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Abstract: The Perception Neuron Studio (PNS) is a cost-effective and widely used inertial motion
capture system. However, a comprehensive analysis of its upper-body motion capture accuracy
is still lacking, before it is being applied to biomechanical research. Therefore, this study first
evaluated the validity and reliability of this system in upper-body capturing and then quantified
the system’s accuracy for different task complexities and movement speeds. Seven participants
performed simple (eight single-DOF upper-body movements) and complex tasks (lifting a 2.5 kg
box over the shoulder) at fast and slow speeds with the PNS and OptiTrack (gold-standard op-
tical system) collecting kinematics data simultaneously. Statistical metrics such as CMC, RMSE,
Pearson’s r, R2, and Bland–Altman analysis were utilized to assess the similarity between the two sys-
tems. Test–retest reliability included intra- and intersession relations, which were assessed by the
intraclass correlation coefficient (ICC) as well as CMC. All upper-body kinematics were highly con-
sistent between the two systems, with CMC values 0.73–0.99, RMSE 1.9–12.5◦, Pearson’s r 0.84–0.99,
R2 0.75–0.99, and Bland–Altman analysis demonstrating a bias of 0.2–27.8◦ as well as all the points
within 95% limits of agreement (LOA). The relative reliability of intra- and intersessions was good to
excellent (i.e., ICC and CMC were 0.77–0.99 and 0.75–0.98, respectively). The paired t-test revealed
that faster speeds resulted in greater bias, while more complex tasks led to lower consistencies. Our
results showed that the PNS could provide accurate enough upper-body kinematics for further
biomechanical performance analysis.

Keywords: inertial motion capture system; upper-body kinematics; biomechanics; validity; reliability

1. Introduction

Optical motion capture systems such as Vicon (Oxford, UK) and OptiTrack (Natural
Point, Corvallis, OR, USA) are commonly employed as the gold standard to analyze
biomechanical performance in the field of sports biomechanics [1–3]. Even though these
systems have been extensively used, they are prohibitively expensive, inconvenient, and
require a laboratory environment [4]. Meanwhile, with the technological advancements
in IMU manufacturing, IMU-based motion capture systems offer a low-cost, portable
alternative for analyzing biomechanical performance in clinical and sports settings [5].
Current commercial IMU-based motion capture systems, such as Xsens (Xsens Technologies,
Enschede, The Netherlands), BioSyn (Surrey, BC, Canada), ImeasureU (Auckland, New
Zealand), and APDM (Opal brand, Portland, OR, USA), have adopted a small form-factor
IMU, which could be easily secured to body parts with elastic nylon straps. However,
these commercial devices exhibit various price points and degrees of validity and reliability.
Therefore, novel IMU-based motion capture systems must be validated before being applied
to movement technique analysis and clinical rehabilitation [6].

The accuracy of these commercial inertial motion capture systems for measuring upper-
body, lower-body, and full-body kinematics has been validated to varying degrees [7–10].
As one of the most popular IMU-based commercial motion capture systems, the Perception
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Neuron Studio (PNS, Noitom, Beijing, China) offers a cost-effective (i.e., relative price advan-
tage vs. OptiTrack) and user-friendly (i.e., simple setup and post-processing procedures vs.
OptiTrack) option for application in the biomechanical field, and several studies have been
performed on its accuracy of kinematic measurements. Sers et al. [11] analyzed the validity of
the Perception Neuron system, also from Noitom, in upper-body kinematic analysis by com-
paring it with the Vicon. The results indicated that the Perception Neuron system was valid
enough for assessing most upper-body kinematics, with all multiple correlation coefficients
(CMC) equaling 0.99. Choo et al. [12] also analyzed the validity of the Perception Neuron
system in full-body motion capture by comparing it with the Vicon. The results showed that
most joint angles had an average RMSE of less than 4◦, and the Pearson correlation coefficient
was higher than 0.85, indicating that the Perception Neuron system is sensitive enough to
measure changes in joint angles. In addition, Shuai et al. [13] compared the mean difference
in lower-body joint angles between the PNS and OptiTrack systems, with the results showing
that RMSE ranges from 3.57◦ to 13.14◦, while CMC values are within 0.47 to 0.99, suggesting
that the PNS could evaluate lower extremity kinematics.

