
Published as a conference paper at ICLR 2019

A COMPREHENSIVE, APPLICATION-ORIENTED STUDY
OF CATASTROPHIC FORGETTING IN DNNS

B. Pfülb & A. Gepperth
Department of Computer Science
Hochschule Fulda
Fulda 36037, Germany
{benedikt.pfuelb,alexander.gepperth}@cs.hs-fulda.de

ABSTRACT

We present a large-scale empirical study of catastrophic forgetting (CF) in mod-
ern Deep Neural Network (DNN) models that perform sequential (or: incremen-
tal) learning. A new experimental protocol is proposed that enforces typical con-
straints encountered in application scenarios. As the investigation is empirical,
we evaluate CF behavior on the hitherto largest number of visual classification
datasets, from each of which we construct a representative number of Sequential
Learning Tasks (SLTs) in close alignment to previous works on CF. Our results
clearly indicate that there is no model that avoids CF for all investigated datasets
and SLTs under application conditions. We conclude with a discussion of potential
solutions and workarounds to CF, notably for the EWC and IMM models.

1 INTRODUCTION

This article is in the context of sequential or incremental learning in Deep Neural Networks (DNNs).
Essentially, this means that a DNN is not trained once, on a single taskD, but successively on two or
more sub-tasksD1, . . . , Dn, one after another. Learning tasks of this type, which we term Sequential
Learning Tasks (SLTs) (see Fig. 1a), are potentially very common in real-world applications. They
occur wherever DNNs need to update their capabilities on-site and over time: gesture recognition,
network traffic analysis, or face and object recognition in mobile robots. In such scenarios, neural
networks have long been known to suffer from a problem termed “catastrophic forgetting”(CF) (e.g.,
French (1999)) which denotes the abrupt and near-complete loss of knowledge from previous sub-
tasks D1, . . . , Dk−1 after only a few training iterations on the current sub-task Dk (see Fig. 1b
compared to Fig. 1c). We focus on SLTs from the visual domain with two sub-tasks each, as DNNs
show pronounced CF behavior even when only two sub-tasks are involved.

trainD1

testD1

sub-taskD1 sub-taskD2

trainD2

testD2

test D1∪D2

0 E 2E

testD1

(a) Training scheme

0 2
epoch

0.0

0.5

1.0

te
st

 a
cc

ur
ac

y

D1
D2
D1 D2

training D1 retraining D2

(b) with CF

0 2
epoch

0.0

0.5

1.0

te
st

 a
cc

ur
ac

y

D1
D2
D1 D2

training D1 retraining D2

(c) without CF

Figure 1: Scheme of incremental training experiments conducted in this article (a) and representative outcomes
with (b) and without CF (c). The sequential learning tasks used in this study only have two sub-tasks: D1 and
D2. During training (white background) and re-training (gray background), test accuracy is measured on D1

(blue, M), D2 (green, 2) and D1 ∪ D2 (red, #). The blue curve allows to determine the presence of CF by
simple visual inspection: if there is significant degradation w.r.t. the red curve, then CF has occurred.

1

Published as a conference paper at ICLR 2019

1.1 DISCUSSION OF RELATED WORK ON CF

The field of incremental learning is large, e.g., Parisi et al. (2018) and Gepperth & Hammer (2016).
Recent systematic comparisons between different DNN approaches to avoid CF are performed in,
e.g., Serra et al. (2018) or Kemker et al. (2018). Principal recent approaches to avoid CF include
ensemble methods (Ren et al., 2017; Fernando et al., 2017), dual-memory systems (Shin et al.,
2017; Kemker & Kanan, 2017; Rebuffi et al., 2017; Gepperth & Karaoguz, 2016) and regulariza-
tion approaches. Whereas Goodfellow et al. (2013) suggest Dropout for alleviating CF, the EWC
method (Kirkpatrick et al., 2017) proposes to add a term to the energy function that protects weights
that are important for the previous sub-task(s). Importance is determined by approximating the
Fisher information matrix of the DNN. A related approach is pursued by the Incremental Moment
Matching technique (IMM) (see Lee et al. (2017)), where weights from DNNs trained on a current
and a past sub-tasks are “merged” using the Fisher information matrix. Other regularization-oriented
approaches are proposed in Aljundi et al. (2018); Srivastava et al. (2013) and Kim et al. (2018) which
focus on enforcing sparsity of neural activities by lateral interactions within a layer.

Number of tested datasets In general, most methods referenced here are evaluated only on a few
datasets, usually on MNIST (LeCun et al., 1998) and various derivations thereof (permutation, rota-
tion, class separation). Some studies make limited use of CIFAR10, SVHN, the Amazon sentiment
analysis problem, and non-visual problems such as data from Q-learning of Atari games. A large-
scale evaluation on a huge number of qualitatively different datasets is still missing1.
Model selection and prescience Model selection (i.e., selecting DNN topology and hyper-
parameters) is addressed in some approaches (Goodfellow et al., 2013) but on the basis of a “pre-
scient” evaluation where the best model is selected after all tasks have been processed, an approach
which is replicated in Kirkpatrick et al. (2017). This amounts to a knowledge of future sub-tasks
which is problematic in applications. Most approaches ignore model selection (Lee et al., 2017;
Srivastava et al., 2013; Aljundi et al., 2018; Kim et al., 2018), and thus implicitly violate causality.
Storage of data from previous sub-tasks From a technical point of view, DNNs can be retrained
without storing training data from previous sub-tasks, which is done in Goodfellow et al. (2013) and
Srivastava et al. (2013). For regularization approaches, however, there are regularization parameters
that control the retention of previous knowledge, and thus must be chosen with care. In Kirkpatrick
et al. (2017), this is λ, whereas two such quantities occur in Lee et al. (2017): the “balancing” pa-
rameter α and the regularization parameter λ for L2-transfer. The only study where regularization
parameters are obtained through cross-validation (which is avoided in other studies) is Aljundi et al.
(2018) (for λSNI and λΩ) but this requires to store all previous training data.

