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ABSTRACT With technology evolving rapidly and proliferating, it is imperative to pay attention to mobile

devices’ security being currently responsible for various sensitive data processing. This phase is essential as

an intermediate before the cloud or distributed ledger storage delivery and should be considered additional

care due to its inevitability. This paper analyzes the security mechanisms applied for internal use in the

Android OS and the communication between the Android OS and the remote server. Presented work

aims to examine these mechanisms and evaluate which cryptographic methods and procedures are most

advantageous in terms of energy efficiency derived from execution time. Nonetheless, the dataset with

the measurements collected from 17 mobile devices and the code for reproducibility is also provided.

After analyzing the collected data, specific cryptographic algorithms are recommended to implement an

application that utilizes native cryptographic operations on modern Android devices. In particular, selected

algorithms for symmetric encryption are AES256 / GCM / No Padding; for digital signature – SHA512 with

RSA2048 / PSS, and for asymmetric encryption – RSA3072 / OAEP with SHA512 and MGF1 Padding.

INDEX TERMS Cryptographic protocols, software measurement, information security, cellular phones,

wearable computers.

I. INTRODUCTION

The evolution of the modern Information and Communica-

tion Technology (ICT) ecosystem has paved the way for one

of the smallest form factor devices, smartphones, and wear-

ables, in various areas of our life [1]. These are computing

devices that can function independently and are small enough

to be held in the hand [2]. Mobile devices typically connect

to the Internet or communicate with other devices in close

proximity, forming personal clouds within the new Internet

of Wearable Things (IoWT) paradigm [3].

Indeed, the connectivity and flexible interaction are essen-

tial since most of those devices process personal data and

manage access to it if stored remotely, centrally, or dis-

tributed [4], [5]. To comply with current security stan-

dards, mobile devices may include biometric sensors and

The associate editor coordinating the review of this manuscript and

approving it for publication was Aniello Castiglione .

specialized cryptographic primitives [6] and provide a num-

ber of primitives for the data processing.

Smartphones and smartwatches are some of the fastest-

growing and most widely available personal devices [7].

With the rapid growth in the number of users and hard-

ware/software features, security issues become more press-

ing [8]. Today, people are more likely to use smartphones for

everyday tasks such as browsing, emails, internet banking,

and mobile payments but still want to have fast response

times as well as the assurance of the security guarantees.

Said devices also collect and process their unique vital signs

for a variety of purposes. All of these tasks require sensitive

user data stored directly on the smartphone (for example, for

preprocessing) or uploaded to remote/distributed storage, and

the system security levels are shown in Fig. 1.

With a device that comes where the user goes and contains

sensitive data, security must go beyond its current level.

To ensure a smooth experience for all users (even those who
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are not security savvy or do not want to interact directly with

it), mobile device manufacturers and app developers must

implement security measures that protect user data, even if

the smartphone is stolen.

FIGURE 1. The future wearable-oriented security ecosystem.

As a representative example, this paper focuses on the

Android ecosystem as it is easier to develop and evaluate this

market segment than other vendors.1 The Android ecosys-

tem must keep user data safe, and various techniques are

integrated it. In particular, the authentication mechanisms

are used to provide this kind of guarantee and deny access

to unauthenticated users. Android uses the concept of user

authentication cryptographic keys, which require a crypto-

graphic key store, a cryptographic key service provider, and

a user authenticator [9]. Although the ongoing research is not

explicitly targeted at distributed ledger technology applica-

tions, the results obtained can also be used to develop appro-

priate [10] applications. Understanding latency for mobile

devices serving as part of a distributed infrastructure with dif-

ferent consensusmechanisms is an integral part of application

design, considering the trade-offs between different system

characteristics.