Despite the fact that several studies have been conducted to verify the accuracy
of these commercial motion capture systems in quantifying kinematics, some problems
still exist. First, current studies targeting the upper body are absent from addressing
all joints and planes of motion, as are comprehensive validation studies of the three-
dimensional (3D) joint kinematics of upper-body movements. Since the measurement of
upper-body kinematics is more complex than that of the lower body [14], more challenges
remain. Second, as with other commercial motion capture systems [9,15–17], almost
no studies focus on the reliability of the PNS. Meanwhile, the reproducibility of joint
angles for the same movement of subjects has been a clinical issue. Furthermore, the
accuracy of IMU-based motion capture systems has been reported to be affected by the
complexity of the task and the movement speed [14,18], as these systems are also affected by
ferromagnetic interference [19] and drift errors due to signal integration [20,21], requiring
fusion algorithms to provide accurate data. These issues have also not been fully resolved
in existing studies.

The main contributions of this work are twofold. First, the validity and intra/intersession
reliability of upper-body kinematics of the PNS are analyzed by comparing to the gold-
standard optical motion capture system. Second, this study provides an in-depth analysis
of the effect of task complexities and movement speeds on PNS accuracy, which stimulates
further investigations into the accuracy of inertial motion capture systems.

2. Materials and Methods
2.1. Participants

Seven healthy students (seven males, age: 23.28 ± 1.25 years, height: 176.14 ± 8.01 cm,
body mass: 76 ± 7.46 kg) from Beijing Sport University participated in this study, after
signing an informed consent form. The study was permitted by the Ethics Committee
of Beijing Sport University (2022108H) and adhered to the Declaration of Helsinki. The
exclusion criteria were that participants had no musculoskeletal or chronic neurological
disorders and were able to autonomously perform all tasks.

2.2. Instrumentation

Upper-body kinematics were collected simultaneously at 100 Hz by the PNS and the
OptiTrack with 10 high-speed cameras. Eleven IMUs (15.5 g; 43 × 33 × 20 mm) and twenty-
five reflective markers (diameter of 14 mm) were placed on the participants’ body parts as
shown in Figure 1. In accordance with the recommendations of the manufacturer [22], the
PNS IMUs were placed on the back of the head, shoulders (upper portion of the scapula),
upper spine, lower spine (just above the hips), upper arms (above the lateral elbow), and
forearms (just above the lateral side of the wrist). A three-axis accelerometer (32 g), a three-axis
gyroscope (2000 DPS), and a three-axis magnetometer were included in each IMU. Reflective
markers were affixed to anatomical landmarks with medical pressure-sensitive adhesive tape,
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and the position of these reflective markers was independent of the positions of the IMUs.
Based on the OptiTrack baseline upper-body marker sets [23], the reflective markers were
made to be used in OpenSim (Stanford University, Stanford, CA, USA, version 4.3) [24].
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2.3. Experimental Protocol

The calibration was performed in accordance with the user guides of the manufac-
turer for PNS [22] and OptiTrack [23], respectively. Static calibration data were collected
before the start of each experimental protocol to scale the OpenSim full-body model, while
anthropometric data were collected to adjust the PNS biomechanical model. Before each
test session, the site must be cleared of metal objects to avoid any impact on the PNS
accuracy. Participants were required to perform both simple and complex tasks at fast
and slow speeds to assess the accuracy of upper-body kinematics provided by the PNS,
with the simple task defined as movements occurring in only one motion plane, while
the complex task occurred in multiple planes. The simple task included 8 single-DOF
(degree of freedom) movements of the trunk (3), shoulder (3), and elbow (2), i.e., thorax
flexion/extension, thorax lateral flexion, thorax rotation, shoulder flexion/extension, shoul-
der adduction/abduction, shoulder internal/external rotation, elbow flexion/extension,
and forearm pronation/supination. The complex task was to lift a 2.5 kg box over the shoul-
der [25]. To verify intrasession reliability, each participant was required to perform each
task three times within one test session. Similarly, two sessions of testing were required to
verify the intersession reliability, with the sensors being reworn, reflective markers retaped,
and the PNS and OptiTrack recalibrated before each session. Additionally, a full test would
start from the participant’s anatomical position, and all trials would proceed in order.

2.4. Data Preprocessing

Marker track reconstruction and automated marking were initially performed with
Motive (version 2.2.0, OptiTrack Inc., Corvallis, OR, USA) for the marker data collected
by the OptiTrack. Each trial was then visually inspected, and the unmarked trajectories
were manually labeled and exported as a .trc file. The data were then filtered by a 4th-
order Butterworth low pass filter (6 Hz) to remove any high-frequency noise before being
imported into a 42-DOF skeletal model in OpenSim [26]. The model was scaled to the
participant using static reflective markers data, and joint angles were estimated based on
inverse kinematics [27] that minimized the least squared distance between each pair of
experimental and model markers [28], as shown in Equation (1).

