
Softw Syst Model (2009) 8:85–116
DOI 10.1007/s10270-007-0064-x

REGULAR PAPER

A compositional semantics of UML-RSDS

K. Lano

Received: 3 June 2006 / Revised: 25 May 2007 / Accepted: 29 June 2007 / Published online: 3 August 2007
© Springer-Verlag 2007

Abstract This paper provides a semantics for the UML-
RSDS (Reactive System Development Support) subset of
UML, using the real-time action logic (RAL) formalism.
We show how this semantics can be used to resolve some
ambiguities and omissions in UML semantics, and to support
reasoning about specifications using the B formal method and
tools. We use ‘semantic profiles’ to provide precise seman-
tics for different semantic variation points of UML. We also
show how RAL can be used to give a semantics to notations
for real-time specification in UML. Unlike other approaches
to UML semantics, which concentrate on the class diagram
notation, our semantic representation has behaviour as a cen-
tral element, and can be used to define semantics for use
cases, state machines and interactions, in addition to class
diagrams.

Keywords UML semantics · UML-RSDS ·
Model transformations

1 Introduction

UML [42] is a large and complex notation, in which many
aspects of the semantics remain incomplete or imprecise.
Specific problems include:

1. Lack of distinction between concepts of precondition and
guard in state machine semantics.

Communicated by Prof. Jean-Marc Jezequel.

K. Lano (B)
Department of Computer Science, King’s College London,
WC2R 2LS London, UK
e-mail: kevin.lano@kcl.ac.uk

2. Lack of semantic consistency properties for individual
models and between models of the same system [20].

3. The definition of behavioural compatibility.
4. Lack of consistent interpretation of concepts [40].

The upgrade of UML to UML 2.0 rationalised the meta-
model structure of UML, but introduced further semantic
complexities by enlarging the UML notation, for example to
include Petri-net style models.

We solve some of these problems by using the following
semantics approach:

1. Use a semantic model which is very general and supports
treatment of large parts of UML, and of extensions of
UML, for real-time and hybrid systems.

2. Use structured theories to decompose the semantics of a
model into subtheories for individual classes and objects,
so that instance-level reasoning can be carried out more
efficiently.

We show how a complete semantics can be given to the UML-
RSDS [30] subset of the UML 2 language, and we handle
semantic variation in UML by defining ‘semantic profiles’
which incorporate these variant semantics.

UML-RSDS includes the following models:

1. Class diagrams.
2. State machine diagrams.
3. OCL [43] constraints.

UML-RSDS constraints include:

1. Local constraints of a class, referring only to data fea-
tures of that class or its ancestors. Local constraints are
the class invariant, and the pre and postconditions of

123

86 K. Lano

operations of the class, which can also refer to parameters
of their operation.

2. Inter-class constraints, attached to classes, associations
or sets of associations. These may refer to data features
of the connected classes.

3. State machine constraints: guards and state invariants,
which may refer to data features of the class or its
ancestors.

UML contains a number of notations which refer to time,
such as time-based triggers in state machines, and the nota-
tion for interactions [42, Sect. 14]. It is also intended to extend
UML-RSDS to include additional constraints to support the
specification of concurrent and real-time aspects of a system,
to support some of the features of the UML profile for real-
time [41]. These facilities include:

1. Specification of durations of operation executions, and
delay in a requested operation being executed.

2. Specification of periodic behaviour.
3. Specification of operation semantics as sequential,

guarded or concurrent.
4. Specification of priority policies for request handling,

such as “first come first served”.

Therefore the semantics for UML-RSDS must support
representation of time and properties of execution instances,
at a detailed level.

A large number of relevant formalisms exist, including
Real Time Logic (RTL) [3,25], Temporal Logic of Actions
(TLA) [28], Duration Calculus [13] and real-time temporal
logics [44,45]. We will use a simple but highly expressive
formalism, RAL [29], based on RTL.

RAL directly supports the assignment of times to method
initiations and terminations, and also contains an embedding
of linear temporal logic, by interpreting “next time” as “next
action invocation time”. RAL is an extension of modal logics
such as the object calculus of [17], and therefore can be used
as a semantics for the B notation [1], which enables us to
prove the correctness of a translation from UML-RSDS to B.
RAL has been used to give a semantics to the real-time object-
oriented language VDM++ [29]. The semantics described
here is also used as the basis of the UML-RSDS tools [31].

In Appendix A we define precisely the metamodels and
notation of UML-RSDS as a subset of UML 2. In Appendi-
cies B and C the RAL formalism for UML-RSDS semantics is
defined. Section 2 defines the semantics of UML-RSDS class
diagrams. Section 3 defines the semantics of UML-RSDS
state machine diagrams. Section 4 describes application of
the semantics to verification of model transformations and
semantic analysis of models. In Sect. 5 we consider extension
to other notations of UML 2, and in Sect. 6 give comparisons
to related work. Appendix D describes the UML-RSDS tools.

2 Semantics of class diagrams

The semantics of a class diagram model M is constructed in
a modular fashion [5] from instance theories IC of typical
instances of classes C of the model, and class theories �C of
these classes, and subsystem theories �S of subsystems S of
the model. These are composed together to define a theory
�M of the complete model.

In the following sections we show how these theories
are constructed incrementally from the elements of a class
diagram.

2.1 Types

A model may define enumerated types T as enumerations of
enumeration literals val1, . . . , valn as in UML. These types
are represented in a theory �T with no action symbols, and
with a type symbol T defined as the appropriate finite set:

(ET D) :
T = {val1, . . . , valn}.

The vali are defined as distinct constants of �T (attributes
which are not in the write frame of any action).

Types I nteger , Real and Boolean are interpreted by
the corresponding mathematical data types Z, R and B =
{T RU E, F AL SE}. String is interpreted as the type S of
sequences of characters. B and S are disjoint from R and
from any enumerated type. All enumerated types are also
disjoint from R, B and S.

2.2 Data features

If class C declares attributes att1 : T1, . . . , attn : Tn , then IC

has corresponding attributes att1 : T ′1, . . . , attn : T ′n where
T ′ is the semantic interpretation of T .

If an enumerated type T is used in an attribute declaration,
then IC is defined to extend the theory �T .

If there is an association from C to a class D (Fig. 1), then
any role at the D association end is represented in IC as an
attribute

(RT D) :
role : DT

D

M
att1 : T1
att2 : T2
...
attn : Tn

role

C

Fig. 1 Class definitions in UML-RSDS

123

A compositional semantics of UML-RSDS 87

Table 1 Representation of role multiplicities

Multiplicity M Semantic type DT Axiom

1 @D

a..b F(@D) a ≤ card(role)
∧ card(role) ≤ b

a F(@D) a = card(role)

a..* F(@D) a ≤ card(role)

∗ F(@D)

where DT is a type built from the type symbol @D repre-
senting the type of possible instances of D. Table 1 shows the
different cases of possible multiplicities M of role and the
corresponding DT type, and any additional axiom included
in IC .

In the case that the role association end is {ordered}, the
sequence type seq(@D) is used instead of F(@D).

In IC we also include a Boolean attribute existsC : B

which indicates if sel f currently exists as a valid object (i.e.,
if creation has occurred more recently than deletion).

Query operations f (p1 : PT1, . . . , pn : PTn) : RT of C
are also represented as (constant) attributes

(FT D) :
f (p1 : PT ′1, . . . , pn : PT ′n) : RT ′

of IC , where T ′ denotes the semantic representation of
type T .

The definition of f is assumed to be given by a pre/post
condition pair in which the result parameter is used in the
postcondition to denote the intended value of the query:

f (p : PT) : RT

pre:Pre f

post:Post f

This definition is semantically expressed by the axiom:

(F Def) :
existsC = T RU E �⇒

(∀p : PT ′ · Pre′f �⇒ Post ′f [f (p)/result])
Local variables of update operations are also represented

as instance theory attributes.
UML-RSDS attributes may have initial values defined in

their declarations. These values are defined using pure literal
values without any feature occurrences. The collection of
all such initialisations atti = ei are grouped together into a
single new action ini tC defined as:

(I ni t De f) :
ini tC ⊃ att1 := e′1 ‖ . . . ‖ attn := e′n ‖ existsC := T RU E

This has write frame {att1, . . . , attn, existsC }.

status: Status
Telephone

number: Integer {identity,
 frozen}
connectedTo: Integer
dialing: Integer
lastCalled: Integer

makeCall(tn: Integer)
pickUp()
putDown()
callEnded()
answered()

putDown
putDown

putDown
pickUp

answeredmakeCall(tn)

callEnded

idle

connected

calling

offhook

Status <<enumeration>>

idle
offhook
connected
calling

Fig. 2 Telephone class diagram and state machine

This action will in turn be invoked by the createC (a)
action of the class theory (Sect. 2.7).

A terminateC action destroys the object:

(T erm Def) :
terminateC ⊃ existsC := F AL SE

its write frame is {existsC }.
A simple example of an instance theory could be that for

a telephone (Fig. 2).
The T elephone class has constraints:

dialing /= 0 => status = calling
status /= calling => dialing = 0
status /= connected => connectedTo = 0
connectedTo /= 0 => status = connected

The constraint that lastCalled represents the last number
dialed can only be directly expressed using RAL temporal
operators. The operation makeCall(tn : I nteger) has the
specification

makeCall(tn: Integer)
pre: status = offhook
post: dialing = tn

The data of the telephone class is represented by corre-
sponding attributes of IT elephone:

status : Status

number : Z
connectedT o : Z
lastCalled : Z
dialing : Z

123

88 K. Lano

2.3 Operations

For each modifiable attribute att : T of a class C there is
assumed to be an operation setatt (att x : T) which has the
effect post : att = att x . It has write frame including att ,
but may need to modify other attributes in addition (to main-
tain invariants). frozen attributes do not have such operations.
Likewise, for each modifiable rolename role on the opposite
end of an association incident to C , there is a setrole oper-
ation, and addrole, removerole operations if role is not of
multiplicity 1 (removerole is omitted if role is addOnly).
These operations all have a standard definition, for example:

addrole(rolex : D)

pre : (role ∪ {rolex}).si ze ≤ b

post : role = role@pre ∪ {rolex}
in the case of an unordered role of maximum cardinality
b. All of these operations are represented as corresponding
actions of IC .

User-defined update operations of C are also represented
by actions of IC , with the same arity and set of input para-
meters. The declaration

m(x1 : X1, . . . , xn : Xn)

pre: Prem

post: Postm

yields an action symbol m(X ′1, . . . , X ′n) of IC and the axiom:

(OpD) :
∀i : N1; x1 : X ′1; . . . ; xn : X ′n ·
(existsC = T RU E ∧ Pre′m)�↑(m(x1, . . . , xn), i) �⇒

Post ′m[att�↑(m(x1, . . . , xn), i)/att@pre]�↓
(m(x1, . . . , xn), i)

In other words, if the precondition holds at commencement of
an execution of m(x1, . . . , xn), then the postcondition holds
at termination, with each att@pre expression interpreted as
the value of att at commencement.

This is the usual concept of precondition, in which no
properties of the execution of the operation can be deduced if
it is executed outside its precondition. This definition is used
in languages such as B and Eiffel [38]. UML also assumes
this definition as a default: “The behaviour of an invoca-
tion of an operation when a precondition is not satisfied is
a semantic variation point” [42, p. 101] and p. 519 “…cor-
responds semantically to a precondition violation, for which
no predefined behaviour is defined in UML”.

However in [43] the semantics of a precondition as a
permission guard is stated: “The precondition must evalu-
ate to true whenever the operation starts executing.” [43,
Sect. 12.7]. Instead, we consider that it may be possible for an
operation to be executed when its precondition fails, but that

then no guarantee can be made about its behaviour (an imple-
mentation may throw an exception, for example). A separate
proof obligation requires that callers ensure the precondition
is true at the point where they make the call.

The write frame of an operation is the set of modifiable
(non-frozen) attributes or roles att which it may change. This
is calculated as the set of those attributes which:

1. Occur in prestate form att@pre in Postm , or
2. occur in a writable modality in Postm , that is, in a sub-

formula att = exp, exp : att , exp / : att (except for
addOnly roles att), exp <: att where exp does not
involve att except in the form att@pre.

in parameters of an operation cannot be modified in its post-
condition.

If an update operation is defined by procedural code using
the metamodel of Fig. 14:

m(x : X)

pre Prem then Codem

then this is also represented by an action symbol m(X ′) of
IC with write frame calculated from the form of Codem as
for composite actions in Sect. C.4.

Codem can be interpreted as an RAL composite action
Code′m in IC , and the effect of m expressed by the axiom

(OpP) :
∀x : X ′·m(x)⊃(pre existsC= true∧Pre′m then Code′m)

In other words, if m(x) is invoked when the object exists and
the precondition holds, we are guaranteed to get the behav-
iour specified by Codem .

If Codem itself involves operation calls a.n(e) for a : D,
or a collection a of D objects, these are interpreted in Code′m
as actions invoken(a′, e′)with empty write frames. Likewise
a creation invocation newD(a) is interpreted as the action
create_invokeD(a′) with empty write frame. These opera-
tions have no effect on the local state but will be linked with
the behaviours they invoke in subsystem theories (Sect. 2.8).

Inconsistency between operation postconditions and class
invariants can be detected by internal consistency checking
using B [9]. Although the semantics can represent update
operations defined in a self or mutually recursive manner,
these cannot be translated to B for semantic analysis, since B
does not permit such operations. However query operations
can be defined recursively—these are translated as recursive
functions (constant data) in B.

For the telephone specification, there are action sym-
bols for the set operations setstatus(statusx : Status),
setconnectedT o(connectedT ox : I nteger), etc., and for
the user-defined operations makeCall(tn : I nteger),
pickup(), etc.

123

A compositional semantics of UML-RSDS 89

Table 2 Semantic mapping for primitive literals

OCL term e Semantics e′

number n n

true T RU E

f alse F AL SE

String “t” Sequence denoted “t”

consisting of characters of t in

left to right order.

val from enumeration T Representation of T :: val

makeCall has the semantics:

∀i : N1; n : Z ·
(existsT elephone = T RU E ∧ status = of f hook)�↑

(makeCall(n), i) �⇒ (dialing = n)�↓(makeCall(n), i)

Additional functionality of this operation will be derived
from the state machine of the T elephone class in Sect. 3.

2.4 Expression semantics

This section defines the mathematical interpretation of OCL
in our semantics. It also closely corresponds to the translation
of OCL into B.

