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In the present paper is presented a numerical method for the exact reduction of a single- 
variable polynomial matrix to its Smith form without finding roots and without applying uni- 
modular transformations. Using the notion of compound matrices, the Smith canonical form 
of a polynomial matrix M(s) E R n • n Is] is calculated directly from its definition, requiring only 
the construction of all the p-compound matrices Cp(M(s)) of M(s), 1 < p < n. This technique 
produces a stable and accurate numerical algorithm working satisfactorily for any polynomial 
matrix of any degree. 
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1. I n t r o d u c t i o n  

In the last few years, the numerical literature has started to show interest in the 
computation of the canonical forms of pencils and polynomial matrices in general 
because of their relevance in several applications and stable algorithms have been 
developed [1-3,5]. 

When the matrix pencil approach or polynomial matrices are used for the study 
of linear time-invariant control systems, the Smith canonical form of the corre- 
sponding system matrix is extremely useful for the computation of the sets of 
finite and infinite elementary divisors. 

The eigenstructure problem of a polynomial matrix M(s) E R nxn [S] is reduced to 
the eigenstructure problem of a simpler (diagonal) polynomial matrix S(s) that 
forms the Smith canonical form of M(s). Under eigenstructure, we understand 
here all the invariants of the matrix M(s) under equivalence transformations. 
The eigenstructure of M(s) is retrieved in its Smith canonical form S(s). 

For example, consider the polynomial matrix 

[ s+2 s+l s+3 ] 
M(s)=  [ S3 A-2s2-4-s s3 A-s2-4-s 2s3 + 3s2 + sl E]~3X3[s]" 

L s a + 3 s + 2  s 2 + 2 s + l  3 s 2 + 6 s + 3  

�9 J.C. Baltzer AG, Science Publishers 
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Its eigenstructure can be retrieved much more easily by computing the Smith 
canonical form S(s) of M(s), which is equal to 

01 S(S) = S 0 E ]~3X3[s] .  

0 s2+s 

In section 2 of the present paper, the Smith canonical form S(s) of a polynomial 
matrix M(s) is analytically described. In the sequel, it is defined that the Smith form 
S(s) of a matrix M(s) is actually the unique representative (canonical form) of the 
corresponding N[s]-equivalence class of M(s), and it is characterized by the com- 
plete set of invariants (invariant polynomials). 

Several numerical methods have been proposed for the computation of the 
Smith form of a given polynomial matrix M(s)E ]R"• Most methods are 
based on performing elementary transformations on M(s) until the required 
diagonal form is reached [1-3]. Specifically, these operations in [1] are performed 
on an integer matrix and in [2] are performed in the p-adic number system which 
reduces the problem of coefficient growth appearing frequently in this kind of 
transformations. In [5], a parallel probabilistic algorithm is developed. 

In the present paper an algorithm based on the notion and properties of com- 
pound matrices [7] is proposed. The classical definition of the Smith form [3] is 
transferred in computing all the p-compound matrices Cp(M(s)) of M(s), 
1 < p < n, and evaluating the greatest common divisor (gcd) of their elements by 
applying an appropriate numerical method. More explicitly, the given polynomial 
matrix M(s) E ~,X,[s] is expanded into a product 

M(s) = [ m 1 ( s ) , . . . , , , , , ( s ) ]  = r M . S ( s ) ,  TM e R S(s) E Rk•  

n 

k =  ~-'~(6i + 1), 
i=l 

r = deg{mi(s)}, and the computation of Cp(M(s)) is achieved using the formula 
Cp(M(s)) =Cp(TM).Cp(S(s)) and introducing the notions of z-nonsingular 
sequences, z E Qp,,, where Qp,, is the set of all lexicographic sequences ofp inte- 
gers taken from 1, . . . ,  n [7]. 

In section 2 all the required theoretical background for the formulation of the 
compound matrix algorithm is developed. The numerical algorithm and 
comments about its implementation are presented in section 3. Finally, in 
section 4 numerical results achieved after the application of the algorithm are 
demonstrated. 