min
q

[
∑i∈maekers wi

(
xexp

i − xmodel
i

)2
+ ∑j∈coords wi

(
qexp

j − qj

)2
]

, (1)

where q is the vector of generalized coordinates being solved for, xexp
i is the experimental

position of marker i, xmodel
i is the corresponding model marker (which depends on the
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coordinate values), qexp
j is the experimental value for coordinate j, and qj is the coordinate

value of the model of all the designated j points [29]. The raw data collected by PNS were
processed and exported to skeletal quaternions using Axis Studio (Noitom, Beijing, China,
version 2.5). The joint angle quaternions were computed based on Equation (2), and the
upper-body joint angles were calculated according to the YXZ rotation order [30].

qjoint =
(

qr
b1
)−1

⊗ qr
b2, (2)

where qjoint is the target joint quaternion, qr
b1 is the distal segment limb quaternion, qr

b2 is
the proximal segment limb quaternion, and ⊗ denotes the quaternion multiplication. To
be noted, the Euler angles adopted in OpenSim are in XYZ rotation order [26], which is
not consistent with the PNS. As a result, the upper-body kinematics from the two systems
were processed for consistency before further investigation. Furthermore, the angular
curves from the two systems were then synced using a peak detection algorithm, and the
joint angle time series of all trials were also normalized to 100 frames to allow for parallel
comparisons.

2.5. Statistical Analysis

To evaluate the validity of the upper-body kinematics provided by the PNS through
comparison with the OptiTrack system, several statistical metrics, i.e., coefficient of multiple
correlation (CMC) [31,32], root mean square errors (RMSE), and Pearson’s r were calculated.
The CMC and Pearson’s r and coefficient of determination (R2) were calculated to evaluate
the curve similarity and the RMSE between curves collected by the two systems as an overall
measure of curve consistency. Additionally, Bland–Altman analysis [33] was used to
characterize the agreement between the two systems through the calculation of the mean
difference (bias) and 95% limits of agreements (LOA).

Test–retest reliability refers to both intrasession and intersession relations. Therefore,
the intraclass correlation coefficient (ICC) [34] with a two-way mixed model was used to
evaluate the intrasession reliability, whereas the ICC with a two-way random model as well
as CMC was calculated to assess the intersession relative reliability. Furthermore, the typical
error of measurement (TEM), the smallest worthwhile change (SWC), and the minimal
detectable change (MDC) [35] were used to assess the intersession absolute reliability. The
ability of the test to detect a change was rated as “good”, “OK”, or “marginal” when the
TEM was below, similar to, or higher than the SWC, respectively. SWC was considered
as typical small effect (SWC0.2), moderate effect (SWC0.6), and large effect (SWC1.2). The
MDC95% of upper-body range of motion, which represents 95% CI of the difference in score
between paired observations, was determined as MDC95% = TEM× 1.96×

√
2 [36].

CMC, Pearson’s r, R2, and ICC were considered as excellent (>0.90), good (0.75–0.90),
moderate (0.5–0.75), and poor (<0.50) [37]. RMSE of 5◦ to 10◦ was considered good, while
RMSE < 5◦ was excellent [38]. The effects of task complexities and movement speeds on the
accuracy of the PNS were tested for significance using paired t-tests, and a Shapiro–Wilk
test was carried out to test the normality of the data distributions. The statistical significance
level was set at 5%. The magnitude of the significant changes was analyzed using Cohen’s
effect sizes: small effect (d ≥ 0.2), medium effect (d ≥ 0.5), and large effect (d ≥ 0.8). The
statistics were calculated using Python (version 3.9) and SPSS (IBM Corporation, Armonk,
NY, USA, version 26.0).

3. Results

The kinematics of 756 upper-body functional movements (seven participants, 27 move-
ments, two speeds, two test sessions) were analyzed in this study. Simple tasks, flexion and
extension, adduction and abduction, internal and external rotation, and forearm pronation
and supination, were considered separately for the consistency analysis. In all tasks investi-
gated, the data from both sides were averaged, considering that the movements of the left
and right sides were balanced [39].
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3.1. PNS’ Concurrent Validity in Upper-Body Assessment

Figures 2 and 3 show the comparison of the upper-body motion angular curves
between the PNS and OptiTrack for the complex task and the Bland–Altman plot of the
upper-body range of motion, respectively, while simple tasks are shown in the Appendix A
Figures A1 and A2. The metrics for validity (i.e., CMC, RMSE, Pearson’s r, R2, and LOA) of
the PNS are presented in Tables 1 and 2.
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mean angular curves of the shoulder (a), elbow (b), and trunk (c). The thick solid line represents
the mean angular curve for the PNS (red) and OptitTrack (black), and the shadow area represents
standard deviations from the mean angular curve. Note that Add/Abd, Flex/Ext, Int/Ext, and
Pro/Sup stand for adduction/abduction, flexion/extension, internal/external rotation, and prona-
tion/supination, respectively.
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Table 1. The statistical metrics of validity and reliability of the PNS in simple tasks.