This paper is the result of a research project that resulted

in the successful defense of the thesis [11]. The presented

text is intended to explain the security model on sixteen

smartphones and one smartwatch using the Android OS and

compare existing cryptographic protocols and the resulting

run time as a direct translation to battery life. Unfortunately,

providing the actual power consumption of the cryptographic

primitives’ execution becomes close to impossible due to

the present devices’ manufacturing concept of irremovable

battery, but we also supplement the data with the battery prop-

erties that, along with the execution time, allows for better

qualitative analysis of the results, similarly to [12], [10].

The main goals of this work are2:

• To provide the list of information security primitives

available on modern Android devices;

1This paper is a continuation of the work done by the authors on previous
generation smartphones, which could be found at [8].

2The main practical contribution in compassion to [11] are extended
measurements campaign, open access to the public dataset, and open access
to the main source code (both under CC-BY 4.0).

• To give an example (in Kotlin language) of the primitives

execution for the ease of other developers attempting to

repeat this trial in the future;

• To visualize the comparison of the execution time of the

same primitive on different mobile devices;

• To allow other researchers to reuse the collected mea-

surement data by providing a complete dataset (available

in IEEE DataPort [13]);

• To facilitate the assumptions on the primitives’ exe-

cutability compared to real-life measurements.

Broadly, we attempt to provide a toolbox and a dataset

to be used by the researchers/integrators while selecting an

appropriate configuration of one selected system, e.g., Rivest-

Shamir-Adleman (RSA), depending on the execution time vs.

key size trade-off rather than compare different types of the

primitives between each other, which is a well-studied topic

with expected outcomes.

The rest of the paper is organized as follows. The next

section details what parts the Android security model com-

prises, their purpose, and how those work with other system

components to provide sophisticated security for user data.

The third section provides the description of the dataset as

well as visualizes and summarizes the results obtained from

the created benchmark application. Finally, the last section

concludes this work.

II. BACKGROUND INFORMATION

This section outlines the main cryptographic primitives avail-

able on modern Android devices and provides sample imple-

mentation listings.

A. SUPPORTED CRYPTOGRAPHIC PRIMITIVES

Cryptographic primitives are well-established low-level cryp-

tographic constructs [14]. The Android OS supports vari-

ous categories of cryptographic primitives recommended by

the National Institute of Standards and Technology (NIST)

through its Keystore,3 including:

• Hashing functions convert the data of different sizes

to data of a fixed size that makes it irreversible, for

example, the family of secure hashing algorithms (SHA)

(including HMAC-SHA) [15].

• Symmetric key cryptography is an encryption scheme

that allows the use of the same key to encrypt and

decrypt messages (for example, Advanced Encryption

Standard (AES)) [16].

• Asymmetric key cryptography (or sometimes Public

Key Cryptography (PKI) is a scheme in which a pub-

lic key for encryption and a private key for decryp-

tion is used for each node, i.e., user A can encrypt

a message addressed to user B with PKB, and only

user B can decrypt this message with his own SKB.

Therefore, it becomes possible not only to establish an

asymmetric communication environment for securely

3Note, Android OS is designed in such a way so that the develop-
ment/integration of new primitives becomes close to impossible or extremely
resource consuming, thus, it is recommended to utilize the integrated primi-
tives assuring the interoperability with other systems.
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exchanging symmetric keys in the future by securely

exchanging public keys between two users. This group

includes, for example, RSA [17], Digital Signature

Algorithm (DSA) [18] and various approaches to Ellip-

tic Curve cryptography (EC) [19].
Cryptographic primitives are often used to build crypto-

graphic protocols. On Android, the Keystore system uses

cryptographic primitives to provide multifunctional crypto-

graphic operations, which include but are not limited to:
• Key generation;

• Import and export of asymmetric keys;

• Import of raw symmetric keys;

• Asymmetric encryption and decryption with appropriate

padding modes;

• Digital signature, and verification;

• Symmetric encryption and decryption in appropriate

modes, including an Authenticated encryption (AEAD)

mode;

• Generation and verification of symmetric message

authentication codes;