For primitive literal expressions e—numbers, strings,
Booleans, and elements of enumerations, the semantic deno-
tation e′ of e directly corresponds to e (Table 2).

Ifv andw are two distinct enumeration literals (of the same
or different enumerations) then their semantic denotations
satisfy v′ = w′. If v and w are syntactically the same, but
belong to two distinct enumerations, then v′ = w′. Otherwise
v′ = w′. The UML superstructure leaves this semantic aspect
undefined [42, Sect. 7.3.16].

Also, for any enumeration literal v, v′ /∈ R, v′ /∈ B, v′ /∈ S

and v′ /∈ @C for any class C .
Collections (sets and sequences) in UML-RSDS are

restricted to consist only of elements of a single type, as
in [43]. This type can either be a numeric type, the Boolean
type, the string type, a particular enumeration, or a partic-
ular class. Apart from elements of subclasses of a common
superclass, mixtures of elements of different types are not
allowed.

Collection literal expressions have a direct interpretation:
a set literal {e1, . . . , en} is interpreted by the mathematical
set {e′1, . . . , e′n}. This has type F(T)where T is the semantic
representation of the common type of the elements of the
set. A sequence literal Sequence{e1, . . . , en} is interpreted
by the mathematical sequence s of length n, which has s(1) =
e′1, . . . , s(n) = e′n . This is also written as [e′1, . . . , e′n]. The
typing of s is a sequence 1..n→ T where T is the semantic
representation of the common type of the elements.

Table 3 Semantic mapping for collection operations

OCL term e Condition Semantics e′

s.si ze Collection s Cardinality card(s′)
x : s Set s x ′ ∈ s′

x / : s Set s x ′ /∈ s′

x : s Sequence s x ′ ∈ ran(s′)
x / : s Sequence s x ′ /∈ ran(s′)
s.asSet s set s′

s.asSet s sequence ran(s′)
s <: t Sets s and t s′ ⊆ t ′

s <: t Sequence s or t (s.asSet <: t.asSet)′

s / <: t Sets s and t ¬(s′ ⊆ t ′)
s / <: t Sequence s or t (s.asSet / <: t.asSet)′

s.sum Set s Sum of elements of s′

s.sum Sequence s, card(s′) = n s′(1)+ · · · + s′(n)

An identifier var denoting an attribute or role name of a
class C is represented by the corresponding RAL attribute
var in IC .

Numeric operators such as *, +, /, − are represented as
corresponding function symbols of arity 2 on R. The defin-
itions of [43] are used, likewise for abs, f loor , >, <, <=,
>=, div and mod. The logical operators are interpreted by
the corresponding semantic operators: & by ∧, or by ∨, not
by ¬ and => by �⇒ .

max and min apply to non-empty sets of elements (numer-
ics or strings) comparable by ≤. For a non-empty set s,
(s.max)′ is the unique element x of s′ such that

y ∈ s′ �⇒ y ≤ x

Likewise (s.min)′ is the unique element z of s′ such that

y ∈ s′ �⇒ z ≤ y

si ze, = and + (concat) are defined on strings as in [43].
Equality of strings means that they have the same characters
in the same order (as in sequence equality). Likewise the
Boolean operators or , &, not and=> are defined according
to the usual truth tables on B.

On collections the operators :, / :, <:, / <: and si ze are
given the usual definitions of membership, non-membership,
subset, negated subset and cardinality. Table 3 shows some
examples of interpretations of collection operators.

The operators ∪, ∩ and � are defined in terms of their
mathematical counterparts (Table 4). ∪ on sequences is
defined to be the same as �, as in [43].

Sequence-specific operations are defined in Table 5. f ront
and tail of empty sequences are also empty. f irst , last , tail
and f ront are defined on strings in the same manner, except
that (s. f irst)′ is [s′(1)] and (s.last)′ is [s′(card(s′))] for a
string s. sel f in a select expression refers to the identity of

123

90 K. Lano

Table 4 Semantic mapping for collection operations

OCL term e Condition Semantics e′

s ∪ t s and t sets s′ ∪ t ′

s ∩ t s and t sets s′ ∩ t ′

s − t s and t sets s′ − t ′

s � t s and t sequences s′ � t ′

the objects of the first argument, which are being selected
from.

Table 6 shows the semantics of navigation expressions on
single objects.

Table 7 shows the semantics of navigation expressions
which start from sets of objects.

In Table 7 conc(seqs) is distributed concatenation of the
sequences in seqs. C.role, role not static, is treated as eval-
uation of role over the object set C . Navigations involving
query operations are treated in a similar way to those with
attributes or roles.

Select expressions evaluate to sets or sequences depend-
ing on the collection they operate over (Table 8). Their first
argument must denote a finite set or sequence. contract (m)
turns a map m : 1..n �→ T into a sequence sq by removing
gaps in the index set, maintaining the same order of elements.
For example contract ({2 �→ a, 3 �→ b, 7 �→ c}) is [a, b, c].

The notation a.P denotes the class version of P with a
substituted into each new parameter slot, for example
a.(att > 10) is att (a) > 10. a.sel f is a.

In a few cases, operators are overloaded. Table 9 details
these cases. In cases where s + t is used with one argument
being a string and the other not, say t , then t is converted to
a string before concatenation of values.

In cases of x = y where x is a collection, and y is not,
then y is promoted to a collection of the same kind as x , and
likewise in the reverse case.

A set of useful algebraic laws relate OCL expressions, for
example, if x and y are sets of objects of a class C , and f
is a C attribute, P and Q constraints involving only features

of C :

(x ∪ y). f = x . f ∪ y. f

(x ∪ y)|(P) = x |(P) ∪ y|(P)
x |(true) = x

x |(f alse) = {}
x |(P)|(Q) = x |(P & Q)

x |(P & Q) = x |(P) ∩ x |(Q)
x |(P or Q) = x |(P) ∪ x |(Q)

These can be proved using the semantics given above.
We can prove all of the axioms of the OCL standard library

[43, Sect. 11] which relate to our subset of OCL, with the
following differences:

Section 11.7.1 of [43]: We define the semantics of si ze
using the mathematical operator card, not using the compu-
tational approach (i terate) given in [43]. Likewise for count ,
which could be defined as

card({i |i ∈ dom(sq) ∧ sq(i) = x})

for the count of x in a sequence sq.
Section 11.7.5 of [43]: at is not given a precise semantics

in OCL, only the precondition

pre : i ≥ 1 & i ≤ s.si ze

is given for s→at (i). In contrast in our semantics it is pre-
cisely defined as function application s′(i ′).

Our definition of− on sequences corresponds to an itera-
tion of the OCL excluding operation.

2.5 Invariants

The following are proof obligations for consistency of a class,
which a developer must ensure, for example by specifying
that additional actions execute when the initialisation takes
place, or when some update operation takes place.

Table 5 Semantic mapping for
sequence operations OCL term e Condition Semantics e′

s = t s and t sequences s′ = t ′ as maps

s. f irst Non-empty sequence s s′(1)
s.last Non-empty sequence s s′(card(s′))
s. f ront Non-empty sequence or string s Subsequence [s′(1), . . . , s′(card(s′)− 1)] of s′

s.tail Non-empty sequence or string s Subsequence [s′(2), . . . , s′(card(s′))] of s′

sq − cl Sequence sq, collection cl (sq|(sel f / : cl))′

s.sort Sequence s Reordering of s′ such that elements

are in non-descending < order

s.reverse Sequence s, n = card(s′) {i �→ s′(n − i + 1)|i ∈ dom(s′)}

123

A compositional semantics of UML-RSDS 91

Table 6 Semantic mapping for navigation expressions

OCL term e Condition Semantics e′

obj.att Attribute att att (obj ′)
obj.role 1-Multiplicity role role(obj ′)
obj.role Unordered collection-valued role Set role(obj ′)
obj.role Ordered collection-valued role Sequence role(obj ′)

The invariant I nvC of a class must be established by the
initialisation:

(I ni t I nv) :
[ini tC]I nv′C

The invariant I nvC must hold at the initiation and termi-
nation of every update operation:

(P I nv) :
�S(existsC = T RU E �⇒ I nv′C) ∧
∀x1 : X1 · [α1(x1)](existsC = T RU E �⇒ I nv′C) ∧
. . . ∧ ∀xn : Xn · [αn(xn)](existsC=T RU E �⇒ I nv′C)

where S = {α1, . . . , αn} is the set of actions representing the
update operations of C , which have corresponding parame-
ters x1 : X1, etc.

Because of the frame axioms, these two requirements
ensure that the semantics of an invariant in UML [43, Sect. 12]
are valid: “The invariant must be true for each instance of the
classifier at any moment in time. Only when the instance is
executing an operation, this does not need to evaluate to true”
([43, Sect. 7.3.3] incorrectly leaves out the qualification).

The UML-RSDS tools permit a specifier to leave the
definition of operations incomplete, and instead to specify,
implicitly, their behaviour in some cases by defining suitable
invariant constraints – in this sense constraints are the pri-
mary specification mechanism in UML-RSDS, and operation
definitions are secondary, or derived [30].

From the constraints it is possible to deduce what actions
must co-execute with a given updating action in order that the
invariants are preserved. If the operation op has basic code
Codeop, then in order that this should establish an invari-
ant I , the weakest precondition [Code′op]I ′ must be true
when Codeop activates. This is ensured if the additional code
Addop has the property [Add ′op][Code′op]I ′.

For example, consider a class with a set-valued role r and
an integer attribute x with the constraint I :

x = r.si ze

The operation setr(r x) with effect r := r x requires addi-
tional code such that [Add ′op][r := r x]I ′, that is: [Add ′op]
(x = card(r x)).

The UML-RSDS tool automatically derives such Addop

code from the condition [Code′op]I ′, using definitions of the
update form of this condition [30]. If an update form does
not exist for [Code′op]I ′, then this is added as an additional
precondition of op.

In the case of the constraint I , Addop can be derived as:

setx(r x .si ze)

In general it will be the case that Addop cannot update
either variable read in Codeop: the variable v changed by
Codeop and the parameter value vx used to modify v, so
Add ′op;Code′op and Add ′op‖Code′op are equivalent with

Table 7 Semantics of
navigation expressions on
collections

OCL term e Condition Semantics e′

objs.att objs unordered {att (obj)|obj ∈ objs′}
objs ordered {i �→ att (objs′(i))|i ∈ dom(objs′)}

objs.role objs unordered {role(obj)|obj ∈ objs′}
role 1-multiplicity objs ordered {i �→ role(objs′(i))|i ∈ dom(objs′)}
objs.role objs unordered and

⋃
({role(obj)|obj ∈ objs′})

role not 1-multiplicity role unordered

objs.role objs unordered and
⋃
({ran(role(obj))|obj ∈ objs′})

role not 1-multiplicity role ordered

objs.role objs ordered and
⋃
({role(objs′(i))|i ∈ dom(objs′)})

role not 1-multiplicity role unordered

objs.role objs and role ordered conc({i �→ role(objs′(i))|i ∈ dom(objs′)})
role not 1-multiplicity

C.att att static att

C.att att instance scope {att (x)|x ∈ C}
C.si ze card(C)

123

92 K. Lano

Table 8 Semantic mapping for select expressions

OCL term e Condition Semantics e′

objs|P Set objs {x |x ∈ objs′ ∧ x .P ′}
objs|P Sequence objs contract ({i �→ x |(i �→ x)

∈ objs′ ∧ x .P ′})

Table 9 Semantic mapping for overloaded expressions

OCL term e Condition Semantics e′

x + y x and y numbers x ′ + y′ (numeric addition)

s + t s or t a string s′ � t ′ (string concatenation)

x − y x and y numbers x ′ − y′ (numeric subtraction)

x − y x or y collections x ′ − y′ (collection subtraction)

x = y x set-valued, x ′ = {y′}
y not

x = y x sequence-valued, x ′ = [y′]
y not

x = y y set-valued, x not {x ′} = y′

x = y y sequence-valued, [x ′] = y′
x not

x = y Other cases x ′ = y′

br [ind] br sequence br ′(ind ′)
br [ind] br string [br ′(ind ′)]

regard to their weakest preconditions. In Java we use the ;
form of combination to implement the constraints, and in B
the ‖ form.

For the telephone system, the invariants are expected to
be true at each operation start and termination time, for an
existing object. In particular the invariant

dialing / = 0 �⇒ status = calling

places a requirement for additional behaviour on makeCall
(n) which we can derive as:

i f n = 0 then status := calling

This should co-execute with the existing behaviour.

2.6 Inheritance

If class C inherits from class D, then IC incorporates ID .
In addition there are axioms linking the creation, destruction
and existence of objects of C and D:

(O I Ax) :
existsC = T RU E �⇒ existsD = T RU E

initC ⊃ ini tD

terminateD ⊃ terminateC

These correspond to the relationship C ⊆ D in the class the-
ory, and express the semantics “each instance of the specific

classifier is also an indirect instance of the general classifier.”
[42, p. 67].

This model of inheritance also has the consequence that
“any constraint applying to instances of the general classifier
also applies to instances of the specific classifier” [42, p. 50].
It is not clear however if this last statement should apply to
pre and postconditions of operations of the classifiers, we
discuss this aspect further in Sect. 3.4 below.

Despite the transitive nature of this concept of generalisa-
tion, it is not the case that UML generalisation is transitive:
it is possible for

a = g1.general

b = g1.speci f ic

b = g2.general

c = g2.speci f ic

for classes a, b, c and generalizations g1, g2, without there
existing any generalization between a and c.

Similar issues apply to interface realization, which also
uses the ‘satisfaction of all constraints’ condition when com-
paring a classifier to an interface it is implementing [42,
p. 85].

There are two points in UML 2 where relaxation of the
‘all constraints of the general class should be satisfied in the
specific’ condition appears:

1. Attributes may have default values for their initialisa-
tion [42, p. 46]. If these defaults differ in a subclass and
superclass, then the semantics of the classes will also dif-
fer. In our semantics any initialisation performed in the
superclass cannot be varied by the subclass. There are no
defaults.

2. Likewise, static features are permitted to change their
values in subclasses, in [42]. This can be modelled by
considering such redefinition as the declaration of a new
static feature, with a name qualified by the name of the
redefining class, and semantically unrelated to the feature
it replaces.

We use the ‘one object’ view of specialisation [21]: even
though an object may be classified by many classifiers
(related in an inheritance hierarchy), it is represented as the
same semantic element in each. Its identity cannot change. It
is however possible for an object to move from one subclass
of a class to another subclass (dynamic classification), by the
occurrence of create and kill actions of these subclasses on
the object.