This review shows that enormous progress has been made, but that there are shortcomings tied to
applied scenarios which need to be addressed. We will formalize this in Sec. 1.2 and propose an
evaluation strategy that takes these formal constraints into account when testing CF in DNNs.

1.2 INCREMENTAL LEARNING IN APPLIED SCENARIOS

When training a DNN model on SLTs, first of all the model must be able to be retrained at any time
by new classes (class-incremental learning). Secondly, it must exhibit retention, or at least graceful
decay, of performance on previously trained classes. Some forgetting is probably unavoidable, but
it should be gradual and not immediate, i.e., catastrophic. However, if a DNN is operating in, e.g.,
embedded devices or autonomous robots, additional conditions may be applicable:
Low memory footprint Data from past sub-tasks cannot be stored and used for re-training, or else
to determine when to stop re-training.
Causality Data from future sub-tasks, which are often known in academic studies but not in appli-
cations, must not be utilized in any way, especially not for DNN model selection. This point might
seem trivial, but a number of studies such as Kirkpatrick et al. (2017); Goodfellow et al. (2013) and
Srivastava et al. (2013) perform model selection in hindsight, after having processed all sub-tasks.
Constant update complexity Re-training complexity (time and memory) must not depend on the
number of previous sub-tasks, thus more or less excluding replay-based schemes such as Shin et al.
(2017). Clearly, even if update complexity is constant w.r.t. the number of previous sub-tasks, it
should not be too high in absolute terms either.

1Although the comparisons performed in Aljundi et al. (2018) include many datasets, the experimental
protocol is unclear, so it is uncertain how to interpret these results.

2

Published as a conference paper at ICLR 2019

1.3 CONTRIBUTION AND PRINCIPAL CONCLUSIONS

The original contributions of our work can be summarized as follows:

• We propose a training and evaluation paradigm for incremental learning in DNNs that en-
forces typical application constraints, see Sec. 1.2. The importance of such an application-
oriented paradigm is underlined by the fact that taking application constraints into account
leads to radically different conclusions about CF than those obtained by other recent studies
on CF (see Sec. 1.1).

• We investigate the incremental learning capacity of various DNN approaches (Dropout,
LWTA, EWC and IMM) using the largest number of qualitatively different classification
datasets so far described. We find that all investigated models are afflicted by catastrophic
forgetting, or else in violation of application constraints and discuss potential workarounds.

• We establish that the “permuted” type of SLTs (e.g., “permuted MNIST”) should be used
with caution when testing for CF.

• We do not propose a method for avoiding CF in this article. This is because avoiding CF
requires a consensus on how to actually measure this effect: our novel contribution is a
proposal how to do just that.

2 METHODS AND DNN MODELS

We collect a large number of visual classification datasets, from each of which we construct SLTs
according to a common scheme, and compare several recent DNN models using these SLTs. The
experimental protocol is such that application constraints, see Sec. 1.2, are enforced. For all tested
DNN models (see below), we use a TensorFlow (v1.7) implementation under Python (v3.4 and
later). The source code for all processed models, the experiment-generator and evaluation routine
can be found on our public available repository 2.

FC A normal, fully-connected (FC) feed-forward DNN with a variable number and size of
hidden layers, each followed by ReLU, and a softmax readout layer minimizing cross-entropy.
CONV A convolutional neural network (CNN) based on the work of Cirean et al. (2011). It is
optimized to perform well on image classification problems like MNIST. We use a fixed topology:
two conv-layers with 32 and 64 filters of size 5×5 plus ReLU and 2×2 max-pooling, followed by a
fc-layer with 1024 neurons and softmax readout layer minimizing a cross-entropy energy function.
EWC The Elastic Weight Consolidation (EWC) model presented by Kirkpatrick et al. (2017).
LWTA A fully-connected DNN with a variable number and size of hidden layers, each followed by
a Local Winner Takes All (LWTA) transfer function as proposed in Srivastava et al. (2013).
IMM The Incremental Moment Matching model as presented by Lee et al. (2017). We examine the
weight-transfer techniques in our experiments, using the provided implementation.
D-FC and D-CONV Motivated by Goodfellow et al. (2013) we combine the FC and CONV models
with Dropout as an approach to solve the CF problem. Only FC and CONV are eligible for this, as
EWC and IMM include dropout by default, and LWTA is incompatible with Dropout.

2.1 HYPER-PARAMETERS AND MODEL SELECTION

We perform model selection in all our experiments by a combinatorial hyper-parameter optimiza-
tion, whose limits are imposed by the computational resources available for this study. In particular,
we vary the number of hidden layers L ∈ {2, 3} and their size S ∈ {200, 400, 800} (CNNs ex-
cluded), the learning rate ε1 ∈ {0.01, 0.001} for sub-task D1, and the re-training learning rate
ε2 ∈ {0.001, 0.0001, 0.00001} for sub-task D2. The batch size (batchsize) is fixed to 100 for all
experiments, and is used for both training and testing. As in other studies, we do not use a fixed
number of training iterations, but specify the number of training epochs (i.e., passes through the
whole dataset) as E = 10 for each processed dataset (see Sec. 2.2), which allows an approximate
comparison of different datasets. The number of training/testing batches per epoch, B, can be cal-
culated from the batch size and the currently used dataset size. The set of all hyper-parameters for