Variable
Validity Reliability

Degree
of Va-
lidity

CMC RMSE
(◦)

Pearson’s
r R2 LOA (◦)

Degree
of Reli-
ability

ICC
(Intrases-

sion)

ICC
(Inters-
ession)

CMC
(Inters-
ession)

Shoulder

flexion
Fast excellent 0.99 8.8 0.99 0.99 19.3 ± 11.2 excellent 0.98 0.99 0.98
Slow excellent 0.98 9.2 0.99 0.99 20.0 ± 13.4 excellent 0.98 0.99 0.98

extension
Fast excellent 0.95 4.1 0.98 0.97 9.1 ± 10.6 excellent 0.92 0.95 0.89
Slow excellent 0.96 3.4 0.98 0.97 7.3 ± 10.5 excellent 0.94 0.96 0.88

adduction
Fast moderate 0.73 8.4 0.84 0.75 8.5 ± 10.9 good 0.81 0.84 0.75
Slow moderate 0.73 7.6 0.85 0.77 6.8 ± 13.1 good 0.82 0.79 0.77

abduction
Fast good 0.98 11.1 0.98 0.98 10.5 ± 14.3 excellent 0.98 0.98 0.98
Slow good 0.98 11.4 0.99 0.98 9.3 ± 17.1 excellent 0.98 0.98 0.98

internal
rotation

Fast excellent 0.92 9.3 0.98 0.96 18.8 ± 14.4 excellent 0.95 0.94 0.84
Slow excellent 0.90 7.4 0.98 0.97 17.8 ± 10.2 excellent 0.90 0.92 0.85

external
rotation

Fast excellent 0.91 8.9 0.98 0.98 22.7 ± 23.6 excellent 0.96 0.96 0.91
Slow excellent 0.91 8.1 0.99 0.97 19.7 ± 19.7 excellent 0.93 0.97 0.93
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Table 1. Cont.

Variable
Validity Reliability

Degree
of Va-
lidity

CMC RMSE
(◦)

Pearson’s
r R2 LOA (◦)

Degree
of Reli-
ability

ICC
(Intrases-

sion)

ICC
(Inters-
ession)

CMC
(Inters-
ession)

Elbow

flexion
Fast excellent 0.98 8.8 0.98 0.98 1.3 ± 7.2 excellent 0.97 0.97 0.94
Slow excellent 0.98 8.7 0.99 0.99 7.9 ± 6.5 excellent 0.98 0.97 0.95

extension
Fast good 0.78 6.0 0.96 0.93 5.5 ± 8.5 good 0.78 0.78 0.75
Slow good 0.81 5.8 0.95 0.92 5.1 ± 7.2 good 0.78 0.79 0.75

forearm
pronation

Fast excellent 0.96 7.6 0.99 0.98 1.9 ± 25.2 good 0.91 0.92 0.88
Slow excellent 0.96 7.2 0.99 0.99 0.2 ± 23.8 excellent 0.91 0.94 0.87

forearm
supination

Fast excellent 0.95 8.6 0.97 0.95 1.9 ± 24.4 good 0.83 0.81 0.83
Slow excellent 0.95 7.8 0.97 0.95 1.1 ± 25.8 good 0.77 0.84 0.81

Thorax

flexion
Fast excellent 0.96 4.2 0.97 0.96 −4.9 ± 10.2 good 0.88 0.98 0.95
Slow excellent 0.96 4.3 0.97 0.96 −4.4 ± 7.7 excellent 0.96 0.97 0.95

extension
Fast excellent 0.94 3.3 0.97 0.96 −2.3 ± 5.5 excellent 0.93 0.96 0.93
Slow excellent 0.94 3.6 0.97 0.97 −0.4 ± 6.1 excellent 0.96 0.96 0.91

lateral
flexion

Fast excellent 0.94 3.6 0.99 0.99 5.9 ± 8.3 good 0.95 0.97 0.94
Slow excellent 0.94 4.1 0.99 0.99 6.1 ± 8.6 excellent 0.96 0.95 0.92

rotation
Fast excellent 0.94 3.9 0.99 0.98 5.0 ± 8.6 good 0.91 0.95 0.92
Slow excellent 0.90 3.8 0.99 0.98 4.4 ± 6.9 excellent 0.93 0.94 0.86

Table 2. The statistical metrics of validity and reliability of the PNS in the complex task.