The axioms O I Ax and OpD together imply that if an
operation is defined both in the superclass and subclass, then
both sets of pre/post specifications apply when it is used on
an object of the subclass (existsC and existsD both true).
A semantic variation in which the subclass postcondition is

123

A compositional semantics of UML-RSDS 93

allowed to override and contradict the superclass postcondi-
tion could be considered, since this is common practice in
OO programming (cf, redefinition of bodyCondition on p.
101 of [42]). However the subclass would not then be sub-
stitutable with regard to the superclass.

2.7 Class theory of C

In the class theory �C of a class C we define the (finite) set
C of existing objects of C as an attribute of type F(@C)
where @C is the type of all possible instances of C . Initiali-
sation of a C object is carried out at object creation, likewise
termination takes place at object destruction:

(C I) :
∀a : @C · createC (a) ⊃ ini tC (a)

∀a : @C · killC (a) ⊃ terminateC (a)

The constant sel f (@C) : @C is defined as a constant
attribute (i.e., an attribute which is not in the write frame of
any action). sel f is the identity function:

(Sel f D) :
∀a : @C · sel f (a) = a

existsC expresses that an object exists:

(Exists D) :
∀a : @C · (existsC (a) = T RU E) ≡ (a ∈ C)

If an attribute att of C is stereotyped as an {identi t y}
attribute, then the axiom

(I denD) :
∀a1, a2 : C · att (a1) = att (a2) �⇒ a1 = a2

is included in �C . Likewise if there is a group of attributes
which together form a compound primary key (a single iden-
tity constraint is attached to all elements of the group).

In particular the number attribute of T elephone is an
identity attribute, so satisfies the axiom:

∀a1, a2 : T elephone · number(a1) = number(a2) �⇒
a1 = a2

2.8 Subsystem theories

If class C uses class D as a supplier, i.e., there is an associ-
ation directed from C to D, then �D and �C are combined
together into the theory �S of the subsystem of D and C
together with their linking association, and we connect the
actions denoting calls with the actual invoked operations:

(RSC) :
∀a : @D · invoken(a, e) ⊃ a.n(e)

Table 10 Additional axioms for associations

Association Additional axioms

A∗–r∗B ∀a : A · r(a) ∈ F(B)

A0..1–r∗B ∀a : A · r(a) ∈ F(B)

∀a1, a2 : A · r(a1) ∩ r(a2) = {} �⇒ a1 = a2

A1–r∗B ∀a : A · r(a) ∈ F(B)

∀a1, a2 : A · r(a1) ∩ r(a2) = {} �⇒ a1 = a2

∀b : B · ∃a : A · b ∈ r(a)

A∗–r
1B ∀a : A · r(a) ∈ B

A0..1–r
1B ∀a : A · r(a) ∈ B

∀a1, a2 : A · r(a1) = r(a2) �⇒ a1 = a2

A1–r
1B ∀a : A · r(a) ∈ B

∀a1, a2 : A · r(a1) = r(a2) �⇒ a1 = a2

∀b : B · ∃a : A · b = r(a)

Table 11 Axioms for association constraints

Association Additional axiom
A∗–r∗B ∀a : A; b : B · b ∈ r(a) �⇒ a.(b.I nv)

A0..1–r∗B The same

A1–r∗B The same

A∗–r
1B ∀a : A · a.(r(a).I nv)

A0..1–r
1B The same

A1–r
1B The same

and

(RCC) :
∀a : @D · create_invokeD(a) ⊃ createD(a)

These model synchronous invocations with no communica-
tion delays between client and supplier. The properties could
be generalised to deal with distributed systems, for example
by asserting:

∀i : N1 · ∃ j : N1 · ↑(invoken(a, e), i) =←(n(a, e), j)

and that invoken(a, e) terminates when a result message is
received from a for this request.

When invoken(objs, e) is used with a set objs of objects,
it is interpreted as a concurrent invocation of each of the
individual object operations:

(M RSC) :
invoken(objs, e) ⊃ ‖a:objsn(a, e)

Additional axioms may be required in �S to define the
properties of the association from C to D, depending on its
multiplicity at the C end (Table 10).

If a constraint I nv is attached to the association between
a class A and a supplier class B, then an axiom expressing
its meaning is included in �S , depending on the form of
association (Table 11). I nv may involve features of both A

123

94 K. Lano

Table 12 Axioms for bidirectional associations

Association Additional axiom

Aar∗ –br∗ B ∀a : A; b : B · a ∈ ar(b) ≡ b ∈ br(a)

Aar
1 –br∗ B ∀a : A; b : B · a = ar(b) ≡ b ∈ br(a)

Aar∗ –br
1 B ∀a : A; b : B · a ∈ ar(b) ≡ b = br(a)

Aar
1 –br

1 B ∀a : A; b : B · a = ar(b) ≡ b = br(a)

and B. The notation a.(b.I nv)means b is substituted into all
new @B parameter slots in the class version of I nv, and a
into all new @A parameter slots.

In the case of bidirectional associations, there are proper-
ties relating the two directions (Table 12). The case of 0..1
multiplicity at an association end produces the same axioms
as for ∗.

The semantics of other forms of association between
classes can also be expressed in this semantics, by trans-
forming them into simpler constructs. Association classes
are modelled as a class plus associations (Fig. 3). The new
axiom

(AssocClass) :
∀r1, r2 : A_B · a(r1) = a(r2) ∧ b(r1) = b(r2) �⇒

r1 = r2

holds in such a subsystem.
Qualified associations are also modelled by introducing a

new intermediate class (Fig. 4). Here, br [xval] is interpreted
by (cr |x = xval).br1 in the new model.

Likewise we can formalise the two key properties of com-
posite aggregations [42, p. 38]. The deletion propagation
property of a composition (Fig. 5) is expressed by:

∀w : W · killW (w) ⊃ ‖p∈pr(w)killP (p)

The property that there are no object-level loops in the
extent of a composite that is a self-association (on a class W)
can be expressed as:

∀w : W · w /∈
⋃

n:N1

prn(w)

In the client/supplier construction, if D and C are the same
class (the case of a self association),�S is simply�C extended
with the additional axioms for any self-associations on C .

A similar theory composition is used in the case that
C inherits from D, i.e., there is g : Generali zation with
g.general = D and g.speci f ic = C . We include the axioms

(I nheri t D) :
C ⊆ D

in �S , and identify @C and @D. This ensures that attributes
and operations of D can also be applied to elements of @C .
Notice that if a ∈ C , a.m(e) is required to obey the behaviour
of both the C and D definitions of m. In addition, due to the
frame axioms, operations of the subclass can only modify
data of the superclass by invoking (co-executing with) update
operations of the superclass which have that data in their
frames. This condition ensures the subtyping principle of
Liskov [37].

In the general case of several inheritance relationships, all
classes concerned are represented in a single subsystem the-
ory, only the classes C without superclasses are represented
by a type @C . When forming the theory of a system involving
both inheritance and associations, the inheritance construc-
tion should be applied to form a composed subsystem theory
before the clientship construction.

Other cases of subsystems arise if there are constraints
attached to sets of associations. In this case the collection
of connected classes forms a subsystem, and the association
constraint is expressed semantically in this subsystem.

Fig. 3 Transformation of
association classes to
associations

*
ar

1

att : T

A B

br

A BA_B

att : T1 *a

ar"

ar = ar".a br = br".b

1 1
b

br"

123

A compositional semantics of UML-RSDS 95

A

x: T br

B

A

x: T {identity}card(T)

B

M

A_B

C

C

1

cr

br1

M

Fig. 4 Removing a qualified association

W P

*
pr

Fig. 5 Composite aggregation association

In addition, if a class A is a superclass of classes A1, . . . ,

An , then these classes should all be represented in a single
subsystem whose theory extends �A and each �Ai . If A is
{abstract} then the axiom

(Abs D) :
A = A1 ∪ · · · ∪ An

is added to this subsystem theory.

3 State machine semantics

The semantics of protocol and behaviour state machines for
a class C are incorporated into the instance and class theories
of C . This enables semantic checks of the consistency of the
state machine models compared to the class diagram model.

3.1 Protocol state machines

In the case of a protocol state machine SC of C (Fig. 6):

1. The set of states is represented as a new enumerated type
StateSC , and a new attribute c_state of this type is added

initial

m(x)[G]/Post

trg

src

SC

p(y)[G1]/Post1

Fig. 6 Protocol state machine

to IC . The axiom

c_state ∈ StateSC

holds. Local attributes of the state machine are repre-
sented as attributes of IC .

2. We specify the initialisation c_state := ini tialSC of
this attribute to the initial state of SC . This initialisation
is invoked by ini tC (“When an instance of a behavioured
classifier is created, its classifier behaviour is invoked”,
[42, p. 420]).

3. Each transition tr from a state src to a state trg, trig-
gered by m(x), with guard G and postcondition Post , is
represented as an additional pre/post specification of m
[42, p. 521]:

(c_state = src ∧ G ′)

is added as an additional disjunct of the precondition of
m(x), and

(c_state = src ∧ G ′)@pre �⇒
(c_state = trg ∧ Post ′)

as an additional conjunct of the postcondition. Axiom
(OpD) applies with these extended conditions. The write
frame of m is extended to include c_state and any
attributes or roles in a writable modality in Post .
Only operations with at least one transition in the state
machine have c_state in their write frame—other oper-
ations are assumed not to change the state [42, p. 521].

4. State invariants I nvs have the semantics:

(StateI nv) :
existsC = T RU E ∧ c_state = s �⇒ I nv′s

123

96 K. Lano

An alternative modelling approach would be to use actions to
represent individual transitions [35]. However this approach
would not correspond so closely to formalisation in B, since
an operation of a B module cannot invoke an operation of the
same module.

In the UML documents there is an apparent inconsistency
regarding the time at which guards are evaluated: “the guard
is evaluated before the transition is triggered” [42, p. 556] and
“the [guard] expression is evaluated at the moment the tran-
sition attached to the guard is attempted” [43, Sect. 12.11].
The latter corresponds correctly with the equivalence of tran-
sition guards and preconditions (for protocol state machines),
and with our semantic interpretation. In practical implemen-
tation, the guard may be evaluated before the transition is
selected and starts executing—however its truth value should
not change over this interval.

For the telephone specification, the behaviour of most of
its operations are derived from the protocol state machine.
For example, put Down has precondition

status = connected or status = calling or status

= of f hook

and postcondition

(status = connected or status = calling or status

= of f hook)@pre �⇒ status = idle

Further actions need to be added to this operation in order
that this operation maintains the invariants, as described in
Sect. 4.2.

3.2 Behavioural state machines

In the case of a behavioural state machine SC of C , transitions
have an action which executes when the transition is taken,
instead of a postcondition. The transition actions acts are
sequences

obj1.op1(e1); . . . ; objn .opn(en)

of operation calls on supplier objects, sets of supplier objects,
or on the sel f object. They are special cases of statements
according to the meta-model of Fig. 14, and have a direct
interpretation as composite actions acts′ in RAL:

obj ′1.op1(e
′
1); . . . ; obj ′n .opn(e

′
n)

where the obj ′i and e′j are the interpretations of these expres-
sions in RAL.

In addition to state invariants, there may be entry actions
to states.

The axiomatic representation of a behavioural state
machine is:

1. The set of states is represented as a new enumerated type
StateSC .

2. A new attribute c_state of this type is added to IC ,
together with the initialisation c_state := ini tialSC of
this attribute to the initial state of SC . An entry action
entr yinitialSC co-executes with this update, if specified.
Local attributes of the state machine are represented as
attributes of IC .

3. The transitions ti , i : 1..k, from states srci to states
trgi , triggered by m(x), with guard Gi and actions actsi ,
are represented as an additional operational specification
Codem of m:

(BSC OpP) :
α(x)⊃ i f (existsC=T RU E∧c_state=src1∧G ′1)
then acts′1; c_state := trg1

else i f

else i f (existsC = T RU E ∧ c_state = srck ∧G ′k)
then acts′k; c_state := trgk

where α represents m, and any entry action of trgi is
included at the end of the actsi sequence.
If there is already an existing procedural definition Dm

of m in the class C , the complete definition of m is
D′m;Codem ([42, p. 422] we assume that an existing
pre/post specification should however always refer to the
entire span of execution of m).

4. The axioms (StateI nv).

The semantics defined here corresponds to the usual ‘run to
completion’ semantics of UML state machines: a transition
only completes execution when all of its generated actions
do so [42, p. 546].

A behaviour state machine SC attached to an operation
op defines an explicit algorithm for op. It is formalised as
follows:

1. The set of states is represented as a new enumerated type
StateSC .

2. A new attribute op_state of this type is added to IC

as a local variable of op, together with the initialisation
op_state := ini tialSC of this attribute to the initial state
of SC . Local attributes of the state machine are repre-
sented as local variables of op.

3. The state machine yields the operational definition

(BSC OpM) :
op(p) ⊃ pre existsC = T RU E then Codeop

where Codeop is:

123

A compositional semantics of UML-RSDS 97

entr y′ini tialSC
;

op_state := ini tialSC ;
while op_state = terms1 ∧ . . . ∧

op_state = termsm

do
if op_state = src1 ∧ G ′1
then

act ′1; entr y′trg1
; op_state := trg1;

else if . . .

else if op_state = srck ∧ G ′k
then

act ′k; entr y′trgk
; opstate := trgk;

where the termsi are all the terminal (final) states of
SC (i.e., states with no outgoing transitions), and the
transitions of SC are src1 →[G1]/act1 trg1 upto srck

→[Gk]/actk trgk .
Entry actions of a state must complete before the state
machine is considered to properly enter the state (“before
commencing a run-to-completion step, a state machine is
in a stable state configuration with all entry . . . activities
completed” [42, p. 546]). An entry action will often be
used to ensure that the state invariant holds.

4. The loop invariant of the above while loop is:

(op_state = s1 �⇒ I nv′s1
) ∧ . . . ∧

(op_state = sn �⇒ I nv′sn
)

where s1 to sn are all the states of SC .
This expresses that the local data of the particular exe-
cution instance of op is in a consistent state, satisfying
a particular state invariant, when no transition or entry
action is occurring.

3.3 Semantic profiles for state machine semantics

The UML semantics for protocol state machines does not
specify whether transition guards are preconditions (suffi-
cient conditions for valid execution of the actions of the tran-
sition and entering the target state) or are permission guards
(necessary conditions for the transition to take place). In addi-
tion the meaning of an omitted transition for an operation is
left open: it may mean that execution of the operation in that
case is not permitted, is undefined in its effect, or has no
effect.