• Random number generation.
The key target, padding, access control restrictions, or any

other protocol element is defined when generating or import-

ing a key and is permanently bound to the key. The protocol

elements associated with the key ensure that the key cannot

be used in any other way. Random number generation is

not exposed to the public Application Programming Inter-

face (API). It is used internally to generate keys, initializa-

tion vectors, random padding, and other security protocol

elements that require randomness. KeyStore can be used as

a provider and with supported algorithms that operate in their

respective classes:
• Cipher allows for encryption and decryption;

• KeyGenerator allows for the generation of secret keys

for symmetric algorithms;

• KeyPairGenerator allows for the generation of key-pairs

for asymmetric algorithms;

• Signature provides support for the cryptographic digital

signature algorithms;

• KeyFactory allows for interoperability of cryptographic

keys and providing the key specifications;

• SecretKeyFactory has a similar functionality as the one

above but operating solely with symmetric keys.

Indeed, the Android security system provides a wide range

of next-generation information security systems’ support.

The following implementation options are presented detailing

the supported OS versions for the above primitives.

B. PRIMITIVES IMPLEMENTATION EXAMPLES

The following framework will include all available imple-

mentation algorithms in Android KeyStore, including snap-

shots of source code to facilitate testing by other developers.

1) KEY GENERATION

To generate a key, one can use the KeyGenerator or KeyPair-

Generator class. KeyGenerator provides the functionality of

TABLE 1. Supported KeyGenerator algorithms with AndroidKeyStore
provider. SHA sizes must be multiple of 8.

a symmetric key generator. KeyPairGenerator provides the

functionality of an asymmetric key generator.

a: KeyGenerator

There are two approaches to generate a key using KeyGener-

ator: an algorithm-independent and an algorithm-dependent

way. The difference between them is generator initialization.

Listing 1 lists all of the KeyGenerator initialization methods.

The Initmethods that do not use theAlgorithmParameterSpec

are independent of the algorithm. The AlgorithmParameter-

Spec Init method is used in situations where a set of parame-

ters for a particular algorithm already exists. In case the user

does not utilize any of the available Initmethods, the provider

specified during creationmust provide a default initialization.

LISTING 1. KeyGenerator init methods supported algorithms of
KeyGenerator are listed in Table 1.

b: EXAMPLE OF THE KEY GENERATION WITH KeyGenerator

Listing 2 shows the AES symmetric key generation procedure

in Galois / Counter Mode (GCM) [20], which aims to encrypt

and decrypt without padding encryption. AndroidKeyStore is

defined as the KeyGenerator provider, so the key is gener-

ated in the Keystore hardware key store. Other restrictions

may apply to the KeyGenParameterSpec builder. SetUser-

AuthenticationRequired and SetUserAuthenticationValidity-

DurationSeconds can be applied to the builder to condition

the receipt of the key to a time window starting from the last

unlocking of the phone, or the user can be prompted to log in

directly into the application via Lockscreen.

The key can be obtained from AndroidKeyStore, as shown

in Listing 3. AndroidKeyStore is run through a static function

in the Keystore object. In contrast, AndroidKeyStore is passed
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LISTING 2. AES Key generation.

TABLE 2. Supported KeyPairGenerator algorithms with AndroidKeyStore
provider.

as a type after the method load() is called for the KeyStore

object being initialized. The load()method loads theKeystore

using the given LoadStoreParameter, which can be null. After

KeyStore is initialized, the key can be obtained by calling the

getKey()method. The key alias passed to getKey()mustmatch

the alias during key creation.

LISTING 3. Retrieve AES key from keystore.

c: KeyPairGenerator

As with KeyGenerator, there are two ways to create a key

pair: algorithm-independent or algorithm-dependent meth-

ods. The difference between the two is explained in sub-

section II-B1 and the supported algorithms are provided

in Table 2.

d: EXAMPLE OF KEY PAIR GENERATION WITH

KeyPairGenerator

Listing 4 depicts the procedure of an EC key pair generation

for encryption and decryption. An authenticated user can only

use the key within 5 minutes from the last successful authen-

tication. AndroidKeyStore is defined as theKeyPairGenerator

provider, so the key pair is generated in the hardware key

storage Keystore.

