measured on the basis of its energy level.
The end result of a simulation is the number of agents that survive in a given
society of agents, given the energetic value of the food available. Agents do not
communicate explicitly but implicitly: a hungry agent changes colour, and this can
be seen by other agents. Agents’ social characteristics are assumed to be static. An
agent does not change from being, for example, selfish to social. The implications
of agents’ social characteristics for its behaviour are shown below in Table 11.1,
taken from (Cesta et al., 1996a), p. 131.

TYPE OF AGENT INTERNAL STATE GOAL

Solitary any Find Food

Parasite any Look for Help

Selfish Danger Look for Help

Hunger, Normal Find Food

Social Danger Look for Help

Hunger Find Food

Normal (if help-seekers are seen:)

Give Help

(if no help-seekers are

seen:)

Find Food

Table 11.1: Relationships among Types of Agent, Internal States, and Goals (from (Cesta et
al., 1996a), p. 131).

The effects of interaction between societies in which 30 agents with varying
configurations of social characteristics (for example, 15 social agents and 15
parasite agents in one world), and varying energetic food values have been
examined in a number of experiments described in (Cesta et al., 1996a). The MICE
testbed, a discrete event simulator, was used to perform the experiments



11.3: Conceptual Model of Simple Agents

322

mentioned above. The MICE testbed does not support a specific agent architecture:
agents are LISP functions, activated pseudo-concurrently.

11.3� Conceptual Model of Simple Agents

At the highest level of abstraction, the conceptual model of the society of simple
agents consists of 31 components: 30 agents and the external world. The agent
components are named agent00 to agent29. The external world is connected to each
agent by two links, e.g. agent00_to_world, world_to_agent00, etc. The highest abstraction
level of the society of simple agents is depicted in Figure 11.1.

Figure 11.1: Model of the society.

The generic agent model presented in Chapter 3 includes more functionality than
required for the small agents described in (Cesta et al., 1996a). These small agents
are not capable of communication with other agents and reasoning about other
agents’ knowledge, nor are they capable of reasoning about communication. Their
only task is to stay alive in a dynamic environment. In fact, the only components
within the generic agent model applicable to these small agents are the
components own_process_control and world_interaction_management. Figure 11.2 depicts
not only the remaining composition of a small agent’s tasks at the highest level of
abstraction, it also shows the information links between the components.

The only information a small agent receives is the information it observes in the
external world. This information is forwarded directly to the component
world_interaction_management. The component world_interaction_management interprets this
information. The result, information about the agent’s position, about available
food, and, if applicable, information about other needy agents is transferred to the
component own_process_control. The component own_process_control determines which
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actions should be taken next, depending on the small agent’s social characteristics
and the agent’s direct environment. This information is transferred to the
component world_interaction_managment, which derives the information required to
actually perform the action in the external world. This information is the only
output a small agent provides to the external world. The external world maintains
a representation of the grid in which the agents live and is responsible for actually
performing the agent’s actions by changing the state of the grid with respect to
agent’s positions and appearance. This updated state may be observed by other
agents. (As in (Cesta et al., 1996a), agents have a visibility range of three cells, that
is, they observe a rectangular piece of the grid of size 7*7 cells, with the observing
agent in the middle of this rectangle.) Other tasks of the external world are to place
new food at random locations if a piece of food is eaten and maintaining statistics
with respect to the number of alive agents. The internal structure of the component
own_process_control is described below in Section 11.3.1. The internal structure of the
world_interaction_managment is described in Section 11.3.2. The external world, fully
specified in a C program, is not further discussed.

Figure 11.2: Generic structure of a small agent.

11.3.1�The Internal Structure of Component Own Process Control

The component own_process_control is composed of four components:
own_resource_management, own_characteristics, goal_determination and plan_determination. The
component own_resource_management receives information about its current energy
level and the resources it has consumed. This component uses this information to
determine its new energy level. On the basis of information the component
goal_determination receives about its own social characteristics and its own energy
level, it determines the goals the agent is to pursue: for example to find food, or to
look for help. The component own_characteristics receives information on the agent’s
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energy level from the component own_resource_management. This information is used
to determine the agent’s next state (e.g., hungry, normal or in danger). The
component plan_determination receives information (1) from the component
own_characteristics, namely the agent’s current state, (2) from the component
goal_determination, namely which goals are to be pursued and (3) from outside the
component, namely the current state of the world. With this information the
component plan_determination determines which actions to take in the external world.
Figure 11.3 depicts the composition structure of own_process_control.

Figure 11.3: Component own_process_control.

11.3.2�Internal Structure of the Component World Interaction Management

The component world_interaction_management interprets information received from the
external world, and transforms information about actions to be taken in the
external world into specifications for actions to be executed in the external world.
Two components are defined to perform these tasks: the component
observation_information_interpretation and the component action_execution_preparation.
The component observation_information_interpretation receives information from the
external world, for example, information on which pieces of food and which
agents have been observed within a given range. This information, termed sensory
information in (Cesta et al., 1996a), is translated into information which can be used
by the component own_process_control to reason about new goals and plans.
As stated above, the component action_execution_preparation receives information
about actions to be taken in the external world from the component
own_process_control and translates these actions into specifications to be executed in
the external world. These specifications are also the output of effectors in the
terminology used in (Cesta et al., 1996a): elementary actions to be performed in the
external world. Figure 11.4 depicts the composition structure of
world_interaction_management.
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Figure 11.4: Component world_interaction_management.

11.4� Detailed Design

The conceptual generic model of a small agent presented above, has been specified
in detail. In this section, relevant examples of the specification are presented to
illustrate the level of abstraction with which knowledge is represented. (See
Section 11.7 for a complete overview of the knowledge bases used in the primitive
components of the agents.) The specification as a whole contains sufficient detail to
allow for automatic prototype implementation and simulation. The knowledge
structures used by the two main components of a generic small agent, the
component world_interaction_management and the component own_process_control are
discussed below in more detail, together with the information exchange.

11.4.1�World Interaction Management

The composed component world_interaction_management receives, as input, observation
information (obtained from the external world), expressed by the (unary) relation
observed, and information from the component own_process_control, expressed by the
relation next_action. As output, world information is provided (to be used by
own_process_control), and the actions that are to be executed, expressed by the
relation to_perform (to be placed in the output interface of the agent).

11.4.1.1� Observation Information Interpretation

The primitive component observation_information_interpretation receives observation
information as input and draws conclusions from this information. As an example,
the following rules interpret the last action performed by the agent:

if observed( prev_performance( pick_up_food ))

then food_in_possession;

if observed( prev_performance( feed_help_seeker ))

then not food_in_possession;

if observed( prev_performance( feed_self ))
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then not food_in_possession;

These rules state that food is in possession if an agent has previously picked up a
piece of food. Food is no longer in possession if an agent has either eaten the food
itself, or has given it to a help seeking agent. See Section 11.7.1.1 for the complete
knowledge base.

11.4.1.2� Action Execution Preparation

In the primitive component action_execution_preparation the executability of  actions
that have been selected within the component own_process_control is verified. If an
action is dependent on a number of preconditions, these preconditions are tested.
If the preconditions are satisfied, the conclusion is drawn that the action should be
performed. For example, to be able to take food, that food must be available at the
same position as the agent. This is formalised using the following rule:

if next_action( pick_up_food )

and observed( food_at( cell( 0, 0 )))

then to_perform( pick_up_food );

Cell locations in observations are relative to the position of the agent. Therefore, to
be able to pick up food, it must be observed at location (0,0). The component
action_execution_preparation also prepares the execution of plans to move to a specific
cell. The following rules, marked with a bar in the margin for reference purposes
later in this chapter, show the preparation of movement to the north or the south:

if next_action( move_to( cell( X: ints, Y: ints )))

and  Y: ints > 0

then to_perform( go_north );

if next_action( move_to( cell( X: ints, Y: ints )))

and Y: ints < 0

then to_perform( go_south );

See Section 11.7.1.2 for the complete knowledge base.

11.4.2�Own Process Control

The component own_process_control receives world information from the component
world_interaction_management and determines the next actions to be performed,
expressed by the relation next_action.

11.4.2.1� Own Characteristics

Within the primitive component own_characteristics an agent’s own characteristics are
specified. Because the example society contains agents of different types the
knowledge differs between agents; it is expressed using the following information
types. The first information type expresses the characteristics that in the current
chapter are assumed to be static (they are pre-specified), such as the (meta-)fact
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that an agent is selfish; the second information type expresses dynamic
characteristics, such as being in danger.

information type agent_character_it

sorts Agent_character

objects solitary, parasite, selfish, social: Agent_character;

relations agent_character: Agent_character;

end information type

information type agent_state_it

sorts Agent_state

objects dead, in_danger, hungry, normal: Agent_state;

relations current_state: Agent_state;

end information type

In this component, the state of an agent is determined based on its energy level, as
shown by the following rule:

if not energy_level < 20

and energy_level < 60

then current_state( hungry );

See Section 11.7.2.1 for the complete knowledge base.

11.4.2.2� Own resource management

In the primitive component own_resource_management the energy level of an agent is
determined. An agent’s energy level changes as a result of actions an agent has
performed: for example after eating food with food value 40 the result is
to_increment_energy_level_with(40). An information link links these atoms to atoms of
the form delta_energy_level = 40, after which the new energy level can be determined.
The following rule, marked with a bar in the margin for reference purposes later in
this chapter, shows that in the case that an agent does nothing, its energy level
decreases by one:

if not observed( prev_performance( eat_food ))

and not observed( prev_performance( go_north ))

and not observed( prev_performance( go_south ))

and not observed( prev_performance( go_east ))

and not observed( prev_performance( go_west ))

and not observed( prev_performance( change_appearance ))

and not observed( prev_performance( pick_up_food ))

and not observed( prev_performance( feed_help_seeker ))

and not observed( prev_performance( feed_self ))

then to_increment_energy_level_with( -1 );

See Section 11.7.2.2 for the complete knowledge base.

11.4.2.3� Goal Determination

In the primitive component goal_determination an agent determines its goals on the
basis of information about its own characteristics, its current state and partial
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world information. Selected goals are defined by the following information type:

information type agent_goal_it

sorts Agent_goal;

objects find_food, look_for_help, give_help: Agent_goal;

relations selected_goal: Agent_goal;

end information type

See Section 11.7.2.3 for the complete knowledge base, which is a direct
formalisation of Table 11.1.

11.4.2.4� Plan Determination

Based on an agent’s goals the component plan_determination determines which plans
are to be executed. The information type to express selected actions is as follows:

information type agent_action_it

information types cell_it;

sorts Agent_action

objects

pick_up_food, eat_food, change_appearance,

feed_self, feed_help_seeker: Agent_action;

functions

move_to: Cell -> Agent_action;

relations

next_action: Agent_action;

end information type

As an example of action selection, consider the following rule:

if selected_goal( give_help )

and food_in_possession

and closest( help_seeker_at( cell( X: ints, Y: ints )))

and not X: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

This rule states that if the selected goal is to give help, and food is already in
possession of an agent (so the agent does not have to look for food first), and the
closest help seeking agent is observed at location (X,Y), relative to the agent, which

is not our own position (and therefore, X�0), then the agent decides to go to that
cell. See Section 11.7.2.4 for the complete knowledge base.

11.4.3�Control Knowledge

Control knowledge is specified at all levels of abstraction. This subsection briefly
describes control knowledge at the highest level of abstraction, namely the society
level and one level lower, namely control knowledge within individual agents.

11.4.3.1� Control Knowledge at the Society Level

Control knowledge at the society level specifies how individual agents are
activated. One option is to run all agents in parallel, the other is to predefine the
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sequence of activation. In the first case only one control rule is needed:

if start

then next_component_state( external_world, awake )

and next_component_state( agent00, awake )

…

and next_component_state( agent29, awake )

and next_link_state( world_to_agent00, uptodate )

…

and next_link_state( world_to_agent29, uptodate )

and next_link_state( world_to_agent00, uptodate )

…

and next_link_state( world_to_agent29, awake );

This control rule specifies that immediately after the system has started, the
external world, each individual agent, and the links between the agents and the
world, are all made awake. In this state, each agent, a link and the external world
are continually ready to receive information and becoming active upon receipt of
new information. Moreover, all components immediately start processing as
specified by their default task control focus (as explained in Chapter 9). For the
external world, this processing determines observations for all agents. For the
agents, this processing consists of interpreting observations received from the
external world. Thus, immediately after the system has started, the external world
is the first component to actually run. After that, observations are transmitted to
the agents, which become active concurrently at the moment the observations are
received.

