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Abstract

A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult
to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet
transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling
bearings via signals’ separation, the present paper proposes a new method to identify compound faults from measured
mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component
analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by
EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is
selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method,
which makes the fault features more easily extracted and more clearly identified. Experimental results validate the
effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but
also for the rollers defect and the unbalance fault of the experimental system.
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Introduction

A rolling bearing is one of the most widely used components in

rotating machinery, whose running state directly affects the

accuracy, reliability and service life of the whole machine.

Therefore, the condition monitoring and fault diagnosis of a

rolling bearing has extremely vital significance, and it is also very

important to guarantee the production efficiency and the plant

safety in modern enterprises [1].

Vibration signal detection is generally an effective method for

fault diagnosis of rolling bearings. Ideally, it is better if a vibration

signal contains only one defect when it is measured by an

acceleration sensor under low-noise condition. In this case,

features of the bearing defect can be extracted by Fast Fourier

Transformation (FFT) comparing with the characteristic frequen-

cies of the bearing. This approach can mainly be applied when the

fault feature is relatively obvious. However, in practice, most

bearing faults are often compounded by the outer-race defect, the

inner-race defect or the rollers defect. Especially, in some cases,

some strong noises may be mixed into a fault signal, which may

lead to misrecognition of the useful information for equipment

condition monitoring and fault diagnosis.

In order to solve the problem issued above and improve the

identification of fault types and the monitoring of rotating

machinery’s running state, it is critically important to separate

the compound faults from measured signals. Blind Source

Separation (BSS) developed by Herault [2] provides a new way

to help solving the problem. BSS is a kind of new technique aiming

at extraction of individual signal from mixed ones. In recent years,

BSS problem becomes a popular issue in the field of unsupervised

neural learning and statistical signal processing, especially on the

theory itself and its further applications in practice. For example,

Canonical Correlation Analysis (CCA) is applied to reveal

underlying components with maximum autocorrelation from

fMRI data [3–4]. Developed with BSS, without requirements of

prior information about mixed signals under its original statisti-

cally independent sources, a so-called independent component

analysis (ICA) has become a powerful solution to the problem of

blind source separation. With the approach, several assumptions

have been set up to effectively separate independent source signals:

(1) source signals are statistically independent; (2) the number of

sensors is greater than or equal to that of source signals. If the

number of sensors is less than that of source signals, it is commonly

called Overcomplete ICA Algorithm; (3) source signals meet non-

Gaussian distribution. To solve this problem, Lewicki et.al. [5–7]
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proposed a statistical model based on the shortest path and nature

gradient. Subsequently, Waheed et.al. [8–10] put forward an

algebraic overcomplete independent component analysis (AICA)

and geometric overcomplete independent component analysis

(Geo-ICA). Up to now, ICA has attracted considerable attention

for its potential applications in a variety of research fields, such as

biomedical signal processing [11–13], image processing and

recognition [14–17], financial data analysis and prediction [18–

19], speech separation [20] and face recognition [21] and so on.

In the field of equipment condition monitoring and fault

diagnosis, ICA is a kind of new approach to separate vibration

signals and extract fault features measured by acceleration sensors.

For example, to identity different types of faults accurately and

rapidly, based on kernel independent component analysis (KICA)

and sparse support vector machine (SVM), Ma et.al. [22]

proposed new approaches for complex industrial process moni-

toring and fault diagnosis. Atmaja et.al. [23] combined ICA with

instantaneous frequency (IF) to detect simultaneous machinery

faults using sound mixture emitted by machines. Arifianto [24]

evaluated the independent component analysis techniques for

remote condition monitoring by analyzing sound emitted from the

machines.

In practice, a fault signal in operating equipment mostly appears

as a shock sequence ‘‘rhythm’’, such as inner-race defect, outer-

race defect and rollers defect of rolling bearings, etc. Hence the

vast majority of these signals obey non-Gaussian distribution. In

addition, the generation of vibratory sources in rotation machines

is independent, for example, causes leading to outer-race defect

and rollers defect are independent. Therefore, vibration signals are

usually regarded as being statistically independent [25]. In order to

fulfill the ICA requirement that the number of sensors is greater

than or equal to that of source signals, the number of sensors

should be increased as far as possible to collect multichannel

signals at a same time. However, various factors, such as unknown

source signals, complexity of the transmission channel, restriction

of sensor installation location and experimental cost problem etc.,
have brought certain difficulties to the equipment condition

monitoring and fault diagnosis.