Throughout the paper ] ~ m •  n[s ] denotes the set of all real polynomial matrices 
a n d  ]I~ m x n the set of all real matrices. If A E ]~m • n, then p(A) denotes its rank, 
Cp(A) is the pth other compound matrix of A [7] and Qp,~ denotes the set of lexi- 
cographic sequences o fp  integers chosen from 1,2,. . .  ,n. deg{p(s)} denotes the 
degree of a polynomial vector. The symbol = means equal by definition. 
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2. Theoret ica l  background 

2.1. The Smith canonical form of a polynomial matrix 
One of the most important mathematical tools for handling transfer functions as 

polynomial-matrix fractions and for studying systems described by polynomial 
matrices is the Smith canonical form SM(S) of a given polynomial matrix 
M(s) e ]~m• 

An equivalence relation on ~m• "[s] may be defined as follows: 

Definition 2.1 131 
Let M 1 (s), M2(s ) E ~m x n[s]. M1 (s), M2(s ) are said to be N[s]-equivalent if and only 
if M2(s)= R(s).Ml(s).O(s), where R(s)E Nm• a(s)E li~n• det{R(s)}, 
det{Q(s)} E N - {0}. [] 

The matrices R(s), Q(s) with determinant in R -  {0} are known as IR[s]- 
unimodular matrices. 

It is well known that the relation defined above is an equivalence relation on the 
set 1R m• "[s]. The li~[s]-equivalence class 8RH(M(s)) of M(s) E R m• "Is] is charac- 
terised by a uniquely defined complete set of invariants as well as canonical 
form. The invariants and the canonical form are stated by the following theorem�9 

Theorem 2.1 131 
Let M(s) E N TM[s]. 
(i) There exist unimodular matrices L(s) E I~ m• re[s] and R(s) E N "• "[s] such that: 

-fl(s) 

L(s)M(s)R(s) = SM(S) = fp(S) 

0 
�9 J 

where SM(S) is called the Smith canonical form 

(a) p = maxse~{rank M(s)} < min (m,n); 

/ 
0 / p 

J 

0 m-p 

n-p 

of M(s) and 

(2.1) 

(b) The polynomialsf.(s) E ll~[s], i = 1 , . . . ,  p, called invariant polynomials of M(s), 
are monic, uniquely defined by M(s) and satisfy the division property 
f.(s)lf.+l(s ), i=  1 , 2 , . . . , p -  1. 

(ii) The set {f/(s), i =  1 ,2 , . . . ,  p} of invariant polynomials defined above forms 
a complete set of invariants for ~[sl(M(s)) and S(s) is a canonical form for this 
class. []  

Moreover, consider the polynomials Di(s ) E ]~[s], i =  1 ,2 , . . . ,p ,  given by 
Do(s ) =- 1, Di(s ) := the monic gcd of all i x i minors of M(s). 
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These polynomials are called the determinantal divisors of M(s). They are 
related to the invariant polynomials of M(s) by the Smith algorithm, i.e. 
f.(s) = Di(s)/Di_ l(s), i = 1 ,2 , . . . ,p .  

If f (s) = ( s -  si, l)a~'~... ( s -  si, k) a'k', i =  1 ,2 , . . . ,  p, is the unique factorisation 
over C of)~(s), where si, 1 , . . . ,  si,k, E C and ai, l , . . . ,  ai, k~ E Z +, then the elements 
of the set { ( s -  si, j) ~i,j : j  = 1 ,2 , . . . ,  ki, i = 1 ,2 , . . . ,  p} are called the elementary 
divisors of M(s). 

Note that the knowledge of the elementary divisors of M(s) and the number p of 
its invariant polynomials f.(s), i =  1 ,2 , . . . ,p ,  is sufficient to construct 
A(s),...,L(s). 

Under this construction, the invariant polynomials f l  (s) , . . .  ,fo(S) are given by 
the formulas: 

fj(S) : 1 - I ( s -  si)ai'P+t-J~ 
i=1 

j =  1 ,2 , . . . ,p ,  

where we put (s - si) a',j = 1, for j  > ki and q is the number of all different complex 
numbers that appear as roots of the elementary divisors. 

Next, we introduce some useful notation concerning sequences of integers and 
compound matrices. 