2https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs

3

https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs

Published as a conference paper at ICLR 2019

a certain model, denoted P , is formed as a Cartesian product from the allowed values of the hyper-
parameters L, S, ε1, ε2 and complemented by hyper-parameters that remain fixed (E , batchsize) or
are particular to a certain model. For all models that use dropout, the dropout rate for the input layer
is fixed to 0.2, and to 0.5 for all hidden layers. For CNNs, the dropout rate is set to 0.5 for both
input and hidden layers. All other hyper-parameters for CNNs are fixed, e.g., number and size of
layers, the max-pooling and filter sizes and the strides (2 × 2) for each channel. These decisions
were made based on the work of Goodfellow et al. (2013). The LWTA block size is fixed to 2,
based on the work of Srivastava et al. (2013). The model parameter λ for EWC is set to λ1/ε2 (set
but not described in the source code of Kirkpatrick et al. (2017)). For all models except IMM, the
momentum parameter for the optimizer is set to µ = 0.99 (Sutskever et al., 2013). For the IMM
models, the SGD optimizer is used, and the regularizer value for the L2-regularization is set to 0.01
for L2-transfer and to 0.0 for weight transfer.

2.2 DATASETS

We select the following datasets (see Tab. 1). In order to construct SLTs uniformly across datasets,
we choose the 10 best-represented classes (or random classes if balanced) if more are present.

MNIST (LeCun et al., 1998) is the common benchmark for computer vision systems and classifica-
tion problems. It consist of gray scale images of handwritten digits (0-9).
EMNIST (Cohen et al., 2017) is an extended version of MNIST with additional classes of hand-
written letters. There are different variations of this dataset: we extract the ten best-represented
classes from the By Class variation containing 62 classes.
Fruits 360 (Murean & Oltean, 2017) is a dataset comprising fruit color images from different rota-
tion angles spread over 75 classes, from which we extract the ten best-represented ones.
Devanagari (Acharya et al., 2015) contains gray scale images of Devanagari handwritten letters.
From the 46 character classes (1.700 images per class) we extract 10 random classes.
FashionMNIST (Xiao et al., 2017) consists of images of clothes in 10 classes and is structured like
the MNIST dataset. We use this dataset for our investigations because it is a “more challenging
classification task than the simple MNIST digits data (Xiao et al., 2017)”.
SVHN (Netzer et al., 2011) is a 10-class dataset based on photos of house numbers (0-9). We use
the cropped digit format, where the number is centered in the color image.
CIFAR10 (Krizhevsky, 2009) contains color images of real-world objects e.g, dogs, airplanes etc.
NotMNIST (Bulatov Yaroslav) contains grayscale images of the 10 letter classes from “A” to “J”,
taken from different publicly available fonts.
MADBase (Abdelazeem Sherif & El-Sherif Ezzat) is a modified version of the “Arabic Digits
dataBase”, containing grayscale images of handwritten digits written by 700 different persons.

Table 1: Overview of each dataset’s detailed properties. Image dimensions are given as width × height ×
channels. Concerning data imbalance, the largest percentual difference in sample count between any two
classes is given for training and test data, a value of 0 indicating a perfectly balanced dataset.

Dataset
Properties image size number of elements class balance (%)

train test train test
CIFAR10 32× 32×3 50.000 10.000 0 0
Devanagari 32× 32×1 18.000 2.000 0.3 2.7
EMNIST 28× 28×1 345.035 57.918 2.0 2.0
FashionMNIST 28× 28×1 60.000 10.000 0 0
Fruits 360 100×100×3 6.148 2.052 4.0 4.2
MADBase 28× 28×1 60.000 10.000 0 0
MNIST 28× 28×1 55.000 10.000 2.2 2.4
NotMNIST 28× 28×1 529.114 18.724 ∼0 ∼0
SVHN 32× 32×3 73.257 26.032 12.6 13.5

2.3 SEQUENTIAL LEARNING TASKS (SLTS)

As described in Sec. 1, each SLT consists of two sub-tasks D1 and D2. For each dataset (see
Sec. 2.2), these are defined by either applying different spatial permutations to all image data (DP10-

4

Published as a conference paper at ICLR 2019

10 type SLTs), or by subdividing classes into disjunct groups (see Tab. 2). For the latter case, we
include SLTs where the second sub-task adds only 1 class (D9-1 type SLTs) or 5 classes (D5-5 type
SLTs), since CF may be tied to how much newness is introduced. We include permutations (DP10-
10) since we suspected that this type of SLT is somehow much easier than others, and therefore not
a good incremental learning benchmark. As there are far more ways to create D5-5 type SLTs than
D9-1 type SLTs, we create more of the former (8-vs-3) in order to avoid misleading results due to a
particular choice of subdivision, whereas we create only a single permutation-type SLT.

Table 2: Overview of all SLTs. The assignment of classes to sub-tasks D1 and D2 are disjunct, except for
DP10-10 where two different seeded random image permutations are applied.

SLT→ D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-5h D9-1a D9-1b D9-1c DP10-10
D1 0-4 0 2 4 6 8 3 4 6 8 9 0 2 5 6 7 0 1 3 4 5 0 3 4 8 9 0 5 6 7 8 0 2 3 6 8 0-8 1-9 0 2-9 0-9
D2 5-9 1 3 5 7 9 0 1 2 5 7 1 3 4 8 9 2 6 7 8 9 1 2 5 6 7 1 2 3 4 9 1 4 5 7 9 9 0 1 0-9

3 EXPERIMENTS

This study presents just one, albeit very large, experiment, whose experimental protocol implements
the constraints from Sec. 1.2.

