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Abstract

The inflammatory tumoral-immune response alters the physiology of the tumor microenvi-

ronment, which may attenuate genomic instability. In addition to inducing inflammatory

immune responses, several pathogenic bacteria produce genotoxins. However the extent of

microbial contribution to the tumor microenvironment biology remains unknown. We utilized

The Cancer Genome Atlas, (TCGA) breast cancer data to perform a novel experiment utiliz-

ing unmapped and mapped RNA sequencing read evidence to minimize laboratory costs

and effort. Our objective was to characterize the microbiota and associate the microbiota

with the tumor expression profiles, for 668 breast tumor tissues and 72 non-cancerous adja-

cent tissues. The prominent presence of Proteobacteria was increased in the tumor tissues

and conversely Actinobacteria abundance increase in non-cancerous adjacent tissues. Fur-

ther, geneset enrichment suggests Listeria spp to be associated with the expression profiles

of genes involved with epithelial to mesenchymal transitions. Moreover, evidence suggests

H. influenzamay reside in the surrounding stromal material and was significantly associated

with the proliferative pathways: G2M checkpoint, E2F transcription factors, and mitotic spin-

dle assembly. In summary, further unraveling this complicated interplay should enable us to

better diagnose and treat breast cancer patients.

Introduction

Cancer is a complex disease, where a multitude of genomic and physiological alterations

occurring incessantly in the tumor tissue adds to the complexity of disease treatment and man-

agement[1]. The microenvironment in and around the tumor constitutes a variety of cell

types, purportedly including microbiota. Pathophysiological changes occurring in the cells

and in the microbial composition could have significant impact on the tumor growth [1–4].
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While impactful discoveries have been made in cancer diagnosis and treatment by investigat-

ing the intricate shifts in the cellular and molecular biology of the tumor, microbial contribu-

tions to tumor growth remain unexplored. Diversity shifts in tumor microbiota have been

observed in a variety of cancers including: prostate cancer [5], cervical cancer [6], colorectal

cancer [7, 8], and lung cancer [6, 9], and breast cancer [10–12].

Breast cancer is one of the most common cancers in women worldwide and despite the sig-

nificant progress in the diagnosis and treatment of breast cancers, there are still more than

40,000 deaths per year [13, 14]. Dysregulation of sex hormones [13–15] is believed to be one of

the primary risk factors for breast cancer. A menopause associated decrease in age-specific

incidence rates, known as Clemmesen’s hook, is widely observed among females worldwide

[16, 17]. The hormonal dysregulation manifests, both clinically and molecularly, as distinct

subtypes: triple negative (TN), HER2 positive (HER2+), and ER positive (ER+) [18]. Recently,

it has been demonstrated that post-menopausal estrogen metabolism is associated with micro-

bial diversity [19]. Similarly it has been proposed that estrogen conjugation by beta-glucuroni-

dase, may be associated with the microbiota observed to be in dysbiosis in women with a

history of breast cancer [20].

The objective of the current study is to characterize the breast microbiota and investigate

whether the microbial composition is associated with host expression profiles. This objective

was accomplished by utilizing RNA sequencing data from The Cancer Genome Atlas (TCGA),

the largest sequencing cohort currently available for breast cancer [18]. We documented the

most prevalent species observed among the breast tissues, and gathered preliminary evidence

of microbial compositional shifts among the disease subtypes. This was further supported, by

16S-rRNA gene sequencing data obtained from fresh frozen samples that were obtained from

the TCGA subjects submitted by the Mayo Clinic. Traditionally, bioinformatic methods such

as PICRUSt are implemented to infer the abundance of gene families, which may in turn influ-

ence host’s expression response [21]. In contrast, we utilized two lines of evidence- microbial

read evidence and host transcriptional expression—from the same tissue and sequencing plat-

form, to perform association analysis. The implementation of a single sequencing platform

reduces confounding factors of tissue heterogeneity, molecule extraction/purification, and

protocol handling differences. We believe this is the first study to examine both the microbial

presence and host expression from the same tissue/sample preparation.