Notation 2.1 171 
(i) Qp,~ denotes the set of strictly increasing sequences ofp  integers (1 < p < n) 

chosen from 1,2 , . . . ,  n. If o~,/3 E Qp, n we say that a precedes/3 (a </3), if there 
exists an integer t (I < t < p) for which al = /31, . . . ,  at-1 =/3t-1, OLt < /3t, where 
a;,/3; denote the elements of a,/3 respectively. This describes the lexicographic 
ordering of the elements of Qp,,. The set of sequences Qp,~ will be assumed to be 
lexicographically ordered. 

(ii) Suppose A = [aid ] E]I~ T M  let k ,p  be positive integers satisfying 
1 < k < m, 1 <_ p < n, and let a = (il, i2,. . .  , ik) E Qk, m and /3 = (Jl,J2,.. .  ,Jp) E 
Qp,,,. Then Aloe/~3] E 1R k• denotes the submatrix of A which contains the rows 
il, i2 , . . . ,  ik and the columns Jl ,J2,... ,Jp. 

(iii) Let A E 1R m • n and 1 _< p _< rain{m, n}, then the pth compound matrix or 
pth adjugate of A is the ( m ) x  (~) matrix whose entries are det{A[a//3]}, 
a E Qp, m,/3 E Qp, n arranged le~icogra~phically in a and/3. This matrix will be desig- 
nated by Cp(A). 

2.2. Computation of  compounds of  polynomial matrices 

2.2.1. General formulation 
Let M ( s ) = [ m l ( s ) , . . .  mn+(~)),]ENnXn[s], p(M(s6))T=r<_n, d e g { m i ( s ) } = 6  i, 

mi(s) = Mieri(s), Mi E ~nx er,(s) = [1,s,. . .  ,s i] and assume that M(s) is 
column reduced and ordered according to ascending degrees (i.e. 0 < 6x < 
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. . .  < 6,), then 

M(s) = [M, , . . . ,Mn] .d iag{er~(s) , . . . , er , ( s )}  =_ Tu .S ( s ) ,  (2.2) 

where T M E •  nxk, k =  gT=l( r i+  1) is the coefficient matrix of M(s) and 
S(s) ElRk• is the structure matrix of M(s) defined by the index 
I =  { 6 i : 0 < 6 1  < . . .  <_rn}. 

For an integer p, 1 < p < n, we want to evaluate Cp(M(s)). From (2.2) it is 
evident that 

C;(M(s))  = Cp(TM).Ce(S(s)), (2.3) 

where Cp(TM) E ~;~(~)• Cp(S(s)) = [... ,cw,(s), . . .] E R (k")x(~), cwi(s ) E R(~) [ s ] ,  
En Wi = ( i l , . . .  ,ip) E Qo, k, deg{c~,,(s)} = 6 = j=lrij. 

Since the structure of Cp(S(s)) will define which part of Cp(TM) is essential for 
the structure of Cp(M(s)),  let us first define the structure of Cp(S(s)). 

2.2.2. Properties and evaluation of  Cp(S(s) ) = [e I ( s ) , . . . ,  c(~)(s)] 
Every entry in ci(s) can be parametrised by two sequences 

w = (wl,w2,. . .  ,Wp) E Qp, k and a = ( q , z 2 , . . .  ,zp) E Qp, n, specifying respectively 
the chosen rows and columns of S(s) required for the construction of Ca(S(s)). 
This ci(s) may be denoted as 

ei(s) = [...C~(S) ...]T, w E Qp, k, z E Op,,. (2.4) 

Due to the form of S(s) many entries of ci(s) are set equal to zero, thus we are 
interested in specifying directly only the nonzero entries of ci(s). More specifi- 
cally, for each z E Qp,, we want to define on the one hand the appropriate 

Z Z w E Qp, k : c,o(s) -- 0 and on the other hand the form of nonzero c,~(s) and their 
corresponding location (in terms of w). 

We introduce first some notation. 