2) IMPORT AND EXPORT OF ASYMMETRIC KEYS

Keystore supports importing PKCS8 standard Distin-

guished Encoding Rules (DER) [22] key pairs without

LISTING 4. EC Key pair generation.

password-based encryption. According to the X.509 [23],

export is only supported for public keys. Two different origin

tags are used to distinguish imported keys from reliably

generated keys. Here, imported keys use the imported tag,

and secure keys use the generated tag.

a: EXAMPLE OF RSA PRIVATE KEY IMPORT

In order to import the private key into KeyStore, the Pri-

vateKey instance and X.509 certificate for the public

key corresponding to the private key represented as the

X509Certificate are needed. It is mainly because theKeyStore

abstraction does not support storing private keys without a

certificate. Listing 5 shows how to generate a DER-formatted

RSA private key and an X.509 certificate or public key.

LISTING 5. RSA key and certificate generation.

For demonstration purposes, the key and certificate files

directly import raw application resources. Listing 6 shows

the way how to convert a DER-encoded private key with an

X.509 public-key certificate in the PrivateKey andCertificate

instances that are used to import the private key into the Key-

Store. Although it is possible to import externally generated

keys into Keystore, it is not recommended. The private key

accesses the main memory and can, therefore, be exploited

by an attacker.

b: EXAMPLE OF PUBLIC KEY EXPORT

Exporting a public key is a straightforward procedure. List-

ing 7 shows how to obtain the private record the correspond-

ing certificate fromKeystore. The certificate can be converted

to a byte array or base64 string and sent to the recipient. Note

that the private key record contains a private key field that

refers to the private key. No sensitive information that could

lead to key abuse is present in the private key record.

3) ENCRYPTION AND DECRYPTION USING

AN ASYMMETRIC KEY

RSA in various modes and padding settings is the only asym-

metric algorithm available on Android to encrypt and decrypt
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LISTING 6. Import of RSA private key.

LISTING 7. Export of EC public key.

data securely. As of this writing, no other asymmetric algo-

rithm is supported. Table 3 lists all combinations of encryp-

tion and paddingmodes. In addition, all combinations support

all RSA key sizes thatKeyPairGenerator generates (512, 768,

1024, 2048, 3072, 4096 bits). Listing 8 shows how to generate

an RSA key for RSA / ECB / PKCS1 Padding, where ECB

stands for encrypting unlinked blocks of text into the next

block, the transformation used in Cipher.

LISTING 8. Generate RSA Key for encryption and decryption.

a: EXAMPLE OF RSA DATA ENCRYPTION AND DECRYPTION

Listing 9 shows the process to encrypt data using an RSA key

in ECBmode with PKCS1 padding.Cipher is initialized with

an RSA / ECB / PKCS1 padding transformation that matches

the RSA key. The encryption mode is set, and the encryption

key is the RSA public key. Data input is in a byte array format.

TABLE 3. Supported RSA variants for encryption and decryption.

For simplicity, the doFinal(1)method is called to encrypt the

data. The result is a byte array of encrypted data.

LISTING 9. Encrypt data with RSA.

Evidently, the RSA private key is used to decrypt the data.

Listing 10 shows an approach to decryption. The Cipher

instance is initialized with the same transformation as the

encrypted data. Decryption mode is set, and the decryption

key is the RSA private key.

LISTING 10. Decrypt data with RSA.

4) DIGITAL SIGNATURE AND VERIFICATION OF SIGNATURE

RSA, EC, DSA can be used in different modes and padding

settings. Table 4 shows all the different configurations that

can be used for signing and verification. Listing 11 shows

how to generate an elliptic curve key pair with SHA512 digest

for signing and verification.

a: EXAMPLE OF ECDSA DATA SIGNING AND VERIFICATION

Listing 12 shows how to sign data with an EC key using the

SHA512. The signature is initialized with the SHA512 with

ECDSA transformation. The signing key is the EC private

key. The data to be signed is passed to the update(1) method,

and the sign() method is called to sign the data. The result is

a byte array.