Aiming at solving this problem, a single channel signal can be

decomposed to multichannel signals by new tools, such as wavelet

transform (WT), local mean decomposition (LMD), and empirical

mode decomposition (EMD). EMD is an adaptive and efficient

method proposed by Huang et.al. [26], which is to decompose

nonlinear and non-stationary signals into intrinsic mode functions

(IMF) that can be used as input matrix of ICA. Recently, some

researchers have made much more beneficial attempts combined

EMD with ICA. For example, to construct virtual noise channels

used as input matrix of ICA, EMD was used to decompose a single

vibration signal to IMF restructured based on mutual cross

correlation criterion [27–31]. And some researches have also been

done to extract fault feature of rolling bearing combing wavelet

transform with ICA. For example, Senguler et.al. [32] applied

ICA based on wavelet package analysis to extract informative

trend for determining the development of bearing damage. Qiao

et.al. [33–34] used discrete wavelet transform method combined

with ICA theory to separate fault signal from background noise

signal.

Figure 1. Flowchart of EEMD algorithm.
doi:10.1371/journal.pone.0109166.g001

Figure 2. Original simulated signal and its spectrum. A)
waveform of original simulated signal; B) spectrum of the original
simulated signal.
doi:10.1371/journal.pone.0109166.g002
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In summary, it is feasible to denoise and extract bearing fault

features from weak signals by ICA technique. However, the

methods mentioned above are mainly based on single fault signals.

Actually, vibration signals collected by an acceleration sensor

Table 1. Cross correlation coefficient of the original simulated signal and IMFs.

IMF1 IMF2 IMF3 IMF 4 IMF 5 IMF6

1 0.3906 0.4880 0.5813 0.5337 0.3943

IMF7 IMF8 IMF9 IMF10 IMF11 IMF12

0.1274 0.0018 0.0017 0.0022 0.0018 0.0017

IMF 13 IMF 14 IMF15 IMF16 IMF17 IMF18

0.0023 0.0008 00096 00096 0.0016 0.0002

doi:10.1371/journal.pone.0109166.t001

Figure 3. IMF components decomposed by EEMD method.
doi:10.1371/journal.pone.0109166.g003
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generally contain a variety of fault signals when a rotating

mechanical failure occurs. Therefore, in fault diagnosis and

condition monitoring for rotating machinery, it is extremely

significant to employ fewer sensors to separate the single fault

signal from mixed signals.

In order to diagnose faults effectively, and separate the

compound faults for rotating machinery in steady operating

conditions, this paper proposes a novel feature extraction method

from vibration signals for rolling bearing based on blind source

separation theory. First, a single channel vibration signal is

decomposed into IMF by EEMD to obtain multichannel signals.

Second, select IMF based on a cross correlation criterion. Third,

the envelop signals of the selected IMF are used as the input

matrix ICA. Finally, the compound faults can be separated, and its

features can be identified. In addition, comparisons are also made

among the conventional FFT-based envelope detection, the

wavelet analysis, the EEMD, and the proposed method to verify

the effectiveness.

Figure 4. Spectra of separated signals by the proposed
method. A) spectrum of IC1; B) spectrum of IC2.
doi:10.1371/journal.pone.0109166.g004

Figure 5. Flowchart of the experiment scheme.
doi:10.1371/journal.pone.0109166.g005
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Basic Theory

2.1 EEMD theory
EMD [35–36] is very suitable for decomposing nonlinear and

nonstationary time series, which can adaptively represent the local

characteristics of a given signal. The main idea of EMD is to

decompose a time series data into a sum of oscillatory functions,

namely, intrinsic mode functions (IMF). IMF should satisfy the

following two conditions: (1) in the whole time series, the difference

between numbers of the extrema and the zero-crossing must be

equal to zero or one; (2) at any point, the mean value of the upper

and lower envelopes is zero. The process for obtaining the IMF

decomposition is known as ‘‘sifting,’’ with the following steps.