A second option is to exercise more control over the execution sequence
between agents and the activation of links. In this case, the following control rules
may be specified at the society level:

if start

then next_component_state( external_world, active )

and next_task_control_focus( external_world, determine_observations );

if evaluation( external_world, determine_observations, all_p, succeeded )

and not previous_evaluation( external_world, determine_observations, all_p, succeeded )

then next_component_state( agent00, active )

and next_task_control_focus( agent00, default_focus )

and next_link_state( world_to_agent00, uptodate );

if evaluation( agent00, default_focus, all_p, succeeded )

and not previous_evaluation( agent00, default_focus, all_p, succeeded )

then next_link_state( agent00_to_world, uptodate )

and next_component_state( agent01, active )

and next_task_control_focus( agent00, default_focus )

and next_link_state( world_to_agent01, uptodate );

…

if evaluation( agent28, default_focus, all_p, succeeded )

and not previous_evaluation( agent28, default_focus, all_p, succeeded )

then next_link_state( agent28_to_world, uptodate )
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and next_component_state( agent29, active )

and next_task_control_focus( agent29, default_focus )

and next_link_state( world_to_agent29, uptodate );

if evaluation( agent29, default_focus, all_p, succeeded )

and not previous_evaluation( agent29, default_focus, all_p, succeeded )

then next_link_state( agent29_to_world, uptodate )

and next_component_state( external_world, active )

and next_task_control_focus( external_world, determine_observations );

The first rule specifies that, immediately after the system is started, the external
world becomes active, processes the available information in view of its task control
focus, and becomes idle. In this case, a task control focus is set such that the external
world makes observations available to each of the agents. The second rule specifies
that if the external world has successfully met the evaluation criterion
determine_observations, a specific agent, agent00, is made active, and observations from
the world are transmitted to this agent by up-dating the link from the external
world to agent00. The following rules specify that the agents are activated
sequentially, and the relevant links between an agent and the external world, and
the external world and the next agent to be activated, are up-dated. The agents
transmit actions to be performed to the external world.  The external world is
activated once all agents have been given the opportunity to convey their own
actions to the external world. After that the cycle is repeated. As the experimental
system was designed to replicate (Cesta et al., 1996a), option 2 has been
implemented.

11.4.3.2� Control Knowledge at the Agent Level

Within an agent, the execution order of the components that correspond to the four
tasks identified in (Cesta et al., 1996a) should mirror the execution sequence
described in (Cesta et al., 1996a). This means that observation_information_interpretation,
goal_determination, plan_determination, and action_execution_preparation should run in this
order. However, these components are not at the agent level. Instead, they are
subcomponents of the agent-level components own_process_control and
world_interaction_management. The following agent-level control rules specify that these
components are executed in the correct sequence:

if start

then next_component_state( world_interaction_management, active )

and next_task_control_focus( world_interaction_management, interpret_observations );

if evaluation( world_interaction_management, interpret_observations, all_p, succeeded )

and not previous_evaluation( world_interaction_management, interpret_observations,

all_p, succeeded )

then next_component_state( own_process_control, active )

and next_task_control_focus( own_process_control, determine_plan );

if evaluation( own_process_control, determine_plan, any, succeeded )

and not previous_evaluation( own_process_control, determine_plan, any, succeeded )



11.5: Experimentation

331

and previous_task_control_focus( own_process_control, determine_plan )

then next_component_state( world_interaction_management, active )

and next_task_control_focus( world_interaction_management, prepare_action_execution );

For each of the components own_process_control and world_interaction_management, more
specific control rules at the component level are specified. These rules activate
specific subcomponents depending on the current task control focus for the
component. More specifically, control rules of own_process_control first activate
goal_determination before plan_determination as a result of an activation with task control
focus determine_plan.

Control rules at the agent level also determine the activation order of links
between own_process_control and world_interaction_management. Moreover, control
knowledge for the component own_process_control also specifies the activation order
for the subcomponents own_resource_management and own_characteristics. For reasons of
brevity, these control rules are not presented here.

11.5� Experimentation

The first goal of this exercise is to replicate the results presented in (Cesta et

al., 1996a), on the basis of a conceptual specification of agent behaviour, simulated
in the DESIRE software environment. The second goal is to examine the effects of
increasing the number of directions in which an agent can move from 4 to 8.

11.5.1�Method

One of the experiments discussed in (Cesta et al., 1996a) has 15 social agents and 15
parasite agents with varying food energetic values in one world, with 500 steps per
agent per run. The first experiment based on the DESIRE model used the same
number and types of agents and the same number of steps. The second experiment
consisted of re-running the first experiment in an environment in which agents
could move in more than 4 directions: they could move in 8 directions. The
experiments were carried out using an early version of the DESIRE prototype
generator, which did not support a hierarchical component structure and which
executed prototypes pseudo-concurrently on one processor. The prototype
generator was therefore augmented with a custom tool that transformed the
hierarchical model presented in this chapter to a non-hierarchical model.

For thes second experiment, extra rules had to be added to the different
knowledge bases:

The following rules have been added to the knowledge base of component
action_execution_preparation (Section 11.4.1.2):

if next_action( move_to( cell( X: ints, Y: ints )))

and  X: ints > 0

and  Y: ints > 0

then to_perform( go_northeast );
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if next_action( move_to( cell( X: ints, Y: ints )))

and  X: ints < 0

and  Y: ints > 0

then to_perform( go_northwest );

if next_action( move_to( cell( X: ints, Y: ints )))

and  X: ints < 0

and  Y: ints < 0

then to_perform( go_southwest );

if next_action( move_to( cell( X: ints, Y: ints )))

and  X: ints > 0

and  Y: ints < 0

then to_perform( go_southeast );

The rules marked with a bar in the knowledge base of component
action_execution_preparation (Section 11.4.1.2) have to be changed:

if next_action( move_to( cell( 0, Y: ints )))

and  Y: ints > 0

then to_perform( go_north );

if next_action( move_to( cell( 0, Y: ints )))

and Y: ints < 0

then to_perform( go_south );

The following rules have been added to the knowledge base of component
own_resource_management (Section 11.4.2.2):

if observed( prev_performance( go_northwest ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance( go_northeast ))

then to_increment_energy_level_with( -2 );

0

20

40

60

80

100

5 101520 40 60 80 100

%
 o

f 
A

liv
e
 A

g
e
n
ts

Food Energetic Values

social agents
social+parasite
parasite agents

Figure 11.5: Comparison between Parasite and Social (from (Cesta et al., 1996a), p. 133).
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if observed( prev_performance( go_southwest ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance( go_southeast ))

then to_increment_energy_level_with( -2 );

The rule marked with a bar in the knowledge base of component
own_resource_management (Section 11.4.2.2) has to be changed by adding the
following conjuncts to the rule condition:

and not observed( prev_performance( go_northwest ))

and not observed( prev_performance( go_southwest ))

and not observed( prev_performance( go_northeast ))

and not observed( prev_performance( go_southeast ))

11.5.2�Results

Figure 11.5 depicts results averaged over 10 runs as presented in (Cesta et

al., 1996a), p. 133. Figure 11.6 depicts the DESIRE results on the basis of 2 runs.
Figure 11.7 shows the results for the same experiment in the more flexible
environment (thus, with 8 directions of movement), averaged over 5 runs.

11.5.3�Evaluation

The results acquired in the DESIRE simulation are comparable to the results in
(Cesta et al., 1996a): social agents survive more often than parasite agents in
situations with low food energetic values. The same holds for the experiment in
which agents have more degrees of freedom. In our experiments, the chance of
survival increases with an increase in the degree of freedom for both types of
agents. Additional experimentation with different situations have been reported by
Cesta, Micelli and Rizo in (Cesta et al., 1996b).
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11.6� Discussion

Much research concerning the design of multi-agent systems (at a conceptual level)
addresses complex agents which exhibit complex interaction patterns. Due to this
complexity, it is difficult to perform rigorous experimentation. On the other hand,
systematic experimental work regarding behaviour of societies of more simple
agents, while reporting valuable results, often lacks conceptual specification of the
system under consideration.

In this chapter, the DESIRE modelling framework is not only successfully used
to develop a conceptual specification of the simple agents discussed in (Cesta et

al., 1996a), but also to simulate the behaviour in a dynamical environment. In
DESIRE, a conceptual specification, which provides a high-level view of an agent,
has enough detail for automatic prototype generation. As stated in Section 9.5,
support for knowledge-intensive domains is an advantage of DESIRE over
conventional modelling frameworks such as UML. In the application presented in
this chapter knowledge-intensity and complexity were not distinguishing factors;
in applications with more complexity (for example more complex knowledge
within cognitive agents) this advantage is more clear.

A social simulation environment that comes close to DESIRE is SDML (see
(Moss, Gaylard, Wallis & Edmonds, 1998)). As in DESIRE, in SDML declarative
specification is a central aim. Some of the differences are:

�� In DESIRE time can be left implicit, whereas in SDML it is automatically
attached to the information structures;

�� In DESIRE a more strict form of modularity is used;
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�� DESIRE provides explicit constructs for control knowledge;

�� DESIRE is supported by a distributed execution platform.

The prototype implementation of the conceptual specification of the simple agents
has been used to replicate and extend one of the experiments reported in (Cesta et

al., 1996a). One of the advantages of conceptual specification has been explored,
namely the ease with which existing specifications can be modified. The
conceptual specification of a simple agent was modified as follows: the number of
directions in which the simple agents can move was increased from 4 to 8, by two
minor, local modifications to knowledge included in the specification. A new
experiment was performed to compare the behaviour of these agents to the simple
agents with only 4 directions of movement.

The ultimate goal of research in the Social Sciences is to develop a theory that
explains how the behaviour of the society as a whole (in this chapter, the survival
rate of the agents) emerges from the behaviour of the individual agents (which, in
this chapter, is described by Table 11.1). Castelfranchi and Conte (1996) call such a
theory a middle ground theory. As stated in Chapter 1, such a theory is also
helpful in the area of multi-agent systems to predict the behaviour of a multi-agent
system under development.

A possible use of the semantic structure developed in this thesis for the
development of a middle ground theory can be illustrated using the multi-agent
system described in this chapter. As the behaviour of the individual agents in the
system is modelled using the DESIRE modelling framework, associated with each
agent is a DESIRE structure hierarchy with control that represents the agent in the
semantic structure. This DESIRE structure hierarchy with control contains the
components presented in this chapter, but also control components associated with
the composed components, as described in Chapter 9. For a primitive component
or link in this control structure, a set Behloc(S) is given by the standard dynamics of

DESIRE knowledge bases. Together with the standard DESIRE compatibility
relations, the behaviour of a single agent can be described by, among others, the
white box view on the behaviour of the component that represents the agent. In
this way, white box views can be obtained for each of the 30 agents in the society.

An element of the white box view on the behaviour of a simple agent, agent00, is
depicted in Figure 11.8. (The name of this agent is abbreviated to a00.) Elements of
the white box view are compatible multitraces that consist of local component and
link traces for the components a00, a00ctr, WIM and OPC, and for the links between

these components. (Local link traces for the links are not depicted in Figure 11.8.)
In Figure 11.8, boxes denote local component states. Horizontal, solid arrows
between boxes denote state transitions. Diagonal, dashed arrows denote
information transmission. A number of the input and output atoms for most states
are also depicted in Figure 11.8. Atoms at the left side of the small vertical bars are
input atoms, atoms at the right side are output atoms. The names of input and
output atoms are abbreviated as follows: comp for component, tcf for task_control_focus,
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obs_interpr for observation_interpretation, eval for evaluation, WIM for
world_interaction_management, OPC for own_process_control, determ_plan for determine_plan,
and prep_a_exe for prepare_action_execution.

In the upper left corner of Figure 11.8, agent00 receives new observations. Upon
receipt of these new observations, task control at the agent level determines that
world_interaction_management is the first subcomponent to activate. Task control focus
for world_interaction_management is observation_interpretation, which directs
world_interaction_management to activate its subcomponent observation_interpretation. (This
is not visible in the white box view of the agent level. Task control rules for
world_interaction_management specify that subcomponent observation_interpretation is
activated whenever the task control focus of world_interaction_management is
observation_interpretation.) In the example trace in Figure 11.8 observation_interpretation

concludes that a help seeker is present. The next component activated by task
control at the agent level is own_process_control. This component first activates its
subcomponent goal_determination, and after that plan_determination. (In the white box
view of the agent level, this subcomponent activation is not visible.) In the example
trace, plan_determination decides to move to a specific cell. This result is transmitted to
world_interaction_management. Task control at the agent level activates
world_interaction_management with task control focus prepare_action_execution. As a result,
subcomponent action_execution_preparation of observation_interpretation is activated, which
determines that the next action to execute is go_south.

To support the development of a middle ground theory, the essential step
consists of composing a description of the overall, emerging behaviour of the
society from the separate descriptions of the behaviour of the agents.
Proposition 5.26, presented in Chapter 5, enables such a composition: roughly
speaking, this proposition states that a multitrace for a structure hierarchy that
represents the society is an element of the glass box view on the behaviour of the
society if, for each agent, the restriction of the multitrace to this agent is an element
of the white box view on the behaviour of the agent. The three views on the
behaviour of a compositional system presented in Chapter 5, together with the
propositions that relate these three views, provide facilities for the development of
theories on emergent behaviour. These facilities are flexible with respect to the
amount of detail represented in the behaviour of individual agents or the society as
a whole. Note that Proposition 5.26 is not itself a middle ground theory. However,
this proposition facilitates the development of such a theory. Alternatively, as the
complete society of 30 simple agents, together with the external world, is modelled
using DESIRE, it is also possible to construct a DESIRE structure hierarchy with
control that represents the society directly from the DESIRE model.

Figure 11.9 depicts an example element of the white box view on the behaviour
of the entire society. All agents, agent00 to agent29, (abbreviated a00 to a29), together
with a component that represents the world, are made subcomponent of a
component called toplevel. The white box view on the behaviour of toplevel consists
of local component and link traces for toplevel, agent00 to agent29, the world, and all
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links between agents and the world. (The traces for links are not depicted in Figure
11.9.) In Figure 11.9, the world transmits observations to each agent, and receives
actions to execute from each agent in turn. The element of the white box view
depicted in Figure 11.9 is composed of elements of the white box views of the
agents as described above. For example, in Figure 11.9, the local component trace
for a00 consists of two copies of the trace for component a00 depicted in Figure 11.8.