Variable
Validity Reliability

Degree
of Va-
lidity

CMC RMSE
(◦)

Pearson’s
r R2 LOA (◦)

Degree
of Reli-
ability

ICC (In-
trases-
sion)

ICC
(Inters-
ession)

CMC
(Inters-
ession)

Shoulder

flexion/
extension

Fast excellent 0.98 7.5 0.98 0.96 25.9 ± 6.4 excellent 0.92 0.97 0.96
Slow excellent 0.98 8.8 0.97 0.96 17.9 ± 11.9 excellent 0.95 0.97 0.97

adduction/
abduction

Fast good 0.89 5.0 0.88 0.80 −12.6 ± 16.0 good 0.87 0.87 0.88
Slow good 0.89 6.8 0.90 0.81 −11.3 ± 13.6 good 0.86 0.86 0.84

internal/
external
rotation

Fast good 0.88 9.0 0.87 0.79 −13.0 ± 15.9 good 0.87 0.85 0.82
Slow good 0.88 8.2 0.86 0.79 −11.5 ± 17.7 good 0.89 0.87 0.86

Elbow

flexion/
extension

Fast good 0.95 12.3 0.97 0.95 27.8 ± 18.8 good 0.86 0.92 0.89
Slow good 0.92 12.5 0.95 0.94 27.1 ± 16.1 excellent 0.90 0.95 0.95

pronation/
supination

Fast excellent 0.91 9.3 0.89 0.81 8.3 ± 6.9 good 0.90 0.88 0.84
Slow excellent 0.92 9.5 0.90 0.81 6.6 ± 7.2 good 0.88 0.91 0.79

Thorax

flexion/
extension

Fast excellent 0.96 10.0 0.97 0.97 −6.2 ± 21.7 excellent 0.90 0.96 0.95
Slow excellent 0.96 10.4 0.97 0.97 −3.7 ± 24.8 excellent 0.94 0.97 0.96

lateral
flexion

Fast excellent 0.91 2.2 0.91 0.84 2.5 ± 5.1 good 0.89 0.93 0.87
Slow excellent 0.93 2.1 0.92 0.85 1.5 ± 4.2 excellent 0.90 0.93 0.92

rotation
Fast excellent 0.93 1.9 0.93 0.87 −0.7 ± 1.3 good 0.88 0.96 0.94
Slow excellent 0.95 2.1 0.95 0.91 −0.2 ± 2.3 good 0.86 0.93 0.89

Most upper-body angular curve consistency was good to excellent during all investi-
gated tasks between the two systems, with CMC values ranging from 0.78 to 0.99, except for
shoulder adduction, which had an average CMC of 0.73. In comparison with the shoulder
and elbow, the trunk angular curves demonstrated the highest degree of consistency, with
CMC values ranging from 0.90 to 0.96. Furthermore, the correlation for most upper-body
angular curves between the two systems was excellent, with Pearson’s r values ranging
from 0.90 to 0.99. When comparing the trunk to the shoulder and elbow, the trunk had the
strongest correlation between the two systems, with Pearson’s r and R2 values between
0.84 and 0.99. The weakest correlation was found in shoulder adduction, with an average
Pearson’s r of 0.85 and R2 of 0.76.
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For all upper-body movements across all investigated tasks, the RMSEs between the
angular curves from the two systems ranged from 1.9◦ to 12.5◦. The relatively large errors
were found in shoulder abduction and elbow flexion/extension, with an average RMSE
value of 11.3◦ and 12.4◦, respectively. Except for thorax flexion/extension, which had an
average RMSE of 10.2◦, the trunk showed the smallest disparity (i.e., RMSE < 5.0◦) between
the two systems. The Bland–Altman analysis indicated that the angular curve range
of motion (ROM) differences (bias) between the two systems ranged from 0.2◦ to 27.8◦,
with limits ± 1.3◦ to ± 25.8◦ across all investigated tasks. The elbow flexion/extension
demonstrated the greatest mean bias of 27.5◦ for the complex task. When compared to
the other joints, the thorax rotation had the smallest mean difference, with an average
bias of 0.5◦. Furthermore, Bland–Altman plots showed that all the points were within
the 95% LOA.