Our semantics assumes only the minimal properties given
in [42]:

1. If a logical case is missing for the transitions triggered
by an operation, leaving a particular state, then the state
machine gives no information about the effect of execut-

ing the operation in that state, and such an execution may
not be possible [42, p. 519].

2. Operations which do not appear on the state machine are
assumed to be state-insensitive in their behaviour, and
not to modify the state [42, p. 521].

To express the concept of a guard as permission for an oper-
ation to execute, additional specification notation is needed.
A clause guard : G could be added as a new form of con-
straint to an operation op(x : X). The clause would have the
semantics

(OpG) :
∀x : X · ∀i : N1 · G ′�↑(op(x), i)

Alternatively, we could define that the disjunction G of
guards of the transitions leaving a particular state s and trig-
gered by op, constitute a permission guard for op on that
state (similar to the semantics of op being deferred in that
state):

(PreAsGuard) :
∀x : X · ∀i : N1 · (c_state = s �⇒ G ′)�↑(op(x), i)

The third alternative is that the operation is a ‘skip’ for
these missing cases, as in behaviour state machines [42, p.
546]:

(SkipCase) :
∀x : X · ∀i : N1 · (c_state = s ∧ ¬G ′)�↑(op(x), i)

�⇒ (c_state = s)�↓(op(x), i)

op is permitted to take place if G fails in state s, but then
it does not change the state.

These three alternatives form three ‘semantic profiles’
which are alternative extensions of the basic semantics. Each
constitutes some possible extra notations, and additional
axioms. Developers should indicate which semantics they
are adopting, and record this together with the models.

3.4 Generalisation of state machines and behavioural
compatibility

Behavioural compatibility is the requirement that the speci-
fied behaviour of a superclass object should not be violated
by a subclass object. In the UML 2 documents there are var-
ious partly conflicting statements about generalisation and
behaviour:

1. “An operation may be redefined in a specialization of
the featured classifier. This redefinition may specialize
the types of the owned parameters, add new precondi-
tions or postconditions . . . or otherwise refine the spec-
ification of the operation.” [42, p. 101]. The same page
also asserts that all the preconditions of an operation

123

98 K. Lano

can be assumed by any of its implementations, and that
operation behaviour is unspecified if a precondition fails
to hold. This suggests a semantics in which preconditions
are logically combined by “&”, not “or”. Section 11 of
[43] contains a similar statement. But then adding pre-
conditions (and restricting input parameter types) makes
an operation less defined in a subclass than in the super-
class – contrary to what is necessary for semantic sub-
typing. Despite the claim on p. 101 of [42] that both
covariant and contravariant specialisation are semantic
variation points, the previous statements imply covari-
ant specialisation.
The bodyCondition of an operation (for query opera-
tions) can be arbitrarily redefined in redefinitions of the
operation, and so can violate superclass semantics.

2. If a generalization g has g.isSubsti tutable = true,
then the traces of g.general are a subset of the traces of
g.speci f ic [42, p. 67].
This contradicts the notion that preconditions can be
strengthened in subclasses, if a guarded interpretation
of preconditions is taken. In this interpretation, strength-
ening postconditions (to remove non-determinism) may
also eliminate traces, even if preconditions are not
changed.
For example, an operation op1 with postcondition x =
0 or x = 1 could be refined to have postcondition x = 1.
But if operation op2 has precondition (guard) x = 0 the
trace op1; op2 is no longer possible.

3. Various transformations on state machines are proposed
on p. 548 of [42]: splitting a source state, adding states
to a composite state, etc.
These transformations aim to preserve the capability of
clients to invoke particular sequences of operations on
the state machine, however the behaviour of these same
sequences of operations may be unexpected to the client
who only knows the superclass specification.
In particular, transitions should only have their target
state replaced by a more specific state (corresponding to a
strengthened postcondition) rather than an arbitrary state
(as in [42]), and it is valid for transitions to be entirely
replaced by a set of more specific transitions for the same
trigger.

We propose the following solutions to these issues:

1. There should be explicit semantic profiles for differ-
ent forms of generalisation, such as contravariance of
operation input types (and weakening of preconditions),
or invariance of input types, as used in Java.
A consistency rule constraining the bodyCondition to
be consistent with the operation postconditions should
be defined.

2. Precise criteria for valid state machine specialisation
transformations should be defined, based on an underly-
ing semantics for these models. The re f inement ,
adequacy and locali t y conditions are such criteria, as
given below. They can be used to establish behavioural
compatibility for the base semantics of protocol state
machines described above.

To ensure semantic behavioural compatibility, we can
define three syntactic conditions on the protocol state
machine C of a subclass CC of a class AC and the protocol
state machine A of AC [33,34]:

1. Refinement: For every state s of C , there is a state σ(s)
of A, and for every transition tr of C triggered by an
operation of AC there is a transition σ(tr) of A such
that:
(a) σ(s) is initial in A if s is initial in C .
(b) σ(tr) : σ(s)→ σ(t) in A if tr : s → t in C .
(c) tr and σ(tr) have the same trigger.
(d) Posttr �⇒ Postσ(tr)
This means that any behaviour of C must satisfy the spec-
ifications of behaviour of A. σ is termed an abstraction
morphism.

2. Adequacy: For each state s of A there is at least one state
s′ of C such that σ(s′) = s. The disjunction of the state
invariants of all such s′ is equivalent to the state invariant
of s. If s is initial in A, so is one of the s′ in C .
For each transition tr : s → t in A there are transitions
tr ′ : s′ → t ′ of C such that σ(tr ′) = tr , for every state
s′ such that σ(s′) = s. The disjunction of guards of the
tr ′ with source a particular such s′ should be equivalent
to the guard of tr .
This means that behaviour defined in the superclass must
also be defined in the subclass.

3. Locality: If a new operation op of CC has a transition
tr : cs → ct in C for which σ(cs) = σ(ct), or which
modifies any data feature of AC , then op must (in terms
of its effect on the data of AC and state of A) be express-
ible as a procedural combination of operations of AC .

These conditions can be formally deduced from the require-
ment that the semantics of CC together with C , as an RAL
theory, is a theory extension of the theory of AC and A [34].
Refinement and adequacy also correspond to the usual defi-
nition of refinement in state-based system specification [1].
The locality condition is a consequence of the frame axiom of
RAL, and corresponds to Liskov’s composition requirement
for new operations introduced in subclasses [37], it ensures
that clients of the subclass do not see unexpected behaviour—
new transitions and pathways between states not present in
the superclass specification.

123

A compositional semantics of UML-RSDS 99

state: State
BasicTelephone

number: Integer {identity,
 frozen}

putDown
pickUp

down

 up

pickUp()
putDown()

State <<enumeration>>

up
down

Fig. 7 Basic Telephone

These conditions also apply for the skip semantic inter-
pretation of state machine semantics.

When comparing two behaviour state machines for behav-
ioural compatibility, the condition 1(d) above is replaced by
the requirement that

actstr ⊃ actsσ(tr)

where the action lists include any entry actions of their target
states.

As an example of behavioural compatibility using these
rules, the BasicT elephone of Fig. 7 is a valid generalisation
of T elephone, via the abstraction mapping of σ(idle) =
down, and σ(s) = up for the other states of T elephone,
and with the consequent mapping of transitions.

Using the above conditions, we can verify that many gen-
eralisation transformations on state machines are semanti-
cally correct:

1. A postcondition of a transition can be strengthened.
2. A transition can be split into several cases from the same

source state, with guards logically partitioning the orig-
inal guard, and with targets equal to the original target.

3. A new region can be added to a concurrent composite
state, provided no transition in this region has a trigger
in common with the existing composite state. It is valid
to refer to the state of this region in the transition guards
of other regions—provided that all possible states of the
new region are alternatives in the guards of the refined
transitions from any particular state (Fig. 8).

In case 3, σ discards the new region.
The adequacy, refinement and locality conditions do

ensure that the theory of a specialised protocol state machine
C of a subclass CC of a class AC satisfies all the axioms
of a generalised protocol state machine A of AC , under the
interpretation of c_stateA as σ(c_stateC):

s0

s1

s0

s2 s3

s4

s5op

op[in s4] op[in s5]
newop newop

s1

Fig. 8 Adding a region

1. We need to prove that the interpretation

σ(c_stateC) ∈ StateA

of the state machine A axiom is provable, which is clear
from the typing of σ .

2. The interpretation of the initialisation axiom is

ini tCC ⊃ σ(c_stateC) := ini tialA

But the initialisation of c_stateC is to the initial state of
C , and σ(ini tialC) = ini tialA, so this also holds.

3. We need to show that the pre-post specifications of oper-
ations in A can be proved from those of C .
It is sufficient to consider abstract transitions one-by-one,
the pre/post behaviour for each of these has the form

(c_stateA = s∧G)�↑(op, i) �⇒
((c_stateA = s∧G)�↑(op, i) �⇒

(c_stateA= t∧Post)�↓(op, i))

for a transition tr : s →[G]/Post t triggered by op.
This simplifies to:

(c_stateA = s ∧ G)�↑(op, i) �⇒
(c_stateA = t ∧ Post)�↓(op, i)

The interpretation of this axiom should be provable from
corresponding axioms of C . Due to adequacy we know
there are concrete states s1, . . . , sn with σ(s j) = s each
j . Also, for each of these, there are transitions tr j,1, . . . ,

tr j,n j which abstract to tr , and whose guards partition G.
This means that the interpretation

σ(c_stateC) = s ∧ G

of the abstract precondition due to tr is equivalent to the
disjunction of the concrete preconditions

c_stateC = s j ∧ G j,k

123

100 K. Lano

of all the tr j,k which abstract to tr . Thus the interpretation
of the abstract precondition implies the concrete precon-
dition. The concrete postconditions of the tr j,k have the
form:

c_stateC = t j,k ∧ Post j,k

But σ(t j,k) = t for such poststates, and Post j,k �⇒
Post , so the result follows.
Informally, we have shown that each possible behaviour
of the system defined by C satisfies the specification of
A.

4. For state invariants we have required that

I nvs j �⇒ I nvs

for each s j in the states of C with σ(s j) = s, so this
axiom also follows.

Locality ensures that the frame axioms of AC are true in
interpreted form in CC .

The UML-RSDS tool automatically tries to construct an
abstraction morphism σ from a subclass state machine C to
a superclass state machine A. If such a mapping exists it will
then check it for the adequacy condition.

Other problems with state machine semantics are identi-
fied in [15], in particular for history states, transition priorities
and entry/exit points. Alternative semantic profiles may need
to be defined to accommodate the different interpretations of
these elements.

4 Application of the semantics

In this section we show how the semantics for UML-RSDS
given above can be used to support extensions of UML to
specify real-time system properties, and to support verifica-
tion and refinement.

4.1 UML extensions for concurrency and real-time

UML contains some notations for referring to detailed
communication and real-time behaviour, such as the
Ocl Message type [43, Sect. 7.7]. However these mecha-
nisms are not complete. For example whilst Ocl Message
represents messages sent from an object, there is no specifi-
cation facility within OCL to represent or express properties
of messages received by an object, or the temporal and syn-
chronisation properties of the operations invoked by these
messages.

In Appendix B.2 we give definitions for real-time and
concurrency notations:

1. The times ←(op(p), i), →(op(p), i), ↑(op(p), i),
↓(op(p), i) of sending, request arrival, activation and
termination of an action op(p).

2. Corresponding counters #snd(op(p)), #req(op(p)),
#act (op(p)) and # f in(op(p)).

3. Expressions derived from these such as delay(op(p), i)
and #active(op(p)).

We can therefore extend OCL with such expressions, for
the update operations op of each class. This allows the expres-
sion of UML semantics such as sequential for an operation
op(p : PT), disallowing multiple concurrent executions of
the operation:

∀p : PT · #active(op(p)) ≤ 1

∀p : PT · #active(op(p)) > 0 �⇒
(∀q : PT · q = p �⇒ #active(op(q)) = 0)

This becomes an axiom of the instance theory of the class
that owns op.

Protocols such as readers-writers can be expressed, and
implemented using design patterns such as synchroniser
objects [24].

Periodic behaviour can be specified by periodic(op, δ,
ε, T):

∀i : N1 · ↑(op, i) ≤ T + δ ∗ i + ε ∧ ↑(op, i) ≥ T + δ ∗ i

meaning that op executes every δ time units after an initial
time T , with a maximum lag time of ε.

Different policies for ordering the input event pool of an
object can be specified:

1. “First come first served”:

∀i, j :N1·→(op, i)≤→(op, j) �⇒ ↑(op, i) ≤↑(op, j)

2. “Shortest job first”, for some function f of the parameter
data:

∀i, j : N1 · f (x)< f (y)∧→(op(x), i)<↑(op(y), j)

�⇒ ↑(op(x), i) ≤ ↑(op(y), j)

Other semantic variations on input pool processing [42,
p. 420] can be defined in a similar manner.

The UML concept of a time observation is represented by
the attribute now in RAL. The use of change expressions and
time triggers as triggers of state machine transition triggers
can also be represented in our semantics.

A relative time trigger a f ter T on a transition away from a
state s represents that the transition should be taken if the state
has remained occupied for at least T time units continuously:

duration(c_state = s)�now ≥ T

123

A compositional semantics of UML-RSDS 101

where for a predicate P and time t :

duration(P)�t =
max({0} ∪ {x : T I M E |∀y : T I M E · t − x ≤ y ∧ y ≤ t

�⇒ P�y})
Section 15.3.13 of [42] gives a slightly ambiguous wording
for the definition of this trigger, but the above seems to be
the intended semantics.

Development techniques for distributed and real-time sys-
tems used in VDM++ could be adopted for this extended
UML [22,51].

4.2 Semantic analysis

A number of consistency and completeness properties of a
UML-RSDS specification can be defined. Checks that these
properties hold can be used to detect errors in formulation
of a specification, and to ensure the consistency of the cor-
responding theories representing the semantics of the speci-
fication.

Some semantic rules for a class C are as follows, in general
these can only be checked using a proof tool:

1. The class invariant must be satisfiable, i.e., there must
exist at least one combination of attribute/role values of
C in which I nvC is true:

IC � ∃v1 : T1; . . . ; vn : Tn; rv1 : DT1; . . . ; rvm : DTm

·I nv′C [v/att, rv/role]

where the atti : Ti are the semantic representations of
the attributes (including inherited attributes) of C , and
the role j : DTj represent the roles of C .
This also confirms that the explicit invariant of C is con-
sistent with superclass invariants, as these are all con-
joined to form the complete class invariant.