Materials andmethods

RNA sequencing data

Clinical filtering. Clinical characteristics of the breast cancer samples were obtained from

the TCGA data portal [22] (November 11, 2013, version). Samples were removed from consid-

eration if they possessed any of the following characteristics: male gender, metastatic samples,

history of prior breast cancer disease, recipients of neoadjuvant therapy, and/or samples lack-

ing (documented) interrogation of HER2 amplification status. The fastq sequence files for the

remaining 804 breast tumor and non-cancerous breast tumor, were obtained from the Cancer

Genomics Hub (CGHuB) data repository[23].

Host aligned reads. We aligned RNA-Seq fastq files using TopHat (v1.3.3), mapped reads

were used to obtain gene expression counts using HTSeq (v0.5.3p3) [24, 25]. Host gene expres-

sion counts were normalized with conditional quantile normalization to account for potential

GC, and/or gene length biases [26]. Subtype specific host expression cohorts were inspected

for outliers using calibration stress measures [27] and principal component analysis.

Non-host aligned reads. To characterize the breast microbiota, the reads unaligned to

the host genome were aligned by Kraken to its bacterial genome (03–2014 build) and bacterial
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16S ribosomal databases (06–2014 build) [28]. Subsequent to TopHat alignment unmapped

BAM files, of the 804 tumor and non-cancerous adjacent (NCA) samples, were converted

to FASTQ reads that were quality-trimmed with fastq_quality_trimmer (FASTX Toolkit

v0.0.13.2). Read lengths less than 40 nucleotides and a minimum PHRED quality score of less

than 3 were removed and the remainder were realigned with Bowtie 2 to eliminate any addi-

tional human reads. The left over unmapped reads were then aligned to bacterial genomes and

bacterial 16S ribosomal genes using Kraken (v0.10.5-alpha) [28]. Concordance of sample

retention, of the parallel processed TCGA samples, further pruned the study cohort to a final

cohort consisting of 668 tumor samples and 72 NCA (NCA) reference samples.

16S ribosomal sequencing validation

Frozen breast tissue blocks demonstrating greater than 60% tumor composition were selected

from six ER+ patients fromMayo Clinic that were submitted to TCGA. Frozen sections (15–

20 at 4 μm) were cut from each block and stored at -80˚C prior to DNA extraction. The MoBio

PowerSoil1DNA Isolation Kit (PN 12888 Mo Bio Laboratories, Inc. Carlsbad, CA) were used

for DNA extraction according to the manufacturer’s protocol. The DNA concentrations were

measured by Qubit dsDNA HS Assay Kit (PN Q32854 Thermo Fisher Scientific Inc., Wal-

tham, MA) and samples with sufficient DNA were enriched for microbial DNA using the

NEBNext1Microbiome DNA Enrichment Kit (PN E2612L, New England Biolabs, Ipswich,

MA). The V3-V5 region of the 16S-rRNA gene were amplified with a two-step PCR protocol,

and then Illumina flow cell adaptors containing indices were incorporated [29]. Sequence

reads (both pairs) were filtered for quality using PHRED quality scores Q3, and 3’ reads with

average sliding window (size = 4) score of Q15, using Trimmomatic v 0.22 [30]. Paired reads

with that were at least 80% of the original read length nucleotides were aligned with the

IM-TORNADO 16S analysis pipeline[31, 32] using the Greengenes taxonomy (Greengenes99

database version 12.10) [33]. Additional details are provided in S1 File.

Statistical analysis and visualization

Batch analysis. To account for dispersion and sparsity, microbial reads were normalized

with the metagenomeSeq package [34]. We used the Bray-Curtis dissimilarity measure, a

count-based measure to compare between two sampling sites, traditionally employed in eco-

logical studies [35–37]. To identify the presence of handling/processing differences, centroid

clustering was performed using the t-SNE dimensionality reduction on the Bray-Curtis dis-

similarities [36, 38]. The NbClust package was then employed to determine the optimal num-

ber of clusters [39]. This package evaluated the validity of k (2:10) clusters, as scored by 26

indices. The 26 (default) of 30 potential indices were chosen as they are the least computation-

ally expensive. Cluster validity was gaged by the average silhouette width, where a higher aver-

age silhouette width indicates high sample similarity (tightness) and substantial cluster

separation[40, 41]. Clustering results were confirmed using DESeq2 normalized data and non-

negative matrix factorization, see S2 File.