A possible direction for future research is the design of more complex agents:
agents capable of adapting their own characteristics to increase their chances of
survival. These agents possess the capability to learn from the observed effects of
their own behaviour and that of others. For some first steps in compositional
modelling of adaptive animal behaviour, see (Jonker & Treur, 1998b). The explicit
conceptual specification makes it possible to make such adaptations at a
conceptual level. For example, the explicitly specified agent characteristic (the
own_character(selfish) fact in the knowledge base of Section 11.4.2.2) can be replaced
by knowledge that can be used to derive the characteristic in a dynamic manner.
Another extension of this work is current research on agents that can design new
agents on the basis of given requirements. Some results in this direction can be
found in (Brazier, Jonker, Treur & Wijngaards, 2000).

11.7� Knowledge Bases

In this section, complete knowledge bases for each primitive component are
presented. The structure of this section follows the structure of Section 11.4.

11.7.1�World Interaction Management

The knowledge bases for the (primitive) subcomponents of
world_interaction_management are presented in Section 11.7.1.1 and Section 11.7.1.2.

11.7.1.1� Observation Information Interpretation

Knowledge base:

if observed( closest_food_at( C: Cell ))

then closest( food_at( C: Cell ));

if observed( closest_help_seeker_at( C: Cell ))

then closest( help_seeker_at( C: Cell ));

if observed( help_seeker_at( C: Cell ))

then help_seeker_present;

if observed( self_looking_like_a_help_seeker )

then looking_like_a_help_seeker;
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Figure 11.8: Element of the white box view on the behaviour of a simple agent.
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Figure 11.9: Element of the white box view on the behaviour of a society of simple agents.
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if not observed( self_looking_like_a_help_seeker )

then not looking_like_a_help_seeker;

if observed( prev_performance( pick_up_food ))

then food_in_possession;

if observed( prev_performance( feed_help_seeker ))

then not food_in_possession;

if observed( prev_performance( feed_self ))

then not food_in_possession;

11.7.1.2� Action Execution Preparation

Knowledge base (some rules are marked with a bar in the margin for reference
purposes):

if next_action( change_appearance )

then to_perform( change_appearance );

if next_action( feed_self )

then to_perform( feed_self );

if next_action( pick_up_food )

and observed( food_at( cell( 0, 0 )))

then to_perform( pick_up_food );

if next_action( feed_help_seeker )

and observed( help_seeker_at( cell( 0, 0 )))

then to_perform( feed_help_seeker );

if next_action( eat_food )

and observed( food_at( cell( 0, 0 )))

then to_perform( eat_food );

if next_action( move_to( cell( X: ints, Y: ints )))

and  Y: ints > 0

then to_perform( go_north );

if next_action( move_to( cell( X: ints, Y: ints )))

and Y: ints < 0

then to_perform( go_south );

if next_action( move_to( cell( X: ints, 0 )))

and  X: ints > 0

then to_perform( go_east );

if next_action( move_to( cell( X: ints, 0 )))

and  X: ints < 0

then to_perform( go_west );
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11.7.2�Own Process Control

The knowledge bases for the (primitive) subcomponents of own_process_control are
presented in Section 11.7.2.1 to Section 11.7.2.4.

11.7.2.1� Own Characteristics

Knowledge base (for a selfish agent):

agent_character( selfish );

if energy_level < 0

then current_state( dead );

if current_state( dead )

then agent_died;

if not energy_level < 0

and energy_level < 20

then current_state( in_danger );

if not energy_level < 20

and energy_level < 60

then current_state( hungry );

if not energy_level < 60

then current_state( normal );

11.7.2.2� Own Resource Management

Knowledge base (for food value 40):

if observed( prev_performance( eat_food ))

then to_increment_energy_level_with( 40 );

if observed( prev_performance( feed_self ))

then to_increment_energy_level_with( 40 );

if observed( prev_performance( go_north ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance( go_south ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance( go_west ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance( go_east ))

then to_increment_energy_level_with( -2 );

if observed( prev_performance(

change_appearance ))

then to_increment_energy_level_with( -1 );
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if observed( prev_performance( pick_up_food ))

then to_increment_energy_level_with( -1 );

if observed( prev_performance( feed_help_seeker ))

then to_increment_energy_level_with( -1 );

if not observed( prev_performance( eat_food ))

and not observed( prev_performance( go_north ))

and not observed( prev_performance( go_south ))

and not observed( prev_performance( go_east ))

and not observed( prev_performance( go_west ))

and not observed( prev_performance( change_appearance ))

and not observed( prev_performance( pick_up_food ))

and not observed( prev_performance( feed_help_seeker ))

and not observed( prev_performance( feed_self ))

then to_increment_energy_level_with( -1 );

if old_energy_level = V1: ints

and delta_energy_level = V2: ints

and not V1: ints + V2: ints > 100

then energy_level = V1: ints + V2: ints;

if old_energy_level = V1: ints

and delta_energy_level = V2: ints

and V1: ints + V2: ints > 100

then energy_level = 100;

11.7.2.3� Goal Determination

Knowledge base:

if agent_character( solitary )

then selected_goal( find_food );

if agent_character( parasite )

then selected_goal( look_for_help );

if agent_character( selfish )

and current_state( in_danger )

then selected_goal( look_for_help );

if agent_character( selfish )

and current_state( hungry )

then selected_goal( find_food );

if agent_character( selfish )

and current_state( normal )

then selected_goal( find_food );

if agent_character( social )

and current_state( in_danger )

then selected_goal( look_for_help );

if agent_character( social )

and current_state( hungry )
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then selected_goal( find_food );

if agent_character( social )

and current_state( normal )

and help_seeker_present

then selected_goal( give_help );

if agent_character( social )

and current_state( normal )

and not help_seeker_present   /* Obtained by CWA */

then selected_goal( find_food );

11.7.2.4� Plan Determination

Knowledge base:

if selected_goal( look_for_help )

and not looking_like_a_help_seeker

then next_action( change_appearance );

if selected_goal( find_food )

and looking_like_a_help_seeker

then next_action( change_appearance );

if selected_goal( give_help )

and looking_like_a_help_seeker

then next_action( change_appearance );

if selected_goal( find_food )

and food_in_possession

then next_action( feed_self )

if selected_goal( find_food )

and not food_in_possession

and closest( food_at( cell( 0, 0 )))

then next_action( eat_food );

if selected_goal( find_food )

and not food_in_possession

and closest( food_at( cell( X: ints, Y: ints )))

and not X: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

if selected_goal( find_food )

and not food_in_possession

and closest( food_at( cell( X: ints, Y: ints )))

and not Y: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

if selected_goal( give_help )

and not food_in_possession

and closest( food_at( cell( X: ints, Y: ints )))

and not X: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));
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if selected_goal( give_help )

and not food_in_possession

and closest( food_at( cell( X: ints, Y: ints )))

and not Y: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

if selected_goal( give_help )

and not food_in_possession

and closest( food_at( cell( 0, 0 )))

then next_action( pick_up_food )

if selected_goal( give_help )

and food_in_possession

and closest( help_seeker_at( cell( X: ints, Y: ints )))

and not X: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

if selected_goal( give_help )

and food_in_possession

and closest( help_seeker_at( cell( X: ints, Y: ints )))

and not Y: ints = 0

then next_action( move_to( cell( X: ints, Y: ints )));

if selected_goal( give_help )

and food_in_possession

and closest( help_seeker_at( cell( 0, 0 )))

then next_action( feed_help_seeker );
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Chapter 12�

Comparison and Conclusions

In this final chapter, the semantic structure developed in this thesis is first
compared with a number of semantic structures for other approaches. Section 12.1
presents a comparison of semantic structures for the Concurrent MetateM
framework and the semantic structure developed in this thesis. To illustrate the
intended use of these semantic structures, the Concurrent MetateM framework
itself is described and briefly compared with the DESIRE modelling framework.
Section 12.2 presents a comparison of the semantics of Object Specification Logic
and the semantic structure developed in this thesis. Section 12.3 discusses the
relationship between so-called local model semantics for the representation of
contextual reasoning and the semantic structure developed in this thesis.
Section 12.4 briefly discusses relationships with a number of other frameworks.
Directions for further research are sketched in Section 12.5. Final conclusions are
drawn in Section 12.6. Please note that the description of OSL in Section 12.2 is
taken from (Eck, Engelfriet, Fensel, Harmelen, Venema & Willems, in press).

12.1� Concurrent MetateM

Concurrent MetateM (Fisher, 1995a) stems from research in the field of executable
temporal logic (Fisher & Owens, 1995) and the MetateM programming language
(Barringer, Fisher, Gabbay, Owens & Reynolds, 1996). Concurrent MetateM
extends the MetateM language with constructs for concurrent programming. One
of the primary applications of Concurrent MetateM is analysis and high-level
executable specification of multi-agent systems. The aim and scope of Concurrent
MetateM is in a number of respects comparable to the aim and scope of the
DESIRE modelling framework, as is the use of temporal logic. For this reason, a
relatively extensive comparison between the two frameworks and the semantic
structures used to described their semantics are presented in this section. A more
detailed comparison between Concurrent MetateM and DESIRE can be found in
(Mulder, Treur & Fisher, 1998).

In this section, first the two frameworks themselves are compared. This
comparison focuses on the structure of agents, inter-agent communication and
meta-level reasoning. A simple example multi-agent system is then described
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using Concurrent MetateM and the semantic structure developed in this thesis.
Finally, semantic structures for Concurrent MetateM are compared to the semantic
structure developed in this thesis.

12.1.1�Structure of Agents, Communication and Meta-Level Reasoning

In a DESIRE specification of a multi-agent system, the agents of the multi-agent
system are (usually) subcomponents of a top-level component that represents the
whole (multi-agent) system, together with one or more components that represent
the rest of the environment. A component that represents an agent is most often a
composed component. The compositional structure of the component represents a
hierarchy of agent processes. In a Concurrent MetateM model, agents are modelled
as objects that have no further structure at all: all subprocesses of an agent are
represented as one process, described by one set of temporal rules. In Concurrent
MetateM, the environment is usually not explicitly modelled, although it is
possible to introduce separate objects that represent the environment.

In DESIRE, the knowledge structures used in the knowledge bases and for the
input and output interfaces of components, are defined in terms of information
types, in which sort hierarchies can be defined. Information types define sets of
ground atoms. Each component has an internal state, and all input and output
interfaces have states. The states of components and links evolve over time.
Components have the input persistence property (see Chapter 6): if, for a specific
state of a component or link, a ground atom is e.g. true, than this is also the case for
the next state, unless the state has changed because of updating an information
link has been updated.

Concurrent MetateM does not have information types, there is no predefined
set of atoms, and there are no sorts. The input and output interfaces of an object
consist only of the names of predicates, called environment predicates and
component predicates, respectively. Two-valued logic is used with a closed world
assumption, thus a state is defined by the set of atoms that are true. Moreover, no
persistency assumption is used: if an atom that is true in a specific state is not
explicitly declared true in a next state, then it will be automatically false,
irrespective of its previous truth value.

Communication between agents in DESIRE is defined by the information links
between them. Communication between agents in Concurrent MetateM is done by
broadcast message passing as follows. An agent continuously computes new truth
values for its component predicate atoms (output atoms). These new values are
implicitly broadcast to all other agents where they become the new truth values for
the environment predicate atoms (input atoms) with the same name. Thus, when
an object sends a message, it can be received by all other objects. On top of this,
both multi-cast and point-to-point message passing can be defined. A newer
version of DESIRE which is not discussed in Chapter 9 also provides support for
broadcast communication. As an aside, let it be noted that in Concurrent MetateM,
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the specification of an agent may use atoms that are not part of the agent’s
interface. These atoms are internal atoms and are not visible for other agents.

DESIRE automatically lifts input and output atoms to a meta-level
representation and provides standard information types to express statements
about lifted atoms. In DESIRE, meta-reasoning is modelled by using separate
components for the object and the meta-level. For example, one component can
reason about the reasoning process and state of another component. Two types of
interaction between object- and meta-level are distinguished: upward reflection
(from object- to meta-level) and downward reflection (from meta- to object-level).

For meta-reasoning in Concurrent MetateM, the logic MML has been
developed. In MML, the domain over which terms range has been extended to
incorporate the names of object-level formulae. Execution of temporal formulae
can be controlled by executing them by a meta-interpreter. These meta-facilities
have, to the best of the author’s knowledge, not been implemented in the
Concurrent MetateM execution environment.

12.1.2�Example

The following example shows the specification of an example multi-agent system
in Concurrent MetateM. The example also shows how the multi-agent system can
be described using the semantic structure developed in this thesis.