2. The initialisation of a class establishes the invariant:

[ini tC]I nv′C

3. A consistency requirement for a state machine for C is
that there are no two different transitions from the same
state triggered by the same operation which have over-
lapping guards [42, p. 547]:

IC � ∀x : X ′; i : N1 ·
(c_state = s ∧ G ′1 �⇒ ¬G ′2)�↑(op(x), i)

for the guards G1 and G2 of any two transitions for op(x :
X) from state s.

4. The state machine is complete if, for any operation op
which has at least one transition in the state machine,

for each state s from which there is a transition for op,
the disjunction of the guards on the transitions for op
from s is equivalent to true. In the case that an explicit
permission guard is defined for op from s, the disjunction
should be equivalent to this guard.

5. If an explicit algorithm is provided for an operation op by
a behavioural state machine, then this algorithm Codeop

must satisfy the pre/post constraints given for the opera-
tion:

[pre existsC = true ∧ Pre′op then Codeop]Post ′op

If Codeop includes calls of other operations, then the
preconditions of these operations should be true at the
point of call.

6. The actions of each state machine transition should estab-
lish the invariant of the target state, if any:

I nv′s ∧ G ′ �⇒ [op(x); acts′; entr y′t]I nv′t

for a transition s →op(x)[G]/acts t of a behaviour state
machine for an object. For protocol state machines, the
postcondition of a transition should be consistent with
the invariant of its target state.

7. Definedness obligations: the invariant of a class should
always be well-defined (not contain applications of func-
tions to elements outside their domain, such as division
by zero), and the precondition of an operation should
ensure that the postcondition or code definition of this
operation is well-defined, likewise for transition guards
and transition actions.

A translation from UML-RSDS into the formal specifica-
tion language B [1] is used to support this semantic analysis,
using the proof tools provided for B in the BToolkit [9] or
B4Free [4].

The properties 1, 2, 5 and 6 above can be checked as part
of the standard proof obligations of internal consistency of
a B component which represents the semantics of a UML
class together with its protocol state machine. For a correct
component, this proof is usually quite effective, the B tools
are normally able to prove 90% of verification conditions of
internal consistency for such components [7]. Failed proof
can also be useful to identify semantic errors in a component
(and the source UML specification, in our case).

The translation to B corresponds very closely to the RAL
semantics. In particular, individual B modules are used to rep-
resent instance, class and subsystem theories within a model,
allowing a modular approach to verification and a potential
reduction in proof complexity. Attributes of a RAL theory
become variables of the B module representing the theory,
and actions of the theory become operations of the B module.

123

102 K. Lano

Table 13 Correspondence of semantics and B

Semantics element e B element e#

N NAT

Z INT

B BOOL

@C C_O B J

C cs

att (a : @C) : T att : cs → T #

att : T att : T #

Table 13 shows the correspondence between elements of
the semantics of a UML-RSDS model M , and elements of
the B specification module generated from M .

T # represents the interpretation of T in B. There are no
types of rational or real numbers in B, so R cannot be rep-
resented in B, and T I M E will be interpreted by N. The
semantics of OCL expressions in B is defined using the set-
theoretic denotations given in Sect. 2.4. There are only small
differences in the denotation of OCL expressions in RAL
and in B: sum is calculated by a SI G M A operator in B, and
implicit promotion of elements to collections (Table 9) is not
supported. On formulae without real numbers, modal or RTL
operators, RAL reduces to the same classical first order logic
as B. This means that:

S′ �R AL ϕ
′ ≡ S# �B ϕ

#

holds, for any set S ∪ {ϕ} of such sentences in UML-RSDS
OCL, where in RAL we assert T I M E = N.

In the case of the telephone specification, the B module
derived from the class diagram and state machine is as follows
(corresponding to the instance theory IT elephone):

MACHINE Telephone SEES Int_TYPE
SETS Status = {idle, offhook, calling,

connected}
VARIABLES status, number, dialing,

connectedTo, lastCalled
INVARIANT

status : Status & number: INT &
dialing : INT & connectedTo : INT
lastCalled : INT & (dialing /= 0 =>
status = calling) &
(status /= calling => dialing = 0) &
(status /= connected =>

connectedTo = 0) &
(connectedTo /= 0 =>

status = connected)
INITIALISATION status := idle
OPERATIONS

setstatus(statusx) =

PRE statusx : Status
THEN status := statusx ||
IF statusx /= connected THEN

connectedTo := 0 END ||
IF statusx /= calling THEN

dialing := 0 END
END;

pickUp =
PRE status = idle
THEN status := offhook
END;

putDown =
PRE status = connected or status =
calling or status = offhook
THEN status := idle
END;

... /* other operations of
Telephone */

END

The initialisation must establish the invariants I nv:

(status = calling �⇒ dialing = 0) ∧
(status = connected �⇒ connectedT o = 0)

But initialisation only performs the action

status := idle

which gives the proof obligation I nv[idle/status], ie:

dialing = 0 ∧ connectedT o = 0

This is not provable from the existing specification, which
is therefore incomplete. We can satisfy this requirement by
initialising dialing and connectedT o to 0.

Likewise, analysis of the operation put Down identifies
inconsistency between the behaviour derived from the state
machine, and that required by the invariants: again the
obligation

dialing = 0 ∧ connectedT o = 0

is not provable from the B version of the operation, and this
operation must be extended to:

putDown =
PRE status = connected or status =
calling or status = offhook
THEN status := idle || dialing := 0 ||
connectedTo := 0
END

123

A compositional semantics of UML-RSDS 103

Another case of incompleteness, identified by animation, is
the failure to set lastCalled correctly. This should be set on
entry to the calling state.

4.3 Model transformations

Model transformations for UML can be classified in five
categories:

1. Quality improvement transformations.
2. Elaborations.
3. Refinements.
4. Abstractions.
5. Design patterns.

Model transformations can be formally specified as
operations at the UML-RSDS metamodel level (using the
metamodels given in Appendix A). For example, the transfor-
mation “Replace inheritance by association” removes an ele-
ment g : Generali zation and creates a new a : Association
and r1, r2 : Property such that

a.member End = Sequence{r1, r2}
r1.classi f ier = g.general

r2.classi f ier = g.speci f ic

and r1 has 0..1 multiplicity and r2 has 1 multiplicity.
To prove that a transformation is semantically correct, the

semantics of the original untransformed model is compared
with that of the transformed model. It should be possible to
construct a theory interpretation (as in Appendix C) of the
semantics of the original model into the theory of the new
model, so that all the properties of the original model remain
true in the new model, in interpreted form. This property of

a transformation is critical if it is to be used reliably to carry
out application development.

All of the above categories of transformations, except
abstractions, will normally be provable as theory interpreta-
tions of the theory of the source/starting model in the theory
of the target model. For abstractions the theory interpretation
will go in the opposite direction.

We give examples of a quality improvement transforma-
tion (factoring out entry actions) and a refinement transfor-
mation (removing inheritance by amalgamating classes).

4.3.1 Amalgamate subclasses into superclass

This transformation amalgamates all features of all
subclasses of a class C into C itself, together with an addi-
tional flag attribute to indicate which class the current object
really belongs to. It is one strategy for representing a class
hierarchy in a relational database.

An example of the transformation is shown in Fig. 9.
Constraints of the subclasses must be re-expressed as con-

straints of the amalgamated class, using the flag attribute, as
illustrated in Fig. 9.

This transformation is related to the Collapsing Hierarchy
refactoring of [18].

4.3.2 Introduce entry actions of a state

If all transitions t1, . . . , tn into a state s have the same final
sequence act of actions, remove these actions from the tran-
sitions and add act as the first actions of the entry action
of s.

This can be directly shown to give a theory interpreta-
tion (as the identity morphism) of the original model into

Fig. 9 Amalgamation of
subclasses transformation

A
atta : T1

attc: T3

Y

attb: T21

*

*

1

A
atta : T1
attb: T2

AType <<enumeration>>
isA
isB
isC

*

1

*

Y0..1

flag = isB

yr

flag = isC =>
flag = isC => InvC

flag = isC

 yr.size = 1

yr

InvC

CB

xr

xr

attc: T3
flag: AType

X

X

123

104 K. Lano

the new model, since the axioms BSC OpP or BSC OpM
(depending on the form of state machine) in Sect. 3 will be
unchanged between the new and old models, and no other
axioms are affected by this transformation.

4.3.3 Design patterns

Design patterns can also be considered as model transforma-
tions: introducing the pattern results in a transformation of a
model, for quality improvement or refinement purposes [50].

For example, consider the Facade pattern [19]. A generic
facade with three client classes and two suppliers would
be represented as a transformation from the original model
which simply contains these five classes, to a new model
where communication is via the facade class (right hand side
of Fig. 10).

A particular application of Facade would extend this trans-
formation by interpreting these general pattern components
by the specific classes and associations in the system being
considered.

The key invariant of Facade is that the new introduced
class preserves the interconnections between the suppliers
and clients:

∀b ∈ B · ∀c3 ∈ C3 · b ∈ br(c3) ≡
∃ f ∈ F · b ∈ br1(f) ∧ f ∈ f r(c3)

That is, the original br is implemented by the composition
f r; br1 in the new model. Likewise for the other suppliers
and clients.

The significant effect of the transformation is that invo-
cations br.op(x) in operation definitions of the clients C1,
C2, C3 in the original model become invocations f r.op(x)
in the new model, and op on F is defined to call the original
op in A or B.

Axioms of the original model hold in interpreted form
in the new, where br is interpreted as f r.br1 and ar as
f r.ar1: association constraints on C1_A, etc., must now

be expressed as constraints on both C1_F and F_A. Their
syntax and semantics remain unchanged. The axioms OpP ,
RSC , M RSC , BSC OpP , BSC OpM which define one
operation in terms of others may be affected by this pattern
if their right hand side involves one of the replaced supplier
operations:

m(y) ⊃ . . . br.op(x) . . .

This axiom is interpreted as

m(y) ⊃ . . . f r.br1.op(x) . . .

in the new model. But this is provable from the corresponding
axiom

m(y) ⊃ . . . f r.op(x) . . .

in the new model, since f r.op(x) ⊃ f r.br1.op(x) and
each of the statement composition operators is monotonic
with respect to ⊃ (Appendix B).

In the UML-RSDS tools, the pattern is identified as possi-
bly relevant for a model if there are classes which are shared
suppliers of two or more clients.

5 Extension of the semantics

The semantics of UML-RSDS can be extended to give a
semantics for much larger subsets of UML 2.

1. State machines with OR and AND composite states can
be reduced to equivalent state machines with only basic
states, by flattening (cf., [12]), or by defining a state vari-
able for each OR composite state/region and expressing
transitions (including compound transitions) by pre and
post-conditions on these state variables.

2. Exit actions of states in state machines can be expressed
as initial actions of every transition that exits the state.
Choice pseudostates can be replaced by normal states,
with guarded outgoing completion-triggered transitions.

Fig. 10 Facade pattern
application

C1

C2

C3

A B

ar ar br br
br

A B

C3C2C1

fr fr fr

Generic application
of transformation

Theory interpretation:
br |−−−> fr.br1
ar |−−−> fr.ar1

F

ar1 br1

123

A compositional semantics of UML-RSDS 105

Event deferral can be specified using permission guards
to express that the operation of the event cannot start
executing in the deferring state.

3. Class diagram constructs such as qualified associations
and association classes can be replaced by semantically
equivalent constructs in UML-RSDS (Sect. 2.8).

The semantics can also be extended directly to the use
case and interaction notations of UML 2:

1. Use cases are treated as operations of a system, and may
be defined using a behavioural state machine, as for oper-
ations of a class. They are semantically represented by
action symbols in a system theory, and their behaviour
is defined from their state machine as for operations of
classes.

2. Interaction diagrams can be directly represented in our
semantics as sets of constraints on event times ←(op
(x), i),→(op(x), i), and other times in the life histories
of the objects whose lifelines appear in the interaction.
Events to represent the return of a synchronous operation
call as a message to the caller need to be introduced, as
in [23]. Operators such as par can be defined in terms
of these constraint sets (as union, in the case of par).
The more precise sublanguage of the interaction notation
defined in [26] can be given a semantics in this manner.
Reasoning tools for RTL could potentially be used to
support analysis of the semantics of interactions, as in [3].

6 Comparison

Other work on UML semantics has used the following
approaches:

1. Expression of UML semantics (usually of a small part
of UML) in a semantic representation outside of UML,
using denotational [8,14,21,36,46], operational [12],
axiomatic [27] or category-theoretic [49] semantics.

2. Metamodelling, representing UML semantics in terms
of a small core UML notation together with OCL [11].
This is the approach used in the UML 2.0 Infrastructure
and Superstructure documents, although in these many
of the semantic definitions are informally expressed and
not formalised in OCL (in some cases OCL is unable
to express the definitions). Circularity in metamodelling
still remains a problem for the semantics of OCL
itself [10].

Denotational semantics as in [8,14,46] are very useful as
an underpinning for axiomatic semantics, however they can
be very complex and difficult to understand and implement
directly, or to tailor to different semantic variation points

of UML. For this reason we prefer to give an axiomatic
semantics, which is closely linked to notations used for proof
and semantic analysis (in classical mathematical and logical
notation, or in B).

In comparison to the system model defined by the UML
semantics project [8], we use a more abstract and general
semantic representation, avoiding low-level details of data
storage mechanisms.

In general, the strategy of restricting to a subset of UML
is necessary, since some of its notations, such as activities,
have unclear semantics. However the subset should itself be
a useful part of UML, so that the results of semantic analy-
sis can be expressed in a comprehensible manner to software
developers. Translating interactions to state machines, or flat-
tening state machines, should be avoided for this reason. Our
semantics can represent directly the semantics of interactions
and unflattened state machines.

As [40] points out, the self-referential metamodelling
approach can result in a semantics which fails to provide
a consistent interpretation for the terms of UML. Instead,
we have taken the first approach and given a semantics of
an essential core of UML in a formalism which is entirely
independent of UML, and based on well-established mathe-
matical logic and set theory. In decomposing the semantics
of UML models into theories linked by morphisms, we are
also using a category-theoretic approach.

An approach closely related to ours is the formalisation
of UML and OCL in PVS [27]. This deals with a restricted
subset of class diagrams (association ends have maximum
multiplicity 1). The expression of the semantics in PVS can
be complex and difficult to relate to the UML source models,
but automated proof can be applied as with model checking.