The EC public key certificate is used to verify the signature

and Listing 13 shows the corresponding procedure. The Sig-

nature instance is initialized with the same transformation as

for data signing. The verify(1) method is called to verify the
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TABLE 4. Supported algorithms for signing and verification.

LISTING 11. Generate EC Key for sign and verify.

LISTING 12. Sign data with ECDSA.

signature passed to the method. The data is then passed to the

update(1) method. The result is a Boolean value indicating

whether the signature is valid.

5) IMPORT OF ‘RAW’ SYMMETRIC KEYS

Importing symmetric keys is much easier than import-

ing asymmetric keys. The symmetric key is placed

in SecretKeyEntry and imported directly into KeyStore.

LISTING 13. Verify data with ECDSA.

Listing 14 shows an example of the AES key import with

additional key properties defined.

LISTING 14. Import of AES key.

6) ENCRYPTION AND DECRYPTION USING A SYMMETRIC

KEY

AES in various modes and padding settings is the only

symmetric algorithm used in Android, no other symmetric

algorithm is supported. Table 3 lists all combinations of

encryption and padding modes. In addition, all combinations

support all AES key sizes that KeyGenerator generates (128,

192, 256 bits). Listing 15 shows how to encrypt data using an

AES key in GCM mode without padding.

The Cipher is initialized with the AES / GRCM / No

Padding transformation, which corresponds to AES’s key

purpose. Data input is in a byte array format. The doFinal(1)

method is called to encrypt the data. The result is a byte array

of encrypted data. To decrypt the cryptogram, the Cipher

initialization vector must be saved for later use.

LISTING 15. Encrypt data with AES.

Listing 16 shows the decryption process. The Cipher

instance is initialized with the same transformation as the

encrypted data. Decryption mode is set, and GCMParam-

eterSpec is initialized with an initialization vector and an

54630 VOLUME 9, 2021



A. Ometov et al.: Comprehensive and Reproducible Comparison of Cryptographic Primitives Execution

authorization tag. The doFinal(1) method is called with the

passed cryptogram as a parameter. The result is an array of

bytes that can be converted to string format.

LISTING 16. Decrypt data with AES.

To summarize, the Android OS already has rich func-

tionality to perform symmetric, asymmetric encryption,

block cipher operations, signing, and verification, among

others, however, many primitives are still missing, e.g.,

the post-quantum candidates already highlighted in the

NIST final selection round. The examples of the avail-

able primitives show that their use is relatively straight-

forward, and the examples of code can be found in the

repository. The next section compares the primitives on

flagship and legacy mobile devices and discusses some of

the interesting observations made during this benchmarking

campaign.

III. CRYPTOGRAPHIC ALGORITHMS COMPARISON

This section uses information from the previous one to

execute the tests for the listed cryptographic algorithms.

The measurements campaign contained 280 tests each

that measure the running time of cryptographic algorithms

on 16 smartphones and 1 smartwatch, shown in Fig. 2.

We attempted to cover such a broad variety of devices to

cover both different hardware characteristics as well as dif-

ferent operating systems, which allows to understand which

execution could be expected on a particular generation of

devices. This section presents the results of the analysis of

the measurements.

A. DATASET DESCRIPTOR

The dataset for the oncoming results is currently available at

IEEE DataPort [13]. The primary data related to the collected

data is located in folderMeasurement and subfolder with the

measurement file.

The developed application was designed to gather the data

and then generate the dataset. The dataset consists of JSON

files, each containing measurements of available devices’

security primitives execution times. The data was gathered

in a span of multiple 250 iterations. Each measurement

was taken with a 50 repetitions interval for every primi-

tive. We define the main components of the dataset in the

following:
1) context[] – provides the details about the device andOS

including device name, model, battery-related informa-

tion, Software Development Kit (SDK) version, and

basic technical specification.