Statistical analysis. Concordances of 327 species were observed among the NCA tissues

and the tumor samples, and consistent across the observed batch effect. The batch influence

was adjusted for with the sva package, using the zero-inflated Gaussian normalized data [34,

42]. Differential abundance analysis of adjusted microbial read evidence was performed with

limma for the most abundant operational taxonomic units (OTUs) [43]. Host differential gene

expression analysis (human) was performed with edgeR, normalized to a negative binomial

distribution to account for read dispersion [44]. Spearman’s correlation was performed at the

univariate level, among the OTU’s and genes. Fisher’s exact test was performed for gene set
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enrichment analysis, using the 50 hallmark pathways [45, 46]. Additionally, mutual informa-

tion was assessed, with the BUS package [47], among the normalized microbiome data and the

50 hallmark pathways.

Visualization. Bean plots were prepared with the Beanplot R package [48] and hive plots

with HiveR [49]. Cladograms were produced with GraPhlAn software [50]. Parallel coordi-

nates and parallel sets plots were generated with epade [51].

Results

Microbiota identification

The unaligned human genome reads obtained from 668 tumor and 72 NCA tissues were

attributed to 1,634 microbial OTUs using dual alignment strategy, which was chosen to mini-

mize contaminants [12, 52, 53]. We further applied a set of filters to remove rare microbial

OTUs, those presented in less than 25% of our study cohort, and low abundant microbial

OTUs with less than nine maximum reads across the samples. The elimination of OTUs occur-

ring in less than 25% of the samples had little effect on the overall OTU counts of each sample,

with 99.2% (657 samples) removing less than 5% of their overall read counts. An ER positive

sample (TCGA-BH-A0BR) demonstrated the highest eliminated read counts (10.94%), see S1

Table. As microbial OTUs could be tissue specific, the tumor and NCA samples were grouped

and processed in parallel. This left 662 OTUs observed among the tumor samples; 639 OTUs

observed among the NCA tissues and with 589 OTUs observed concordantly in both tumor

and NCA tissues (S1 Fig). We performed Kmeans clustering analysis using the reduced dimen-

sions from t-distributed stochastic neighbor embedding (t-SNE). The t-SNE mappings were

derived from the Bray-Curtis dissimilarity index. We observed that both tumor and NCA

cohorts demonstrated the existence of a batch processing effect indicated by the TCGA plate

id [54](S1 Fig).

Two clusters were identified for tumor (cluster 1 = 197 and cluster 2 = 471 samples), and

NCA cohorts (cluster 1 = 54 and cluster 2 = 18 samples), Fig 1A. A PCA plot is provided in Fig

1B, demonstrating the sample separation created by the batch effect. The filtering describe

above was applied to each of the clusters. The tumor cluster 1 (25%) and NCA cluster 2 (25%)

demonstrated a concordant set of 198 OTU’s (S2 Table) suggesting the same processing factor

was influencing the samples, Fig 1C. The concordant set of 327 OTU’s that were observed

among the four clusters was normalized and scaled, S2 Table.

Pairwise differential abundance analysis of the 327 OTU’s was performed among the four

tissue groups (NCA, HER2+, ER+, and triple negative breast cancer), S3 Table. Benjamini

and Hochberg correction was applied to address multiple testing error and 48 OTU’s were

observed to be significant (alpha = 0.05) across the pairwise comparisons. A PCA plot of these

final 48 OTU’s is provided in Fig 1D, demonstrating that the batch factor was accounted for

among the normalization and scaling process.