Every DNN model from Sec. 2 is applied to each SLT as defined in Sec. 2.3 while taking into account
model selection, see Sec. 2.1. A precise definition of our application-oriented experimental protocol
is given in Alg. 1. For a given model m and an SLT (D1 and D2), the first step is to determine the
best hyper-parameter vector ~p∗ for sub-task D1 only (see lines 1-4), which determines the model
m~p∗ used for re-training. In a second step, m~p∗ (from line 5) is used for re-training on D2, with a
different learning rate ε2 which is varied separately. We introduce two criteria for determining the
(ε2-dependent) quality of a re-training phase (lines 6-10): “best”, defined by the highest test accuracy
on D1 ∪D2, and “last”, defined by the test accuracy on D1 ∪D2 at the end of re-training. Although
the “best” criterion violates the application constraints of Sec. 1.2 (requires D1), we include it for
comparison purposes. Finally, the result is computed as the highest ε2-dependent quality (line 11).
Independently of the second step, another training of m~p∗ is conducted using D1 ∪D2, resulting in
what we term baseline accuracy.

Evaluation for IMM differs slightly: in line 5, a copy of m~p∗ is kept, termed m1
~p∗ , and the weights

of m~p∗ are re-initialized. After selecting the best re-trained model m2
~p∗ as a function of ε2, final

performance q~p∗ is obtained by ”merging” the models m1
~p∗ and m2

~p∗ and testing the result.

Algorithm 1: The application-oriented evaluation strategy used in this study.
Data: model m, SLT with sub-tasks D1, D2, hyper-parameter value set P
Result: incremental learning quality for model with hyper-parameters ~p∗: q~p∗

1 forall ~p ∈ P do // determine accuracy for all hyper-parameters when training on D1
2 for t← 0 to E · B do
3 train(m~p, Dtrain

1 ,ε1)
4 q~p,t ←test(m~p, Dtest

1 ,t)

5 m~p∗ ← model m~p,t with maximum q~p,t // find best model with max. accuracy on D1

6 forall ε2 do // find best ε2 value
7 m~p∗,ε2 ← m~p∗

8 for t← 0 to E · B do
9 train(m~p∗,ε2 , D

train
2 ,ε2)

10 q~p∗,t,ε2 ←test(m~p∗,ε2 , Dtest
2 ,t)

11 q~p∗ ← maxε2 best/lastt q~p,t,ε2 // find parameter set with the best accuracy on D2

4 FINDINGS

The results of the experiment described in Sec. 3 are summarized in Tab. 3, and in Tab. 4 for IMM.
They lead us to the following principal conclusions:

5

Published as a conference paper at ICLR 2019

Permutation-based SLTs should be used with caution We find that DP10-10, the SLT based on
permutation, does not show CF for any model and dataset, which is exemplary visualized for the
FC model in Fig. 2 which fails completely for all other SLTs. While we show this only for SLTs
with two sub-tasks, and it is unknown how experiments with more sub-tasks would turn out, we
nevertheless suggest caution when intepreting results on permutation-based SLTs.

epoch

0 2 4 6 8 10 12 14 16 18 20 dataset CIFAR10
 SVHN

 FashionMNIST
 NotMNIST

 Devanagari
 MADBase

 MNIST
 EMNIST

 Fruits

ac
cu

ra
cy

0

0.5

1.0

D1
D2
D1 D2
max. baseline

Figure 2: Best FC experiments for DP10-10. The blue surfaces (epochs 0-10) represent the accuracy on D1,
the green (covered here) and red surfaces the accuracy on D2 and D1 ∪D2 during re-training (epochs 10-20).
The white bars indicate baseline performance. See also Appendix B for 2D plots.

All examined models exhibit CF While this is not surprising for FC and CONV, D-FC as proposed
in Goodfellow et al. (2013) performs poorly (see Fig. 3), as does LWTA (Srivastava et al., 2013).
For EWC and IMM, the story is slightly more complex and will be discussed below.

epoch

0 2 4 6 8 10 12 14 16 18 20 dataset SVHN
 CIFAR10

 FashionMNIST
 Devanagari

 NotMNIST
 MNIST

 MADBase
 EMNIST

 Fruits

ac
cu

ra
cy

0

0.5

1.0

D1
D2
D1 D2
max. baseline

Figure 3: Best D-FC experiments for SLT D5-5, to be read as Fig. 2 and showing the occurrence of CF. See
also Appendix B for 2D plots.

EWC is mildly effective against CF for simple SLTs. Our experiments shows that EWC is ef-
fective against CF for D9-1 type SLTs, at least when the “best” evaluation criterion is used, which
makes use of D1. This, in turn, violates the application requirements of Sec. 1.2. For the “last”
criterion not making use of D1, EWC performance, though still significant, is much less impressive.
We can see the origins of this difference illustrated in Fig. 4.

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

(a) flat linear forgetting

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

(b) steeper linear forgetting

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

(c) catastrophic forgetting

Figure 4: Illustrating the difference between the “best” and “last” criterion for EWC. Shown is the accuracy
over time for the best model on SLT D9-1c using EMNIST (a), D9-1a using EMNIST (b) and D9-1b using
Devanagari (c). The blue curve (M) measures the accuracy on D1, green (2) only on D2 and red (#) the
D1 ∪D2 during the training (white) and the re-training phase (gray). Additionally, the baseline (dashed line)
is indicated. In all three experiments, the “best” strategy results in approximately 90% accuracy, occurring at
the beginning of re-training when D2 has not been learned yet. Here, the magnitude of the best/last difference
is a good indicator of CF which clearly happens in (c), partly in (b) and slightly or not at all in (a).

