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A comprehensive annotation 
dataset of intact LTR 
retrotransposons of 300 plant 
genomes
Shan-Shan Zhou1, Xue-Mei Yan1, Kai-Fu Zhang2, Hui Liu1, Jie Xu1, Shuai Nie1, Kai-Hua Jia1, 

Si-Qian Jiao1, Wei Zhao1, You-Jie Zhao2, Ilga Porth3, Yousry A. El Kassaby  4, Tongli Wang4 & 

Jian-Feng Mao  1 ✉

LTR retrotransposons (LTR-RTs) are ubiquitous and represent the dominant repeat element in plant 
genomes, playing important roles in functional variation, genome plasticity and evolution. With the 
advent of new sequencing technologies, a growing number of whole-genome sequences have been 
made publicly available, making it possible to carry out systematic analyses of LTR-RTs. However, a 
comprehensive and unified annotation of LTR-RTs in plant groups is still lacking. Here, we constructed 
a plant intact LTR-RTs dataset, which is designed to classify and annotate intact LTR-RTs with a 
standardized procedure. The dataset currently comprises a total of 2,593,685 intact LTR-RTs from 
genomes of 300 plant species representing 93 families of 46 orders. The dataset is accompanied 
by sequence, diverse structural and functional annotation, age determination and classification 
information associated with the LTR-RTs. This dataset will contribute valuable resources for 
investigating the evolutionary dynamics and functional implications of LTR-RTs in plant genomes.

Background & Summary
Transposable elements (TEs) are mobile DNA sequences that can move, propagate, and integrate into new posi-
tions in the host genomes, and which are ubiquitous in nearly all living organisms1,2. All TEs manage to increase 
their copy number via transposition processes. Depending on the mechanism used for transposition, TEs can be 
divided into two classes: Class I retrotransposons, which commonly transpose through ‘copy-and-paste’ mech-
anism of a transcribed RNA intermediate and Class II DNA transposons that move via a ‘cut-and-paste’ mech-
anism that mobilizes the DNA directly3. TEs are o�en considered as “junk DNA” because of their continuous 
ampli�cation and potential impairment on the host gene function4. However, recently, numerous studies clearly 
indicated that TEs play a major role in reshaping genome structure through chromosomal rearrangements, gene 
capture, movement, and exon shu�ing2,5–7, in creating mutagenic and regulatory variation through their inser-
tion within or near genes8,9, and in creating additional genetic diversity underlying species adaptation and evolu-
tion10,11. Hence, knowledge of their impact on the structure, function and evolution of plant genomes is a priority 
in the �eld of genomics.

Among class I elements, the long terminal repeats retrotransposons (LTR-RTs), have been observed to be the 
most abundant TE component of plant genomes12,13, contributing up to 70% of the plant genome size, as reported 
in maize14, wheat15, or sugar pine16. Moreover, these elements have been considered to be the major source for the 
observed extensive genome variation of �owering plants, along with polyploidization17. In addition, epigenetic 
silencing of LTR-RTs can a�ect their impact on major �tness-related traits, including �owering time, a key process 
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of plant life cycle11,13. TE-genome wide association studies (TE-GWAS) uncovered that the insertion of LTR-RTs 
is associated with grain width in rice and fruit weight in tomato18,19. LTR-RTs also show unique patterns of devel-
opment or environment regulation. For instance, maize transcripts Opie-1 element20, barley BARE-121, and soy-
bean SIRE-122 have been detected primarily in roots, leaves, and seedlings, respectively. �erefore, understanding 
the molecular causes of genome evolution is of utmost importance, so that the mechanisms regulating LTR-RTs 
are established, as well as the importance of their transcription to host biology is also better known.