Phyla comparison to Canadian/Irish breast microbiota data

Among 740 TCGA RNA Sequencing tumor samples, nearly half of the identified (48.0%, 157

of 327) reads were derived from Proteobacteria. The next most prevalent phyla were Actinobac-

teria (26.3%, 86) and Firmicutes (16.2%, 53). The remaining 31 OTUs (9.5%) were from mis-

cellaneous phyla. Moreover, the phylum level composition was consistent among the tumor

and NCA tissues among the identified clusters (Fig 2). We present the phylum-level distribu-

tions as bean plots, in Fig 2, with the tumors (the distribution densities on the right in purple)

and the NCA (the distibution densities on the left in green) clusters. These findings were con-

sistent with Urbaniak, et al, shown in the upper right inset in Fig 2.
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Fig 1. Two distinct microbiota are present in breast tissue samples, both tumor (n = 668) and NCA
(n = 72). (A) Optimal k-cluster selection analysis demonstrating a majority decision among the 26 metrics for 2
clusters was concordant for both tissue cohorts identifying a systemic handling bias. (B) The t-SNE
projections for the 668 tumors samples, demonstrating tissues demonstrating separation and cohesion
among the batches. (C) Filtering was re-applied among the tissue samples and per processing differences.
Venn diagram demonstrates a core 327 bacterial OTU’s was observed among all samples. (D) Abundance
differences were observed for 48 OTU’s. A PCA plot of these significant OTU’s is presented demonstrating
that the batch differences had been accounted for, NCA tissues indicated with an ‘N’ and tumor samples
indicated with a ‘T’.

https://doi.org/10.1371/journal.pone.0188873.g001
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We observed 24 of 327 species with an average relative abundance ranging from 0.5–19.3%

in the NCA cohort. However, these 24 species account for 85.64% of the overall breast tissue

microbiota, across the three breast tumor subtypes as well as the NCA tissue; as presented in

Fig 3A. The remainder of the less prevalent microbiota, on average, comprises: 14.7% of the

NCAmicrobiota, 11.1% of the triple negative microbiota, 12.8% of the HER2+ microbiota and

12.5% of the ER+ microbiota.

Fig 2. Phylum compositions of the tumor and NCA tissues. Themost prevalent phylum in the breast
microbiota is Proteobacteria, followed by Actinobacteria and Firmicutes. These observations were consistent
among each of the tissue types (tumor shaded in purple NCA shaded in green). These distributions are
consistent with the observations by Urbaniak, et al, see insert.

https://doi.org/10.1371/journal.pone.0188873.g002
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Fig 3. OTU’s significantly different among the breast cancer populations. (A) Twenty-four species were observed
to have average abundance between 0.5% - 19.3% among the NCA samples. These species are presented as a barplot
summary averaged among each subtype. (B) A cladogram of the 48 differentially abundant species, 12 of the 24
prevelent species (average relative abundance greater than 0.5%) were observed to be signicant after Benjamini and
Hochberg correction for mutiple testing error. (C) The average relative abundance and standard deviation of the 12

The breast cancer microbiome
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Significant OTU’s. Differential abundance analysis identified 48 OTU’s to be significant

after correcting for multiple testing errors using Benjamini and Hochberg correction to con-

trol the false discovery rate. Nine species were concordantly observed to have absolute abun-

dance differences (fold change) greater than 2 among the breast cancer subtypes, in contrast to

the NCA tissues. These 48 species are presented as a cladogram in Fig 3B; the nine species

observed to be significantly altered from NCA tissues are presented as shaded circles. The rela-

tive abundances of these nine species are also shown in Fig 3C, contrasting the tumor cohort

distributions and NCAmicrobial distributions.

We observed that the prominence of differentially abundant species were comprised from

the less prevalent OTU’s, as only 12 of the 48 (25%) comprised the 24 more prevalent species.

Similarly, the majority (6) of the nine OTU’s significantly altered from NCA tissues were also

comprised from the less prevalent OTU’s.Mycobacterium fortuitum andMycobacterium phlei,

both known to infect humans were two of the prevalent species observed to be differentially

abundant in the tumor samples (Fig 3C). Additionally, we observed an increased presence of

Actinobacteria (13 of 48 significant OTU’s) in the NCA tissue samples; while Proteobacteria

(20 of the 48 significant OTU’s) demonstrated increased presence among the tumor tissues,

see S2 Fig.