Our semantics represents the extension of a class C as a
element C of the semantics, but does not represent the inten-
sion of C [40] as an element within the semantics. Instead this
is represented as the theory IC . This means that the seman-
tics of concepts such as lea f and root classes and operations
cannot be expressed in our semantics. private and public
modalities of features are also not represented. However, the
correctness of models with regard to such constraints can
be effectively checked by diagram editing and syntax-level
analysis tools, so the inability to represent such concepts in
our semantics does not impair the verifiability of UML-RSDS
models.

7 Conclusions

We have shown that it is possible to construct a seman-
tics for a substantial subset of UML, in a semantic repre-
sentation which is independent of UML, and in a modular
manner. The semantics is geared toward practical reasoning,
and is designed for convenient use with the B verification

123

106 K. Lano

Table 14 UML-RSDS
constraint syntax

< value > ::= < ident > | Variable expression

< number > | < string > | Primitive literal

< boolean > expressions

< objectre f > ::= < ident > |
< objectre f >.< ident > | Navigation expression

< objectre f > |(< expression >) Select expression

< arrayre f > ::= < objectre f > |
< objectre f >[< value >] At expression

< f actor > ::= < value > |
{ < valueseq > } | Collection literal

Sequence{ < valueseq > } | expressions

< arrayre f > |
< f actor > op1 < f actor > Infix binary operation call (1)

< expression1 > ::= < f actor > op2 < f actor > Infix binary operation call (2)

< expression > ::= < expression1 > |
(< expression >) |
< expression1 > op3 < expression > Infix binary operation call (3)

< invariant > ::= < expression > |
< expression > => < expression >

tools. Based on the semantics, a large toolset has been devel-
oped to support ‘constraint-driven development’ using UML,
enabling the implementation of systems to be generated with
a high degree of automation from their specifications in UML.

A Formal syntax of UML-RSDS

UML-RSDS is a subset of UML 2.0 (with minor variations).
It provides a core class diagram and state machine notation
in terms of which many other features of these notations can
be defined.

A.1 OCL notation in UML-RSDS

The OCL language adopted in UML-RSDS has the syn-
tax shown in Table 14. A valueseq is a comma-separated
sequence of values. A factor level operator op1 can be:

1. +, −, ∗, /, div, mod
2. \/, /\ (union and intersection, also written as ∪ and ∩),

�.

A comparator operator op2 is one of =, /=, <, >, <=, >=,
:, <:, /:, / <:. A logical operator op3 is one of &, or .1 The
operator precedence rules of OCL are used [43, Sect. 7.4.7].
Identifiers are either class names, function names, features
(attribute, operation or role names), elements of enumer-
ated types, or represent variables or constants. Variables are

1 To avoid confusion we use these symbols for the syntax of UML-
RSDS, and the symbols ∧, ∨ for the corresponding semantic operators
in RAL.

implicitly universally quantified over the entire formula.
Operations can also be written with parameters as op(p1, . . . ,

pn), etc. In contrast to OCL, we do allow operations to be
invoked on collections of objects—this is interpreted as a
concurrent (order undefined) execution of the operation on
the individual objects. Reference to the value of an expres-
sion e at a precondition of an operation can be made in the
postcondition using the notation e@pre as usual.

A.2 UML-RSDS class diagrams

Figure 11 shows the metamodel used to formally define
UML-RSDS class diagrams as a subset of UML 2.0.

Structural Feature also inherits from Multiplici t y
Element . The metaclasses Extension, ExtensionEnd and
Stereotype are defined as in the Profiles package of UML
2.0 [42, Sect. 18].

Only a subset of UML class diagram notation is currently
used in UML-RSDS:

• Classes cannot be nested.
• Qualified associations and aggregation are omitted.
• Associations are binary:

member End.si ze = 2

Association ends are never static:

member End.isStatic = f alse

and there is no specialisation of associations.

123

A compositional semantics of UML-RSDS 107

Element

NamedElement MultiplicityElement

Classifier
isAbstract: Boolean

Type

Relationship

isOrdered: Boolean = false
isUnique: Boolean = true

Relationship

specific

*

Structural
Feature
isReadOnly:
 Boolean = false

/feature
*

1..*

/inheritedMember

isDerived: Boolean
 = false Operation

isQuery: Boolean

Association

0..1

postcondition
*

0..1

type
0..1

name: String [0..1]

visibility: VisibilityKind
lower: Integer [0..1]
upper: UnlimitedNatural [0..1]

{ordered} *

constrainedElement

1

*
1
general

*generalization

Feature

Generalization
isSubstitutable:

 Boolean

isStatic: Boolean
 = false

0..1
precondition

0..1 *

* {ordered}
ownedOperation

Stereotype

DataType

Property Class

Constraint

Association

memberEnd

 = false

Interface

classifier

Behavioral
Feature

0..1

0..1 0..1

isDerived: Boolean
 = false

addOnly: Boolean

[0..1]

/attribute

* ownedAttribute
* {ordered}

2
{ordered}

Namespace

Namespace

0..1 /context

*

/member

(duplicate)

(duplicate)

ownedAttribute
* {ordered}

Type
Primitive

Literal

Enumeration
0..1

ownedLiteral
* {ordered}

*

0..1 /owner /ownedElement

/source 1..*
/target 1..*

Directed

Enumeration

* {ordered}
ownedOperation

0..1

Classifier
/featuring

Expression

0..1

0..1 initialValue

Class

Typed
Element

*

ExtensionEndExtension
*

*
1

1 metaclass

type

Fig. 11 UML-RSDS class diagram metamodel

• Association ends are either sets (isUnique = true and
isOrdered = f alse) or sequences (isUnique = f alse
and isOrdered = true).

• Attributes always have multiplicities 1..1:

attribute/ = {} �⇒
attribute.lower = 1 &

attribute.upper = 1

• Navigability and visibility of elements are not
represented.

• Behavioural features are assumed to have in parame-
ters only, except for query operations, which may also
have a single return parameter. Exceptions are not con-
sidered. A bodyCondition is expressed instead by a
postcondition.

A.3 UML-RSDS state machines

Figure 12 shows the metamodel of the state machine notation.
Parameter also inherits from T yped Element and

Multiplici t yElement . State machines can have entry

actions to states, and state invariants. Behaviour state machine
transitions are written with the syntax

s −→ev[G]/acts t

where s is the source state, t the target state, ev a trigger
event (an operation call), G a guard condition, and acts
a list of actions objs.op(p) to be performed on supplier
objects or on the sel f object. Protocol transitions have a
postcondition in place of the actions. The trigger, guard and
actions/postcondition can all be omitted. The default guard
is true.

The following restrictions apply compared to UML 2.0
state machines:

• Only state machines that consist only of basic (non-
composite) states are used. Concurrent composite states
are not permitted except at the top level of the system
specification:

region.si ze = 1

is an invariant of StateMachine in Fig. 12.

123

108 K. Lano

Behavior

RegionNamedElement

Vertex
subvertex*

1 source

1 target

Behavior

(duplicate)

(duplicate)

incoming
*

0..1 effect

0..1 state

* region

region1..*

0..1 0..1

0..1

*

outgoing
* transition

container

1

0..1 stateMachine

0..1

trigger

guard
stateInvariant 0..1

0..1

container

entry

0..1

0..1

specification
method0..1

*

isInitial: Boolean

context

0..1
StateMachine

(duplicate) (duplicate)

direction:
 ParameterDirectionKind = in

0..1

NamedElement

Behavioral
Feature

isAbstract: Boolean
concurrency:
 callConcurrency
 Kind

*

isReentrant: Boolean

Message
Event

CallEvent

1 event
*

operation1

0..1
owningState

0..1

ownedParameter {ordered}

*
ownedParameter {ordered}
*

Actor

UseCaseInterface

Protocol
Transition

0..1

postCondition
0..1

0..1

Classifier

Behaviored
Classifier

Namespace

State

Parameter

FinalState

Constraint

Operation

Transition

Event

Trigger

classifierBehavior

0..1

0..1

0..10..1

protocol

Class
isActive: Boolean

Fig. 12 UML-RSDS state machine metamodel

• A transition cannot have multiple triggers.
• There are no pseudostates such as history states. Initial

states are represented by the is I ni tial attribute of State.
• If a state machine describes the behaviour of objects of a

class, then all the triggers of its transitions are call events
of operations of this class:

speci f ication = {} �⇒
(t : region.transi tion �⇒ t.tr igger.si ze = 1) &

region.transi tion.tr igger.event <: Call Event &

region.transi tion.tr igger.event.operation <:
context. f eature

• If a state machine describes the behaviour of an operation,
then its transitions have no triggers (they are triggered by
completion events of their source states [42, p. 555]):

speci f ication = {} �⇒
region.transi tion.tr igger = {}

Behavioural state machines can have state invariants, in
UML-RSDS: we consider this is useful to support verifica-
tion of the algorithms described by these machines, e.g., by
the usual weakest-precondition analysis as supported by B.

B Real time action logic

This appendix presents the underlying RAL formalism used
for UML-RSDS semantics.

B.1 Core formalism

The core logic of RAL is an extension of the Object Calculus
of Fiadeiro and Maibaum [16,17] to cover durative actions
and real-time constraints, based on RTL. The syntactic ele-
ments of an RAL theory are type symbols, function sym-
bols, attribute symbols denoting time-varying data items, and
action symbols denoting actions which may change the value
of these attributes. Each theory has a collection of axioms
relating these symbols.2

Formally, a signature � of an RAL theory is a finite set
of symbols, with Att(�) and Ac(�) the sets of attribute and
action symbols in�. The sets of type, function and predicate
symbols are, respectively, T(�), F(�) and P(�). Att(�) ∩
Ac(�) = {}, Att(�)∩T(�) = {}, and similarly for the other
subsets of �.

� = Att(�) ∪ Ac(�) ∪ T(�) ∪ F(�) ∪ P(�)

2 Theories are also termed ‘modules’ in the following.

123

A compositional semantics of UML-RSDS 109

Each action symbol α ∈ Ac(�) has a (write) frame F(α)
⊆ Att(�), which is the set of attributes whose value it may
change. Each action, function, predicate and attribute symbol
p has an arity ari t y(p) ∈ N, and a sequence parameters
(p) ∈ seq(T(�)) of parameter types. ari ty(p) is the length
of parameters(p).

We include the usual type, function and predicate symbols
of predicate calculus and ZF set theory in each RAL theory
[39]. The function card gives the cardinality of a set (the
finite or infinite cardinal isomorphic to the set). Functions
are defined as particular sets of ordered pairs, as usual. The
type of functions from D to R is denoted D→ R. The range
of a function f is denoted ran(f), the domain is dom(f).
The types N, Z, R and S (of strings) will usually be assumed
to exist in T(�) with the usual axioms. A ‘universal type’
corresponding to Ocl Any [43] could also be added.

We also assume there is a type T I M E of times, with
N ⊆ T I M E , T I M E is totally ordered by a relation<, with
least element 0, and satisfying the axioms of a totally ordered
ring with addition+ and unit 0, and multiplication operation
∗ with unit 1. We will usually assume there is an attribute
now : T I M E .

For each action α there are function symbols ←(α, i),
→(α, i), ↑(α, i) and ↓(α, i), where the parameter i ranges
over N1. These correspond to the RTL event occurrence oper-
ators for operation events, and have the following meanings:

1. →(α, i) is the time that the i-th request for execution of
α is received (by the specific target object). Equivalently,
it is the request time of the i-th invocation instance of α,
since we enumerate these instances in the order of their
requests.

2. ↑(α, i) is the activation time of the i-th invocation
instance of α.

3. ↓(α, i) is the termination time of the i-th invocation
instance of α.

4. ←(α, i) is the time of the invocation which created the
i-th request for execution of α.

The parameters of these functions are those of α plus i : N1.
In UML terms, (α, i) can be considered as an instance

of the Behaviour denoted by α, considered as a class [42,
Sect. 13]. The times←(α, i),→(α, i), ↑(α, i), ↓(α, i) are
the times of events associated with this instance (Message
Event , Call Event and ExecutionEvents, respectively).
The semantics also relates directly to the concept of a stimulus
in the UML profile for performance and time [32,41].

Local attributes of (α, i) are written as (α, i).att and are
represented as attributes of the module, with parameters those
of α, plus i , plus any defined for att itself. These attributes
can represent local variables of α or denote the identity of
the sender of the request.

The only other elements of the core language are predicates
of the form ϕ�t “ϕ holds at time t : T I M E”, where ϕ is
a predicate; and terms of the form e�t “the value of term
e at time t : T I M E”. Otherwise, terms and formulae are
constructed as for classical predicate calculus with equality
and with connectives ∧, ∨, �⇒ , ¬, ∀ and ∃. ∀x : T · ϕ
abbreviates ∀x · x ∈ T �⇒ ϕ as usual. The connectives
� and � bind more closely than any other binary operators.
Thus x = y�t means x = (y�t).

now has the characteristic property that

∀t : T I M E · now�t = t

B.2 Derived constructs

For each action instance we can express the delay in its
activation and duration of its execution:

1. delay(α, i) = ↑(α, i)−→(α, i)
2. duration(α, i) = ↓(α, i)− ↑(α, i)

We can express that one action always calls another when
it executes:

α⊃β ≡
∀i :N1·∃ j :N1·↑(α, i)=↑(β, j)∧↓(α, i)=↓(β, j)

“α calls β”. This is also used to express that α is defined by
a (composite) action β.

Some important properties of ⊃ are that it is transitive:

(α ⊃ β) ∧ (β ⊃ γ) �⇒ (α ⊃ γ)
and that statement constructs such as ; and i f then else
(Appendix C.4) are monotonic with respect to it:

(α1 ⊃ α2) ∧ (β1 ⊃ β2) �⇒ (α1;β1 ⊃ α2;β2)

and

(α1 ⊃ α2) ∧ (β1 ⊃ β2) �⇒
i f E then α1 else β1 ⊃ i f E then α2 else β2

In UML terms the input pool of received and waiting to
be processed messages of an object are all those m(x), i
instances for which→(m(x), i) ≤ now and ↑(m(x), i) >
now. x are the input parameter values of the invocation
of m.

We can define counters #req(α), #act (α), # f in(α) and
#snd(α) for requests, activations, terminations and invoca-
tions of action α:

1. #req(α)�t = card({ j : N1|→(α, j) ≤ t})
This is the number of distinct request events for α which
have occurred so far.