An autonomous LTR-RT that bears all features essential for retrotransposition is composed of two nearly 
identical LTR sequences which are �anked by target site duplications (TSDs) of usually 4–6 bp13,23. In some spe-
cies, small palindromic motifs at the 5′ and 3′ end of the LTRs are observed24. �e internal region contains open 
reading frame, Gag-Pol2,25. Gag, a gene that encodes a polyprotein comprising subcomponents of the virus-like 
particle (VLP) is involved in the maturation and packaging of retrotransposon RNA, Pol products that encode 
protease (PR), reverse transcriptase (RT), RNase H (RH), and integrase (INT) that are involved in the synthesis 
of retrotransposon DNA and integration into the host genome13. Based on the order of RT and INT in POL, 
LTR-RTs are classi�ed into Gypsy and Copia superfamilies26, which are further divided into an enormous number 
of lineages according to phylogenetic analysis of the polyprotein domains. Usually, plants’ Copia retrotransposons 
are sub-classi�ed into Ivana (Sirevirus/Oryco), Osser (hemivirus), Bianca and SIRE27–30, while Gypsy retrotrans-
posons are grouped into CRM, Galadriel, Reina, Tcn1, Tekay (Del/Del1), Athila, Phygy and Tat (Metavirus). 
Gypsy lineages are further grouped into di�erent branches according to the presence of a chromodomain, group-
ing together CRM, Galadriel, Reina, Tcn1, and Tekay (Del/Del1) lineages into the Chromovirus branch27,28. 
Moreover, previous studies have found that plant Tcn1 sequences representatives share high similarity to that 
of Cryptococcus neoformans, which may be the result of a horizontal transfer from fungi, which have not been 
deeply studied31,32. So, to better understand the hierarchical classi�cation and complicated pattern of evolution, 
compiling a multi-species, comprehensive large-scale LTR-RT dataset is of great necessity.

With the advent of modern sequencing technologies and the availability of genomic resources for many 
organisms, di�erent TEs databases have become available. �ese databases can be divided into two main types of 
focus: 1) analysis and classi�cation of TE based on their phylogenetics (per lineage and protein domain), such as 
GyDB28 and REXdb27 and 2) identi�cation and characterization of TEs in speci�c species, such as GrTEdb33 and 
DPTEdb34. However, there is no database for systematic and uni�ed processing of LTR-RTs of plants, including 
Rhodophyta, Chlorophyta, Bryophytes, Pteridophyta, Gymnosperm, and Angiosperm. To make better use of 
and compare LTR-RTs in plants, it is necessary to establish a dataset containing these plants phylum to annotate 
LTR-RTs comprehensively and uniformly.

�e LTR-RTs dataset presented here has been established following the schematic shown in Fig. 1. In this 
framework, a comprehensive annotated dataset of a total of 2,593,685 intact LTR-RTs from 300 plant genomes 
is presented. �is dataset contributes to broadening the availability of information useful for the classi�cation of 
LTR-RTs by: 1) identifying all intact LTR-RTs from diverse whole plant genomes; 2) accomplishing the functional 
annotation (coding domains including GAG, AP, INT, RT and RH) and classi�cation of intact LTR-RTs; and 3) 
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Fig. 1 Schematic diagram illustrating the overall process of the intact LTR-RTs characterization in plant 
genomes. �e top section shows the data sources of plant genomes, and the following four di�erent modules 
represent di�erent analyses.
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determining the age distribution of intact LTR-RTs with Kimura two-parameter model. Further details of dataset 
generation and contents are also provided. �e dataset released in this study covers a wide breadth of highly com-
plex plants and is expected to provide a useful resource of LTR-RTs.

Methods
Genomic data collection. A total of 301 plants genome assemblies were collected from multiple compre-
hensive databases such as Phytozome (v12, https://phytozome.jgi.doe.gov/pz/portal.html)35, PLAZA (https://
bioinformatics.psb.ugent.be/plaza/), NCBI GenBank (https://www.ncbi.nlm.nih.gov/genome/), CoGe (https://
genomevolution.org), TreeGenes (https://treegenesdb.org/Drupal) and other individual genome databases. 
In this study, the collected genomic data represent 93 families of 46 orders. Our taxon sampling includes 2 
Rhodophyta, 5 Chlorophyta, 3 Bryophytes, 4 Pteridophyta, 10 Gymnosperm, and 277 Angiosperm species. 
Detailed information (species, genus, family, order names, links to the published genome articles and URLs for 
the species genome assemblies) is provided in Supplementary Table 1.

Identification of LTR-RTs. All 301 plant genomes were searched for the de novo detection of LTR-RTs using 
LTRharvest36 and LTRdigest37 programs. We required that an LTR-RT is separated by 1 to 15 kb from other can-
didates and �anked by a pair of putative LTRs ranging from 100 to 3,000 bp with similarity > 80%. We obtained 
12,829,207 candidate LTR-RTs from the 301 plant genomes, except for Genlisea aurea, a carnivorous plant with 
an unusually small genome size of 63.6 Mb, one of the smallest known among all higher plants. �e genome 
of G. aurea was investigated for LTR-RT content using the default settings in RepeatMasker v4.0.738 with the 
RepBase version 20170127 library39, and we found a few fragmented LTR-RTs but potentially no full-length intact 
LTR-RTs, which is consistent with a previous study40. Further, all the internal sequences of candidate LTR-RTs 
were annotated by aligning the Gag-Pol protein sequences to the reference library REXdb (http://repeatexplorer.
org/?page_id=918)27. Alignment was performed, using LAST v983 (http://last.cbrc.jp)41, with the following 
parameters: “-L 10 -m 70 -P BL80 -e 80”. �ose LTR-RTs containing alignments with the domains of “GAG” 
(Capsid protein), “AP” (Aspartic proteinase), “INT” (Integrase), “RT” (Reverse transcriptase), and “RH” (RNase 
H) were considered as intact LTR-RTs. Finally, the resulting dataset consisted of 2,593,685 intact LTR-RTs from 
300 plant genomes.