Microbial association with breast cancer

We investigated whether the microbial composition was associated with alterations in the

host expression profiles. EdgeR analysis was performed between the NCA tissue and the breast

cancer subtype tissue using host gene expression data. We identified 683 common genes dem-

onstrating logFC greater than two and a Bonferroni corrected p value less than 0.05. We con-

ducted a correlation analysis using the 683 genes and the 48 OTU’s. Genes demonstrating a

Spearman’s correlation (absolute) greater than 0.25 with the OTU’s, (S5 Table), were kept for

geneset enrichment analysis for the 50 hallmark pathways. Three organisms (H. influenza,N.

Subflava, and L fleischmannii were interrogated since they demonstrated sufficient gene corre-

lations for enrichment analysis, with 229, 30, and 58 genes respectively. Fisher’s exact test com-

pared each pathway to the reference set of 683 differentially expressed genes. In addition, the

gene set enrichment of the pathways for these 683 differentially expressed versus the entire ref-

erence set of 16,383 expressed genes, was evaluated as a benchmark for design bias. We

observed 14 pathways to be enriched in the 683 differentially expressed genes. Two pathways

(G2M checkpoint and E2F targets), were enriched in all four comparisons, while mitotic spin-

dle was enriched in all but N. Subflava. However these pathways do not survive any adjustment

for multiple testing errors, except in the overall differentially expressed and correlated toH.

influenza’s composition, where they survive the most stringent Bonferroni correction. Addi-

tionally, L. fleischmannii remained associated with epithelial mesenchymal transition, after

adjusting for the family-wise error rate with the Bonferroni adjustment. The enrichment

results are presented as the negative natural log of the p values, in the Fig 4A. We note that the

pathway associations withH. influenzamay follow the general bias of selecting the differen-

tially expressed genes.

We conducted a second association analysis in an effort to reduce the impact of expression

bias, by assessing all expressed genes in the 50 hallmark pathways. Mutual information analysis

was performed between the microbiota compositional data and expression profiles. The

mutual information is empirically estimated based upon the entropies of each variable’s

species differing in abundance depicted in the barplots, with the NCA tissue cohort’s averages in green and tumor
cohort averages in purple.

https://doi.org/10.1371/journal.pone.0188873.g003
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distribution and the combined variables distribution. A hive plot is presented in the bottom of

Fig 4B, depicting the observed associations among the gene expression, microbiota, and the

hallmark pathways. A hive plot collapses a network diagram into 3 axes, where each node rep-

resents variables sharing the same connectivity. The more connections (associations) observed

the further away from the center origin (x = 0, y = 0, and z = 0). We have provided text detail-

ing the observed association patterns. We observe that same 3 pathways remain the most

enriched in genes sharing information with the microbiota, with G2M possessing 43 uniquely

associated genes. Similarly H. influenza remained the most associated microorganism, with

226 associated genes. While L. fleischmannii (139) and epithelial to mesenchymal transitions

(12) remained prominently connected features.

16S-rRNA gene sequencing for confirmation

To confirm the presence of microbiota in the TCGA breast samples, for whom the fresh frozen

tissue was available, we generated standard 16S-rRNA gene sequencing in a subset of TCGA

samples (n = 6) contributed by the Mayo Clinic [18]. In order to control for contamination we

included negative controls of the DNA extraction and PCR amplification solutions. Minimal

artefactual read evidence was observed for Geobacillus spp, as a result of the spiked in DNA

enrichment step (14 and 10 reads) and therefore subtracted from our sample cohort (S2 Table

and S1 File). The fresh frozen samples were otherwise observed to be predominated by the

Proteobacteria phylum, consistent with the previously published study of 16S-rRNA gene

sequencing with 81 women [10, 55] (S2 Table). Similarly, multiple species were concordantly

observed for Streptococus, Lactobacillus, and Acinetobacter [10, 55] (Table 1), while we ob-

served Gluconacetobacter as the most prevalent OTU in terms of high read evidence and con-

sistently across samples.