Step 1. Identify all the local extrema including the minimum

values and maximum values in time series data x(t).

Step 2. Generate the upper and lower envelopes x(t) by a

cubic spline line and compute the average m1. Then, calculate the

difference between the time series data x(t) and the mean value

m1. The first difference h1is designed as

h1~x(t){m1 ð1Þ

Step 3. Check whether h1 meets the IMF’s conditions. If

properties of h1 satisfy all the requirements of an IMF, h1 is

denoted as the i th IMF ci(t) and substitutes the residue r1(t) for

the original time series data; that is,

r1~x(t){h1 ð2Þ

Otherwise, h1 is not an IMF. The above process needs repeating

until meeting the filter stop condition and getting the first IMF

c1(t), which represents the highest frequency component in the

local moment.
Step 4. Repeat from Step 1 to Step 3. The sifting process stops

when the residue satisfies one of the termination criteria. The

original time series data x(t) can be described as

x(t)~
X

n

i~1

ci(t)zrn(t) ð3Þ

However, a major shortcoming of the original EMD is the mode

mixing, which is defined as a single IMF either consisting of signals

with widely disparate scales or a signal of a similar scale residing in

different IMF components. To overcome this problem, ensemble

empirical mode decomposition (EEMD) was proposed [37], which

is a noise-assisted data analysis method. By adding finite white

noise signal to the investigated signal, the EEMD method can

eliminate the mode mixing problem automatically. The flowchart

of EEMD algorithm is shown as Figure 1.

2.2 ICA theory
ICA is a potential and promising approach in signal processing.

The main concept of this technique lies in unmixing a set of

independent sources according to their statistical independency

Figure 6. Experimental system for bearing diagnosis.
doi:10.1371/journal.pone.0109166.g006

Figure 7. Install location of the acceleration sensor.
doi:10.1371/journal.pone.0109166.g007
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from a linearly mixed input signal. Using the vector-matrix

notation, the mathematical model can be represented by the

following equation:

x~A(szn)~A~ss ð4Þ

Where x~½x1,x2,:::xn�T is the observed signal, s~½s1,s2,:::sn�T
is the source signal, A is the m|n mixing matrix, and n is the

noise components same as intrinsic components.

To estimate the sources based on the assumption that they are

statistically independent, ICA algorithm considers a linear

transformation as following equation:

y~wTx~wTA~ss~zT~ss ð5Þ

Table 2. Fault characteristic frequencies of rolling bearing at different speed.

Fault characteristic frequency

500 rpm 900 rpm 1300 rpm

Outer-race 33.2 Hz 59.8 Hz 86.3 Hz

Rollers 39.3 Hz 71.8 Hz 102.3 Hz

doi:10.1371/journal.pone.0109166.t002

Figure 8. Original diagnosis signal waveforms at different
rotating speed. A) at 500 rpm; B) 900 rpm; C) 1300 rpm.
doi:10.1371/journal.pone.0109166.g008

Figure 9. Envelope spectra of the original signal at different
rotating speed. A) 500 rpm; B)900 rpm; B)1300 rpm.
doi:10.1371/journal.pone.0109166.g009
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Where z~ATw, w is an estimator of a row of the matrix A{1,

and y is one of the best estimation of the source signals.

Considering the adaptive processing and convergence speed of

ICA algorithm, this paper applies the FastICA algorithm [38–40]

which is based on fixed-point algorithm and is applicable for any

type of data to solve the separate matrix. The process of FastICA

algorithm is shown as the following steps.

Figure 10. Envelope spectra of each level wavelet coefficients.
doi:10.1371/journal.pone.0109166.g010

Table 3. Cross correlation coefficient of the simulated signal and IMFs.

IMF1 IMF2 IMF3 IMF 4 IMF 5 IMF6

1 0.7395 0.5044 0.3803 0.3209 0.2205

IMF7 IMF8 IMF9 IMF10 IMF11

0.1132 0.0591 0.0322 20.0565 0.0867

doi:10.1371/journal.pone.0109166.t003
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Step 1. Center the data x(t) to make its mean zero:

x~x{E(x) ð6Þ

Step 2. Calculate the covariance matrix EfxxTg.