6

Published as a conference paper at ICLR 2019

EWC is ineffective against CF for more complex problems. Tab. 3 shows that EWC cannot
prevent CF for D5-5 type SLTs, see Fig. 5. Apparently, the EWC mechanism cannot protect all the
weights relevant for D1 here, which is likely to be connected to the fact that the number of samples
in both sub-tasks is similar. This is not the case for D9-1 type tasks where EWC does better and
where D2 has about 10% of the samples in D1.

epoch

0 2 4 6 8 10 12 14 16 18 20 dataset Fruits
 SVHN

 CIFAR10
 Devanagari

 FashionMNIST
 NotMNIST

 MADBase
 MNIST

 EMNIST

ac
cu

ra
cy

0

0.5

1.0

D1
D2
D1 D2
max. baseline

Figure 5: Best EWC experiments for SLT D5-5d constructed from all datasets, to be read as Fig. 2. We observe
that CF happens for all datasets. See also Appendix B for 2D plots.

Table 3: Summary of incremental learning quality q~p∗ , see Alg. 1, over SLTs of type D9-1, D5-5 and DP10-10
(see also Tab. 5). For aggregating results over SLTs of the same type, the minimal value of q~p∗ is taken. Each
cell contains two qualities evaluated according to the “best” and “last” criteria, see Alg. 1. Cell coloring was
determined according to “best”. For DP10-10 and D5-5 type tasks, CF (black cells) is indicated by qualities
< 0.5. The corresponding threshold for D9-1 type tasks is 0.9. Only when the threshold is exceeded, re-training
can be regarded as successful which is visualized by a grayscale gradient (black – gray – white).

D
S SLT

Model FC D-FC CONV D-CONV LWTA EWC

C
IF

A
R

10 D5-5 .30/.28 .26/.23 .31/.10 .30/.18 .31/.30 .32/.20
D9-1 .45/.10 .37/.10 .45/.10 .48/.10 .45/.10 .36/.08

DP10-10 .54/.52 .44/.43 .52/.50 .56/.55 .54/.51 .57/.46

D
ev

an
ag

ar
i D5-5 .49/.42 .46/.26 .49/.45 .49/.11 .11/.10 .40/.23

D9-1 .86/.10 .84/.09 .88/.10 .89/.09 .86/.09 .88/.09
DP10-10 .98/.98 .98/.98 .95/.95 1.0/1.0 .97/.96 1.0/.96

E
M

N
IS

T D5-5 .50/.48 .50/.48 .50/.48 .50/.48 .50/.48 .36/.08
D9-1 .88/.09 .88/.09 .89/.09 .89/.09 .88/.09 .92/.51

DP10-10 .99/.99 .99/.99 1.0/1.0 1.0/1.0 .99/.99 1.0/.98

F
M

N
IS

T D5-5 .46/.45 .46/.44 .47/.45 .46/.46 .46/.46 .55/.47
D9-1 .78/.10 .77/.10 .81/.10 .81/.10 .78/.10 .85/.50

DP10-10 .90/.88 .88/.87 .92/.92 .92/.92 .90/.89 .95/.95

Fr
ui

ts

D5-5 .32/.14 .46/.13 .14/.09 .14/.09 .28/.11 .34/.03
D9-1 .34/.09 .38/.21 .14/.09 .23/.09 .38/.09 .55/.13

DP10-10 1.0/.97 1.0/.99 .90/.88 .97/.96 .98/.12 .98/.90

M
A

D
B

as
e D5-5 .49/.49 .49/.49 .49/.49 .49/.10 .50/.49 .40/.26

D9-1 .89/.10 .91/.10 .89/.10 .90/.10 .94/.10 .99/.70
DP10-10 .99/.99 .99/.99 .99/.99 .99/.99 .99/.98 1.0/.99

M
N

IS
T D5-5 .49/.48 .49/.47 .48/.11 .48/.15 .10/.09 .50/.31

D9-1 .88/.10 .88/.10 .88/.10 .88/.10 .87/.10 .99/.71
DP10-10 .99/.99 .98/.98 .99/.99 .99/.99 .98/.98 1.0/.98

N
ot

M
N

IS
T D5-5 .49/.49 .49/.49 .49/.49 .50/.49 .50/.49 .57/.50
D9-1 .87/.10 .86/.10 .88/.10 .88/.10 .87/.10 .88/.31

DP10-10 .97/.97 .97/.97 .98/.98 .98/.98 .97/.97 .99/.94

SV
H

N

D5-5 .30/.22 .28/.08 .20/.08 .20/.08 .40/.20 .28/.16
D9-1 .60/.07 .35/.07 .67/.07 .58/.07 .61/.07 .26/.10

DP10-10 .81/.80 .50/.50 .20/.20 .84/.84 .82/.79 .39/.29
DP10-10, D5-5: 100%50% 75%

D9-1: 100%90% 95%

7

Published as a conference paper at ICLR 2019

IMM is effective for all SLTs but unfeasible in practice. As we can see from Tab. 4, wtIMM
clearly outperforms all other models compared in Tab. 3. Especially for the D5-5 type SLTs, a
modest incremental learning quality is attained, which is however quite far away from the baseline
accuracy, even for MNIST-derived SLTs. This is in contrast to the results reported in Lee et al. (2017)
for MNIST: we attribute this discrepancy to the application-oriented model selection procedure using
only D1 that we perform. In contrast, in Lee et al. (2017), a model with 800/800/800 neurons, for
which good results on MNIST are well-established, is chosen beforehand, thus arguably making
implicit use ofD2. A significant problem of IMM is the determination of the balancing parameter α,
exemplarily illustrated in Fig. 6. Our results show that the optimal value cannot simply be guessed
from the relative sizes of D1 and D2, as it is done in Lee et al. (2017), but must be determined
by cross-validation, thereby requiring knowledge of D1 (violates constraints). Apart from these
conceptual issues, we find that the repeated calculation of the Fisher matrices is quite time and
memory-consuming (>4h and >8GB), to the point that the treatment of SLTs from certain datasets
becomes impossible even on high-end machine/GPU combinations when using complex models.
This is why we can evaluate IMM only for a few datasets. It is possible that this is an artifact of
the TensorFlow implementation, but in the present state IMM nevertheless violates not one but two
application constraints from Sec. 1.2. Fig. 7 and Fig. 8 give a visual impression of training an IMM
model on D9-1 and D5-5 type SLTs, again illustrating basic feasibility, but also the variability of the
“tuning curves” we use to determine the optimal balancing parameter α.