Notation 2.2 
The interval of integers [1 , . . . ,  k] is partitioned into subintervals as shown below: 

A1---[1,2, . . . ,~51+1],  A 2 = [ 6 1 + 2 , . . . , 6 1 + 6 2 + 2 ] ,  . . . ,  

A n  ~--- [t~l -q- �9 �9 �9 -~- t~n -1 -1- n , . . . ,  k]. (2.5) 

With each integer p E { 1 , . . . ,  k} we associate two parameters, its index =__ v(p), 
indicating the interval where it belongs and its stathm - cr(p) indicating the relative 
order in its interval�9 

Proposition 2.1 
�9 = �9 For each z = (Jl, .. ,Jp) E Qp, n the coordinates w ( i 1 , . . ,  ip) E Qp, k have 

the following properties: 

(i) c~(s) ~ 0 if and only if i l  E A k, i2 E A k , . . . ,  i o E A A. 
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(ii) c~(s) = 0 - if at least two indices in w are taken from the same interval Aj,, 
i =  1 , . . . , p ;  

- if at least one index from w is taken from an interval Aj, that does 
not  contain any index from z. 

(iii) If  i, E A j l  , i2 E A j 2 , . . . ,  ip E Ajp, then 

c:~(s) = s ~(i')+'+~ip). 

[]  

The proof  of  the above proposit ion is presented in the appendix. 
The above proposit ion leads to the following definition. 

D e f i n i t i o n  2 .2  

For  a sequence z = ( J l , . . .  ,Jo) E Qp, n a sequence ~ = ( i l , . . .  , it, ) E Qp, k for which 
il E Aj,, i2 E Aj,_, . . . ,  ip E Ajp is called z-nonsingular; otherwise, i.e. if more than 
one index is taken from the same interval Aj,, i = 1 , . . . ,  p, it is called z-singular. 
The set of  z-nonsingular sequences of  Qp, k is denoted by f~,k(61,. �9 �9 6~). []  

F rom proposit ion 2. I it is evident that for each z E Qp, ~ the z-singular sequences 
of  Qp, k define the zero coordinates of  ci(s) whereas the z-nonsingular ones the non- 
zero elements. 

2.2.3. Evaluation of  the compound 
If  f~k = {w = ( x l , . . . , x ; )  E Qp,~ : xl + x2 + . . .  + Xp = k}, i.e. f~k is the set of 

sequences with a given stathm k, the following theorem formulates the construc- 
tion of  the p -compound  matrix Cp(M(s)) = [ . . . ,  cz(s), . . . ] ,  z E Qp,,, 1 < p < n, 
of  the polynomial  matrix M(s) E 1~" • specified by relation (2.2). 

T h e o r e m  2 . 2  

Let z E Qp, n and ~2 d be the subset o f ~ ,  k ofz-nonsingular  sequences ofQp, n with a 
given stathm d. If  t~, are the columns of  Cp(TM) corresponding to the w E f2d 
sequences, then the z-column of  Cp(M(s)) is defined by 

k 

Cz(S) = Z tisi' ti = Z t~. (2.6) 
i = 0  wEf~i 

The proof  follows from the above analysis. []  

2.3. Application of  compounds to Smith form evaluation 

Applying to the definitions given in section 2.1 the not ion of  compound  
matrices, the following theoretical procedure is derived for the evaluation of  Smith 
form via compound  matrices. It is supposed that M ( s ) E  11~ n • consists of  
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coprime polynomials. (Otherwise, the computation of the gcd of all the given poly- 
nomial entries of M(s)  will be required.) 

Algorithm SMITH (algorithm 2.1) 

D0(s): = 1 

f o r p : = l , . . . , n  

evaluate Cp(M(s))  = (cij(s)), i , j  = 1 ,2 , . . . ,  (~) 

find Dp(s) : = gcd{cij(s)}, i , j =  l , 2 , . . . , ( ~ )  

fp(S) : = np( s ) /Dp_ l (S  ) 

SM:=diag{fp(s)} ,  p = l , . . . , n  

The most important step in formulating an appropriate numerical algorithm for 
the above procedure is the numerical evaluation of the p-compound matrices 
Cp(M(s))  of M(s)  E I~ "• "Is] which will be achieved by the application of theorem 
2.2. 