2. #act (α)�t = card({ j : N1|↑(α, j) ≤ t})
3. # f in(α)�t = card({ j : N1|↓(α, j) ≤ t})
4. #snd(α)�t = card({ j : N1|←(α, j) ≤ t})

123

110 K. Lano

The number of currently executing instances of α (at a
time t) is therefore

#active(α)�t = #act (α)�t − # f in(α)�t

whilst the number waiting to be activated is

#waiting(α)�t = #req(α)�t − #act (α)�t

Using these counters we can express a wide range of
mutual exclusion, synchronisation and prioritisation proper-
ties. For example, a set S of actions are fully mutually exclu-
sive, f mutex(S) if at most one instance of these actions can
be executing at any time:

∀t : T I M E · (#active(α1)+ . . .+ #active(αn) ≤ 1)�t

where S = {α1, . . . , αn}. In particular if (the behaviour
of) an operation m is not reentrant (in UML terms), then
f mutex({m}) holds.

The operators© “next”, � “always in the future” and �
“eventually” of linear temporal logic can be defined in terms
of the activation times of execution instances. For example,
�φ “φ holds at all future instants” is interpreted as meaning
“φ holds at all future activation times of an action of the
system”:

(�Sφ)�t ≡
∀i : N1 · ↑(α1, i) ≥ t �⇒ φ�↑(α1, i) ∧ . . . ∧
∀i : N1 · ↑(αn, i) ≥ t �⇒ φ�↑(αn, i)

where the set of actions is S = {α1, . . . , αn}.
The motivation for this definition is that in a concurrent

environment, invariant properties of a module must be true at
all time points where the state of a system can be observed. At
the specification level the effects of operations are defined by
comparing the state at initiation of the operation to the state
at termination. So states at the initiation and termination of
operations are the critical ‘observable’ points.

Similarly we define©Sφ and �Sφ. We usually drop the
subscript S where it is clear from context.

There are corresponding temporal operators which refer
to all times:

(�τ ϕ)�t ≡
∀s : T I M E · s ≥ t �⇒ ϕ�s

Finally, the weakest precondition operator [α]P “every
execution of α establishes P” of B [1] and modal action
logic [47] can be defined, where P may contain terms of the
form e@pre denoting the value of expression e at initiation
of α:

([α]P)�t ≡
∀i : N1·↑(α, i)= t �⇒ P[e�↑(α, i)/e@pre]�↓(α, i)

E[ex/v] denotes the substitution of expression(s) ex for
identifier(s) v in E . In this substitution each pre-state expres-
sion e@pre in P is replaced by the value e�↑(α, i) of e at
initiation of α.

The [] operator can be used to concisely express proper-
ties of action invocations without requiring reference to the
index of these invocations. It also provides a general way of
expressing the effect of actions.

B.3 Axioms of RAL

We take the axioms of classical predicate logic with equality
in this language, with the following modifications.

The predicate logic axiom ∀-elimination:

(∀v : T · ϕ) �⇒ ϕ[e/v]
is only valid if e is free for the variable v in ϕ, and the sub-
stitution does not introduce new occurrences of attributes
within modal operators (� and � in the core language) in ϕ.
Similarly the equality axiom

e1 = e2 �⇒ (ϕ[e1/v] ≡ ϕ[e2/v])
is only asserted when e1 and e2 are free for the variable v in
ϕ, and all free occurrences of v in ϕ are outside the scope of
a modal operator.

(�τ (e1 = e2))�0 �⇒ (ϕ[e1/v] ≡ ϕ[e2/v])
for any formula ϕ, where e1 and e2 are terms free for the
variable v in ϕ.

If vi is a variable not free in the terms e or t , then:

∃vi · (vi = e)�t

“Expressions always evaluate to a value”.
The equality axiom

e = e

is valid for all terms e.
Variables act as logical constants over time:

∀vi : X · ∀t : T I M E · vi = vi�t

The core logical axioms assumed are:

(C1) : ∀i : N1 · →(α, i) ≤ →(α, i + 1)

for each action α. This expresses that the index i identifies
an execution instance of α by the order in which the request
for the execution arrives at the target object.

(C2) : ∀i : N1 · ←(α, i) ≤ →(α, i) ≤ ↑(α, i) ≤ ↓(α, i)

for each action α. “Each invocation instance must be sent
before it is requested, requested before it can activate, and
must activate before it can terminate”.

123

A compositional semantics of UML-RSDS 111

This axiom does not require that executions initiate in
the order of their requests, this additional property can be
asserted by a constraint if required.

The compactness condition is that for all p ∈ N there are
only finitely many i : N1 and x : X such that↑(α(x), i) < p,
for each action α. Similar conditions are required for the→,
← and ↓ times.

The frame axioms express that attributes of a module M
can only change in value over intervals in which an action of
M executes – these axioms are a form of locality property in
the sense of [17]:

For each attribute att ∈ Att(�), where � is the signature
of M , let α1, . . . , αn be all the actions α ∈ Ac(�) which
have att ∈ F(α). Then Frameatt is the axiom

∀t1, t2 : T I M E ·
t1 < t2 ∧ att�t1 = att�t2 �⇒
∃t : T I M E · t1 ≤ t < t2 ∧
((#active(α1) > 0)�t ∨ . . . ∨
(#active(αn) > 0)�t)

In words: “If the value of att changes from t1 to t2, there
must be an action with att in its write frame which executes
in that interval”.3

These axioms are particularly relevant when defining the
meaning of subclassing. They are used to define a class as
being an ‘open’ or ‘extendible’ type in the sense of [48]: new
behaviour and data can be added to a class but must preserve
the behaviour of the superclass.
(C3): Axioms for �:

(ϕ�s)�t ≡ ϕ�(s�t)

(ϕ ∧ φ)�t ≡ ϕ�t ∧ φ�t

(ϕ ∨ φ)�t ≡ ϕ�t ∨ φ�t

(ϕ �⇒ φ)�t ≡ (ϕ�t �⇒ φ�t)

(¬ϕ)�t ≡ ¬(ϕ�t)

(∀v : T · ϕ)�t ≡ ∀v : T · (ϕ�t)

(∃v : T · ϕ)�t ≡ ∃v : T · (ϕ�t)

In the last two cases, v must not be free in t .
(C4): Axioms for �:

ϕ�t ≡ ϕ∗t

where ϕ contains no modal operators, and ϕ∗t is ϕ with each
outermost term e occurring in a subformula replaced by e�t ,
where t has no free variables.

Also (C5):

g(e1, . . . , en)�t = g(e1�t, . . . , en�t)

for each g ∈ F(�) of arity n, t : T I M E .

3 When αi has parameters xi : Xi we use (∃xi : Xi ·#active(αi (xi)) >

0)�t in the conclusion.

C3, C4 and C5 are essential to prove the completeness of
the RAL formalism with respect to its denotational semantics
[29].

The usual concept of inference, denoted by �, is taken.
The inference rules are those of classical predicate calculus:
modus ponens and ∀-introduction. In addition there is the
rule of �τ -introduction:

� � ϕ
� � ∀t : T I M E · ϕ�t

.

C Theory refinement and composition

UML-RSDS supports modular specification to decompose
a system into analysable parts. Specifications are structured
at the three levels of objects, classes and subsystems (sub-
models). The semantics for UML-RSDS also follows this
structural decomposition by defining a corresponding
structure of theories for objects, classes and subsystems, and
combining these theories to form the semantics of complete
models. The main way in which theories can be combined is
via morphisms between the theories.

C.1 Theory morphisms

Let M and M ′ be two theories with signatures � and �′,
respectively.

A signature morphism σ : � → �′ must map attribute
symbols to attribute symbols, action symbols to action sym-
bols, etc., and preserve the arities of these symbols:

σ(|Att(�)|) ⊆ Att(�′)
σ (|Ac(�)|) ⊆ Ac(�′)
σ (|T(�)|) ⊆ T(�′)
σ (|P(�)|) ⊆ P(�′)
σ (|F(�)|) ⊆ F(�′)

with the arity in �′ of σ(f) being the same as ari ty(f)
in � for each f ∈ F(�) ∪ P(�) ∪ Ac(�) ∪ Att(�), and
with parameter types also translated via σ for corresponding
function, predicate, attribute and action symbols in the two
theories.

Normally σ maps the standard types T I M E , N, etc., in
M to the corresponding types in M ′.

For each action symbol α ∈ Ac(�),

F(σ (α)) ⊆ σ(|F(α)|)
In other words, the frame of an action may become more
restrictive in M ′.
σ can be extended to general terms and formulae of M in

the usual way, so that σ(t) is a term of M ′ if t is a term of
M , etc.

123

112 K. Lano

σ is a theory morphism if

M � ϕ �⇒ M ′ � σ(ϕ)
for each formula ϕ of M .

In particular, this means that the frame axiom for each
attribute att of M must be true in interpreted form in M ′:

∀t1, t2 : T I M E ·
t1 < t2 ∧ σ(att)�t1 = σ(att)�t2 �⇒
∃t : T I M E · t1 ≤ t < t2 ∧
((#active(σ (α1)) > 0)�t ∨ . . . ∨

(#active(σ (αn)) > 0)�t)

where the αi are all the actions of M with att in their write
frame. In other words, (the interpretation of) att can only
change value over intervals where (the interpretation of) one
of its updating actions of M is executing. But this means that
every new action

β ∈ Ac(�′) \ σ(|Ac(�)|)
which has σ(att) in F(β) co-executes with (or calls) one of
the σ(αi).

This form of encapsulation of data is similar to that found
in languages such as B [1], or in the subtyping definition
of [37]: only the actions declared in the same module as a
particular data item can directly write that data. Actions of
other modules must invoke these actions in order to change
the data.

C.2 Class and instance theories

In an object-oriented system, we may have theories IC rep-
resenting a typical instance (or object) of a class C , and a
theory �C representing the class itself (including all its cur-
rent instances) [6].

RAL attributes will represent UML instance scope and
class scope attributes, roles (association ends) and query
operations (collectively referred to as data features), and
RAL actions will represent instance and class scope update
operations. An instance theory IC will have an attribute
att : X ′ for each declared attribute att : X in the text of
a UML class C , for each query operation of C and for each
opposite association end of an association attached to C . X ′
is the semantic type corresponding to X . There will be an
action α(X ′) for each update operation with input parameter
type X .

In instance theories instance-level properties can be
proved, independent of object identity. In the class theory
these properties then become available as theorems about all
objects of the class.

We represent class scope (static) features in the instance
theories, since these features are available at the instance
level. Their special property is that their values are always

identical in every instance, this follows since there is a single
semantic representation of the static feature.

In the class theory�C , there will be a type @C of possible
instances of C , and an attribute

C : F(@C)

representing the set of currently existing instances, together
with actions killC (@C) and createC (@C) to delete and add
elements to this set. C corresponds to C.all I nstances() in
OCL [43].

Every element of C will have an associated value for each
data feature f : X declared in the class. An additional para-
meter of type @C representing the object is added to each
(instance scope) attribute att : X ′ and action α(X ′) of IC to
produce a parameterised attribute or action of �C :

att (@C) : X ′

α(@C, X ′)

For a in @C we usually write att (a) as a.att and α(a, x) as
a.α(x) for consistency with standard OO notation.

Attributes or actions which represent class scope (static)
features do not gain the additional parameter.

This general construction is termed an A-morphism [16],
where A is the set of object identifiers/references, and this
involves a modified form of signature morphismσ : �→ �′
in which

ari ty(σ (att)) = ari ty(att)+ 1

ari ty(σ (α)) = ari ty(α)+ 1

for instance scope att ∈ Att(�), α ∈ Ac(�), and the new
parameter has type A ∈ T(�′) and is the first parameter
of σ(att) or σ(α) in the second theory. Otherwise σ is as
previously defined.

The analogy of a theory morphism in this case is that

M � ϕ �⇒ M ′ � ∀a : A · a.σ (ϕ)

where a.ψ is ψ with a substituted into each new parameter
slot created by the morphism.

We construct the class theory �C as a combination of IC

via a @C-morphism, and a generic class manager theory M
via a theory morphism µ:

@X �−→ @C

X �−→ C

createX �−→ createC

killX �−→ killC

Figure 13 shows this structure.

123

A compositional semantics of UML-RSDS 113

µ
IC

M

Γ@C−morphism C

Fig. 13 Class theory construction

M has type symbol @X , attribute X : F(@X), actions
createX (@X) and killX (@X) and axioms

(X = {})�0

∀a : @X · [createX (a)](X = X@pre ∪ {a})
∀a : @X · [killX (a)](X = X@pre − {a})

The frames of killX and createX are both {X}.

C.3 Time variables

In the specification of real-time or hybrid systems, two kinds
of attributes can be identified:

1. Discrete data, corresponding to discrete data in the real
world, or discretised approximations of continuous data.

2. Continuous data, or ‘time variables’.

Both can be represented by RAL attributes. However,
whilst discrete variables are conventional variables of a com-
putational system, time variables represent physical quanti-
ties and may vary as arbitrary functions of time.

Thus these two separate forms of attribute need to be dis-
tinguished. Discrete instance attributes att : X of a class
can be modelled by RAL attributes which have the following
properties:

1. att only takes on finitely many values over the lifetime
of the system:

{att�t |t ∈ T I M E} ∈ F(X ′)

2. for each value val : X ′, att = val is true for a finite
collection Ival of intervals of non-zero length:

∀val : X ′ ·∃Ival : F(I N T E RV AL(T I M E))·
{t |t ∈ T I M E ∧ att�t = val} =

⋃

Ji∈Ival

Ji

I N T E RV AL(T I M E) is the set of convex sets J ⊆ T I M E
such that

∀t, t ′ : J · t < t ′ �⇒ ∀t ′′ : T I M E · t ≤ t ′′ ≤ t ′ �⇒ t ′′∈J

In contrast, time variables need not have any constraints
on the variation of their values over time. However, it is often
assumed that they are at least piecewise continuous functions
of time when their values range over a subset of R. They are
usually modified only by special actions which model the
behaviour of physical systems [22].

The prime example of a time variable, included in every
UML-RSDS instance theory, is the attribute now : T I M E ,
which satisfies the axiom

∀t : T I M E · now�t = t.