0 2 4 6 8 10 12 14 16 18 20

epoch
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline best
train:D1;test:D1
train:D2;test:D2

0.0 0.2 0.4 0.6 0.8 1.0

alpha
0.0

0.2

0.4

0.6

0.8

1.0
te

st
 a

cc
ur

ac
y

Mean =0.60, max=0.79

Mode =0.39, max=0.83

Mean-IMM;test:All
Mode-IMM;test:All

Figure 6: Accuracy measurements of best IMM model on SLT D5-5f for Devanagari dataset. On the left-hand
side, the blue curve (M) measures the accuracy of the first DNN trained onD1, the green curve (2) the accuracy
of the second DNN trained on D2. Additionally, the baseline (dashed line) is delineated. The right-hand side
shows the tested accuracy on D1 ∪D2 of the merged DNN as a function of α, both for mean-IMM (red #) and
the mode-IMM (orange O) variants. See also Appendix B for 2D plots.

 epoch | alpha

0 2 4 6 8 10 12 14 16 18 200.0 0.2 0.4 0.6 0.8 1.0 dataset CIFAR10
 SVHN

 FashionMNIST

 Fruits
 MNIST

 Devanagari
 MADBase

ac
cu

ra
cy

0

0.5

1.0

D1
D2
mean
mode
max. baseline

Figure 7: Best wtIMM experiments for SLT D5-5b constructed from datasets we were able to test. The blue
surfaces (epochs 0-10) represent the test accuracy during training onD1, the green surfaces the test accuracy on
D2 during training on D2 (epochs 10-20). The white bars in the middle represent baseline accuracy, whereas
the right part shows accuracies on D1 ∪D2 for different α values, computed for mean-IMM (orange surfaces)
and mode-IMM (red surfaces). See also Appendix B for 2D plots.

5 CONCLUSIONS

The primary conclusion from the results in Sec. 4 is that CF still represents a major problem when
training DNNs. This is particularly true if DNN training happens under application constraints as
outlined in Sec. 1.2. Some of these constraints may be relaxed depending on the concrete applica-
tion: if some prior knowledge about future sub-task exists, it can be used to simplify model selection

8

Published as a conference paper at ICLR 2019

 epoch | alpha

0 2 4 6 8 10 12 14 16 18 200.0 0.2 0.4 0.6 0.8 1.0 dataset CIFAR10
 Fruits

 SVHN
 Devanagari

 MNIST
 FashionMNIST

 MADBase

ac
cu

ra
cy

0

0.5

1.0

D1
D2
mean
mode
max. baseline

Figure 8: Best wtIMM experiments for the tested datasets for SLT D9-1c, to be read as Fig. 7. See also
Appendix B for 2D plots.

Table 4: Summary of incremental learning quality q~p∗ , see Alg. 1, for the IMM model, evaluated on SLTs of
type D9-1, D5-5 (DP10-10 is omitted because near-perfect performance was always attained). For aggregating
results over SLTs of the same type, the minimal value of q~p∗ (the best) is taken, as the presence of CF is
indicated by a single occurrence of it in any SLT of the same type. To be interpreted as Tab. 3.

Model
SLT CIFAR10 Devanagari F MNIST MADBase MNIST SVHN

D5-5 D9-1 D5-5 D9-1 D5-5 D9-1 D5-5 D9-1 D5-5 D9-1 D5-5 D9-1

w
tI

M
M mode .31 .43 .73 .85 .70 .78 .91 .91 .84 .87 .56 .60

mean .30 .43 .67 .85 .62 .78 .82 .92 .82 .88 .50 .59

and improve results. If sufficient resources are available, a subset of previously seen data may be
kept in memory and thus allow a “best” type evaluation/stopping criterion for re-training, see Alg. 1.

Our evaluation approach is similar to Kemker et al. (2018), and we adopt some measures for CF pro-
posed there. A difference is the setting of up to 10 sub-tasks, whereas we consider only two of them
since we focus less on the degree but mainly on presence or absence of CF. Although comparable
both in the number of tested models and benchmarks, Serra et al. (2018) uses a different evaluation
methodology imposing softer constraints than ours, which is strongly focused on application scenar-
ios. This is, to our mind, the reason why those results differ significantly from ours and underscores
the need for a consensus of how to measure CF.

In general application scenarios without prior knowledge or extra resources, however, an essential
conclusion we draw from Sec. 4 is that model selection must form an integral part of training a
DNN on SLTs. Thus, a wrong choice of hyper-parameters based on D1 can be disastrous for the
remaining sub-tasks, which is why application scenarios require DNN variants that do not have
extreme dependencies on hyper-parameters such as layer number and layer sizes.

Lastly, our findings indicate workarounds that would make EWC or IMM practicable in at least
some application scenarios. If model selection is addressed, a small subset of D1 may be kept in
memory for both methods: to determine optimal values of α for IMM and to determine when to stop
re-training for EWC. Fig. 6 shows that small changes to α do not dramatically impact final accuracy
for IMM, and Fig. 4 indicates that accuracy loss as a function of re-training time is gradual in most
cases for EWC. The inaccuracies introduced by using only a subset of D1 would therefore not be
very large for both algorithms.