Example 12.1. A small multi-agent system used as an example in (Fisher &
Wooldridge, 1997) serves as a running example for this section. The system is
described in the quote below taken from (Fisher & Wooldridge, 1997). In Figure
12.1, the system is specified in Concurrent MetateM notation (although a different
notation for the temporal operators is used). The first line of each box is an agent
declaration, consisting of the name of the agent, its input propositions (between
parentheses), and its output propositions (between square brackets). In each box,
the agent declaration is followed by Concurrent MetateM rules in temporal logic
describing the behaviour of the agent. The temporal operators F and Y are to be
read as ‘sometime in the future’ and ‘at the previous moment’, respectively. The
following quotation from (Fisher & Wooldridge, 1997) introduces the example
multi-agent system:

“A common form of multi-agent system is based upon the idea of distributed

problem solving. Here, we consider a simple abstract distributed problem solving

system, in which a single agent, called top, broadcasts a problem to a group of

problem solvers. Some of these problem solvers can solve the problem completely,

and some will reply with a solution. We define such a Concurrent MetateM system

in [Figure 12.1]. Here, solvera can solve a different problem from the one top poses

while solverb can solve the desired problem, but does not annouce the fact (as

solution1 is not a component predicate for solverb); solverc can solve the problem posed

by top, and will eventually reply with a solution.”
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“(…), we will verify some properties of the above system in [Section 6.2 of (Fisher &

Wooldridge, 1997)]. We will also consider the refinement of individual agents, (e.g., a

single problem-solver) into groups of agents with the same properties.”

top(solution1)[problem1,solved1]:
1. start � Fproblem1;
2. Ysolution1 � solved1.

solvera(problem2)[solution2]:
1. Yproblem2 � solution2.

solverb(problem1)[solution2]:
1. Yproblem1 � Fsolution1.

solverc(problem1)[solution1]:
1. Yproblem1 � Fsolution1.

Figure 12.1: A distributed problem solving system (from Fisher & Wooldridge, 1997).

To formally define the multi-agent system presented in Figure 12.1 using the
semantic structure developed in this thesis, first an additional component toplevel

(not included in (Fisher & Wooldridge, 1997)) is introduced. This additional
component represents the multi-agent system as a whole. Communication
channels in a multi-agent are explicitly represented in the semantic structure, but
not in Concurrent MetateM. In Concurrent MetateM, changes to environment
predicates of the agents are broadcast, so all agents are able to receive them. To
represent all possible information exchange, for the four agents in the example,
twelve information links are needed. However, in the example, the agents only
react to environment predicates of agent top, and top is the only agent that reacts to
changes to environment predicates of the other agents. Therefore, six information
links suffice to represent all information transmission that takes place in the
example system: one from top to each other agent, and one from solvera, solverb and
solverc to top. These links are named top_to_solvera, top_to_solverb, top_to_solverc,
solvera_to_top, solverb_to_top, solverc_to_top. The example multi-agent system is
represented by the structure hierarchy sh1=�Comp1;Lnk1;�1;dom1;cdom1� with:

�� Comp1={toplevel,top,solvera,solverb,solverc};

�� Lnk1={top_to_solvera,top_to_solverb,top_to_solverc,solvera_to_top,solverb_to_top,

solverc_to_top};

�� �1={�top;toplevel�,�solvera;toplevel�,�solverb;toplevel�,�solverc;toplevel�} 	

{�solvera_to_top;toplevel�,�solverb_to_top;toplevel�,�solverc_to_top;toplevel�,

�top_to_solvera;toplevel�,�top_to_solverb;toplevel�,�top_to_solverc;toplevel�};
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�� dom1={�solvera_to_top;solvera�,�solverb_to_top;solverb�,�solverc_to_top;solverc�,

�top_to_solvera;top�,� top_to_solverb;top�,� top_to_solverc;top�};

�� cdom1={�top_to_solvera;solvera�,�top_to_solverb;solverb�,�top_to_solverc;solverc�,

�solvera_to_top;top�,�solverb_to_top;top�,�solverc_to_top;top�}.

The following component information state description signatures can be used to
describe the states of the components that represent the agents. (See
Definition 10.12 for the definition of component information state description
signatures. As this section shows how the example presented in (Fisher &
Wooldridge, 1997) can be represented with the semantic structure developed in
this thesis (and not with DESIRE), the DESIRE constructs presented in Chapter 9
are not used.)

CONCURRENT METATEM AGENT
DECLARATION

SIGNATURE

- �toplevel=��;�;��;

top(solution1)[problem1,solved1]: �top=�{solution1};�;{problem1,solved1}�;

solvera(problem2)[solution2]: �solvera=�{problem2};�;{solution2}�;

solverb(problem1)[solution2]: �solverb=�{problem1};{solution1};{solution2}�;

solverc(problem1)[solution1]: �solverc=�{problem1};�;{solution1}�.

In the example, the multi-agent system represented by toplevel does not interact
with anything outside this component.  Therefore, the input and output parts of
�toplevel  do not contain any proposition symbols. Moreover, in this example there is
no need to define an internal part of �toplevel,. �

Contrary to DESIRE and the semantic structure developed in this thesis,
Concurrent MetateM does not provide support for hierarchical composition. As a
consequence, refinement of an agent in the model of a multi-agent system is
represented by replacing the original model by its refinement. This is illustrated by
a refinement of the example, again based on (Fisher & Wooldridge, 1997) to
illustrate the structural aspects of components and information links. In their
paper, Fisher and Wooldridge present a new system in which:

“solverc is replaced by two agents who together can solve problem1, but cannot

manage this individually. These agents, called solverd and solvere are defined in

[Figure 12.2]. (…)Thus, when solverd receives the problem it cannot do anything until

it has heard from solvere. When solvere receives the problem, it broadcasts the fact

that it can solve part of the problem (i.e., it broadcasts solution1.2). When solverd sees



12.1: Concurrent MetateM

350

this, it knows it can solve the other part of the problem and broadcasts the whole

solution.” (Underlining by the author of this thesis.)

solverd(problem1,solution1.2)[solution1]:
1. (Ysolution1.2 � Pproblem1) � Fsolution1.

solvere(problem1)[solution1.2]:
1. Yproblem1 � Fsolution1.2.

Figure 12.2: Refined Problem Solving Agents (from Fisher & Wooldridge, 1997)

Fisher and Wooldridge replace solverc by the two agents, solverd and solvere, which
together perform the task of solverc. Using the semantic structure developed in this
thesis, solverc is not replaced but refined; that is: solverc is decomposed into two
subcomponents solverd and solvere. The refined agent solverc is depicted in Figure
12.3.

Figure 12.3: Refined Problem solving agents in graphical notation.

In Example 12.1, the compositional structure of the example multi-agent system
was described by a structure hierarchy sh1=�Comp1;Lnk1;�1;dom1;cdom1�. The

refined system can be described by a structure hierarchy
sh2=�Comp2;Lnk2;�2;dom2;cdom2� with:

�� Comp2=Comp1	{solverd,solvere};

�� Lnk2=Lnk1	{solverc_to_solvere,solverc_to_solverd,solvere_to_solverd,solverd_to_solverc};

�� �2=�1	{�solverd;solverc�,�solvere;solverc�,�solverc_to_solvere;solverc�,

�solverc_to_solverd;solverc�,�solvere_to_solverd;solverc�,�solverd_to_solverc;solverc�};

�� dom2=dom1	{�solverc_to_solvere;solverc�,�solverc_to_solverd;solverc�,

�solvere_to_solverd;solvere�,�solverd_to_solverc;solverd�};
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�� cdom2=cdom1�{�solverc_to_solvere;solvere�,�solverc_to_solverd;solverd�,

�solvere_to_solverd;solverc�,�solverd_to_solverc;solverc�}.

For the components solverd and solvere, the following signatures are defined (the
signature for solverc remains unchanged; it is repeated here for ease of reference):

CONCURRENT METATEM AGENT
DECLARATION

SIGNATURE

solverc(problem1)[solution1]: �solverc=�{problem1};�;{solution1}�

solverd(problem1,solution1.2)[solution1]: �solverd=�{problem1,solution1.2};�;{solution1}�

solvere(problem1)[solution1.2]: �solvere=�{problem1};�;{solution1.2}�

12.1.3�Semantics

The semantics of Concurrent MetateM presented in (Fisher & Wooldridge, 1997)
follows the commonly used possible-worlds semantics for modal (and, more
specifically, temporal) logic. As a starting point for the semantics, the logical
language available to the user for the specification of the behaviour of an
individual agent (i.e., the language for the rules given in Figure 12.1) is extended
with an epistemic modality. (The epistemic modality can only be applied to non-
temporal formulas.) The resulting temporal logic is called TBL (Temporal Belief
Logic). This logic is interpreted over time frames with a discrete order. The precise
behaviour of the agents is constrained by a fixed set of temporal logic axioms.
These axioms state several properties of agent interactions, e.g. an agent only
believes a proposition p if p is an output proposition of another agent and p was
true at the previous moment in time. Fisher and Wooldridge explicitly require
communication to be lossless with their axiom (14) in (Fisher & Wooldridge, 1997).
The order-preserving transmission property is not imposed by Fisher and
Wooldridge (that is, at least not formally. However, in Fisher (1995b) it is explicitly
stated that this property is not assumed).

At least two alternative semantics for Concurrent MetateM are reported. In
(Reynolds, 1995), a first-order variant of the semantics for Concurrent MetateM is
developed. In (Fisher, 1995b), a dense-time semantics is presented. The dense time
semantics is basically defined in the same way as the semantics presented in
(Fisher & Wooldridge, 1997). However, the frames for the interpretation of
temporal formulae consist of an (infinite) set of time points with a dense order. (In
fact, the set of real numbers is used.) However, the use of a dense order for the
time frames has far-reaching consequences: it is not possible to express a next
moment in time to interpret the ‘next’-modality, or a previous moment in time to
interpret the ‘previous’-modality. An alternative is to focus on changes of truth
values between states. Barringer, Kuiper and Pnueli (1986) present a dense
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temporal logic, called TLR (Temporal Logic of the Reals) which includes an ‘until’-
modality based on state changes. The dense-time semantics for Concurrent
MetateM is, in fact, a translation of Concurrent MetateM to TLR. The main
assumption applied in this translation is as follows: individual agents in a multi-
agent system are themselves discrete systems, the (discrete) behaviour of which
occurs in densely ordered time, possibly simultaneously with discrete behaviour of
other agents. A predicate act is introduced to represent their discrete behaviour, for
each agent, which alternates between intervals in which it is true and false. Only if
act is true, the truth values of other agent predicates may change. Consecutive
intervals in which act is true define a ‘next’ relation for the agent.

Similar to standard temporal logic, dense time temporal logic does not have
inherent support for true concurrency. However, dense-time temporal logic is
viewed as a better approximation of true concurrency than discrete-time temporal
logic for three reasons. First, real time is also densely ordered, so dense time
frames are  less artificial than discrete time frames. Second, it is possible to model
concurrent actions as actions that occur infinitely close to one another. Third, and
most important, in many dense-time temporal logic, all behaviour is modelled as
consisting of intervals of (real) time. This enables modelling concurrent actions as
overlapping intervals, possibly with the start of both intervals infinitely close to
one another, and possibly likewise for the end of the intervals.

A number of differences between the semantic structure developed in this
thesis and the approaches followed in the semantics of Concurrent MetateM can be
distinguished:

�� Both the discrete and dense time versions of the semantics of Concurrent
MetateM assume that global time is available. As a result, all observers of a
multi-agent system necessarily observe exactly the same behaviour in terms
of the order of global states of the multi-agent system. The semantic
structure developed in this thesis does not assume that global time is
available. Different observers may observe different orders of global state, as
explained in Chapter 7;

�� Both the discrete and dense time versions of the semantics of Concurrent
MetateM describe the behaviour of a multi-agent system in terms of global
states of the entire multi-agent system. There is no support for locality;

�� In Concurrent MetateM, only one view is provided, which completely
describes the behaviour of a multi-agent system. Thus, this view is
comparable to the glass box view. The semantic structure developed in this
thesis provides three views on the behaviour of a multi-agent system;

�� In the semantic structure developed in this thesis, the behaviour of
compositions of components is described in terms of the behaviour of these
components by incorporating the behaviour of these components in
compatible multitraces. Multitraces retain the hierarchical structure of
components. In Concurrent MetateM, the behaviour of compositions of



12.2: Object Specification Logic (OSL)

353

components is described by models of a global set of formulae, composed of
the formulae that describe the behaviour of individual objects. Moreover,
objects in Concurrent MetateM are not hierarchical, i.e., objects cannot
consist of other objects.

12.2� Object Specification Logic (OSL)

Object Specification Logic (OSL, Sernadas, Sernadas & Costa, 1995) is a logic
designed for the specification and analysis of object-oriented models of
information systems. OSL is of interest for this thesis because separation of local
and global reasoning has been an important requirement in the design of OSL. As
a result, OSL supports locality, and, to a limited extent, compositionality. Locality
and compositionality are important features of the semantic structure developed in
this thesis. Moreover, OSL is state-based, as is the semantic structure developed in
this thesis, and employs temporal logic, as does DESIRE. The description of OSL in
this chapter is taken from (Eck, Engelfriet, Fensel, Harmelen, Venema & Willems,
in press).

OSL consists of two levels: a local and a global level. The local level is
concerned with the definition of the local state and behaviour of an object (the
description of which is called an aspect of an object), specified by aspect templates in
a local specification language. (For each aspect template, a different local language
is defined.) At the global level, the different aspects are related, forming
specialisations (to represent inheritance) and aggregations (to represent composite
objects). In this section, the notation and terminology used in (Jungclaus, 1993) is
adopted, which differs from the (more complex) notation in (Sernadas et al., 1995).
Section 12.2.1 presents the local specification language, used to specify object
aspects. Section 12.2.2 describes the semantics of the local level. Section 12.2.3
proceeds to discuss morphisms, which connect the local and the global level.
Section 12.2.4 concludes the description of OSL by discussing the global level and
its semantics. Section 12.2.5 presents a brief summary of the preceding sections on
OSL. Section 12.2.6 compares the semantics of OSL to the semantic structure
developed in this thesis.