Reconstruction of LTR-RTs superfamilies and lineages. Depending on the order and similarity of 
protein domains in the Pol gene, the identi�ed intact LTR-RTs were mainly classi�ed into Copia and Gypsy super-
families. We found some unclassi�ed elements (8,682) because there were multiple Gag-Pol protein sequences 
that occurred inside the LTR-RTs. �e Copia and Gypsy sequences were further grouped into 18 lineages based 
on their phylogenetic relationships and structural features of the elements within the REXdb database27.

TGCA and TSD detection. In plants, LTRs are typically �anked by 2-bp palindromic motifs, commonly 
5′-TG…CA-3′, with some rare exceptions and TSD is a small exact repeat that may occur at the insertion site. 
�ey normally show a high sequence identity but may have acquired mutational variation over evolutionary 
processes. �e two nearly identical LTR sequences of LTR-RTs were �anked by TSDs of usually 4–6 bp. We deter-
mined LTR ends (TG at the 5′ end of 5′ LTR and CA at the 3′ end of 3′ LTR) and then searched for how o�en the 
next 4, 5 and 6 bp can be used to identify their direct orientation precisely �anking each side of the LTR ends.

Age determination of LTR-RTs with Kimura distance-based calculation. To assess the evolutionary 
role of LTR-RTs, it is important to estimate when LTR-RT integration into the genome took place. �e insertion 
of an LTR-RT creates a pair of LTRs with identical sequences at the two breakpoints, and subsequent accumula-
tion of mutations between the pair of LTRs of one LTR-RT can be used as a measure of the elapsed time a�er the 
insertion. Here, we used nucleotide sequence divergence of a pair of LTRs as a proxy for LTR-RT’s insertion age. 
MAFFT42 with default parameters was used to align the 5′ and 3′ LTRs of each intact LTR-RT. Sequence diver-
gence was then calculated using Kimura two-parameter (K2P) model43. Insertion times can be converted into 
million years given a lineage-speci�c synonymous substitution rate per site per year.

Data Records
�e dataset containing the intact LTR-RTs information from 300 plant genomes resulting in 2,593,685 intact 
LTR-RTs with diverse structural, functional annotation, age determination, and classi�cation information is avail-
able from the Figshare Repository44. �e organization of the data collection is illustrated in Fig. 2. �e top-level 
folder contains six sub-folders containing the intact LTR-RT data from Rhodophyta, Chlorophyta, Bryophytes, 
Pteridophyta, Gymnosperm, and Angiosperm and each sub-folder is further subdivided according to the plant 
order, family, and genus assignment.

File format. All data are stored in plain text (txt) format. �e �le is named as “X.txt”, where “X” is a species’ 
scienti�c name. Each text �le includes the structure information and divergence of intact LTR-RTs detected for a 
speci�c plant genome. Table 1 summarizes the keys for the metadata.

Graphical representation of the dataset. Figure 3 presents the distribution of intact LTR-RT lineages of 
the studied 300 plant genomes.

We further analyzed sequence divergence measured by K2P distance and intact LTR-RT activity pattern of 
representative wheat (Triticum) species, one of the most important cereal grain crops (Fig. 4). Di�erences in 
historical proliferation dynamics were shown among di�erent LTR-RT subfamilies of di�erent subgenomes in 
di�erent plants with di�erent ploidy.
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Technical Validation
To validate the dataset, we compared the intact LTR-RTs annotation acquired by sequence similarity and the de 
novo (used in this study) method. We chose rice (Oryza sativa. ssp. japonica) as a representative species for quality 
control as its genome is intensively examined and well annotated. A manually curated LTR-RTs library includ-
ing 897 elements of rice was prepared in a previous study45. �is library included known LTR-RT elements like 
RIRE1 (named as Angela in our dataset), RIRE2 (Retand), RIRE3 (Tekay), CRR (CRM) and Truncator (Tekay). 
Next, we annotated 897 LTR-RT sequences against the REXdb database27 using LAST so�ware41. Among them, 
247 sequences possessed complete Gag-Pol protein sequences, which were considered as intact LTR-RTs. �ese 
candidate intact LTR-RTs sequences were then mapped to the Oryza sativa. ssp. japonica genome (Nip-BRI) using 
RepeatMasker so�ware38 with default parameters. Finally, we acquired in total the 3,002 intact LTR-RTs, of which 
2,332 elements were consistent with our results (2,941 elements) obtained by de novo method. �is comparison 
con�rmed the reliability of our dataset.