To conclude, this study shows that the consideration of applied scenarios significantly changes
the procedures to determine CF behavior, as well as the conclusions as to its presence in latest-
generation DNN models. We propose and implement such a procedure, and as a consequence claim
that CF is still very much of a problem for DNNs. More research, either on generic solutions, or on
workarounds for specific situations, needs to be conducted before the CF problem can be said to be
solved. A minor but important conclusion is that results obtained on permutation-type SLTs should
be treated with caution in future studies on CF.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp
GPU used for this research.

9

Published as a conference paper at ICLR 2019

REFERENCES

Abdelazeem Sherif and El-Sherif Ezzat. AHDBase. URL http://datacenter.aucegypt.
edu/shazeem/.

Shailesh Acharya, Ashok Kumar Pant, and Prashnna Kumar Gyawali. Deep learning based large
scale handwritten devanagari character recognition. In Software, Knowledge, Information Man-
agement and Applications (SKIMA), 2015 9th International Conference on, pp. 1–6. IEEE, 2015.

Rahaf Aljundi, Marcus Rohrbach, and Tinne Tuytelaars. Selfless sequential learning. arXiv preprint
arXiv:1806.05421, 2018.

Bulatov Yaroslav. Machine Learning, etc: notMNIST dataset. URL http://yaroslavvb.
blogspot.com/2011/09/notmnist-dataset.html.

Dan C. Cirean, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and Jürgen Schmidhuber. Flexi-
ble, high performance convolutional neural networks for image classification. IJCAI International
Joint Conference on Artificial Intelligence, pp. 1237–1242, 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending
MNIST to handwritten letters. Proceedings of the International Joint Conference on Neural Net-
works, pp. 2921–2926, 2017.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Robert French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3
(4):128–135, 1999.

Alexander Gepperth and Barbara Hammer. Incremental learning algorithms and applications. Eu-
ropean Symposium on Artificial Neural Networks (ESANN), (April):357–368, 2016.

Alexander Gepperth and Cem Karaoguz. A bio-inspired incremental learning architecture for ap-
plied perceptual problems. Cognitive Computation, 8(5):924–934, 2016.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning.
arXiv preprint arXiv:1711.10563, 2017.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher Kanan. Mea-
suring catastrophic forgetting in neural networks. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Hyo-Eun Kim, Seungwook Kim, and Jaehwan Lee. Keep and learn: Continual learning by
constraining the latent space for knowledge preservation in neural networks. arXiv preprint
arXiv:1805.10784, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
2017.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Science Department,
University of Toronto, Tech., pp. 1–60, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pp. 4652–4662, 2017.

10

http://datacenter.aucegypt.edu/shazeem/
http://datacenter.aucegypt.edu/shazeem/
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html

Published as a conference paper at ICLR 2019

Horea Murean and Mihai Oltean. Fruit recognition from images using deep learning. arXiv preprint
arXiv:1712.00580, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning
and unsupervised feature learning, volume 2011, pp. 5, 2011.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. arXiv preprint arXiv:1802.07569, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. iCARL:
Incremental classifier and representation learning. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5533–5542. IEEE, 2017.

Boya Ren, Hongzhi Wang, Jianzhong Li, and Hong Gao. Life-long learning based on dynamic
combination model. Applied Soft Computing Journal, 56:398–404, 2017.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In Proceedings of the 35th International Conference on
Machine Learning, pp. 4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Rupesh Kumar Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, and Jürgen
Schmidhuber. Compete to Compute. In Advances in Neural Information Processing Systems,
pp. 2310–2318, 2013.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings, (2010):8609–8613, 2013. doi: 10.1109/ICASSP.
2013.6639346.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, pp. 1–6, 2017.

11

Published as a conference paper at ICLR 2019

A ADDITIONAL EVALUATION METRICS

Table 5: Results of Tab. 3, using the measure Ωall from Kemker & Kanan (2017). This is achieved by dividing
the “best” measure from Tab. 3 by the baseline performance. Each table entry contains two numbers: the
baseline performance and Ωall, and cell coloring (indicating presence or absence of CF) is performed based
on Ωall. The overall picture is similar to the one from Tab. 3, as indicated by the cell coloring. A notable
exception is the performance of the CONV and D-CONV models on the SVHN dataset, where Ωall shows an
increase, but we do not consider this significant since the already the baseline performance is at chance level
here. That is, this problem is too hard for the simple architectures we use, in which case a small fluctuation
due to initial conditions will exceed baseline performance. We therefore conclude that Ωall is an important
measure whenever baseline performance is better than random, in which case is it not meaningful. On the other
hand, our measure works well for random baselines but is less insightful for the opposite case (as the presence
of CF is not immediately observable from the raw performances. A combination of both measures might be
interesting to cover both cases.