12.2.1�Local Syntax

At the local level, states and transitions are described using many-sorted first-order
local temporal predicate languages. These languages are defined using (local)
signatures �=���;�;ATT;EVT�. A local signature consists of a partially ordered set4

�� of identifier sorts (sorts containing object identifiers), a distinguished sort ����
(the local sort), which is used for identifying instances of the class (aspect)

                                                          
4 Actually, �� is the Cartesian category freely generated from the partial order. In this

section, OSL is presented without reference to the category structure of the sorts, similar to
the description in (Jungclaus, 1993).
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specified by �, a set of attribute symbols ATT and a set of event symbols EVT.
Based on a signature �, a set of predicates �(�) is defined, consisting of predicates
�e(x1,…,xn) and �e(x1,…,xn) for every event symbol e�EVT, and �a(x1,…,xn) for
every attribute symbol a�ATT. The intended meaning of the predicates �e(x1,…,xn)

and �a(x1,…,xn) is that event e is enabled (i.e., can occur (it does not have to occur)

in the current state) and that a certain value for attribute a is observable. The
predicate �e(x1,…,xn) indicates that event e occurs in the current state. From these

predicates, a local specification language is defined, with the usual logical
connectives and three temporal operators: � (‘next’), � (‘always’) and 	

(‘sometimes’). In this local language, predicates are localised by prefixing them
with a variable with as sort the sort �. A local specification is a set of formulas (the
local axioms) in this language. State transitions are described by axioms that define
admissible behaviour by relating current and future states.

12.2.2�Local Semantics

Similar to the syntax of OSL, semantically local and global states are distinguished.
The local interpretation of formulas assumes the existence of a fixed data universe
(an algebra of data types), providing a carrier set A(s) for each sort s. Formulas in
the local specification language are interpreted over local interpretation structures
that consist of a family of carrier sets for the sorts used and a sequence of states
(�k)k³N (discrete linear time). States are sets of predicates that describe which

observations are possible, which events are enabled, and which events actually
occur in that state. Formally, states are elements of the set of all possible local states
�={p(x1,….,xn)|p��(�),xi�A(si) for i=1,…,n}. A sequence of states has additional

semantic constraints, among which is the following frame assumption: only the
occurrence of an event can change the set of observables and enabled events (i.e.,
only an event occurrence can change a state). Another constraint is that attributes
are functional in OSL: if �a(x)�� and �a(x’)�� for some state � and for some
a�ATT, then x=x’. As a consequence, attributes are interpreted functionally, as
usual.

12.2.3�Template Morphism Syntax: Bridge Between Local and Global Level

As stated before, objects can be composed to form complex objects. In OSL, this is
specified using template morphisms to compose complex signatures from which
formulae describing the complex objects are generated. A template morphism �:
���’ between two signatures �=���;�;ATT;EVT� and �’=����;�’;ATT’;EVT’�, is a
tuple ��IS; 

a
;�ATT;�EVT�, with �IS a mapping of identifier sorts, �ATT and �EVT

mappings for the attribute and event symbols, respectively, and  
a

: �’��IS(�) an

operator used to distinguish kinds of morphisms in a way that is not relevant here.
There are two kinds of morphisms: inclusion of � in �’ and injection of � in �’.
With the former, additional signature elements can be added to �, making
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inclusion morphisms suitable for modelling specialization. With the latter, � can
be incorporated in a more complex signature, making it suitable to model
aggregations of objects in composed objects. Using template morphisms, different
local signatures can be combined. The resulting signatures are used to compose
formulae in the global language.

12.2.4�Global Language and Semantics

The global language is based on a signature that consists of all local signatures,
generated by inclusion and injection template morphisms. The language defined
over this signature consists of formulas of the form �!�, where � and � are local-
language interaction formulas over different signatures. Using this language,
relations between (the behaviour of) objects are described. In a formula �!�, the
occurrence of events described in � implies the simultaneous occurrence of the
events described in � (‘event calling’). The semantics of the global language is
similar to the semantics of local languages. (The global language is generated from
the global signature in the same way as local languages are generated from local
signatures. The semantics of the global language can therefore be defined in the
same way as the semantics of the local language.) The global language is thus
interpreted over sequences of states, each of which is a set of predicates of the
global signature. These states are global states.

There is, however, one difference between the global level and the local level.
The global signature consists of local signatures, related by template morphisms.
The semantics of the global language not only consists of sequences of states
generated from the global signature, but also of an indexed set of all local
interpretation signatures. Similar to the semantic structure developed in this thesis,
only combinations of local and global interpretation structures that respect specific
constraints are allowed. (See (Sernadas, Sernadas & Costa, 1995, Definition 5.4,
second bullet, clause 2, page 621. In this thesis, these constraints are modelled by
compatibility relations.) However, in OSL, local interpretation structures are only
related to the global interpretation structure, which needs to be defined to interpret
formulae in the global language. In the semantic structure developed in this thesis,
compatibility relates local component and link traces, and no global traces are
necessary.

12.2.5�Intuition Behind OSL

Consider a global language formula �!�. Both � and � are formulae of the global
signature, containing subformulae that refer to different objects in the system. At
the global level, with formulae like �!�, it is only possible to formulate
expressions like ‘if something happens in the life of an object referred to in �, then
something else has to happen in the life of an object referred to in � at the same
moment’. For such an expression to have a meaning, it is necessary to specify the
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lives of both objects. This is done by the full temporal logic subformulae of � and
�.

12.2.6�Comparison

The semantics of OSL resembles the semantic structure developed in this thesis in
its attention for locality. As in the semantic structure developed in this thesis, OSL
starts from local perspectives on the behaviour of parts of a system (objects in the
case of OSL, components in the case of the semantic structure developed in this
thesis). A number of differences, however, can be identified:

�� OSL constructs a global language to describe the behaviour of a system as a
whole, which is not the case for the semantic structure developed in this
thesis. (As OSL is a language, the only way to relate different local
languages is to define a global language.)

�� OSL supports compositionality only to a limited extent. In OSL, it is possible
to specify objects that consist of other objects (aggregation). However, the
behaviour of a composite object is not described in terms of the behaviour of
its constituent objects.

�� In OSL, only two levels of locality are distinguished: the object level and the
system level. In the semantic structure developed in this thesis, three views
on the behaviour of (components in) a compositional system are
distinguished, which correspond to three levels of locality. As these views
can be applied to any component at any level in a compositional system,
many different levels of locality can be distinguished.

�� The semantics of OSL is defined in terms of global states and implies that a
notion of global time is available, which is not the case for the semantic
structure developed in this thesis.

Interaction is modelled in OSL in a way that resembles interaction in the semantic
structure developed in this thesis. In OSL, interaction is modelled by event calling

as explained above. Event calling is a form of implication: the occurrence of an
event described by � in the event calling formula �!� implies the occurrence of an
event described by � in another object. This is similar to the interpretation of
information link mappings as described in Chapter 6: the occurrence of specific
states in a local component trace of the domain of a link implies the occurrence of
specific states in a local component trace of the co-domain of the link.

12.3� Local Model Semantics for Contextual Reasoning

An important topic in the study of common-sense reasoning in Artificial
Intelligence is the formalisation of contextual reasoning. In this section, a
formalisation of contextual reasoning developed by Giunchiglia and Ghidini (1998)
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is compared to the semantic structure developed in this thesis. Contextual
reasoning is related to multi-agent systems as follows. An agent’s observations are
often constrained, which precludes the agent from obtaining a complete model of
its environment. An agent may be aware of the fact that it (temporarily) cannot
obtain observations of a specific aspect of its environment. In this case, the absence
of information on this aspect can be modelled using epistemic logic or three-valued
logic. However, an agent may not even be aware of the existence of specific aspects
of its environment. Its view of its environment is local in the sense that its view
cannot accommodate knowledge on the aspects of which it is not aware. The agent
reasons about its environment from the context consisting of (partial or complete)
knowledge of those aspects of which it is aware. This is called the principle of

locality in (Giunchiglia & Ghidini, 1998).
In their formalisation, Giunchiglia and Ghidini (1998) only consider objective

information about the environment available to agents in their context (subjective
interpretations are not considered). As several agents reason about the same
environment, parts of the different agents’ objective information overlap. The
overlapping parts of different contexts must match, as they are local views of the
same part of the environment. This is called the principle of compatibility in
(Giunchiglia & Ghidini, 1998).

Giunchiglia and Ghidini (1998) present a semantics that can be used to capture
contextual reasoning according to the principles of locality and compatibility. Their
approach is related to the semantic structure presented in this thesis, as locality
and compatibility are the basic principles employed in both approaches.

As a starting point, Giunchiglia and Ghidini (1998) assume that local reasoning
within a context is described by (first-order) local languages, a (possibly different)
language Li for each agent i. Similar to the languages presented in Chapter 9, each

language only contains terms and predicates to describe the aspects that are
known to exist in the local view. Associated with each local language Li is a class of
standard first-order interpretation structures Mi. The formulae that describe the
knowledge available in a specific local view i denote a set of local models Mi�Mi

that classically satisfy those formulae.
Giunchiglia and Ghidini (1998) introduce (non-temporal) compatibility

relations as relations on the sets of local models. Similar to (Giunchiglia &
Ghidini, 1998), in this description of local model semantics, all definitions are
presented for two agents. (It is straightforward to extend the definitions to the
general case for more than two agents.) A compatibility relation is defined as a
relation C��(M1)��(M2). (�(S) denotes the power set of S). For convenience,
Giunchiglia and Ghidini use the notation ci for the i-th element of a tuple c�C. A
compatibility relation C is called a model for {L1,L2} if C��  and ��;��"C. A context

Ci is defined as the set of local models in the compatibility relation, or formally, the
set of local models m�Mi such that m�ci for c�C. In other words, a context is the
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set of local models that take overlap with other context as modelled by a
compatibility relation, into account.

The framework described in (Giunchiglia & Gidini, 1998) is very general.
Compatibility relations are not further defined as specific (proper) subsets of
�(M1)��(M2) (e.g., for specific applications). The role of compatibility relations is to

model constraints on local models imposed by non-local dependencies. The
constraints modelled by compatibility have, in the words of Giunchiglia and
Ghidini (1998), “the structural effect of changing the set of local models defining
each context. It forces local models to agree up to a certain extent”. This structural
effect is made explicit in the notion of satisfiability of a (local) formula:

Definition 12.2. (Satisfaction (Giunchiglia & Gidini, 1998), slightly different
notation). Let C be a model and let ��Li be a formula. Then C satisfies � iff for all c�C, ci

satisfies �, where ci satisfies � iff for all m�ci, m classically satisfies �.

Thus, local models m that do not occur in pairs in the compatibility relation C

cannot satisfy �.
It is interesting to conclude the description of local model semantics with

Giunchiglia and Ghidini’s notion of logical consequence in contextual reasoning,
which is the foundation for reasoning about agents that maintain contextual views
of their environment:

Definition 12.3. (Logical consequence (Giunchiglia & Gidini, 1998), slightly
different notation). Let #1 and #2 be sets of formulae of L1 and L2, respectively. A formula

��Li is a logical consequence of a set of formulae #=#1 	#2 iff for all models C and for

all c�C, if for all j�{1,2}, j�i, cj satisfies #j, then for all m�ci, if m classically satisfies #i,

then m classically satisfies �.

The basic principles locality and compatibility in the semantic structure developed
in this thesis are very similar to the notions of locality and compatibility employed
by Giunchiglia and Ghidini. The examples and discussions of compatibility
relations in (Giunchiglia & Gidini, 1998) indicate that compatibility relations, in
their approach, are constructed in the same way as compatibility relations and
constructs in the semantic structure presented in this thesis. Moreover,
compatibility relations have exactly the same role: to model constraints on local
models (local component and link traces in this thesis) imposed by non-local
dependencies (information transmission in this thesis). However, a number of
differences between local model semantics and the semantic structure developed
in this thesis can be identified:

�� The approach presented in (Giunchiglia & Ghidini, 1998) only covers static
aspects of contextual reasoning. However, in this thesis, the principles of
locality and compatibility relations are extended for dynamic domains and
applied to the dynamics of multi-agent systems.
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�� As the definition of compatibility presented above indicates, Giunchiglia
and Ghidini relate sets of local models in compatibility relations. (A
compatibility relation is a subset of �(M1)��(M2), not of M1�M2.) Contexts

consist of sets of local models, which enables the representation of partial
information. As Definition 5.18 indicates, a compatibility relation consists of
triples of single local component or link traces. Partiality may be modelled
by using partial states inside local component and link traces (as in the
DESIRE modelling framework presented in Chapter 9);

�� Compatibility in local model semantics model constraints imposed by
overlapping parts of local models. In the semantic structure developed in
this thesis, local component and link traces do not overlap. A local
component or link trace only consists of states of a single component or link.
However, information transmission introduces similar constraints between
local models as the overlap of local models in contextual reasoning, giving
rise to a notion of (temporal) compatibility;

12.4� Other Approaches

The semantic structure developed in this thesis can be compared with many more
approaches in various areas of research. A number of suggestions for further
comparison are presented:

�� Within the area of multi-agent systems, there is considerable attention for
the specification of multi-agent system dynamics. A number of approaches
are of particular importance to consider for a comparison with the semantic
structure developed in this thesis. Kiss (1996) presents a very general
overview of agent dynamics and its relations with traditional Distributed
Artificial Intelligence topics such as planning and rationality. A semantics
for an abstract agent programming language (for single agents) is presented
in (Hindriks, Boer, Hoek & Meyer, 1998). In (Eijk, Boer, Hoek &
Meyer, 1998), information exchange in a multi-agent system is formalised.
Situation calculus (McCarthy & Hayes, 1969) is used for the specification of
(multi-)agent systems using the Congolog framework in (Lespérance,
Levesque, Lin, Marcu, Reiter & Scherl, 1996; Lespérance, Levesque &
Ruman, 1997). Burkhard (1993) studies liveliness and safety properties in
multi-agent systems. Burkhard’s (1993) approach is entirely event-based: the
behaviour of a single agent is modelled by a set of strings of events, which
constitutes a formal language. Liveliness and safety properties for a multi-
agent system are analysed in terms of operations on formal languages.