Next, the numerical version of Algorithm Smith is presented. 

3. The  numer i ca l  a lgo r i thm 

Let M(s)  E ll~ "• "[s] be a given polynomial matrix, TM the matrix of (2.2). The 
procedure described next evaluates matrix SM that contains the coefficients of 
the invariant polynomials. The algorithm is written in a MATLAB-like language 
[4]. For a concrete value of p, 1 < p < n, matrix GCDMAT contains the coef- 
ficients of the polynomials of each column of Cp(M(s)) ,  while matrix COLGCD 
contains their gcd. Matrix GCDTOT contains the coefficients of the gcd of all 
the polynomial columns of Cp(M(s)) .  If A E I~ ~ • ", r E 11~ ~ the symbol A = [A, r] 
adds a column to matrix A while the symbol A = [A; r] adds a row to matrix A. 
The notation A = [] denotes an empty matrix while a = [] denotes an empty 
vector. Vector r = [1 ,2 , . . . ,  n] T can be generated by writing r = 1 : n. The function 
det(A) computes the determinant of A. 

A l g o r i t h m  S M I T H  (a lgor i thm 3.1) 

function SM = SMITH(TM) 

n:  = rows (TM) , f l ( s )  : = 1 

for p = 2 , 3 , . . . , n  

{Generate the column sequences of S(s)} 

c = 1 : p, GCDTOT = [], Prime = 0 

while c = ( c l , . . . ,  cp) is not the last sequence of Qp, n 
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C Cons t ruc t  the c-nonsingular  sequences 9tp, A ,  i = 1 , . . .  ,p 

specified f rom A t , , . . . ,  Ac, 

{Generate the row sequences of  Tu} 

r =  1 :p ,  G C D M A T = [ ]  

while r is not  the last sequence of  Qp, n 

gcdv = [] 
C d - -  m a x i m u m  s ta thm o f w  E ~p, Ac, i - -  1 , . . . , p  

c i = 1  . . , p  for w E f~p, Ac~, ," 

g~ :  = de t (Tu(w,  r)) 

gcdv : = [gcdv, g~] 

gcdv : = ~-~ ~ n~ gcdv,~ 

if gcdv scalar, Pr ime : = 1, break 

G C D M A T  : -- [ G C D M A T ;  gcdv] 

r : = the next lexicographic sequence of  Qp,,, 

if Prime, fp(S) : = 1, break 

else 

[ C O L G C D ,  Prime] = g c d ( G C D M A T )  

if Prime, fp (s) : = 1, break 

C G D T O T  = [ G C D T O T ,  C O L G C D ]  

c : = the next lexicographic sequence of  Qp, n 

fp(s):  = g c d ( G C D T O T )  

fp(S) : = fp(S)/fp_l(S) 

S u  = diag{f l  ( s ) , . . .  ,f~(s) } 

3.1. Implementation o f  the algorithm 

Various  modes  dan be used for an effective implementa t ion  of  a lgor i thm 
S M I T H .  Since the n u m b e r  of  lexicographic sequences is quite remarkable  
we do not  compu te  all the required sequences at once but  only one at a time. When  
ano the r  sequence is actually required (in case the po lynomia l  co lumn  is no t  
copr ime)  we compu te  the next- in-order  lexicographic sequence. The  n u m b e r  k 
of  sequences belonging in f2~,A c , i = 1 , . . .  ,p, is given f rom k = H~=16ci, c = 

can be fur ther  reduced to kr according to the s tructure (el, e2 , . . . ,  Cp). This n u m b e r  i 
o f  the given matr ix  (i.e., if concrete co lumns  of  TM are zeros, the e-nonsingular  
sequences tha t  conta in  these co lumns  can be dismissed). 



M. Mitrouli, G. Kalogeropoulos/A compound matrix algorithm 153 

For the evaluation of the gcd any matrix-based algorithm [6,8,9] can be used 
since we construct at each stage a matrix containing the coefficients of the required 
polynomials. 