FIGURE 2. Mobile devices used for the measurements campaign
(technical details are listed in Table 5).

2) benchmarks[] – provides entries per primitive, such as:
• name – the overall identification title of the primi-

tive, including paddung and other optional fields;

• params – additional parameters unilized for the

execution if any;

• totalRunTimeNs – the overall time of the primi-

tive’s execution time;

• metrics[] – provides entries per execution, such as:
a) timeNs[] – the collected/processed information

of the collected data inluding entries per exe-

cution in runs[] and statistical parameters in

maximum, minimum and median.

b) warmupIterations – number of iterations of

warmup before measurements started;

c) repeatIterations – the number of iterations;

d) thermalThrottleSleepSeconds – the duration of

sleep due to thermal throttling.
An example of the dataset entry is provided further in

Listing 17.

The following subsections provide a discussion on the

obtained results.

B. CREATION OF ASYMMETRIC KEY

Asymmetric key generation testing measurement data shows

the time it takes to generate an asymmetric key. Themeasured

key types are RSA and EC with different key size options.

VOLUME 9, 2021 54631



A. Ometov et al.: Comprehensive and Reproducible Comparison of Cryptographic Primitives Execution

LISTING 17. Example dataset entry.

Evidently, as the key size increases, the algorithm’s com-

putational complexity also increases. Thus, a larger key size

is expected to have a longer execution time than a smaller

key size. The heatmap 3 shows the results of the asymmetric

key generation. The results of the RSA algorithm support this

assumption on all devices.

Using the EC-based algorithm, if we compare the run-

times of EC224 and EC256 on different devices, the results

unexpectedly show that a larger key size on six devices

results in shorter runtimes, which contradicts the assumption.

This could be caused by a small difference between the key

size used in the algorithms.

C. ENCRYPTION/DECRYPTION USING

AN ASYMMETRIC KEY

Asymmetric key encryption is currently only supported for

RSA, as mentioned in subsection II-B3. RSA for encryption

can be used in eight different ways. The difference between

the two is in the fill mode used. Android Keystore and

generic java Keystore do not implement ECB mode for RSA,

so encryption / decryption can only be used for data smaller

than the key size. Interestingly, the encryption modes have

ECB in their name, although it is not implemented.

The heatmaps 4 and 6 show that the most consistent

runtimes across devices are achieved with the RSA with

PKCS1 padding option. PKCS1 Padding adds the least over-

head of all padding schemes supported (at least 11 bytes).

Completing the OAEP adds even more overhead. The OAEP

padding scheme requires two hash functions with different

properties to work. One hash function must map an arbitrary

size input to a fixed size output. Another hash function maps

an arbitrary size input to an arbitrary size output.

Such a hash function is called the Mask Generation Func-

tion (MFG). OAEP adds at least 42 bytes, which is 31 bytes

more than the minimum PKCS1 padding. The results support

the assumptions, and the overall execution time for schemes

using OAEP padding is longer than for PKCS1 schemes.

Based on the measurements, we can conclude that the Sam-

sung Galaxy S6 shows significantly slower encryption with

a key size of 4096 bits on all encryption schemes. Huawei

P9 Lite and Asus Zenphone 3 MAX, when used with OAEP

padding, result in slower performance than other devices.

From a security point of view, the OAEP padding scheme is

recommended [12]. Comparing the algorithms’ results using

the OAEP padding scheme shows that RSA3072 / OAEPwith

SHA-512 and MGF1 padding yields the best result.

As far as decryption is concerned, the inevitable statement

is that it should be slower. The advantage of encryption is

that the public figure is usually relatively small. The private

metric, decryption, is more extensive, so decrypting data is a

slower operation. The results in heatmap 5 and 7 summarize

the results of the assumption that data decryption in most

RSA implementations is slower than encryption. Same algo-

rithm for best overall execution time as encryption, RSA /

ECB / PKCS1 Padding.