�� Chapter 7 presented a detailed comparison with the representation of
concurrency in distributed systems based on the notion of dependence
(Lamport, 1978). Candidates for further comparison are more algebraic
approaches such as event structures (Winskel, 1989) or Chu spaces
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(Pratt, 1995), or Petri net based approaches such as (Moldt &
Weinberg, 1997). Ladkin and Leue (1995) and Damm and Harel (1999) study
the relation between event-based and state-based descriptions of dynamics
in the context of timing diagrams or message sequence diagrams. As Ladkin
and Leue observe, diagrams similar to Figure 2.9 and Figure 7.4 play an
important role in various research areas, including Hardware Design,
Computer Networks (Tanenbaum, 1996) and Object Orientation (e.g.,
message sequence charts in the UML (Booch, Rumbaugh & Jacobson, 1998)).

�� Semantic structures for co-ordination languages (Papadopoulos &
Arbab, 1998; Ciancarini & Wolf, 1999) form another category of interesting
approaches for comparison with the semantic structure developed in this
thesis. As stated in Chapter 2, most co-ordination languages completely
abstract from computations in a compositional system by only
distinguishing a number of components, each of which contains a number of
computational processes. Co-ordination languages focus on the specification
of systems of such components and information exchange between them,
which is similar to the semantic structure developed in this thesis. The
semantical description of Manifold (Bonsangue, Arbab, Bakker, Rutten,
Scutellà & Zavattaro, 1998) is of particular interest as it has a number of
characteristics in common with the semantic structure developed in this
thesis. In Manifold, communication channels between components are
explicitly modelled. Moreover, these channels have their own state (similar
to commitment presented in Section 2.2.3) and are autonomous.

12.5� Further Research

The semantic structure developed in this thesis provides a ground for further
research in a number of areas. First, the semantic structure can be extended, i.e. by
including additional facilities for the specification of real-time behaviour (see also
Section 12.5.1), process creation, or other phenomena that have been studied in for
instance the context of Process Algebra (Bergsta & Klop, 1985). Second, verification
and validation of multi-agent systems represented as compositional systems using
the semantic structure can be investigated. Formal verification requires a formal
proof system. Section 12.5.2 sketches how two existing logics can possibly be used
for reasoning about properties of multi-agent systems in the context of the
semantic structure. As an aside, validation and verification of properties of multi-
agent systems do not require the use of mechanical proof creation or checking. In
(Jonker, Treur & Vries, 1998), an approach is presented for the verification of multi-
agent systems using rigorous mathematical reasoning. As the semantic structure
developed in this thesis is itself defined in mathematical terms, the approach
described in (Jonker, Treur & Vries, 1998) may be particularly suitable. However,
this form of verification is difficult to support directly by mechanical means, such
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as for instance a proof checker for general first-order logic. Third, some common
topics in concurrency theory, such as notions of equivalence of behaviour, can be
investigated in the context of the semantic structure. In Section 12.5.3, some
directions for such investigations are briefly sketched. Fourth, additional
applications of the semantic structure can be investigated. In Section 12.5.4, further
research with respect to the DESIRE modelling framework is sketched.

12.5.1�Real-time Logics and Fictitious Clocks

Standard temporal logic can be used to express qualitative statements about time,
but not to express quantitative statements. Real-time logics are extensions of
temporal logic that support quantitative statements about time. Most real-time
logics are either based on dense time (as presented in Section 12.1.3) or on fictitious
clocks (Raskin & Schobbens, 1997). In the fictitious clocks approach, a global
fictitious clock is introduced that is assumed to generate clock ticks at a fixed rate.
The clock ticks are represented in the sequence of discrete, global states of a
system. Time is measured by counting the number of states between two states in
which a clock tick occurs. When dense-time temporal logic is used as a real-time
logic, a metric on the dense set of time points (e.g., the standard metric on the set of
real numbers) is used for quantitative statements about time.

In (Raskin & Schobbens, 1997), the relation between the dense time and
fictitious clocks approaches to real-time logics is investigated. Raskin and
Schobbens (1997) present one temporal logic language with two different
interpretations (dense time and fictitious clocks). The most imporant connective in
the logic is a special form of until, which is parameterised by an amount of time.
For instance, ��

�3� is true at a time point t iff � is true at t and stays true for at

most three units of time, after which � is true.
The fictitious clock interpretation of their language is based on models

consisting of a discrete sequence of global states. A global state itself is a set of
proposition symbols that are true in that state. In a subset of these states, the
proposition symbol tick is true, which indicates that a tick of the fictitious clock
occurs between that state and the next one. A formula ��

�3� is true at state s in

such a model iff � is true in state s and in the sequence of states between s and the
state in which � is no longer true, but � is, at most three states in which ‘tick’ is true
appear.

Raskin and Schobbens do not introduce a formal framework with a specific
computational model, such as DESIRE or Concurrent MetateM. Instead, they only
introduce the temporal logic mentioned above. However, their work is intended
for the specification of properties of computer systems (as stated on page 166 of
their paper). The dense time interpretation of the language is therefore based on
models that consist of consecutive intervals of real time in which the (global) state
of a system remains constant. The union of these intervals is required to cover an
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unbounded amount of time, which ensures that there cannot be an infinite number
of intervals in which the state is distinct in a finite amount of time (non-Zenoness).

The semantic structures and logic language presented in (Raskin &
Schobbens, 1997) are standard. The main result of the paper is a precise definition
of a relationship between dense time and fictitious clock semantics. Using this
relation, approximate answers to satisfiability questions for the dense time
semantics (which is undecidable) can be found: dense time formulae are abstracted
to fictitious clock interpretation, which is decidable. This approach can be
employed at the local level in the semantic structure to mechanically determine
whether specific local component or link traces satisfy a local formula.

Many differences can be distinguished between the approach by Raspin and
Schobbens, and the semantic structure developed in this thesis. On the one hand,
both the dense time semantics and in the fictitious clocks semantics assume that
global time exists. Moreover, the approach by Raskin and Schobbens is based on a
notion of global state. Locality, compositionality and hierarchical composition are
not treated at all. On the other hand, the approach by Raskin and Schobbens
provides much more detail with respect to the representation of real-time systems
than the semantic structure presented in this thesis. Also the DESIRE modelling
framework presented in Chapter 9 has no built-in facilities for expressing real-time
requirements.

A possible further research question is: can the approach of Raspin and
Schobbens be used to specify sets of local behaviour of individual components,
and if so, is this beneficial? The definitions of local component and link traces
presented in Chapter 5 enable the use of dense time or fictitious clock real time
logic: for the time frames on which these traces are based, dense time or fictitious
clock structures as described in (Raskin & Schobbens, 1997) can be used. A logic
language for real time, such as the logic presented in (Raskin & Schobbens, 1997),
could be used to specify the sets of local component and link traces.

12.5.2�Verification

The formally defined semantic structure presented in this thesis enables precise,
mathematical proofs of properties of multi-agent systems. It is often desirable to
mechanically verify or generate such proofs, which requires a formal logic
specifically suited for the semantic structure developed in this thesis. The
application of the semantic structure in the context of DESIRE presented in
Chapter 9 shows how temporal logic can be used for the specification of local
behaviour. The application of formal logic for reasoning at a more global level is an
area for further research. Two approaches that seem to be particularly suitable for
this purpose are Multi-Context Systems (Giunchiglia, 1993; Giunchiglia &
Serafini, 1994) and Interleaving Set Temporal Logic (ISTL; Katz & Peled, 1990),
which are both described below.
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12.5.2.1� Multi-Context Systems

A Multi-Context System (Giunchiglia, 1993; Giunchiglia & Serafini, 1994), also
called a Multi-Language System, is a set of (possibly different) logic languages,
together with bridge rules which relate formulae in these languages. The use of
different logic languages is the same as in Local Model Semantics (discussed in
Section 12.3): each language is a local language that describes a specific context. A
bridge rule is an inference rule in which the language of the condition of the rule is
not the same as the language of the conclusion of the rule. A bridge rule states that
if a formula is proven that matches the condition of the bridge rule in a derivation
in one context, then the conclusion of the rule can be introduced as an assumption
in a derivation in another context. Bridge rules are not the same for all Multi-
Context System applications; instead they differ from system to system, depending
on the application.

The Multi-Context Systems approach is a likely candidate for a formal logic that
enables reasoning at the global level in applications of the semantic structure for
the following reasons:

�� Similar to the semantic structure developed in this thesis, the Multi-Context
Systems approach focuses on locality and compositionality. In a Multi-
Context System, only local languages are defined, and only local proofs can
be derived. Proofs of global properties are composed of these local proofs;

�� Multi-Context Systems may be considered the syntactical counterpart of
Local Model Semantics (Giunchiglia & Gidini, 1998) as presented in
Section 12.3, although Giunchiglia and Gidini (1998) do not investigate the
relationship between Multi-Context Systems and Local Model Semantics.

The Multi-Context Systems approach is supported by the proof checker GETFOL
(Giunchiglia, 1994,1993). The availability of a proof checker contributes greatly to
the attractiveness of the Multi-Context Systems approach for the semantic
structure developed in this thesis. However, as yet there are no research results
with respect to the application of the Multi-Context Systems approach for the
semantic structure. In this section, only a sketch is provided of how an application
of the Multi-Context Systems approach for proving properties of multi-agent
systems could be envisioned.

Figure 12.4 shows a derivation of the property start�Fsolved1 for the
distributed problem solving system used in the discussion of Concurrent MetateM
in the first section of this chapter. (In (Fisher & Wooldridge, 1997), the same
property is proven using a Hilbert-style temporal logic.) Please take note that the
derivation shown in Figure 12.4 is tentative and most probably unsound. The
derivation is only presented to sketch the flavour of an application of the Multi-
Context Systems approach. The notation used in Figure 12.4 is the same as in
(Giunchiglia, 1993).
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Figure 12.4: Tentative sketch of a derivation of start�Fsolved1.

In the derivation shown in Figure 12.4, each box corresponds with a component:
both boxes labelled top correspond to component top, and the box labelled solverc

corresponds to component solverc. Each box contains a sequent calculus deduction
using only propositional symbols defined for the corresponding component. In
other words, each box contains a derivation in the context of its corresponding
component, using the local language of that component. In the derivations, three
kinds of open assumptions can be distinguished:

�� Assumptions of the form G($), where $ is a rule occuring in the specification
of the corresponding component. (See Figure 12.1 for the specification of
components top and solverc.) These assumptions can be considered to be
axioms which state that in the component, all rules by which it is specified
are always applicable;

�� Assumptions of the form (F� � G(P���))�F� and (F� � G(P��F�))�F�,
where P��� is a rule in the specification of the corresponding component.
Assumptions of this form, in general, express local axioms of computation
such as, e.g., liveliness. For instance, an axiom of the form (F� �

G(P���))�F�, where P��� is a rule, states that if eventually the
condition of the rule is true, then the conclusion will also eventually be true.
Other assumptions in this category may for instance be frame axioms, or, in
the context of Concurrent MetateM’s TBL (see Section 12.1.3), axioms of the
underlying epistemic logic. Further research is needed to identify which
axioms are relevant in the context of multi-agent systems;

�� Assumptions introduced by bridge rules, such as for example Fproblem1 in
the box labelled solverc. In the derivation shown in Figure 12.4, only one
bridge rule is applied, called ���� and denoted by a heavy, solid line in the
figure. Bridge rules differ for specific applications of the multi-context
systems approach. For the semantic structure developed in this thesis, a
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possible bridge rule may state that if an information link exists from a
component C to a component D that links �  to �, then if F� is derived in
component C, F� can be introduced as an assumption in a derivation in the
context of component D. Bridge rules in this application of the Multi-
Context Systems approach are closely related to properties of information
transmission as presented in Chapter 6, and to information link mapping
descriptions, which specify how states in various components are related.

The tentative derivation presented in Figure 12.4 suggest an approach for proving
properties of a multi-agent system using temporal local model semantics. The basic
intuition that forms the basis of this approach is as follows. As the notion of
compatibility relations does not enforce any relation on the local clocks of
components C and D, proofs have to be based on local properties of components
that state that relevant events eventually happen. Bridge rules ensure that these
relevant events actually happen if, as proven for another component, a related
event happens in that component. It remains to be investigated whether this is
sound and sufficient for proving all valid properties.

12.5.2.2� ISTL—Interleaving Set Temporal Logic

Another likely candidate for a formal logic that enables proving properties of
compositional systems is Interleaving Set Temporal Logic (ISTL; Katz &
Peled, 1990). Syntactically, ISTL is similar to branching-time temporal logics such
as CTL* (Emerson & Halpern, 1986). However, the interpretation of ISTL differs
from most other temporal logics: in ISTL, the two sources of non-determinism
found in concurrent systems are not identified, as explained below.