D
S SLT

Model FC D-FC CONV D-CONV LWTA EWC

C
IF

A
R

10 D5-5 .50/.59 .41/0.63 .49/.64 .48/0.63 .52/.60 .35/.91
D9-1 .51/.88 .42/0.89 .51/.90 .52/0.94 .51/.88 .44/.82

DP10-10 .53/1.02 .43/1.01 .54/.97 .50/1.12 .52/1.03 .51/1.12

D
ev

an
ag

ar
i D5-5 .95/.51 .90/0.51 .98/.50 .99/0.50 .91/.12 .88/.45

D9-1 .97/.89 .95/0.88 .99/.88 .99/0.89 .96/.89 .99/.89
DP10-10 .97/1.01 .97/1.00 .12/8.11 .99/1.00 .96/1.01 1.0/1.0

E
M

N
IS

T D5-5 .99/.51 .99/0.51 .99/.50 1.0/0.50 .99/.51 .94/.38
D9-1 .99/.89 .99/0.89 1.0/.89 1.0/0.89 .99/0.89 1.0/.92

DP10-10 .99/1.0 .99/1.00 1.0/1.0 1.0/1.00 .99/1.0 1.0/1.0

F
M

N
IS

T D5-5 .87/.53 .87/0.52 .90/.52 .91/0.51 .88/.53 .93/.59
D9-1 .88/.88 .87/0.88 .91/.89 .91/0.89 .88/.88 .95/.89

DP10-10 .89/1.0 .88/1.00 .91/1.01 .92/1.00 .89/1.01 .95/1.0

Fr
ui

ts

D5-5 .51/.62 .96/0.48 .78/.17 .88/0.16 1.0/.28 .63/.54
D9-1 .52/.66 1.0/0.38 .79/.18 .99/0.23 .99/.39 .91/.60

DP10-10 1.0/1.0 1.0/1.00 .75/1.19 .80/1.20 .99/.99 .78/1.26

M
A

D
B

as
e D5-5 .99/.50 .98/0.50 .99/.50 .99/0.50 .98/.50 .97/.41

D9-1 .99/.90 .99/0.92 .99/.90 .99/0.90 .98/.95 1.0/.99
DP10-10 .99/1.0 .99/1.00 .99/1.0 .99/1.00 .98/1.0 1.0/1.0

M
N

IS
T D5-5 .98/.51 .97/0.51 .99/.49 .99/0.49 .95/.10 .94/.53

D9-1 .98/.90 .98/0.90 .99/.88 .99/0.88 .98/.88 1.0/.99
DP10-10 .99/1.0 .98/1.00 .99/1.0 .99/1.00 .98/1.0 1.0/1.0

N
ot

M
N

IS
T D5-5 .96/.51 .96/0.51 .97/.51 .97/0.51 .96/.51 .99/.58

D9-1 .97/.90 .96/0.90 .98/.90 .98/0.90 .97/.90 1.0/.88
DP10-10 .97/1.0 .97/1.00 .98/1.0 .98/1.00 .97/1.0 .99/1.0

SV
H

N

D5-5 .74/.40 .37/0.76 .20/.99 .20/1.00 .77/.52 .30/.93
D9-1 .75/.79 .41/0.86 .20/3.31 .20/2.89 .77/.79 .30/.87

DP10-10 .80/1.02 .52/0.98 .20/1.0 .20/4.25 .80/1.02 .44/.89
100%90% 95%

12

Published as a conference paper at ICLR 2019

B SELECTED EXPERIMENTAL RESULTS AS 2D PLOTS

Here, we present the best results of all algorithms on the MNIST, EMNIST and Devanagari datasets
(according to the “best” criterion) for the D9-1b SLT, and the best EWC results on the D5-5d SLT
(qualitatively identical to the other D5-5 type SLTs). Such 2D representations of some experimental
results, to be just as Fig. 4, may give more clear insights into the details of each experiment.

Here we can observe CF behavior for all algorithms except EWC and IMM for D9-1b. We can
infer that there was no discernible dependency between the occurrence of CF and particular hyper-
parameter settings (number and size of layers, in particular) since these are already the best exper-
iments for each algorithm and dataset: if these show CF, this means that non of the settings we
sampled were able to prevent CF. EWC shows clear CF for the Devanagari dataset, but might con-
ceivably do better on EMNIST given a little more time for learning D2 (this will be investigated).
For D5-5d, clear CF occurs even for EWC. IMM does not exhibit CF for D9-1b (at enormous com-
putations cost, though), and we observe that the value for the balancing parameter cannot simply be
set to 0.9 respectively 0.1, as it has its argmax elsewhere.

FC D9-1b EMNIST FC D9-1b MNIST FC D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

D-FC D9-1b EMNIST D-FC D9-1b MNIST D-FC D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0
te

st
 a

cc
ur

ac
y

baseline max
test:D1
test:D2
test:D1 D2

CONV D9-1b EMNIST CONV D9-1b MNIST CONV D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

D-CONV D9-1b EMNIST D-CONV D9-1b MNIST D-CONV D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

13

Published as a conference paper at ICLR 2019

LWTA D9-1b EMNIST LWTA D9-1b MNIST LWTA D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

EWC D9-1b EMNIST EWC D9-1b MNIST EWC D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y
baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

EWC D5-5d EMNIST EWC D5-5d MNIST EWC D5-5d Devanagari

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

0 2 4 6 8 10 12 14 16 18 20
epoch

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline max
test:D1
test:D2
test:D1 D2

wtIMM D9-1b Devanagari

0 2 4 6 8 10 12 14 16 18 20

epoch
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline best
train:D1;test:D1
train:D2;test:D2

0.0 0.2 0.4 0.6 0.8 1.0

alpha
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

Mean =0.25, max=0.85

Mode =0.75, max=0.85

Mean-IMM;test:All
Mode-IMM;test:All

wtIMM D9-1b MNIST

0 2 4 6 8 10 12 14 16 18 20

epoch
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

baseline best
train:D1;test:D1
train:D2;test:D2

0.0 0.2 0.4 0.6 0.8 1.0

alpha
0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y Mean =0.21, max=0.93

Mode =0.18, max=0.88

Mean-IMM;test:All
Mode-IMM;test:All

14

	Introduction
	Discussion of related work on CF
	Incremental learning in applied scenarios
	Contribution and principal conclusions

	Methods and DNN models
	Hyper-parameters and model selection
	Datasets
	Sequential Learning Tasks (SLTs)

	Experiments
	Findings
	Conclusions
	Additional evaluation metrics
	Selected experimental results as 2D plots