Whenever coprime entries are specified or a scalar gcd is computed we 
simply continue to the next available index value of p, ignoring intermediate 
steps. Thus, the number of flops [4] cannot be specified from the beginning. 
The only required numerical process in the construction of compound matrices 
is that of the determinant of a matrix which requires O(n 3) flops for a given 
matrix TM E N n • n. For each value of p, 1 < p < n, an estimation of an upper 
bound for the required flops in computing Cp(M(s)), M(s) E l~ n• n[s] is equal to 
O(krn4/4). 

For the computation of the gcd of polynomials the amount of required flops 
depends on the selected matrix-based method [8]. 

3.2. Error analysis 

It is well known that the computation of the determinant of specified matrices 
and submatrices is a well defined stable numerical process [12,4]. Since the 
only numerical computation required in compound matrix determinations is the 
evaluation of a determinant, the numerical stability of such computations is well 
formulated. 

Every step in algorithm SMITH requires determinantal and gcd computations. 
The evaluation of gcd is achieved by applying matrix-based methods; the numerical 
stability of such methods is defined in [8]. 

Therefore, every step of the method consists of numerically stable evaluations. 

4. Numer ica l  results - discussion 

Algorithm SMITH was programmed on MATLAB environment and tested over 
several data. Next, we present some results achieved after the application of 
algorithm SMITH on a DFI 486 IBM-compatible computer. The computational 
complexity is estimated using the notion of flops [4] and the required time is evalu- 
ated using an appropriate function of MATLAB. 

For the gcd computations a matrix-based method developed in [6] was used. 

Example 4.1 

M(s)=[s-1 0 ] N2 0 s - l + e  E • eEl~ .  

SM = diag{1,s2 + ( e - 2 ) s +  1 - e } ,  e < 10 -3, relative error < 10 -16, flops: 94, 
time: 0.06 sec. [] 
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Example 4.2 

M ( s )  = 

s s s - 1  ] 

s 2 + s  s Z + 2 s  s 2 -  1 J E ]I~3X3[s]. 

2S2--2S S2- -2S  2 S 2 - - 3 S + 2  

SM = diag{ 1, s, s2 }, relative error < 10-16, flops: 9616, time �9 1.7 sec. [] 

Example 4.3 

I S + 1 S 2 + 3S + 3 S 2 + 4S--  2 S 2 + 3 ] 

] M(s)  / s - 2  s - 1  s + 2  s - 2  = E ]l~ 4• 4[S]. 
/ 3 s + l  4 s + 3  2 s + 2  3 s + 2  

[_s2+2s s 2 + 6 s + 4  s 2 + 6 s - 1  s 2 + 2 s + 3  

SM = diag{1, 1, 1, 1), relative error < 10 -16 ,  flops: 7987, time: 2.04 sec. [] 

Example 4.4 121 

M ( s )  = 

s - 1  - 1  0 

0 s 0 - 1  

0 0 - l + s  0 

0 0 0 - 2 + s  

1 0 1 0 

SM = diag{ 1, 1, 1, 1 , - s  3 + 3s  2 - -  2s}, relative error 
1.87sec. 

1 

0 
0 ~ R 5 • 

0 

0 

_< 10 -16, flops: 9023, time: 
[] 

Example 4.5 121 

M ( s )  = 

- s -  1 0 0 - 1  1 0 

0 s -  1 2 - 3  3 0 

0 0 s +  1 - 2  2 0 

- 1  1 - 1  s - 1  0 

- 1  1 - 1  1 s - 2  0 

0 0 0 0 0 s 

SM = diag{1, 1, 1, 1 , s  2 - -  2s + 1}, 
33.88 sec. 

E ]I~ 6 • 6 [S]. 

relative error _< 10 -16, flops: 127323, time: 
[]  



M. Mitrouli, G. Kalogeropoulos/ A compound matrix algorithm 155 

Example 4.6 121 

M(s) = 

s - 1  0 0 0 0 

0 s - 1  0 0 0 0 

0 0 s - 1  0 1 0 

0 0 0 s - 1  0 1 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 1 0 0 

. 