3.2. PNS’ Intra- and Intersession Reliability

The intra- and intersession relative reliability metrics of the PNS are presented in
Tables 1 and 2 (i.e., the values of ICC and CMC), while the absolute reliability metrics
are presented in Appendix A, Table A1. Across all investigated tasks, all angular curves
demonstrated good to excellent intrasession reliability as well as intersession relative
reliability, with ICC values ranging from 0.77 to 0.99 and CMC values between 0.75 and
0.98. Among the upper-body parts investigated, the trunk angular curves exhibited the
highest reliability, with ICC values ranging from 0.86 to 0.98 and CMC values from 0.86 to
0.95, whereas the elbow showed the lowest reliability, with ICC values ranging from 0.77
to 0.98 and CMC values from 0.75 to 0.95. Elbow extension was the least reliable, with
a mean intrasession ICC value of 0.78 and intersession ICC and CMC values of 0.79 and
0.75, respectively, while shoulder flexion was the most reliable, with a mean intrasession
ICC value of 0.98 and intersession ICC and CMC values of 0.99 and 0.98, respectively.
Furthermore, all TEMs were below or similar to SWC0.2, which showed higher intersession
absolute reliability and a good ability of the PNS to detect smaller performance changes.

3.3. Task Complexity and Movement Speed Analysis

The Shapiro–Wilk test indicated that the distributions of the differences in validity
metrics between the simple and complex tasks, as well as between the fast and slow ones,
were normal (p < 0.05). In terms of the task complexity, except for Pearson’s r (p = 0.029,
Cohen’s d = 0.969) and R2 (p = 0.015, Cohen’s d = 1.14), the outcomes of the paired t-test
with a significance value of 5% showed no significant differences between the simple and
complex tasks (Table 3 and Figure 4) in terms of validity metrics. The average for the
simple task’s Pearson’s r was 0.97, whereas the overall mean for the complex task was
0.93. Furthermore, there were no significant differences in the validity metrics between the
fast and slow speeds in terms of movement speeds (Table 3 and Figure 4), except for bias
(p = 0.046, Cohen’s d = 0.855). The slow speed had a mean bias of 8.2◦, while the fast speed
had a mean of 10.1◦.
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Table 3. Paired t-test for validity metrics between task complexities and between movement speeds.

CMC Pearson’s r R2 RMSE Bias

Task
complexities
Simple task 0.92 ± 0.04 0.97 ± 0.03 0.96 ± 0.04 6.38 ± 2.29 7.79 ± 6.18

Complex task 0.93 ± 0.03 0.93 ± 0.04 0.88 ± 0.07 7.35 ± 3.74 11.05 ± 9.52
p value 0.838 0.029 0.015 0.459 0.363

Effect size of
Cohen’s d 0.075 0.969 1.14 0.277 0.344

Movement
speeds

Fast speed 0.93 ± 0.03 0.95 ± 0.03 0.91 ± 0.05 6.82 ± 2.63 10.08 ± 6.71
Slow speed 0.93 ± 0.03 0.94 ± 0.02 0.92 ± 0.04 6.91 ± 2.53 8.77 ± 6.33

p value 0.712 0.474 0.150 0.691 0.046
Effect size of

Cohen’s d 0.136 0.268 0.572 0.146 0.855
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4. Discussion

The primary purpose of this investigation was first to evaluate the validity and in-
tra/intersession reliability of upper-body kinematics of the PNS in comparison with the
OptiTrack (gold standard) and then to quantify the system’s accuracy at different task
complexities and movement speeds. Our results demonstrated that the PNS had a high-
level accuracy in measuring upper-body kinematics with validation by the OptiTrack. We
also discovered that the intra/intersession reliability of the PNS in the majority of the
upper-body angular curves was high. In addition, we found faster speeds resulted in larger
bias and more complex tasks led to lower consistency, while the differences were small.
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4.1. PNS’ Concurrent Validity in Upper-Body Assessment

The PNS and OptiTrack angular trajectories showed similar curve patterns in all
upper-body movements across all investigated tasks. This was especially true in the sagittal
plane, where CMC values ranged from 0.78 to 0.99, and Pearson’s r was between 0.95 and
0.99, which was similar to the results of lower extremity research of the PNS [13], indicating
that the PNS has better accuracy in motion capture in the sagittal plane. Furthermore,
the complex task of this study was to lift a 2.5 kg box over the shoulder, with most of the
movement occurring in the sagittal plane. This indicated that the PNS performed better in
the main motion plane than in other planes, which was consistent with what other prior
studies [40,41] of commercial motion capture systems found.