D. DIGITAL SIGNATURE

Unlike asymmetric key encryption and decryption, digital

signatures are supported by RSA and EC. Benchmarks are

categorized by the hash function that RSA or EC uses.

The dataset provides RSA results without hashing with

MD5, SHA1, SHA224, SHA256, SHA384, and SHA512. All

results demonstrate similar behavior for each device, and,

in order not to overload the reader with repetitive data, this

article provides an example with the most complex of them,

SHA512, shown in the heatmap 8.

Overall, measurement results show that the difference

in runtime between signature algorithms using different

numbers of bits in the SHA function is minimal. Compar-

ing the algorithms’ results using the SHA hash function

shows that SHA512 with RSA2048 / PSS shows the best

results.

A similar procedure was used to verify the digital sig-

nature, see example results for SHA512 in heatmap 9.

The difference in the execution time of the verification algo-

rithms using the SHA hash function is the same as in the

digital signature, i.e., it is minimal. Evidently, the verification

procedure on a smartwatch requires more than an order of
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TABLE 5. Devices used for benchmarking (sorted according to CPU).

FIGURE 3. Asymmetric key creation.

magnitude more time than the same procedure on a smart-

phone when the mouse cursor is hovering over a sufficiently

low level, that is, tens of milliseconds.

More heatmaps for the utilization of MD5, SHA1,

SHA224, SHA256, and SHA384 with RSA are available

along with the dataset.
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FIGURE 4. Encryption using RSA / ECB with Padding.

FIGURE 5. Decryption using RSA / ECB with Padding.

E. CREATION OF SYMMETRIC KEY

The symmetric key generation performance test measures

the time it takes to generate a symmetric key. The measured

key type is AES with different key sizes. As the key size

increases, the computational complexity of the algorithm also

increases. Thus, a larger key size is expected to have a longer

execution time than a smaller key size. The histogram 10

summarizes the results of creating a symmetric key. The dif-

ference in battery life on Google Pixel 3A, Huawei P20 Lite,

LG Nexus 5X, Google Pixel XL is expected in line with

the previous trend. On other devices, the execution time is

equal, or the execution time does not increase with increasing

key size. It could be caused by hardware optimization or

statistical error.

F. ENCRYPTION/DECRYPTION USING AN SYMMETRIC KEY

AES is the only algorithm that supports symmetric encryption

with different key sizes and variations. Heatmaps 11 and 12

show that the runtime on the device remains the same for

all variants and key sizes. Based on results and in terms of

security, AES256 / GCM without padding provides the best

value.

It is assumed that decryption and encryption should be

approximately the same due to the same keys for both

operations. Compared to RSA decryption, AES decryption

should be faster. The results in the heatmap 12 show an

overall slower execution time than the symmetric encryption

execution time, which does not support the assumption of

the same execution time. Compared to the RSA decryption

execution time, the AES decryption execution time is faster,

confirming the assumption.

G. ADDITIONAL DISCUSSION AND LESSONS LEARNED

Interestingly, one may question what are the effects of RAM,

OS version, or CPU (given in Table 5) on the execution

of the primitives. Let us consider Figure 3 as an example.

On the one hand, the OS version does not provide any rep-

resentative information at all, see, e.g., for RSA-512: HTC

One M9 shows 72 ms, Huawei P9 Lite shows 30 ms, and

Asus Zenphone 3 Max has 228 ms – there is no correla-

tion with OS version. RAM impact has a similar pattern.

On the other hand, the execution time is indeed mostly

influenced by the CPU characteristics. However, it seems

rather unfair to compare the execution of various processor

types with different numbers of processors with completely

different clock rates since engineers/researchers would not

have any real knowledge about the processor’s design and

would only face the execution time in the end. Moreover,
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FIGURE 6. Encryption using RSA / ECB / OAEP with SHA and MGF1 Padding.

FIGURE 7. Decryption using RSA / ECB / OAEP with SHA and MGF1 Padding.