�e di�erences in LTR-RT content, length and age structure in Oryza sativa. ssp. japonica may be in�uenced 
by assembly quality. A total of 2,941 LTR-RTs was detected in O. sativa. ssp. japonica (Nip-BRI)46, an updated 
assembly from long-reads sequencing, compared with 2,636 in Nip-MSU747, a short-read based assembly, and 
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Fig. 2 Illustration of the data structure.

Key Type Description

Species string Species name

LTR_ID string ID of intact LTR-RTs

Chromosome string Chromosome of intact LTR-RTs

Start int Start position of domain in intact LTR-RTs

End int End position of domain in intact LTR-RTs

Domain string Type of domain in intact LTR-RTs

Length(bp) int Length of intact LTR-RTs

Superfamilies string Type of superfamilies

Lineages string Type of Lineages

Divergence �oat Sequence divergence of intact LTR-RTs

Table 1. Description of metadata keys for the plain text (.txt) �les.
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also, no LTR-RT with multiple Gag-Pol was identi�ed in the updated assembly (Table 2). Wilcoxon test showed 
that the LTR-RT length identi�ed in the Nip-BRI was signi�cantly longer than that in the Nip-MSU7 (Fig. 5a). 
We further found that the insertion time of an LTR-RT estimated assembly by sequence divergence of the two 
LTRs in the Nip-BRI was signi�cantly younger than that in the Nip-MSU7 (Wilcoxon test, p < 2.22e-16), indicat-
ing that many recently inserted LTR-RTs were unidenti�ed in the Nip-MSU7 genome generated by short-reads 
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Fig. 3 Intact LTR-RT (Gypsy and Copia) occupation of plant genomes. Resolved intact LTR-RT lineages were 
identi�ed in 300 plant genomes of diverse systematic assignment. �e presence of intact LTR-RT lineages 
is shown as heatmap determined by the log-transformed (log10) value of the intact LTR-RT copy number. 
�e realized phylogenetic relationship of LTR-RT lineages24 is shown in the bottom right corner. (a) Gypsy 
superfamily. (b) Copia superfamily.
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sequencing (Fig. 5b). These findings suggest that high-quality assembled genomes obtained by long-read 
sequencing technology are critical to the identi�cation and classi�cation of LTR-RTs.

Several databases describing TE reference sequences have been published. �e Repbase Update contains con-
sensus sequences of LTR-RT superfamilies and lineages39, but lacks information on internal structure. �e Gypsy 
database (GyDB) compiles LTR-RTs and Retroviridae-like elements28, but the metadata of Gypsy/Copia lineages 
is not comprehensive. REXdb divides Copia and Gypsy retrotransposons into 16 and 14 lineages, respectively, 
based on the conserved polyprotein domains27, but is derived from a relatively small sampling of sequences from 
80 species. In the current study, we compile a dataset of LTR-RTs in plants to further enable comparative and evo-
lutionary studies in plants. �e dataset is dedicated to the identi�cation and classi�cation of intact LTR-RTs in 300 
plant genomes using comprehensive and uni�ed annotation approaches. Furthermore, it provides information on 
age distribution of intact LTR-RTs with Kimura two-parameter model.

Fig. 4 Density map of age distribution of intact LTR-RTs in representative Triticum species. For each species, 
intact LTR-RTs were grouped in both superfamilies and lineages (only the �rst few dominant lineages are shown 
here). �e proportion of intact LTR-RTs of each speci�c age bin is shown, and subgenomes (A, B and D) from 
three Triticum species are colored red, blue and yellow, respectively.