Nevertheless, the RMSEs that were found between the kinematic patterns of shoul-
der adduction measured by the two systems were not consistent with the angular curve
agreements. The angular curve’s CMC indicated moderate consistency, with a mean CMC
value of 0.73; in contrast, the RMSE was below 10◦, which suggested that the consistency
was good. This inconsistency could be explained by the fact that the displacement of
the IMU placed on the upper arm varied less than the reflective marker throughout the
shoulder adduction movement, which resulted in a lower consistency when compared
to the gold standard. Furthermore, the largest errors were observed in the elbow flexion,
with an average RMSE of 12.4◦, which would benefit from a functional motion axis setup.
The correct placement of the IMU was made more difficult by the fact that forearm prona-
tion/supination movements could rotate the flexion/extension axis of the IMU, causing it
to be unaligned with the anatomical flexion/extension axis of the elbow [42]. In general, the
mean errors between the two systems’ evaluations of angular curves were greater for tasks
or motion planes involving a larger range of motion. This was in line with the findings
reported by Mavor et al. [43].

Previous validation studies [11,12] of the Perception Neuron system had reported
better angular waveform similarity in the trunk than in the shoulder and elbow, compared
to the gold standard. In the present research, we also reached the identical conclusion,
that the angular curve of the trunk measured by the PNS was more consistent with the
reference system than the shoulder and elbow. This finding was also consistent with, and
in many cases outperformed, prior research comparing IMU-based motion capture systems
to optical systems [12,44–48]. In comparison to a study by Shuai et al. [13], the accuracy
presented by the PNS in this investigation in measuring the upper-body kinematics was
slightly lower than that of the lower body, which was also consistent with the results of
some studies [9,14]. This could be because the movements of the upper body usually
revolve around two or three axes, whereas the movements of the lower body mostly take
place in closed chains and one plane of motion.

According to the Bland–Altman analysis, the average systematic bias for most joints
between the two systems was below 10◦, except for the shoulder flexion, shoulder external
rotation, shoulder internal rotation for simple tasks, shoulder flexion/extension, shoulder
adduction/abduction, shoulder internal/external rotation, and elbow flexion/extension for
the complex task. In general, the PNS underestimated joint angles for most wide ranges of
motion and overestimated joint angles for most minor ranges of motion when compared to
the gold standard, which had been similarly reported in other validation studies [42,49,50].
Additionally, Bland–Altman plots showed that all points were within 95% of the LOA,
indicating that the PNS and OptiTrack were generally consistent.

As discussed above, upper-body kinematics assessed by the PNS exhibited good
to excellent consistency with OptiTrack, while it was obvious that the PNS struggled to
provide sufficiently accurate kinematic data for shoulder adduction movement. Reflective
marker placement on anatomical markers rather than attached to the IMU, which was
the preferred method in some studies [51,52] to minimize errors, might account for some
of the observed discrepancies between the two systems in this investigation. Finally,
participants were requested to stand in the calibrated posture of A and T before each
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session. Mismatches between the actual marker position and the model position can also
result in errors in joint angle estimates [53].

4.2. PNS’ Intra- and Intersession Reliability

Like optical systems, IMUs are susceptible to the effects of artifacts induced by the dis-
placement of the sensor and underlying tissue relative to the bone [54]. This artifact is often
referred to as a “soft tissue artifact” (STA) [52], in which measurement errors are caused
by soft tissue slippage and vibration that occurs intrasession (test within one calibration)
at random. However, we found high intrasession reproducibility of the PNS-measured
upper-body angular curves with ICC values of 0.78–0.98 across all tasks investigated, indi-
cating that soft tissue artifacts have a negligible effect on the intrasession test reliability of
the PNS.

When comparing the data from the intersession test, we discovered that the CMC and
ICC for all upper-body angular curves assessed by the PNS varied from good to excellent,
and all TEMs were below or similar to SWC0.2. In comparison to the other planes, the
sagittal plane demonstrated the highest relative and absolute reliability, consistent with
previous findings [55,56], which indicated that flexion/extension movements were more
reliable than abduction and rotation. The worst relative reliability was found in elbow
flexion (i.e., ICC = 0.79 and CMC = 0.75) and shoulder adduction (i.e., ICC = 0.82 and
CMC = 0.76), and such a phenomenon might be attributed to the sensor wearing position
and the instability of the motion itself. Furthermore, the number of studies on the reliability
of the upper body is small compared to the lower body [14]. As a result, our findings
complemented the reliability results of other studies, with CMC and ICC ranging from
good to excellent in all planes across all tasks, and the PNS had the ability to detect smaller
performance changes.

Overall, the PNS demonstrated clinically acceptable repeatability throughout, with
the exceptions of the shoulder adduction and elbow extension values, which need to be
interpreted with caution due to their potentially misleading nature.