EfxxTg~EDET ð7Þ

Where E is the orthogonal matrix of eigenvectors of EfxxTg
and D is the diagonal matrix of its eigenvalues,

D~diag(d1,d2:::dn).

Step 3. Whiten the data x(t) to give the whitening vector z:

z~Vx ð8Þ

Where V is the whitening matrix, V~ED{1=2ET
.

Step 4. Choose an initial vector w0 of unit norm.
Step 5. Update wkz1:

wkz1~Efzg(wT
k z)g{E g0(wT

k z)
� �

wk ð9Þ

Step 6. Normalize wkz1:

wkz1/wkz1=DDwkz1DD ð10Þ

Figure 11. Envelop spectra of IMF1–IMF6.
doi:10.1371/journal.pone.0109166.g011
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Step 7. If not converged, go back to Step 5.
Step 8. If converged, calculate one independent component

y~wx&s.

Simulation

To validate the effectiveness of the proposed method, simula-

tions are performed. Three source signals are firstly generated as

shown in equation (11). Then they are randomly mixed according

to equation (12).

s1~0:3 cos (90ptz0:5 sin 30pt)

s2~0:2 sin 240pt

s3~randn(1,N)

8

>

<

>

:

ð11Þ

x~As~A½s1,s2,s3�T ð12Þ

Figure 2(A–B) shows the mixed signal and its spectrum obtained

by the FFT. It can be seen from Figure 2(B) that the fault

characteristic frequencies of mixed signals are buried and difficult

to be detected in the corresponding spectrum.

In this section, the above mixed signal is firstly decomposed to

IMF by EEMD method shown as Figure 3. Then the cross

correlation coefficient of IMF and the original signal is calculated

as shown in Table 1. We can see from Table 1 that the cross

correlation coefficients of IMF1–IMF5 with the original signal are

relatively large and retain more information of the original signal.

Therefore, MF1–IMF5 is used as input matrix of FastICA

algorithm to separate compound fault. Parts of the separation

results are shown in Figure 4(A–B), respectively.

Figure 12. Spectra of the separated signals by the proposed
method at 900 rpm. A) spectrum of the outer-race defect; B)
spectrum of the unbalance fault; C) spectrum of the rollers defect.
doi:10.1371/journal.pone.0109166.g012

Figure 13. Spectra of the separated signals by the proposed
method at 500 rpm. A) Spectrum of the outer-race defect; B)
Spectrum of the unbalance fault; C) Spectrum of the rollers defect.
doi:10.1371/journal.pone.0109166.g013
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From Figure 4, we can see that the mixed signal contains two

kinds of fault signals whose fault characteristic frequencies are

120 Hz and 45 Hz. By the proposed method, the compound fault

signals are effectively separated from the strong confusion noise

signals. Simulation results show that the proposed method can be

applied to separate compound fault and extract fault feature of

rolling bearings.

Experiments

Vibration signal analysis usually is one of the most important

methods used for condition monitoring and fault diagnosis.

However, various factors, such as the complexity of transmission

channel, cause that faults that often happen in a rolling bearing are

compound faults among the outer race, the inner race, and the

rollers.

To solve this problem, a novel method of compound fault

diagnosis for the rolling bearing based on EEMD method and

blind source separation is presented in this paper. In order to

verify the efficiency of the proposed methods, several experiments

of bearing fault are performed. The detailed experimental scheme

is shown in Figure 5. First, taking the compound fault of a bearing

outer-race and a roller as the research object, a single channel

vibration x(t) is collected by the acceleration sensor fixed on the

bearing seat vertically. Second, decompose the collected vibration

signal x(t) to IMF using EEMD method to obtain multi-channel

signals. Third, introduce the cross correlation criterion and select

IMF whose cross correlation coefficient is greater with the original

signal. Then envelope signal of the chosen IMF is used as the input

matrix of ICA to separate bearing compound fault. Lastly,

comparing the fault characteristic frequencies in the spectra with

theoretical characteristic frequencies of a rolling bearing, the

bearing fault features of the equipment are extracted.