In a concurrent system in which no global clock is assumed, two sources of non-
determinism can be distinguished. First, specific processes in a concurrent system
may be non-deterministic with respect to their reactions to information received
from other processes. Although it is not known beforehand which reaction will be
chosen by the process, all observers of the process observe the same reaction after a
choice is made. Second, due to the absence of global time, different observers
observe different behaviour of the same process even if this process always reacts
in the same way. In most temporal logics, both forms of non-determinism are
represented in exactly the same way: as branching points in their interpretation
structures. As a consequence, the two forms of non-determinism cannot be
distinguished in these logics. Moreover, in these logics, the behaviour of one
concurrent system is described by one branching-time interpretation structure.

In ISTL, both forms of non-determinism are distinguished. The behaviour of
one concurrent system is described in ISTL by a set of branching-time
interpretation structures. Each different branching-time interpretation structure in
this set represents a different reaction to information received by a process in the
system. Each branching point in one specific branching-time interpretation
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structure represents non-determinisn with respect to observations due to the
absence of global time.

Interpretation structures of ISTL are similar to the global view on the behaviour
of a compositional system presented in Chapter 7. As explained in Chapter 7,
global states for one specific multitrace are partially ordered. The partial order of
global states represents non-determinism of observations caused by the absence of
global time. If a component in a compositional system is non-deterministic with
respect to its reactions to information received from other components, the
different behavious are represented by different multitraces, which leads to
different sets of partially ordered global states.

It may be possible to prove that the class of interpretation structures formally
defined in (Katz & Peled, 1990) for ISTL is exactly the same as the class of partially
ordered sets of strict global states defined in Chapter 7. If this is the case, than ISTL
is suitable as a logic to reason about global properties of a compositional system. If
this is not the case, further research may try to adapt ISTL’s inference rules to the
semantic structure developed in this thesis.

A specific question that has to be answered in the development of formal logic
systems for the semantic structure is the question of fairness (Francez, 1986;
Manna & Pnueli, 1992). In fact, it may come as a surprise that fairness is not
discussed in this thesis, as specific semantic structures often commit to a specific
notion of fairness. However, in this thesis, the view of OSL is adopted, which states
that fairness is a property of an application of the semantic structure and may differ
for different applications. In the words of the developers of OSL: “The question of
fairness was completely disregarded in this paper. Indeed, we assume that the task
of imposing fairness or justice requirements is left to the specifier (to the point of
inconsistency if by mistake too much is required).” (Sernadas, Sernadas &
Costa, 1995, p. 627).

12.5.3�Concurrency Theory

As stated in Section 1.4.5, this thesis does not make any claim with respect to the
applicability of the semantic structure as a general theory of concurrency.
However, the question whether the semantic structure is applicable outside the
area of multi-agent systems may be interesting for further research. A general topic
in Concurrency Theory is equivalence of computations. For instance, in Process
Algebra (Bergstra & Klop, 1985) approaches, a process and its desired properties
are both specified using a process algebra. The question whether a property holds
for the process is reduced to the question whether the computations denoted by
the two specifications are equivalent. The development of equivalence notions for
process algebra specifications is therefore an important research area. It would be
interesting to develop similar notions for the semantic structure presented in this
thesis.
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12.5.4�Applications of the Semantic Structure

Some directions for further research can be identified in the area of applications of
the semantic structure:

�� The semantic structure fully abstracts from specific agent processes such as
co-operation and maintenance of mental notions such as beliefs, desires,
intentions and commitments. The specification of, for instance, a BDI
architecture for a single agent, or of inter-agent commitments in a multi-
agent system, raises interesting questions with respect to the application of
the semantic structure. In Chapter 10 and Chapter 11, applications in these
areas are presented. In these applications, the behaviour of agents does not
change during the lifetime of agents. Further research may investigate how
the semantic structure can support adaptive behaviour and learning;

�� In the context of DESIRE, at least two directions for further research can be
identified. First, DESIRE has recently been extended with support for
dynamic adaptation of agent models and for additional forms of
information transmission such as broadcasting. Further research may extend
the formal description of DESIRE presented in Chapter 9 to include these
new facilities. Second, some research questions with respect to
implementation generators for DESIRE can be identified. To support the
design process for multi-agents systems using DESIRE, an implementation
generator has been developed. Currently, the implementation generator
executes automatically generated prototype implementations of multi-agent
systems on a single processor using pseudo-concurrency. To do full justice
to the specifications a, prototype implementation should ideally run in a
distributed environment. In the near future, the implementation generators
will be augmented, providing support for concurrent execution. A possible
research question is: is it possible to develop or validate such an
implementation generator directly from the description of the DESIRE
behaviour as presented in Chapter 9?

12.6� Conclusions

The aim of the research presented in this thesis is formulated in Chapter 1 as the
development of a formal, compositional, semantic structure for multi-agent
systems dynamics. Section 1.4.3 lists four requirements for the semantic structure:
(1) both deliberation and interaction in a multi-agent system should be explicitly
represented, (2) the semantic structure should support the compositionality principle,
(3) an agent’s dynamics should be described in terms of its state and state

transformations, and (4) the semantic structure should support locality. This final
section of the thesis describes the extent to which these requirements have been
fulfilled.
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The research presented in this thesis is based on a central assumption, introduced
in Chapter 1: multi-agent systems are represented as compositional systems. As a
consequence, the main building blocks of the semantic structure are components
and information links between components. Studies in the context of DESIRE have
shown that multi-agent systems can successfully be represented as compositional
systems (Brazier, Dunin-Keplicz, Jennings & Treur, 1997; Brazier, Eck &
Treur, 1997b,2001a; see also the concluding remarks with respect to DESIRE
presented in Section 9.4). Moreover, existing generic representations (models) of
multi-agent systems can be (re)used for agents and components of agents, such as
the generic agent model presented in (Brazier, Jonker & Treur, 2000). In Chapter 3,
modelling choices with respect to how a multi-agent system can be represented as
a compositional system, are discussed. Chapter 2 discussed compositional systems
and presented commitments with respect to properties of compositional systems
that can be described using the semantic structure developed in this thesis.

The main constructs that comprise the semantic structure are mathematically
defined in Chapter 5. The static compositional structure of components is
described by structure hierarchies. Three views on the behaviour of a compositional
system (described by a structure hierarchy) are presented: the black box view, the
white box view, and the glass box view. Each view is a set of compatible multitraces. A
multitrace is an indexed set of local component and link traces of (a subset of) the
components and links in the compositional system, in which a partial order on the
index set represents the compositional structure of the system. A local component
or link trace consists of local component or link states. A local state is fully
determined by one single component and link (hence the name). For each
component and link, a set of local component traces is assumed to be given. Such a
set contains all local component and link traces that describe possible behaviour
without taking constraints imposed by information transmission into account.
Compatibility relations group triples consisting of a local link trace for an
information link I, a local component trace of the domain of I, and a local trace of
the co-domain of I. Such triples are related by compatibility if the local traces in the
triple respect constraints imposed by information transmission, e.g., if a state
occurs in a local component trace of the domain in which information has to be
transmitted, then a related state occurs in the co-domain of the link in which the
transmitted information has just been received. A compatible multitrace contains
only local component and link traces that occur in compatibility relations.
Properties of information transmission such as the lossless transmission property
are captured as properties of compatibility relations. The definitions of these
properties demonstrate how compatibility relations relate local component traces
according to information link mappings.

The four requirements for the semantic structure described in Chapter 1 and
mentioned at the beginning of this section are met to the following extent:

�� The first requirement (deliberation and interaction) is met to the following
extent. Local component traces describe processes within primitive



12.6: Conclusions

369

components that use information received from other components and
produce information intended to be transmitted to other components. Local
link traces and compatibility relations describe the information transmission
processes needed to actually transmit information. As explained in
Chapter 3, an agent’s deliberation is represented by internal processes inside
components, while an agent’s interaction with other agents and with its
environment is represented by information transmission. The semantic
structure thus supports both kinds of agent activities;

�� With respect to the second requirement (the compositionality principle), it is
important to note that the adjective ‘compositional’ refers to three different
but related notions in the literature. These notions are supported by the
semantic structure developed in this thesis in the following way:

�� First, the adjective ‘compositional’ simply denotes that a system consists
of components. First and foremost, the semantic structure focuses on
compositional systems: systems consisting of components and
information links between components. Components and information
links are the two most important constructs that constitute the semantic
structure. In Chapter 2, compositional systems are (informally) defined,
commitments with respect to properties of compositional systems
adopted in this thesis are presented and alternative properties are
described. The notion of a compositional system is also discussed from
the perspective of areas of research such as Software Engineering and
Co-ordination Languages;

�� Second, the adjective ‘compositional’ is used in the following way: a
compositional system is a system in which the dynamics of a system
composed of a number of components is defined by a composition
relation. The composition relation itself defines the dynamics of a system
composed of a number of components in terms of the dynamics of those
components. The definitions of the three views on the behaviour of a
composed component presented in Chapter 5 (the black box, glass box
and white box views) clearly indicate that compositional systems in the
semantic structure adopt this compositionality property: each view is
built from local component and link traces or from multitraces that
describe the behaviour of lower level components. Moreover, in Chapter
5, propositions are presented that specify how more global views can be
composed of local views on the behaviour of a component;

�� Third, the adjective ‘compositional’ may apply to proofs of properties of
a system that itself may or may not be compositional (in the previous
meanings). In the preface to (Roever et al., 1998), the term ‘compositional
method’ refers to “Any method by which the properties of a system can
be inferred from the properies of its constituents, without additional
information about the internal structure of the constituents”. This
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meaning of ‘compositional’ is not directly applicable to the semantic
structure developed in this thesis, as the semantic structure is not
equipped with a formal logic. However, the focus of the semantic
structure on other notions of compositionality most probably will
facilitate the development of compositional proof methods for the
semantic structure. Foster (1996) connects this view on the term
‘compositional’ with the previous one as follows: “A compositional
programming system is one in which properties of program components
are preserved when those components are composed in parallel with
other program components.” Foster’s perspective on compositionality is
difficult to combine with the property of locality in a hierarchical system,
as properties of lower-level components need to be expressible at higher
levels for Foster’s perspective to apply.

In the semantic structure, not only primitive components, but also composed
components are associated with a notion of local behaviour. This local
behaviour is, constrained by information transmission, one of the building
blocks of the actual behaviour of a component. It can be used for
management of its input and output state and for accumulation and
generalisation of information provided by subcomponents. This local
behaviour of a composed component is in general completely independent
of the behaviour of its subcomponents;

�� According to the third requirement described in Chapter 1, the semantic
structure should be state-based. As indicated in Chapter 1, agents in a multi-
agent system are often described and analysed in terms of their mental state.
Therefore, the dynamics of a multi-agent system should be described first
and foremost in terms of state and state transformation, as opposed to
actions or events. The semantic structure as presented in Chapter 5 and
Chapter 6 is entirely defined in terms of states and traces consisting of states.
Nevertheless, as described in Chapter 7, (mostly global) event-based notions
for the description of dynamics, such as the notions presented in (Lamport,
1986; Charron-Bost et al., 1996) are applicable within the state-based
semantic structure;

�� The fourth requirement states that the semantic structure  should support
locality. Locality is at the heart of the semantic structure. The basic units for
the representation of dynamics are local component and link traces, which
consist of local component and link states. The black box view and white
box view provide different levels of locality with respect to the description
of the behaviour of composed components. Global views are defined (in the
form of the glass box view defined in Chapter 5 as well as the notion of
global state defined in Chapter 7). These global views are defined in terms of
local views and not the other way around. Commitments presented in
Chapter 2 with respect to compositional systems also ensure that
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information is localised in components. Only information in the input and
output interfaces of components is visible to other components. Moreover,
this information is only visible to a limited set of agents: as the restrictions
on information transmission presented in Chapter 2 indicate, only links
between a component and the parent components and subcomponents of
the parent component are allowed. As a result, information is kept as local
as possible: information can only be distributed in a compositional system
via parent components that may control which information is distributed to
other components.

The semantic structure as presented in Chapter 5 and Chapter 6 provides all
facilities needed to represent the control phenomenon. Chapter 8 describes the
phenomenon of control in multi-agent systems and compositional systems in more
depth. Some constructs of the semantic structure introduced in Chapter 5 and
Chapter 6, however, needed to be refined in Chapter 8 to facilitate the
representation of control in a separated, domain-independent way.

Chapters 9, 10 and 11 show how the semantic structure can be applied for
different purposes. In Chapter 9, the semantic structure is used to describe the
dynamics of models of multi-agent systems in the DESIRE modelling framework.
In Chapter 10 and Chapter 11, two example multi-agent systems modelled using
DESIRE are presented. The example systems show how the dynamics of complex
multi-agent systems can be described by the semantic structure and how locality
and compositionality help to reduce the complexity of such systems.

As indicated in Section 12.5, there are different directions for further research.
The ultimate goal of all such research should be to meet the promise of multi-agent
systems sketched in Chapter 1. The research presented in this thesis shows that the
semantic structure is a first step towards rigorous, formal design and analysis of
multi-agent systems necessary to reach this goal.
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Summary

A Compositional Semantic Structure for Multi-Agent Systems Dynamics

Since a number of years, multi-agent systems have attracted considerable attention
in Computer Science and Artificial Intelligence. A multi-agent system is a software
(or hardware) system that consists of a set of co-operating, autonomous parts,
called agents. For analysis and design, specification formalisms are needed that are
especially suitable for such systems. To enable automated support for the analysis
and design process, the semantics of such formalisms has to be described precisely.