4.3. Task Complexity and Movement Speed Analysis

We found that faster movement speeds resulted in greater bias, and more complex
tasks led to lower consistencies. However, this difference was small, as most validity
metrics were not significantly different (p > 0.05). Previous studies [14,18] also reported
that the complexity of the task and the speed of movement can have an impact on the
accuracy of the IMU. Similarly, the research observed by Sers et al. [11] on the validity
of the Perception Neuron system also found that movement speeds made a significant
difference in bias compared to the optical system. Furthermore, Nüesch et al. [57] found
that running had a larger RMSE than treadmill walking, with mean errors below 8◦ and 5◦,
respectively. A review by Cuesta-Vargas et al. [38] also reported that more complex tasks
would decrease validity, although most of the referenced research only tested movements
that occurred in a single plane, such as isolated flexion and extension. Our results were
similar to those of other investigations and extended the previous findings. In general, the
PNS exhibited a high level of consistency with OptiTrack across all tasks when measuring
the upper-body kinematics. However, the accuracy of the PNS was slightly affected by
increased task complexities and movement speeds, so care should be taken to interpret the
relevant measurements in practical applications.

4.4. Limitation and Future Work

There are three main limitations to this study. First, the sample size for this study was
limited to only seven Beijing Sports University students, and the PNS has not been used
in patients with upper-body dysfunction in a clinical setting. Upper-body movements in
healthy individuals tend to have low variability and will likely lead to higher validity and
reliability. Therefore, a validation study with a larger and more diverse sample size will be
conducted in the future.
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Second, IMU-based inertial motion capture systems have some obvious limitations,
including ferromagnetic interference sensitivity and signal integration drift problems,
which require fusion algorithms to provide reliable kinematic data [20,58]. Although the
site of ferromagnetic interference objects was cleared before the experiment, the drift error
due to the gyroscope signal integration over time was not considered in this study. In
the future, longer experiments will be done to find out if the manufacturer’s proprietary
algorithms or sensors have any limitations that would affect the accuracy of the kinematic
data captured by the PNS when used over a long period of time.

Finally, we investigated the impact of movement speeds on the accuracy of kinematic
data captured by the PNS. However, there are still some shortcomings. In our study, we
found that fast trials resulted in greater bias than slow trials, but the speed of movement
did not have a significant effect on the consistency of the angular waveforms between the
two systems. This may be due to the fact that the speed of movements in this investigation
was self-selected by the participants. Therefore, further studies could adopt the multi-
model approaches [59–62] to explore the effect of movement speeds on the accuracy of PNS
measurement in more details.

5. Conclusions

With the investigation of the validity and reliability of the PNS in terms of measuring
upper-body kinematics during simple and complex tasks, the PNS was proved to be
capable of accurately quantifying upper-body kinematics in different tasks regardless of
task complexities and movement speeds. In general, the PNS has great potential as a low-
cost, portable, and user-friendly option for assessing upper-body angular curves during
functional tasks. Thus, the PNS could provide accurate enough upper-body kinematics for
further biomechanical performance analysis. Furthermore, it could also help doctors or
physiotherapists diagnose and treat patients more quickly in the clinical field, while, in
the sports field, it could help coaches evaluate athletes more effectively to improve their
training and also promote sports health development for non-athletes.
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Figure A1. Comparison of the PNS and OptiTrack’s mean angular curves during simple tasks.
(a–c) The mean angular curves of the shoulder (a), elbow (b), and trunk (c). The thick solid lines
represents the mean angular curve for the PNS (red) and OptitTrack (black), and the shadow area
represents standard deviations from the mean angular curve.
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Figure A2. Bland–Altman plots for each absolute angular of the shoulder (a), elbow (b), and trunk
(c) in simple tasks. The solid blue horizontal line stands for the mean bias, while the dashed blue
horizontal lines indicate the upper and lower 95% confidence intervals.

Table A1. Typical error of measurement, SWC0.2; 06; and 1.2 and MDC95% of intertest session.

Variable TEM SWC0.2 SWC0.6 SWC1.2 MDC95%

Shoulder

flexion/
extension 0.77 1.14 3.41 6.81 2.13

adduction/
abduction 1.26 1.21 3.63 7.25 3.49

internal/
external
rotation

2.53 1.61 4.82 9.65 7.03

Elbow
flexion/

extension 1.85 3.05 9.16 18.31 5.12

pronation/
supination 3.31 2.88 8.65 17.30 9.18

Thorax

flexion/
extension 1.63 2.86 8.58 17.17 4.52

lateral
flexion 1.25 0.97 2.92 5.84 3.47

rotation 0.48 0.78 2.34 4.68 1.34
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