FIGURE 8. Signature using RSA with SHA512.

most mobile processors cannot utilize all the cores at once

(usually 4 for ‘‘background task’’ and 4 for ‘‘CPU demanding

tasks’’).

One of the most significant evaluation challenges is

the actual energy consumption evaluation on modern

mass-produced devices. There are two significant limitations.

First, the only way to reliably measure energy consumption

is to connect to the battery connectors physically. We have

attempted to do that and faced two sub-challenges: (i) most

of the devices have irremovable or shielded batteries that

heavily limit the access to the connectors without physically

damaging the device; (ii) even after accessing the connectors,
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FIGURE 9. Verification using RSA with SHA512.

FIGURE 10. Symmetric key creation.

we found out that the impact of the primitives execution on

energy consumption is miserable compared to, e.g., wire-

less transmission module or the display (the primary energy

consumer).

Previously, we also attempted to measure the energy con-

sumption for the execution of various blockchain consensus

algorithms in [24], where we have proven that the impact on

battery is not measurable only if the device is in the satu-

ration of the cryptography-related executions, which is not

real in daily life. Therefore, this paper attempted to highlight

the metric, which is the most accessible for the developers

from a user perspective – the average execution time causing

uncomfortable delays while a human is interacting with the

smartphone. As it could be seen from the collected data, some

devices can produce a few seconds-level delays just for one

execution, which may be unacceptable for close-to-real-time

applications.

Notably, there are approaches how to approach the con-

version of the execution time into relative computational

energy.4 However, those may have relatively low accuracy

since even the comparison of self-discharge rate compared

to one under additional tasks do not provide the necessary

granularity [8].

IV. SUMMARY

The development of modern technologies and the overall

improvements in the computing power are pushing towards

evaluating cryptographic primitives used on devices available

on the market. This article closes this white spot on the

roadmap for information security in the field of Android

devices. Along with this, it provides source code examples

suitable for a future re-evaluation of new devices. Specifi-

cally, it summarizes the results from a benchmark app that

ran 280 tests on 16 smartphones and 1 smartwatch in

terms of execution time (as the most convenient battery life

convention).

The results were further processed and visualized on heat

maps and a histogram. Based on the results, it was concluded

that not all natural assumptions regarding the executions

of primitives were fulfilled. Some older devices with older

processors execute some cryptographic algorithms faster than

newer devices with newer processors. It can be explained by

hardware acceleration for specific cryptographic algorithms.

After analyzing the collected data, specific cryptographic

algorithms were selected to implement an application using

cryptographic operations, see Section III. Selected algo-

rithms: AES256 / GCM / No Padding for symmetric encryp-

tion, SHA512 with RSA2048 / PSS for digital signature and

RSA3072 / OAEP with SHA512 and MGF1 Padding for

asymmetric encryption.

4See ‘‘Monitoring Energy Hotspots in Software’’: https://hal.inria.fr/hal-
01069142/document
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FIGURE 11. AES encryption.

FIGURE 12. AES decryption.

LIST OF ACRONYMS

AEAD Authenticated Encryption

AES Advanced Encryption Standard

API Application Programming Interface

BLE Bluetooth Low Energy

DER Distinguished Encoding Rules

DSA Digital Signature Algorithm

EC Eliptic Curve

ECB Encrypting unlinked blocks

ECDSA Elliptic Curve Digital Signature Algorithm

GCM Galois / Counter Mode

HMAC Keyed-Hashing for Message Authentication

ICT Information and Communication Technology

JSON JavaScript Object Notation

MD Message-Digest algorithm

MGF Mask Generation Function

OAEP Optimal Asymmetric Encryption Padding

OS Operating System

PKCS Public Key Cryptography Standards

PSS Probabilistic Signature Scheme

RSA Rivest-Shamir-Adleman System

SDK Software Development Kit

SHA Secure Hash Algorithm

WLAN Wireless Local Network
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