The semantics of a specification formalism consists of a mapping of expressions
of the formalism onto a set of concepts and relations between these concepts that is
sufficiently rich to express the intended semantics. In this thesis, such a set is called
a semantic structure. To enable the precision mentioned above, the semantic
structure itself is described with the help of formal, mathematical notions.

The goal of the research described in this thesis is the development of a
semantic structure for the description of the dynamics of multi-agent systems. Due
to the specific characteristics of multi-agent systems, four requirements are stated
with which the semantic structure should comply: (i) the semantic structure should
support the description of both the internal dynamics of an agent and of the
interaction between agents, (ii) the description of dynamics should be
compositional (i.e., the behaviour of a system is described in terms that refer to the
behaviour of the parts that make up the system), (iii) dynamics should be
described in terms of states and state transitions of the agents, and (iv) the
dynamics of a specific part of a system should be described in terms that only refer
to this part (and possibly to its constituents). In other words, it is not possible to
take a notion of state at a global or systems level as the basis for the semantic
structure. These requirements are further described in Chapter 1.

The starting point for the development of the semantic structure is the
assumption that a multi-agent system can be modelled as a compositional system. A
compositional system is understood to be a system that consists of components and
connections between these components: information links. A component is a locus of
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information and computation that processes this information. A component offers
services to other components, and is able to use services offered by other
components. Information exchange necessary for the use of services takes place via
the information links between components. A component may be composed of
other components, which gives rise to a recursive system structure.

The starting point for the development of the semantic structure is further
elaborated in Chapter 2 and Chapter 3. In Chapter 2, the notion of a component is
described in more detail, and a number of choices with respect to the mechanism
of information exchange between components are discussed. The development of
the semantic structure requires that commitments are made to a number of these
choices. Chapter 3 discusses how a multi-agent system can be modelled as a
compositional system, again including a number of choices that have to be made.
However, for the further development of the semantic structure, commitments to
specific choices presented in Chapter 3 are not required.

Chapters 4 to 7 contain the formal description of the semantic structure.
Chapter 4 describes, in an informal way, the central construct in the semantic
structure, which is formally elaborated in Chapter 5. In addition, an example is
introduced that is used in the next chapters to illustrate the semantic structure. A
description of the dynamics of a compositional system in terms of the semantic
structure consists of traces, one for each component. A trace is a sequence of local

states of the component. A local state of a component only includes (descriptions
of) the state of that component, and not of any other component. Only local traces
that are compatible may occur together in the set of traces that describes the
behaviour of a compositional system. Local traces of two components that are
connected by an information link are compatible if the traces respect information
exchange as described for this link: in essence, information that is sent in one trace
should be received in the other. (Local traces of two components that are not
connected by an information link are compatible by definition.)

Chapter 5 first presents formal definitions for the notions introduced in
Chapter 2 and Chapter 3. These notions determine the non-dynamic structure of
compositional systems. Three views on the behaviour of a compositional system
are formally defined. These three views differ in the extent to which the behaviour
of subcomponents is visible: not at all, only for one level, or fully. Chapter 6
elaborates upon the notion of compatibility. The choices described in Chapter 2
with respect to the mechanism of information exchange are presented in this
chapter as properties of compatibility relations between sets of local traces.
Chapter 7 shows that, starting from the concepts presented in Chapter 5 and
Chapter 6 (that do not rely on a notion of global state), it is possible to define a
notion of global state, without referring to a notion of global (synchronised) time.
The notion of global state is compared to similar notions that can be found in the
literature.

Chapter 8 is devoted to modelling control within the semantic structure and
within multi-agent systems. Due to the supposed autonomy of agents, modelling
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control is subject to constraints. Control is understood to be information
transmission from one component, to a component that is to be controlled, with the
intention of influencing the behaviour of the component that is to be controlled. In
this way, it is possible to describe control in terms of the semantic structure
without the need to extend the semantic structure, and without compromising the
autonomy of controlled components.

Chapters 9 to 11 present applications of the semantic structure. In these
chapters, the DESIRE modelling framework plays a central role. The DESIRE
modelling framework provides a partially graphical and partially textual language
for the specification of multi-agent systems. The language is sufficiently rich to
enable automatic generation of prototypes of the systems that are specified.
Chapter 9 presents a detailed description of the semantics of DESIRE specifications
in terms of the semantic structure, with emphasis on the dynamics of multi-agent
systems specified using DESIRE. In Chapter 10, a model for co-operation to
establish mutually exclusive access to a resource is specified using DESIRE. In this
model, a small number of agents with a complex structure co-operate. In contrast,
in Chapter 11, a DESIRE-specification of altruistic behaviour between a relatively
large number of simple agents is presented. A way to analyse both specifications is
sketched, based on the semantics in terms of the semantic structure.

The final chapter of this thesis, Chapter 12, contains an evaluation of the
semantic structure with respect to the requirements put forward in Chapter 1.
Moreover, the approach presented in this thesis is compared to a number of other
approaches that can be found in the literature.
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Samenvatting

Een compositionele semantische structuur voor de dynamiek van multi-

agentsystemen

Sinds enige jaren is er in de Informatica en in de Kunstmatige Intelligentie veel
belangstelling voor multi-agentsystemen. Hieronder worden software– (of hard-
ware–) systemen verstaan die zijn opgebouwd uit samenwerkende autonome
delen, de agenten. Er bestaat, voor analyse en ontwerp, behoefte aan specificatie-
formalismen die speciaal geschikt zijn voor degelijke systemen. De betekenis
(semantiek) van dergelijke formalismen moet precies worden vastgelegd om
geautomatiseerde ondersteuning van het analyse- en ontwerpproces mogelijk te
maken.

De semantiek van een specificatieformalisme bestaat uit een afbeelding van
uitdrukkingen in dat formalisme op een verzameling van concepten en relaties
tussen deze concepten die voldoende rijk is om de beoogde semantiek uit te druk-
ken. In dit proefschrift wordt een dergelijke verzameling een semantische structuur

genoemd. Ten behoeve van bovengenoemde precisie wordt de semantische struc-
tuur zelf beschreven met behulp van formele, wiskundige begrippen.

Doel van het in dit proefschrift gepresenteerde onderzoek is het ontwikkelen
van een semantische structuur voor de beschrijving van de dynamiek van multi-
agentsystemen. Vanwege de specifieke eigenschappen van multi-agentsystemen
wordt aan de semantische structuur een viertal eisen gesteld: (i) de semantische
structuur moet ondersteuning bieden voor de beschrijving van zowel de interne
dynamiek van een agent als van de interactie tussen agenten, (ii) de beschrijving
van dynamiek moet compositioneel zijn (dat wil zeggen, gedrag van een systeem
wordt beschreven in termen van het gedrag van de onderdelen van het systeem),
(iii) dynamiek moet worden uitgedrukt in termen van de toestand en toestands-
overgangen van de agenten, en (iv) dynamiek van een bepaald systeemdeel moet
beschreven kunnen worden in termen die alleen aan dat systeemdeel (en eventueel
onderdelen daarvan) refereren (met andere woorden, er kan niet worden uit-



Samenvatting

392

gegaan van een toestandsbegrip op globaal ofwel systeemniveau). Deze eisen
worden nader toegelicht in hoofdstuk 1.

Het startpunt voor de ontwikkeling van de semantische structuur is de aan-
name dat een multi-agentsysteem gemodelleerd kan worden als een compositioneel

systeem. Met een compositioneel systeem wordt een systeem bedoeld dat bestaat
uit componenten en verbindingen tussen deze componenten: de information links.
Een component vormt een eenheid van gegevens en bewerkingen op die gegevens.
Een component biedt diensten aan ten behoeve van andere componenten, en kan
zelf van diensten van andere componenten gebruik maken. De hiervoor benodigde
uitwisseling van informatie vindt plaats via de information links tussen de com-
ponenten. Een component kan zelf bestaan uit andere componenten. Hierdoor ont-
staat een recursieve systeemstructuur.

In de hoofdstukken 2 en 3 wordt het startpunt voor de ontwikkeling van de
semantische structuur verder uitgewerkt. In hoofdstuk 2 wordt het componentbe-
grip nader toegelicht en wordt een groot aantal keuzes besproken met betrekking
tot het mechanisme van informatie-uitwisseling tussen componenten. Voor de
ontwikkeling van de semantische structuur moet een aantal van deze keuzes wor-
den vastgelegd. In hoofdstuk 3 wordt besproken hoe een multi-agentsysteem ge-
modelleerd kan worden als een compositioneel systeem. Ook hierbij is sprake van
een zekere keuzevrijheid, die in hoofdstuk 3 aan de orde komt. Deze keuzes hoe-
ven echter niet vastgelegd te worden voor de verdere ontwikkeling van de seman-
tische structuur.

De hoofdstukken 4 tot en met 7 bevatten de formele beschrijving van de se-
mantische structuur. Hoofdstuk 4 beschrijft op informele wijze de centrale con-
structie in de semantische structuur, die in hoofdstuk 5 formeel wordt uitgewerkt.
Daarnaast wordt een voorbeeld geïntroduceerd dat in de volgende hoofdstukken
gebruikt wordt om de semantische structuur te illustreren. Een beschrijving van de
dynamiek van een compositioneel systeem in termen van de semantische structuur
bestaat uit traces, één voor elke component, waarbij een trace een opeenvolging is
van lokale toestanden van die component. In een lokale toestand komt alleen de (be-
schrijving van) de toestand van de component in kwestie voor in zijn trace, niet die
van andere componenten. Alleen lokale traces die compatibel zijn komen tezamen
voor in de verzameling van traces die het gedrag van een compositioneel systeem
beschrijft. Lokale traces van twee componenten die aan elkaar zijn verbonden met
een information link, zijn compatibel als de traces informatie-uitwisseling volgens
de beschrijving van deze link respecteren. Hiermee wordt in essentie bedoeld dat
informatie die verzonden wordt in de ene trace moet ontvangen worden in de
andere. (Lokale traces van twee componenten die niet verbonden zijn met een
information link, zijn per definitie compatibel.)

In hoofdstuk 5 worden allereerst formele definities gegeven voor de begrippen
die in de hoofdstukken 2 en 3 geïntroduceerd zijn. Hiermee is de niet-dynamische
structuur van compositionele systemen vastgelegd. Vervolgens worden drie per-
spectieven op het gedrag van een compositioneel systeem formeel gedefinieerd.
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Deze drie perspectieven verschillen in de mate waarin het gedrag van sub-compo-
nenten zichtbaar is in de beschrijving van het gedrag: in het geheel niet, één niveau
diep, of volledig. Hoofdstuk 6 gaat nader in op het begrip compatibiliteit. De keu-
zes die in hoofdstuk 2 beschreven zijn met betrekking tot het mechanisme van
informatie-uitwisseling, worden in dit hoofdstuk gerepresenteerd als eisen op de
compatibiliteitsrelaties tussen verzamelingen van lokale traces. Hoofdstuk 7 laat
zien dat, uitgaande van de concepten gepresenteerd in de hoofdstukken 5 en 6
(waarin geen globaal toestandsbegrip voorkomt) een globaal toestandsbegrip ge-
definieerd kan worden, zonder daarbij uit te gaan van een globaal (gesynchro-
niseerd) tijdsbegrip. Het geïntroduceerde globale toestandsbegrip wordt vergele-
ken met soortgelijke noties uit de literatuur.

Hoofdstuk 8 is gewijd aan het modelleren van besturing in de semantische
structuur en in multi-agentsystemen. Vanwege de veronderstelde autonomie van
agenten is de modellering van besturing aan beperkingen onderhevig. Besturing
wordt opgevat als informatietransmissie van een component naar een te besturen
component met het beoogde doel om invloed uit te oefenen op het gedrag van de
te besturen component. Op deze wijze opgevat kan besturing worden beschreven
in termen van de semantische structuur zonder dat de semantische structuur uit-
gebreid hoeft te worden, en wordt de autonomie van bestuurde componenten niet
aangetast.

De hoofdstukken 9, 10 en 11 gaan in op toepassingen van de semantische
structuur. In deze hoofdstukken staat het DESIRE modelleerraamwerk centraal.
Dit modelleerraamwerk biedt een gedeeltelijk grafische en gedeeltelijk tekstuele
taal voor de specificatie van multi-agentsystemen. De taal is voldoende rijk om
automatische vervaardiging van uitvoerbare prototypes van de gespecificeerde
systemen mogelijk te maken. In hoofdstuk 9 wordt een gedetailleerde beschrijving
van de betekenis van DESIRE-specificaties in termen van de semantische structuur
gegeven, met nadruk op de dynamiek van in DESIRE gespecificeerde multi-agent-
systemen. In hoofdstuk 10 wordt een samenwerkingsmodel voor het verkrijgen
van exclusieve beschikking over een zeker middel gespecificeerd met behulp van
DESIRE. Bij dit model gaat het om samenwerking tussen een gering aantal agenten
met een complexe structuur. Het omgekeerde is het geval in hoofdstuk 11, waar
een DESIRE-specificatie wordt gepresenteerd van altruïstisch gedrag van eenvou-
dige agenten. Van beide specificaties wordt geschetst hoe zij geanalyseerd kunnen
worden door uit te gaan van hun betekenis in termen van de semantische struc-
tuur.

Het laatste hoofdstuk van het proefschrift, hoofdstuk 12, bevat een evaluatie
van de semantische structuur met betrekking tot de eisen die in hoofdstuk 1 ge-
steld zijn. Daarnaast wordt de in dit proefschrift gepresenteerde benadering ver-
geleken met enkele andere benaderingen uit de literatuur.
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