Fig 4. Microbial association with breast cancer. A) Fourteen hallmark pathways which were observed to significantly enriched with
differentially expressed genes (in green), versus the universe set of 16,363 genes. Three organisms (H. influenza,N. Subflava, and L.
fleischmanni) demonstrated correlation to a sufficient set of genes for geneset enrichment analysis: 229, 30, and 58, genes respectively.H.
influenze shared enrichment in three of those pathways. Those three pathways (G2M checkpoint, E2F targets, and mitotic spindle), remain
enriched, after applying Bonferroni correction (the vertical purple dashed line). L, Fleischmanniiwas also enriched in gene correlations among
the epithelial mesenchymal transition pathway, after Bonferroni correction for multiple testing. B) To reduce any bias from differential expression
selection the genes in the 50 hallmark pathways were additionally analyzed for mutual information content with the microbial compositional data.
A hive plot depicting the network of the 50 pathways and their genes (green), known gene-gene (protein-protein) interactions (yellow), and
OTU’s-gene associations (purple) is presented. The connectivity of the pathway and OTU’s nodes are presented with the text on the right. We
again observe the same 3 networks demonstrated the most connectivity and thatH. influenza as the predominant microbial association.

https://doi.org/10.1371/journal.pone.0188873.g004

Table 1. Concordantly observedOTU’s. The Proteobacteria and Firmicutes species which were concordantly observed in the 16S-RNA gene andmRNA
sequencing data. Additional 16S read data were observed, yet remained uncharacterized at the species level, which could coincide with mRNA observations.

Phyla Genus 16S and mRNA Confirmed
(Species level)

16S Observed
(Genus level)

Firmicutes Lactobacillus Lactobacillus iners, Lactobacillus helveticus Lactococcus unclassified

Streptococcus Streptococcus infantis Streptococcus alactolyticus

Propionibacterium Propionibacterium acnes

Staphylococcus Staphylococcus epidermidis

Proteobacteria Pseudomonas Pseudomonas veronii, Pseudomonas stutzeri

Haemophilus Haemophilus parainfluenzae

Acinetobacter Acinetobacter johnsonii, Acinetobacter lwoffii

Sphingomonas Sphingomonas unclassified

Agrobacterium Agrobacterium unclassified

https://doi.org/10.1371/journal.pone.0188873.t001
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Discussion

We utilized the unaligned RNA sequence reads available from the TCGA, a multi-institution

study and the largest known sequencing cohort available for breast cancer samples. A dual

alignment of high quality RNA reads was implemented as false identification was of utmost

concern in microbiota identification [52, 53]. Stringent filtering on data sparsity was employed

to ensure the identification of the most prevalent OTUs. Additionally, prior to our analysis we

removed low quality and/or low RNA yielding samples, as these samples are more susceptible

to contaminant amplification [53]. A prominent batch effect was observed accumulating in

spurious read evidence for 198 species (Fig 1B and 1C, S1 Table). The ComBat algorithm dem-

onstrated superior performance in adjusting the compositional data normalized with a zero

inflated Gaussian model over negative binomial models (data not shown).

Fresh frozen samples, which were from the analogous TCGA patient source, were also

assayed with 16S-rRNA gene sequencing (S6 Table). Both datasets confirmed that the most

abundant phyla in breast tissues are Proteobacteria, Actinobacteria, and Firmicutes (Fig 2), sim-

ilar to that reported by smaller 16S-rRNA gene sequencing studies of breast tissue [10, 55].

Comparatively, the mRNA sequencing data appears to be noisier in composition, with over

300 identified species. However, the batch effect which we observed among the TCGA data

would likely not have been identified using 16S-rRNA gene sequencing, given the sparsity of

the data. While these preparations originate from the same patient, the datasets are derived

from distinct laboratory protocols and potentially more importantly different tissue prepara-

tions. While the in silica processing was different, we were able to concordantly identify ten

OTU’s at the species level, while an additional three unclassified OTU’s were also identified

(Table 1, S7 Table). While seemingly unimpressive, the 16S-rRNA gene sequencing approach

identified only 30 OTU’s, of which only 18 were characterized to named species. The discon-

nect in tissue preparation and results illustrates the major advantage of implementing the

mRNA sequencing approach: the ability to examine two components of the tumor microenvi-

ronment using data originating from the same source and in vitro processed in the same way.