0 

0 
0 ~ ~7• 

0 

0 

0 

S M = diag{ 1, 1, 1, 1, I, 0, 0}, relative error < 10 -16, flops: 88035, time: 23.7 sec. 
[] 

4.1. Remarks - comparison o f  methods - conclusions 

The compound-matrix method can work satisfactorily for any given polynomial 
matrix M(s) E N "• n[s]. It requires only the formulation of matrix T M specified in 
(2.2). In the sequel, by applying the appropriate numerical version of the proced- 
ure described in section 2.2, for various values of 1 < p < n, it computes the pth 
compound matrices of M(s). Finally, the computation of the Smith canonical 
form Su(s)  of M(s) is achieved by direct application of its definition without com- 
puting unimodular transformation matrices P, Q such as Su(s)  = P.M(s).Q. 

Since other methods were also developed for the achievement of Smith's canoni- 
cal form computation (most of them mentioned in section 1 of the present paper), 
table 1 summarizes the main characteristics and properties of these existing 
methods. 

In the sequel, we can summarize the main advantages of the new numerical 
approach based on compound matrices. 

(1) Direct calculations. 
The whole method applies direct formulas and achieves the required compu- 

tations without going through row and column operations as the methods of [1] 
and [10] do. Thus it overcomes the problem of coefficient growth. 

(2) Works successfully in floating-point arithmetic. 
The method starts working directly with floating point arithmetic and, due to its 

nature, the cumulative error introduced does not alter seriously the computed 
Smith form from the required theoretical one (see example 4.1). 

(3) Freedom in the selection o f  the required gcd method - ability o f  computing 
approximate Smith canonical form. 
Again, due to the nature of the present method, any proposed method achieving 

gcd calculations of polynomials can be applied, in contrast with the methods of [1] 
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Table 1 
Comparison of existing methods. 

Bradley's method [1] 

Pace and Barnett's method [10] 

Ramachandran's  method [2] 

Kaltofen et al.'s method [5] 

Compound-matrix method 

Origination : Works only for integer matrices and is based 
on explicit calculation of the gcd and of a set of multipliers 
for each of the rows and columns. 
Numerical problems: Numerical instability and the growth 
of magnitude of the matrix elements throughout the pro- 
cedure (especially of the determinant of the given matrix 
is large). 
Estimated computational complexity : 
O(n 2 log2([ det(M)[) + 4n3/3). 

Origination : Performs gcd calculations implicitly, based on 
Blankiship's procedure. 
Numerical problems: Same as Bradley's method. 
Estimated computational complexity : An overall estimation 
was not produced, an estimation for the complexity 
required for the application of Blankiship's method in 
two polynomials can be found in [11]. 

Origination : Based on finite field transforms overcomes the 
problem of coefficient growth and errors in floating point 
operations by maintaining the coefficients of  the poly- 
nomial entries in rational form. The whole arithmetic is 
performed in the p-adic system. 
Numerical problems : The problem of selecting appropriate 
values for a prime p and a positive integer r required for the 
beginning of the algorithm. 
Estimated computational complexity : No complexity analy- 
sis was produced. The method takes more time than float- 
ing point computations in rational form. 

Origination: A probabilistic technique is applied which 
produces random linear combinations of appropriate 
minors whose gcd is with high probability equal to the 
needed gcd. The whole method performs matrix multipli- 
cations, determinant and gcd calculations. 
Estimated computational complexity: The algorithm 
belongs to the complexity class RNC 2 (see [5] for the defi- 
nition of this class). 

Origination: The method starts working on the given 
matrix based on compound matrices definitions without 
performing any row or column operations on the matrix 
and thus it overcomes problems of numerical instability. 
Estimated computational complexity : 
O(krn4/4) plus the required operations concerning gcd 
evaluations. 
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and [10] that are both adusted to Blankiship's technique for gcd evaluation. Taking 
advantage of this property, in case we are having polynomial matrices containing 
numerically e-dependent [9] polynomial entries, then according to the selected 
matrix-based method for the gcd computation, an approximate Smith canonical 
form of the matrix can be determined. For example, let us suppose that we are 
given the matrix: 

M(s) = diag{s 2 - 3 s + 2 ,  s 2 - 2.99s + 1.99, 2s 2 - 5.99s+ 3.99} E R3X3[s]. 