In order to evaluate the performance quantitatively, a so-called

energy ratio (ER) is defined as following,

ER~
Ef

E
|100% ð13Þ

Where Ef is the energy of the bearing fault signal, E is the total

energy. The larger ER value is, the better separation performance

will be.
Figure 14. Spectra of the separated signals by the proposed
method at 1300 rpm. A) Spectrum of the outer-race defect; B)
Spectrum of the unbalance fault; C) Spectrum of the rollers defect.
doi:10.1371/journal.pone.0109166.g014

Table 4. Energy ratio calculated by the different methods.

Energy ratio

FFT Wavelet analysis EEMD EEMD-ICA

500 rpm Outer-race 1.89 25.39 30.25 73.36

Rollers 1.20 7.13 9.56 21.36

Unbalance 36.32 56.78 60.23 85.12

900 rpm Outer-race 2.29 21.86 35.86 80.70

Rollers 0.72 0.63 2.63 25.68

Unbalance 23.33 45.63 62.73 89.47

1300 rpm Outer-race 4.26 19.63 31.89 83.26

Rollers 1.23 2.10 4.33 19.23

Unbalance 27.45 62.30 45.32 80.25

doi:10.1371/journal.pone.0109166.t004
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4.1 Experiments Setup
Aiming at verifying efficiency of the methods proposed in this

paper, the experimental system of bearing fault diagnosis is used.

Figure 6 shows the experimental system, including the rotating

machine, the rolling bearing and the acceleration sensors. One

acceleration sensor is mounted on the bearing housing in the

vertical directions to measure the vibration signal of 2V channel,

as shown in Figure 7. The faults often occurring in a rolling

bearing are compound faults among the outer-race, the inner-race

and the rollers. We take the compound fault of bearing outer-race

and rollers as the research object,and artificially make those flaws

with the use of a wire-cutting machine for the tests of fault

diagnosis. The sizes of the flaw are as follows:

Outer-race flaw: 0.5*0.15 mm (width * depth);

Rollers flaw: 0.5*0.15 mm (width * depth).

In order to fully analyze signal features and acquire more

comprehensive information for the research of the fault diagnosis,

we chose the larger sampling frequency. The sampling frequency

is 100 kHz, and the sampling time is 10 s, and the rotating speed

of a machine is 500 rpm, 900 rpm and 1300 rpm, respectively.

4.2 Characteristic-frequency of a bearing
As mentioned above, faults that often occur in a rolling bearing

are usually induced by local defects in the outer race, the inner

race, and the rollers. Such defects generate a series of impact

vibrations every time a running roller passes over the surfaces of

the defects. The characteristic frequencies of a bearing are

calculated based on the bearing geometry and the rotor frequency

fr. By comparing the fault characteristic frequencies in the spectra

with calculated characteristic frequencies of a bearing, the cause of

the defect can be identified. For a bearing with a stationary outer

race, the characteristic frequencies of a bearing are given by the

following equations.

Outer-race defects are revealed at the outer-race pass frequency

(fo):

fo~
Z

2
(1{

d

D
cos a)fr ð14Þ

Rollers defects are revealed at the roller pass-frequency (fb):

fb~
D

2d
½1-( d

D
cosa)2�fr ð15Þ

Where d is the diameter of rollers, D is the pitch diameter, Z is

the number of rollers, a is the contact angle of the rollers, and fr is

the rotating frequency. In this work, the calculated characteristic

frequencies of the rollers defect and the outer-race defect are

shown as Table 2.

4.3 Diagnosis by the conventional FFT-based envelope
analysis
Original diagnosis signals at 500 rpm (see Data S1), 900 rpm

(see Data S2) and 1300 rpm (see Data S3) measured by the

acceleration sensor mounted on the bearing housing in the vertical

directions at different rotating speed are shown in Figure 8(A–C),

under the compound fault state of outer-race and rollers. We can

see from Figure 8 that there are obvious impulses in the vibration

signals. It shows that the experimental system shown as Figure 6

has worked in abnormal state, but the cause and position of the

fault is still unknown.