C.4 Composite and procedural actions

We will introduce a small procedural language (Fig. 14)
to allow procedural-style definitions of behaviour for UML
operations. It is also used as the target for translations to B
and Java in the UML-RSDS tools, so assigning a semantics

Fig. 14 Statement metamodel

LoopStatement

Statement

Conditional
Statement

BasicStatement

Expression

Operation
CallStatement

test1

0..1

ifFalse

0..1

ifTrue
1

0..1 0..1

* actualParameters {ordered}

0..1

0..1

test 1

BoundedLoop UnboundedLoop
Statement

0..1 0..1 SkipStatement
Statement
Assignment

Statement

Behavior

body 1

variant
0..1

0..1

Operation

*

calledOperation1

Constraint

0..1 invariant

step
initialiser

1
1

0..10..1

Sequence
Statement

isParallel: Boolean

Pre
Statement

{ordered} *

statements

1

pre

1

body

0..10..1

0..1

0..1

1 left

0..1

1 right

0..1

1 target

123

114 K. Lano

to such constructs allows us to verify the correctness of these
translations.

Normally←(S, i) = →(S, i) = ↑(S, i) is assumed for
such composed actions S, since they are normally invoked
by the same object on which they execute.

Assignment t1 := t2 can be defined as the action αt1:=t2
where t1 is an attribute symbol, the write frame of this action
is {t1}, and

∀i : N1 · t1�↓(αt1:=t2 , i) = t2�↑(αt1:=t2 , i)

For formulae P without time variables, occurrences of
modal operators or @pre, this means

([αt1:=t2]P)�t ≡ P[t2/t1]�t

as usual for assignment, if no other action co-executes with
this action.

Similarly sequential composition ; and parallel composi-
tion || of actions can be expressed as derived combinators:

∀i : N1 · ∃ j, k : N1 ·
↑(α;β, i)=↑(α, j)∧↓(α;β, i)=↓(β, k)∧↑(β, k)

= ↓(α, j)

and

∀ j, k : N1 ·
↑(β, k) = ↓(α, j) �⇒
∃i : N1 · ↑(α;β, i) = ↑(α, j) ∧ ↓(α;β, i) = ↓(β, k)

These two conditions yield the usual axiom that [α;β]ϕ ≡
[α][β]ϕ for ϕ without occurrences of @pre.

For parallel γ = α||β:

∀i : N1· ∃ j, k : N1 ·
↑(γ, i) = ↑(α, j) ∧ ↑(γ, i) = ↑(β, k) ∧
↓(γ, i) = ↓(β, k) ∧ ↓(γ, i) = ↓(α, j)

and

∀ j, k : N1 · ↑(β, k) = ↑(α, j) ∧ ↓(β, k) = ↓(α, j) �⇒
∃i : N1 · ↑(γ, i) = ↑(α, j) ∧ ↓(γ, i) = ↓(α, j)

The usual property

(P1 �⇒ [α]Q1) ∧ (P2 �⇒ [β]Q2)

�⇒ (P1 ∧ P2 �⇒ [γ](Q1 ∧ Q2))

can be derived. The ; and || composite actions have write
frames the union of the write frames of their component
actions.

Conditional actions α representing i f E then S1 else S2

are defined to have the properties:

∀i : N1 · E�↑(α, i) �⇒
∃ j : N1 · ↑(α, i) = ↑(S1, j) ∧ ↓(α, i) = ↓(S1, j)

and:

∀i : N1 · ¬E�↑(α, i) �⇒
∃ j : N1 · ↑(α, i) = ↑(S2, j) ∧ ↓(α, i) = ↓(S2, j)

Occurrences of i f E then S1 else S2 are either occur-
rences of S1 if E holds at commencement of this action, or
occurrences of S2, if ¬E holds. This action has write frame
the union of those of S1 and S2.

Occurrences of while E do S are a sequence of occur-
rences (S, i1), . . . , (S, in) of S, where E holds at the com-
mencement of each of these actions, and where E fails to
hold at termination of (S, in). Thewhile action has the same
write frame as S. Bounded loops can be defined in terms of
unbounded loops.

Preconditioned actions β: pre Pre then S are defined to
have

∀i : N1 · Pre�↑(β, i) �⇒
∃ j : N1 · ↑(β, i) = ↑(S, j) ∧ ↓(β, i) = ↓(S, j)

and

∀i : N1 · Pre�↑(S, i) �⇒
∃ j : N1 · ↑(β, j) = ↑(S, i) ∧ ↓(β, j) = ↓(S, i)

This means that

([pre P then S]Post)�t �⇒
(∀i : N1 · P�↑(S, i) ∧ t = ↑(S, i)

�⇒ Post[e�↑(S, i)/e@pre]�↓(S, i))

D The UML-RSDS tools

A large integrated toolset has been developed to support soft-
ware development with UML-RSDS, including code gener-
ation from constraints. Figure 15 shows a screenshot of the
UML-RSDS tools.

The tool facilities include:

1. Diagram creation and editing for class diagrams, use
cases, interactions and state machines.

2. Syntactic and semantic checks on diagram correctness,
including consistency and completeness of constraints.

3. Semantics-preserving transformations on UML models,
as described in Sect. 4.3.

4. Translation from UML-RSDS specifications into SMV
[2], the B notation (Sect. 4.2), and Java.

The translation and diagram checking operations are fully
automated. Transformations are also automatically applied,
but must be selected manually by the tool user. The tool is
available at: http://www.dcs.kcl.ac.uk/staff/kcl/umlrsds.

123

A compositional semantics of UML-RSDS 115

Fig. 15 Interface of the UML-RSDS tool

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings.
Cambridge University Press, Cambridge (1996)

2. Androutsopoulos, K.: Verification of reactive system specifica-
tions using model checking. Ph.D. thesis, King’s College, London
(2004)

3. Aruchamy, G., Kim Cheng, A.M.: Translating real-time UML
timing constraints into real-time logic formulas. Technical Report
UH-CS-06-07, University of Houston, Houston (2006)

4. B4Free (2006) B4Free, http://www.b4free.com
5. Bicarregui, J.C., Lano, K.C., Maibaum, T.S.E.: Objects, associa-

tions and subsystems: a hierarchical approach to encapsulation. In:
ECOOP 97, LNCS. Springer, Heidelberg (1997)

6. Bicarregui, J.C., Lano, K.C., Maibaum, T.S.E.: Towards a compo-
sitional interpretation of object diagrams. In: Proceedings of IFIP
TC2 Working Conference on Algorithmic Languages and Calculi,
February, 1997

7. Bowen, J., Hinchey, M.: Ten commandments ten years on: An
assessment of formal methods usage. In: Eleftherakis, M. (ed.)
SEEFM05: 2nd South-East European Workshop on Formal Meth-
ods, pp. 1–16 (2006)

8. Broy, M., Cengarle, M., Rumpe, B.: Towards a system model for
UML. UML Semantics Project document 06.06.04 System Model
Part 1 (2006)

9. B-Core UK Ltd. The BToolkit (2005)
10. Chiaradia, J.M., Pons, C.: Improving the OCL semantics definition

by applying dynamic meta modelling and design patterns. In: OCL
for (Meta-) Models in Multiple Application Domains. TUD-FI06-
04 (2006)

11. Clark, T., Evans, A., Kent, S., Sammut, P.: The MMF approach
to engineering object-oriented design languages. In: Workshop on
Language Descriptions, Tools and Applications, LDTA (2001)

12. Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time
UML semantics for concurrency and communication in safety-
itical applications. Sci. Comput. Program. 55, 81–115 (2005)

13. Dierks, H.: Comparing model-checking and logical reasoning for
real-time systems. In: ESSLLI ’98, Workshop proceedings, pp.
13–22 (1998)

14. Evans, A., Kent, S.: Core meta-modelling semantics of UML: The
pUML approach. In: UML ’99, pp. 140–155 (1999)

15. Fecher, H., Schonborn, J., Kyas, M., de Roever, W.-P.: 29 new
unclarities in the semantics of UML 2.0 state machines. In: Formal

Methods and Software Engineering ICFEM 2005, vol. 3785,
LNCS, pp. 52–65. Springer, Heidelberg (2005)

16. Fiadeiro, J., Maibaum, T.: Describing, structuring and implement-
ing objects. In: Foundations of Object Oriented languages, vol. 489
of LNCS. Springer, Heidelberg (1991)

17. Fiadeiro, J., Maibaum, T.: Sometimes “tomorrow” is “sometime”.
In: Temporal Logic, vol. 827 of Lecture Notes in Artificial Intelli-
gence, pp. 48–66. Springer, Heidelberg (1994)

18. Fowler, M.: Refactoring: Improving the Design of Existing
Code. Addison-Wesley, Reading (2000)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading (1995)

20. Glinz, M.: Problems and deficiencies of UML as a requirements
specification language. In: Proceedings of 10th International Work-
shop on Software Specification and Design (IWSSD-10), pp. 11–22
(2000)

21. Gogolla, M., Radfelder, O., Richters, M.: A UML Semantics FAQ:
The View From Bremen. University of Bremen, Bremen (1999)

22. Goldsack, S., Lano, K., Sanchez, A.: Transforming continuous into
discrete specifications with VDM++. In: IEE C8 colloquim digest
on hybrid control for real-time systems. IEE (1996)

23. Graf, S., Ober, I., Ober, I.: Timed annotations with UML. In:
SVERTS ’03 (2003)

24. Grand, M.: (1998) Patterns in Java, vol. 1. Wiley, London
25. Jahanian, F., Mok, A.K.: Safety analysis of timing properties

in real-time systems. IEEE Trans. Softw. Eng. SE-12, 890–904
(1986)

26. Knapp, A., Wuttke, J.: Model checking of UML 2.0 interactions.
In: 5th International Workshop CSDUML (2006)

27. Kyas, M., Fecher, H., de Boer, F., Jacob, J., Hooman, J.,
van der Kwaag, M., Arons, T., Kugler, H.: Formalizing UML mod-
els and OCL constraints in PVS. In: SFEDL ’04 (2004)

28. Lamport, L.: The temporal logic of actions. Technical Report 79,
Digital Equipment Corporation, Systems Research Center, Decem-
ber, 1991

29. Lano, K.: Logical specification of reactive and real-time systems.
J. Logic Comput. 8(5), 679–711 (1998)

30. Lano, K.: UML to B: Formal verification of object-oriented models.
In: IFM ’04 (2004)

31. Lano, K., Androutsopolous, K.: Automated synthesis of high-
integrity systems using model-driven development. In: 5th Inter-
national Workshop CSDUML (2006)

32. Lano, K., Androutsopolous, K., Clark, D.: Concurrency specifi-
cation in UML-RSDS. In: MARTES ’06, MODELS Conference
(2006)

33. Lano, K., Clark, D., Androutsopolous, K.: From implicit specifica-
tions to explicit designs in reactive system development. In: IFM
’02 (2002)

34. Lano, K., Clark, D., Androutsopolous, K., Kan, P.: Invariant-based
synthesis of fault-tolerant systems. In: FTRTFT. Springer, Heidel-
berg (2000)

35. Lano, K., Clark, D., Androutsopolous, K.: RSDS: A subset of UML
with precise semantics. L’Objet 9(4), 53–73 (2003)

36. Lano, K., Evans, A.: Rigorous development in UML. In: FASE
’99, vol. 1577 of Lecture Notes in Computer Science, pp. 129–
144. Springer, Heidelberg (1999)

37. Liskov, B., Wing, J.: Specifications and their use in defining sub-
types. In: ZUM ’95 Proceedings, vol. 967 of LNCS. Springer,
Heidelberg (1995)

38. Meyer, B.: Object-Oriented Software Construction. Prentice Hall,
Englewood (1997)

39. Monk, J.D.: Mathematical Logic. Springer, Heidelberg (1976)
40. Naumenko, A., Wegmann, A.: Triune continuum paradigm

and problems of UML semantics. icwww.epfl.ch/publications/
documents/ IC_TECH_REPORT_200344.pdf (2003)

123

116 K. Lano

41. OMG. UML profile for schedulability, performance and time.
Version 1.1 (2005)

42. OMG. UML superstructure, version 2.0. OMG document formal/
05-07-04 (2005)

43. OMG. UML OCL 2.0 specification, final/06-05-01 (2006)
44. Ostroff, J.S.: Temporal Logic for Real-Time Systems. Wiley,

London (1989)
45. Pnueli, A.: Applications of temporal logic to the specification

and verification of reactive systems: A survey of current trends.
In: Current Trends in Concurrency, vol. 224 of LNCS. Springer,
Heidelberg (1986)

46. Richters, M.: OCL semantics. Annex A of [43] (2005)
47. Ryan, M., Fiadeiro, J., Maibaum, T.S.E.: Sharing actions and

attributes in modal action logic. In: Proceedings of International
Conference on Theoretical Aspects of Computer Science (TACS
’91). Springer, Heidelberg (1991)

48. Simons, A.: The theory of classification, part 8: Classification and
inheritance. J. Object Technol. 2(4), 55–64 (2003)

49. Smith, J., DeLoach, S., Kokar, M., Baclawski, K.: Category
theoretic approaches of representing precise UML semantics. In:
Proceedings ECOOP Workshop on Defining Precise Semantics for
UML (2000)

50. Sunyé, G., Le Guennec, A., Jézéquel, J.M.: Design patterns
application in UML. In: ECOOP 2000, number 1850 in Lec-
ture Notes in Computer Science, pp. 44–62. Springer, Heidelberg
(2000)

51. Verhoef, M., Larsen, P., Hooman, J.: Modelling and Validat-
ing Distributed Embedded Systems with VDM++. Engineering
College of Aarhus, Denmark (2006)

Author’s Biography

Dr. Lano has worked on the
integration of formal and object-
oriented methods, through invol-
vement in the pUML and EROS
groups, and in a number of UK
and European projects. He is
the author of several papers and
books on formal object-oriented
methods.

123

	Abstract
	1 Introduction
	2 Semantics of class diagrams
	2.1 Types
	2.2 Data features
	2.3 Operations
	2.4 Expression semantics
	2.5 Invariants
	2.6 Inheritance
	2.7 Class theory of C
	2.8 Subsystem theories

	3 State machine semantics
	3.1 Protocol state machines
	3.2 Behavioural state machines
	3.3 Semantic profiles for state machine semantics
	3.4 Generalisation of state machines and behavioural compatibility

	4 Application of the semantics
	4.1 UML extensions for concurrency and real-time
	4.2 Semantic analysis
	4.3 Model transformations

	5 Extension of the semantics
	6 Comparison
	7 Conclusions
	A Formal syntax of UML-RSDS
	A.1 OCL notation in UML-RSDS
	A.2 UML-RSDS class diagrams
	A.3 UML-RSDS state machines

	B Real time action logic
	B.1 Core formalism
	B.2 Derived constructs
	B.3 Axioms of RAL

	C Theory refinement and composition
	C.1 Theory morphisms
	C.2 Class and instance theories
	C.3 Time variables
	C.4 Composite and procedural actions

	D The UML-RSDS tools