By applying for gcd evaluations in algorithm SMITH the method developed in [6], 
the following Smith form is computed: 

SM = diag{s - 1, s - 1, (s - 1)2.(s - 2).(s - 1.99)-(2s - 3.99)}. 

On the other hand, in the same algorithm if the method developed in [9] will be 
applied for the required gcd evaluations, for specific values of the applied accuracy 
the following approximate Smith canonical form can be defined: 

SU,Appr = diag{s 2 - 3s + 2, s 2 - 2.99s + 1.99, 

(s 2 - 3s + 2).(2s 2 - 5.99s + 3.99)}. 

This is due to the ability of this specific method to determine approximate gcds of 
polynomials according to specified accuracies. 

(4) Satisfactory execution times. 
The following matrix summarizes the time (in seconds) required for the exe- 

cution of algorithm SMITH over various polynomial matrices with different 
dimension n. 

n 2 3 4 4 5 5 6 7 
sec 0.06 1.7 2.04 11.47 1.87 8.84 33.88 23.7 

It is evident that the structure of the given matrix determines the execution time 
(i.e., although the matrix in example 4.4 has higher dimension than the one in 
example 4.3, the execution time is quicker since it possesses a rather simpler struc- 
ture). A comparison of the above matrix with the one proposed in [10] shows that 
the achieved execution times are rather satisfactory. 

(5) Parallel nature of computations. 
Since the compound matrix evaluations for different values ofp can be executed 

simultaneously, the whole algorithm can be applied in a parallel machine. The 
whole issue is under consideration (this could be extremely useful for cases when 
n is quite large). 
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Appendix 

Proof of proposition 2.1 
Matrix S(s) is of  the form 

S ( s )  = 

1 

S 

S 6t 

0 } 
1 t S 

$62 

"., 1} 
S 

0 
S t5,, 

Al 

A2 

An 

(A.1) 

If z = ( J l , J 2 , . - .  ,Jp) E Qp, n and co = (il, i2,. . . ,  ip) E Qp, k are the corresponding 
sequences determining the columns and rows of  S(s) required for the construction 
of  Cp(S(s)), 1 < p <_ n, and S:~(s) is any p x p submatrix of  S(s), the following 
properties are derived by inspection of  the structure of  S(s). 

(1) Every row of  S~o(s) contains only one nonzero element of  the type s ~, 
/3 = 0, 1 , . . . , 6 i ,  i = 1 , 2 , . . . , n .  

(2) If  a column of  S~(s) contains more  than one nonzero element, then f rom (1) it 
follows that there is at least one zero column in S~o(s) and thus det(S~(s)) = 0. 

z S (3) The condit ion that S,o( ) has a column with more  than one nonzero element is 
equivalent to the one that  at least two indices f rom co are taken from an interval 
Ajk containing at least two indices from z. 

(4) The condit ion that S~(s) has a zero column is equivalent to the one that at least 
one index from co is taken f rom an interval Aj, that does not  contain any index 
f rom z. 

(5) If  every column in SZ(s) contains only one nonzero element then the submatrix 
S~,(s) is diagonal and thus has the form: 

S~(s )=diag{s  ~ S (r(i2) ' ' ' ' ,  sa(iP ) } (A.2) 

for the following reasons: 

�9 Since il < i2 < . . .  < ip and il E Aj~ (otherwise we have two indices f rom the 
same interval Aj, and thus an entirely zero column) the nonzero element on the 
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first c o l umn  is on  the first row, i.e. in (1, 1) posi t ion,  and,  by inspection,  has a 
value s ~ 

�9 F o r  the same reasons as before,  ik E Ajk, k = 2 , . . . ,  p, and  since every row 
has only  one nonzero  element,  it c anno t  be on the k - 1 row. Since ik defines 
the k row and  all nonzero  elements  are on the k th  column,  it follows tha t  the 
k th  e lement  associated with ik is in the (k, k) posi t ion o f  S~(s)  and obviously  
has value s ~ 

Thus  c~(s) = det(S~(s))  = y]~k=lop .a(ik). [] 
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