While the bearing failure occurs, the signal of a defect bearing is

a typical vibration with amplitude modulation. Therefore, in

spectrum analysis, demodulation analysis prior to performing the

FFT should be carried out. Envelope detection is usually used for

processing the vibration signals with amplitude modulation [41].

To implement the envelope detection technique, the Hilbert

transform is often applied in vibration signal demodulation.

In the present work, the FFT-based Hilbert transform is

considered. Figure 9(A–C) shows the envelope spectra of bearing

faults obtained by the FFT with Hilbert-transform based envelope.

As shown in Figure 9(B), characteristic frequency fo at 60.2 Hz

is not obviously apparent, but the outer-race defect of a bearing

could still be identified by the calculated characteristic frequency

(59.8 Hz). We also can see from Figure 9(B) that fo is a little larger

than the characteristic frequency. The same conclusion could be

obtained from Figure 9(A) and Figure 9(C). The reasons are

explained as following. (1) Equations (11–12) are based on the

assumption of a pure rolling motion. However, in practice, some

sliding motion may occur, which causes slight deviation of the

characteristic frequency locations; (2) The rotating speed fluctuates

around the set value frequency Therefore, the calculated equations

should be regarded as approximations only.

Because the machine contains a strong noise component and

various faults occur simultaneously, the fault characteristic

frequency of the rollers defect is buried and difficult to identify

in the spectrum, where all the types of bearing characteristic

frequencies should be located. Therefore, bearing compound

faults cannot be completely detected by the conventional envelope

analysis technique.

4.4 Diagnosis by the wavelet analysis
Wavelet transform [42] is a relatively effective analysis method

in fault diagnosis of rotating machinery and has received

considerable attention for its potential applications during the

past decade. The method is actually to decompose original signal

x(t) into sub-signals with different frequency bands through basis

function y(t{b=a ), in which a is a scale factor that controls

contraction and stretch of the waveform, and b stands for the time-

shift factor. The wavelet transform of signal x(t) can be defined as

WT(a,b)~
1
ffiffiffi

a
p

ð

x(t)y�(
t{b

a
)dt ð16Þ

From the equation (13), we can see that the wavelet transform of

a signal is essentially equivalent to observe the signal through the

changes of wavelet scale factor and time-shift factor. Because the

data that computers store and process is in binary format, discrete

wavelet transform (DWT) is quite suitable for the rolling bearing

fault diagnosis. Therefore, the DWT is considered and applied to

the bearing compound fault diagnosis in this study.

In the present work, compound fault of outer-race and rollers at

900 rpm is analyzed. Wavelet basis function is dB4 and

decomposition level is 3. After performing the DWT, high-

frequency wavelet coefficients d1, d2, d3 and low-frequency

wavelet coefficients a1, a2, a3 are obtained, respectively. The

corresponding envelope spectra of each level wavelet coefficients

achieved by the FFT with Hilbert-transform are shown in

Figure 10.

It can be seen from Figure 10 that the frequency fo is about

60.14 Hz, similar to the calculated characteristic frequency of

the outer-race defect at 59.8 Hz; hence, it can be judged as the

outer-race defect. Although more confusion noises are still

observed in these spectra, the feature of the outer-race defect

Rolling Bearings Fault Diagnosis Based on BSS and EEMD
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can be obviously detected comparing with the envelope

spectrum of the original signal shown in Figure 9. The features

of other faults (rollers defect and unbalance fault) are not as

easy to extract as the outer-race in the Figure 10. Therefore, in

this case, the compound faults are difficult to separate by DWT

method.

4.5 Diagnosis by the proposed method
In this section, the single channel vibration signal collected by

acceleration sensor at 900 rpm is decomposed to IMF by

EEMD method to obtain multi-channel signals for under-

determined blind source separation, i.e., observed signal

numbers are less than sources numbers. After implementing

the EEMD method, multiple IMFs are acquired. Because

EEMD will generate excessive decomposition and false compo-

nents in the course of calculation, the cross correlation

coefficient of IMF and the original signal is calculated and

shown in Table 3.

It can be estimated from Table 3 that there exist large quantity

of false components whose cross correlation coefficient with the

original signal is extremely small and retain less information of the

original signal. Therefore, IMF1–IMF6 is selected to solve the

problem of under-determined blind source separation in this

study. Figure 11 shows the envelop spectra of IMF1–IMF6,

respectively.