Key Nip-BRI Nip-MSU7

Assembly size/Mb 380.70 373.25

Contig N50/Mb 17 7.7

Number of Gap 18 905

Number of Intact LTR-RTs 2,941 2,636

Length/Mb 29,589,668 25,529,468

Percent/% 7.78 6.84

Number of Intact LTR-RTs with multiple Gag-Pol 0 2

Table 2. Comparison of LTR-RT annotated in two Oryza sativa genome assemblies.
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Usage Notes
We envision many possible uses for this dataset, especially for the study of the origin, ampli�cation, functional impact, 
and evolutionary dynamics of LTR-RTs among species and to encourage its use for evaluating the impact of LTR-RTs 
on host genomes, and to analyze the potential interaction between LTR-RTs and protein-coding genes such as:

 1. Solo LTRs and truncated LTR-RTs detection. Unpaired LTRs (solo LTRs and truncated LTR-RTs) could fur-
ther be determined based on the information of intact LTR-RTs48, since the ratios between intact LTR-RTs 
and solo LTRs have been used to estimate purge rates (removal rate). Removal rate could help to further 
research on why di�erent plant genomes have distinct removal rate and understand molecular mechanisms 
of DNA ampli�cation and removal.

 2. LRT-RT insertion and associated factors. LTR-RT insertion times can be used to reveal the dynamics of 
LTR-RTs and their impact on genome evolution. For available sequence divergences of each species, inser-
tion times could be converted into million years when given a lineage-speci�c synonymous substitution 
rate per site per year. When an LTR-RT’s proliferation time is determined, it could further be associated 
with historical processes, like environmental changes, mating transition, historical hybridization, and 
polyploidization/diploidization, so as to reveal the potential biological mechanism.

 3. LTR-RT’s expression and its functional impact. Quantitative expression of LTR-RTs could be performed by 
RNA sequencing or RT-qPCR in plant tissues. In addition, RNA-seq data can be used to dissect the e�ect 
of LTR-RT insertions and analyze the expression from the targeted genomic region. Furthermore, R pack-
ages, like TEtranscripts, could be used to analyze TEs, including LTR-RTs in di�erential expression analysis 
of RNA-seq data49. �e analysis of LTR-RTs expression could help understanding how these elements a�ect 
cell function to preserve speci�c tissues physiology and homeostasis in the plant.

 4. LTR-RT’s involvement in gene regulation. DNA methylation and hydroxymethylation could be measured to 
understand the genome-wide epigenetic regulation of LTR-RTs. Additionally, several transcription factors 
were found to have their binding sites frequently located within various types of TEs, particularly LTR-RTs 
for ChIP-seq data, potentially leading to cell-speci�c gene regulation50,51. LTR-RT changes in adjacent gene 
regulation could further infer whether the contribution to plant �tness is positive, neutral, or negative.

 5. LTR-RTs derived gene duplication. Genes can be duplicated through an RNA intermediate in a process 
mediated by retrotransposons as functional retrocopies or retrogenes, and they are mostly �anked by 
LTR-RTs in plants. Our dataset could help identify retrogenes and related duplicates, thus can help further 
investigate their contribution to species-speci�c phenotypic variation. For example, Sun is involved in the 
morphological variation of the tomato fruit52.

 6. Lateral transfer of LTR-RTs. Horizontal transfers (HTs) usually represent the transmission of genetic mate-
rial between reproductively isolated species and could allow TEs to escape their original host by transpos-
ing into a new organism, ensuring their survival. However, although HTs are common in plants, studies of 
horizontal TE transfers (HTTs) remain scarce because of limited taxa sampling53. Our dataset is valuable 
for further study of HTTs based on a larger taxon sampling covering most major plant orders.

 7. LTR-RTs and genome size variation. In �owering plants, changes in copy number of retrotransposons 
appear to be the main factor responsible for genome size di�erences between species, in addition to 
polyploidy. It is found that the maize genome is 3–4 times as large as the sorghum genome, which is mainly 
caused by the extensive proliferation of retrotransposons (especially LTR-RTs) a�er the divergence of 
the two species54. Di�erences in the activity of retrotransposon regulation mechanisms (the proliferation of 
LTR-RTs) or their deletion generation (removal rate of LTR-RTs mentioned above) between species could 
explain current genome size variation. �e present dataset brings a starting point for further systematic 
investigation of LTR-RT’s roles in genome size variation.
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Code availability
To prepare this dataset, we used LTRharvest and LTRdigest from genometools version 1.5.10 so�ware55 and 
REXdb database (http://repeatexplorer.org/)27. The sources for the 301 plant genomes can be downloaded 
through the link provided in Supplementary Table 1 and scripts for intact LTR-RTs annotation are available at 
GitHub link (https://github.com/sszhou9/intact-LTR-RTs).
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