We identified forty-eight significant OTU’s after Benjamini and Hochberg correction for

multiple tests. Nine of which had absolute fold changes greater than two, for each breast cancer

subtype compared to NCA tissues (S3 Table). Interestingly, the vast majority (75%, 36 of 48)

were found to comprise less prevalent OTU’s, less than 0.5% on an average in the NCA).

While, this may be attributed to the tumor-biased nature of the TCGA data, it could also sug-

gest that breast cancer studies with limited sampling power coupled with sparse microbiome

data could be inadequate for accurate signal detection. We observed 24 prevalent (greater than

0.5% on average in the NCA) species across the three breast tumor subtypes and the NCA.

These 24 species constituted 85.64% of the overall breast tissue microbiota. Twelve of these

twenty-one species were observed to be significantly altered after adjusting for multiple testing

errors using Benjamini and Hochberg, across the four 4 breast tissue phenotypes (Fig 3A–3C).

We provide confirmatory evidence that Escherichia coli as one of the more prevalent species

in the breast tissue and is observed in higher abundance within NCA breast tissues [1, 11, 56].

Escherichia coli has been reported to have the ability to inflict DNA damage through its pro-

duction of colibactin, and could lead to genomic instability which triggers oncogenic process

[55]. Similar to published results we observed differential abundance among Cornebacterium,

Corynebacterium, and Bacillus and the enterobaceriaceae: E. coli and Salmonella enterica [11].

The Firmicutes were represented by 13 significant species, including two Lactobaccillus spp.

and five Streptococcus spp. Another important manner by which breast microbiota could influ-

ence oncogenesis is by enhancing the local exposure of breast tissue to estrogen levels. Previ-

ously fecal studies demonstrated positive correlations between the abundance of Streptococcus
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and the presence of β-glucuronidase and/or β-glucosidase enzymes, which cleave the estrogen-

glucuronide conjugate and promote recirculation of estrogen [57, 58]. Systemic estrogen levels

have been widely recognized to be associated with enhanced breast cancer risk [59] and recent

16S-rRNA gene sequencing experiments reports have associated glucuronidase prevalence in

nipple aspirate fluid of breast cancer survivors [20]. The expression profiles for glucosylcera-

midase beta 2 (GBA2) and the glucuronidase, beta pseudogenes 4 and 9 were positively corre-

lated with S. pyogenes. We observed abundance increases specifically for S. pyogenes and L.

rossiae in the tumor samples.

Finally, we interrogated whether any of these OTUs could be associated with host tumor

expression profiles. We observed L. fleischmannii and to a lesser extentN. Subflava to be corre-

lated with tumor gene expression. Listeria fleischmannii was more strongly associated with genes

involved in the epithelial to mesenchymal transition (Fig 4A). In the same analysis we observedH.

influenza to be correlated with genes representing pathways fundamental to tumor growth: G2M

checkpoint, E2F signaling, and mitotic spindle assembly (Fig 4A and S4 Table). These findings

were validated with an unsupervised approach (Fig 4B and S5 Table).H. influenza is an opportu-

nistic pathogen which has been demonstrated to elicit an inflammatory immune response and

promote tumor growth in murine lung cancer models [60, 61]. We observed an increased pres-

ence ofH. influenza in the NCA samples, suggesting that the organismmaymore predominantly

reside in the surrounding stromal tissue. Further,H. influenza has been demonstrated to be sus-

ceptible to H2O2 production, suggesting that the oxidative tumor environment may be prohibitive

toH. influenza penetrance and thereby restricting its presence to the surrounding stroma.