Similarly, we can see from Figure 11 that the outer-race defect

is easily identified, but the features of other faults cannot be

observed. It is indicated that the wavelet analysis and EEMD

method is more effective in outer-race defect diagnosis than the

FFT technique, because the two methods, as a effective time-

frequency analysis method for observing the time-frequency

property of sub-band signals, make the local feature more obvious

and clear. However, the bearing compound faults cannot still be

separated by these methods.

For the purpose of identifying the fault signal which consists

of various fault features, it is essential to utilize ICA technique

to separate source signals from the observed signal. The specific

diagnostic procedure is given as follows. First, we obtain the

envelop signals from IMF1–IMF6 through Hilbert-transform,

respectively, because the IMF obtained by EEMD method is

still amplitude modulation signal. Second,the obtained envelop

signals form a m|n matrix, where m represents the number of

input signals and n represents the number sampling points.

Third, the matrix is used as the input matrix of ICA to separate

fault signal by FastICA algorithm. Finally, we diagnosed the

conditions of bearings by the extracted fault features. Parts of

the verification results are shown in Figure 12(A–C), respective-

ly.

Figure 12(A) shows the spectrum of the bearing outer-race

defect. It can be seen from Figure 12A that the frequency fo at

60.2 Hz can be obviously observed and is very close to the

calculated characteristic frequency of the outer-race defect at

59.8 Hz. Therefore, it can be easily identified as the outer-race

defect by the spectrum.

Figure 12(B) shows the spectrum of the system unbalance

fault. The frequency fr is clearly shown in Figure 12(B). The

frequency fr is about 15 Hz, equal to the rotating frequency at

15 Hz; hence, it can be judged as the system unbalance fault.

Figure 12(C) shows the spectrum of the bearing rollers defect.

The characteristic frequency fb at 72.4 Hz appears in the

spectrum, as shown in Figure 12(C). The frequency fb is similar

to the calculated characteristic frequency of the bearing rollers

defect at 71.8 Hz. It also shows that more confusion noises still

exist in the spectrum, which makes the rollers defect more

difficultly diagnose than the outer-race defect and unbalance

fault.

Spectra of the bearing outer-race defect, rollers defect and

the system unbalance fault at 500 rpm and 1300 rpm are shown

as Figure 13(A–C) and Figure 14(A–C), respectively. It also can

be seen from Figure 13–14 that the out-race defect and the

unbalance fault can be obviously identified by the proposed

method, whereas, it is not much effective for the rollers defects.

In order to further verify the validity of the proposed method,

we select energy ratio as a statistical measure to compare

conventional methods with the proposed method in a quantitative

way. Table 4 shows the calculated results. We can see from

Table 4 that energy ratio calculated by the proposed method is

significantly larger than conventional methods. It illustrates that

fault characteristic frequency is more obvious and compound

faults have been extracted.

According to the results, we can conclude that the vibration

signal collected by sensor in the experimental system shown as

Figure 6 contains outer-race defect, rollers defect and unbalance

fault, respectively. As mentioned in the previous section, the

proposed method is not much effective for the rollers defects. It

can be explained as follows. First, the bearing outer-race is

stationary, but the rollers are rotary when the experimental

equipment in the operating condition, which makes the features of

the signal in the rollers defect measured by the acceleration sensor

more difficult to extract than in the outer-race defect. Second, the

rollers revolve around the rotary shaft along with their rotation,

respectively, so the signal collected in the rollers defect is more

complicated comparing with in the outer-race defect. For those

conditions, the problem will be further discussed and solved in the

future work.

Conclusion

In this paper, a new method combined EEMD with ICA

technique is proposed to effectively extract compound fault

features of the rolling bearing. Comparing with the conventional

FFT-based Hilbert transform, the wavelet analysis, and EEMD

method, the results have shown that the compound faults, such as

the bearing outer-race defect, the roller defect, and the unbalance

fault of experimental system have been effectively separated by the

proposed method. In future work, optimization of the proposed

method will be focus on for further improving.
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