Conclusions

In this study, we utilized the largest available collection of TCGA breast cancer RNA sequenc-

ing data to examine the microbiota residing in breast tissues. We observed abundance shifts in

Proteobacteria in tumor samples, while shifts in Actinobacteria abundance favored NCA tis-

sues. We observed that the significant shift in microbiota typically involved the less prevalent

OTU’s, which suggests that under-powered studies are likely to report erroneous results. A

semi-supervised approach was implemented to correlate expression profiles with the micro-

biota compositional data, which revealedH. influenza to be significantly correlated with genes

in the G2M checkpoint, E2F transcription, and mitotic spindle assembly pathways. Similarly,

L. fleischmannii was observed to be associated with genes involved with epithelial to mesenchy-

mal transitioning. Additionally, we report correlations between S. pyogenes abundance and

GUSBP4, GUSBP9, and GPA2 expression levels, which may incriminate the role of S.pyogenes

in the glucuronidation of estrogen and exposing local breast environment to higher estrogen

levels. These findings further support the importance of the host tumor expression in light of

the microbial presence within the tumor microenvironment.

Supporting information

S1 File. 16S-rRNA sequencing protocols.

(PDF)

S2 File. Cluster confirmation. Analysis of institutional sampling sources, eliminating Subse-

quent analysis of tumor data, normalized with DESeq2 and clustered with non-negative matrix

factorization.

(PDF)

S3 File. 198 potentially spurious OTU’s.

(TXT)
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S1 Fig. Two clusters were present in TCGA breast tissue samples, tumor (n = 668) and

NCA (n = 72). (A) Venn diagram of the bacterial OTU’s observed among the tumors and

NCA, demonstrating similar microbial presence. (B) Optimal k-cluster selection analysis dem-

onstrating a majority decision among the 26 metrics for 2 clusters was concordant for both tis-

sue cohorts. (C) A PCA plot of NCA tissues demonstrating separation and cohesion among

the smaller second cluster of samples. (D) A perspective plot of the tumor samples demonstrat-

ing the sharpness and isolation of tumor samples designated as tumor cluster 1. (E) Silhouette

plot for the NCA samples demonstrate a significant proportion, (normal cluster 2, 18 of 72,

0.56) present a distinct batch processing factor which needs to be accounted for. (F) Similarly,

the silhouette plot among the tumor samples also demonstrates that a significant proportion

(tumor cluster 1,197 of 668, 0.4) also need to be accounted for.

(TIF)

S2 Fig. Parallel sets of the log fold changes observed among the 48 significant OTU’s,

aggregated among the three major phyla. The observed log fold changes were binned for

each of the subtype comparison again NCA tissues.

(TIF)

S1 Table. Retention of the prevalent operational taxonomic units. Table documenting the

percent of read count evidence retained as a result of filtering out taxonomic units low abun-

dant OTU’s (with less than nine maximum reads across samples) and less prevalent (observed

in less than 25% of the sampling population.

(TSV)

S2 Table. SVA batch adjusted microbiota compositional data.

(TSV)

S3 Table. Limma analysis of the adjusted microbiota compositional data.

(TSV)

S4 Table. Spearman correlation of the adjusted microbiota compositional data to RNA

Sequencing expression profiles.

(CSV)

S5 Table. Mutual information of the adjusted microbiota compositional data to RNA

Sequencing expression profiles.

(TSV)

S6 Table. Microbial read evidence from 16S-rRNA sequencing. Operational taxonomic

units for 16S-rRNA sequencing analysis of fresh-frozen tissues samples corresponding with

Mayo ER+ contributed TCGA breast cancer samples. The identification of Geobacillus spp. is

resultant from a DNA spike–in for DNA enrichment in the NEBNext amplification.

(TSV)

S7 Table. Microbial read evidence of species identified concordantly by the two sequenc-

ing technologies. Fresh frozen tissue samples from six Mayo Clinic ER+ samples submitted

toTCGA were subsequently analyzed with 16S-rRNA gene sequencing for their microbial

content. Read evidence for 30 OTU’s (31 with the identification of Geobacillus vulcani am-

plification material) were identified, with 18 (60.%) characterized to the species level. Ten

of the eighteen (55.6%) characterized species were confirmed with the mRNA sequencing

data.

(TSV)
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