
A Comprehensive Approach to DRAM Power Management

Ibrahim Hur† Calvin Lin‡

†IBM Corporation ‡The University of Texas at Austin
Systems and Technology Group Department of Computer Sciences

Austin, TX Austin, TX
ibrahur@us.ibm.com lin@cs.utexas.edu

Abstract

This paper describes a comprehensive approach for us-
ing the memory controller to improve DRAM energy effi-
ciency and manage DRAM power. We make three contribu-
tions: (1) we describe a simple power-down policy for ex-
ploiting low power modes of modern DRAMs; (2) we show
how the idea of adaptive history-based memory schedulers
can be naturally extended to manage power and energy;
and (3) for situations in which additional DRAM power re-
duction is needed, we present a throttling approach that ar-
bitrarily reduces DRAM activity by delaying the issuance
of memory commands. Using detailed microarchitectural
simulators of the IBM Power5+ and a DDR2-533 SDRAM,
we show that our first two techniques combine to increase
DRAM energy efficiency by an average of 18.2%, 21.7%,
46.1%, and 37.1% for the Stream, NAS, SPEC2006fp, and
commercial benchmarks, respectively. We also show that
our throttling approach provides performance that is within
4.4% of an idealized oracular approach.

1 Introduction

Because DRAMs can account for a significant amount
of a system’s total power consumption [24], chip designers
have begun to seek active ways to manage DRAM power.
Two possible power management goals have emerged. The
first goal is to improve energy efficiency, which translates
into lower energy bills. The second goal is to provide a
mechanism for throttling the flow of memory commands
to ensure that power consumption falls within some power
budget. Such throttling may decrease performance, but it
has at least two benefits.

• Throttling can reduce system costs. Because of the
large disparity between worst case and expected case
power consumption, it is expensive—both in terms of

the power supply and the cooling system—to provision
a system for the worst case. If a system can instead
dynamically throttle its power to reduce worst case
power consumption, the system can be provisioned to
be much less expensive.

• Throttling supportsPower Shifting[12], a technique
that dynamically assigns a power budget to different
system components, such as the CPU and DRAM,
to maximize performance for a given workload and a
given power budget. Power Shifting assumes that each
subsystem can throttle its power consumption to stay
within its given budget.

For DRAM, one mechanism for addressing both of these
power goals is to put idle memory devices into a low power
mode. Although DRAMs with low power modes are com-
mercially available, no specific policy for their use has been
evaluated for commercially available server-class systems.
Because there are latencies associated with entrance into
and exit from the various low power modes, it is difficult to
know when to transition into and out of low power mode.
A policy that toggles modes too frequently can increase
the latency of memory commands, thereby reducing per-
formance. A policy that transitions to low power mode too
slowly will miss opportunities to save power, while a pol-
icy that transitions out of low power mode too slowly will
unnecesarily degrade performance.

Low power mode also plays an important role in throt-
tling. By forcing memory commands to wait in the memory
controller, DRAM structures can remain in low power mode
for arbitrarily long periods of time, thereby modulating
the DRAM’s average power consumption over some small
time interval. The key difficulty is to determine the mini-
mum throttling delay—the period of time for which mem-
ory commands will be blocked in the memory controller—
that is needed to stay below a given power threshold. The
determination of this delay is complicated by the complex

parallel structure of modern DRAMs and the workload-
dependent distribution of memory commands. Consider a
particular point in the execution where a throttling delay of
t cycles is ideal for a given power threshold. If the power
management system is only able to estimate that a delay of
t±δ cycles will suffice, then the power management system
will be forced to conservatively choose a longer target delay
of t + δ cycles, resulting in unnecessary performance loss.
Thus, for a given power threshold, a more accurate estimate
of throttling delay translates to increased performance.

This paper addresses both of the above power manage-
ment goals by describing policies for putting memory de-
vices into low power mode. We propose small changes
to the memory controller that significantly improve DRAM
energy efficiency and support accurate power throttling. We
evaluate our solutions by using extremely accurate simu-
lators for the IBM Power5+ processor and a DDR2-533
SDRAM. In particular, this paper makes three contribu-
tions:

1. We describe and evaluate a simple and practical pol-
icy for using the DRAM power-down mechanism. We
show that when compared against a baseline system
that does not use the power-down mechanism, our pol-
icy increases DRAM energy efficiency by an average
of 11.6%, 18.1%, 43.4%, and 34.2% for the Stream,
NAS, SPEC2006fp, and commercial benchmarks, re-
spectively.

2. We present a small change to the Adaptive History-
Based Scheduler (AHB) [16] that adds power con-
sumption as a scheduling criterion. This modified
AHB scheduler increases the average idle duration of
each rank, thereby increasing the utility of the power-
down unit. When combined with our power-down
policy, our scheduler increases DRAM energy effi-
ciency by an average of 18.2%, 21.7%, 46.1%, and
37.1% for the Stream, NAS, SPEC2006fp, and com-
mercial benchmarks, respectively, and it decreases per-
formance by 2.7%, 1.2%, 0.8%, and 0.6%, respec-
tively.

3. We present a throttling approach that uses an accurate
delay estimation model. This delay model is the main
conceptual contribution of this paper, and the key idea
is to build an offline regression model that uses only a
small number of input parameters, which allows the
dynamic overhead of the estimator to be low. Our
delay estimation model provides performance that is
within 4.4%, 0.9%, 1.3%, and 2.7% of a perfect oracu-
lar model, for the Stream, NAS, SPEC2006fp, com-
mercial benchmarks, respectively. By contrast, our
baseline model, which was proposed by others [12],
degrades performance by 29.6%, 20.7%, 18.9%, and
16.4% for these same benchmark suites.

The remainder of this paper is organized as follows. The
next section places our work in the context of prior work.
Section 3 describes our solution. We then describe our ex-
perimental methodology in Section 4, present our empirical
evaluation in Section 5, and conclude in Section 6.

2 Related Work

Much of the early work in memory system power man-
agement has focused on embedded systems and laptops,
where performance loss has been less of an issue [2].

Delaluz et al. [8] control the use of low power mode by
having the memory controller predict the idle duration of
various memory devices. They demonstrate good results
for cacheless systems using Rambus DRAM. Fan et al. [11]
extend this work for systems with multi-level caches, and
Irani et al. [19] give a theoretical analysis of dynamic power
management in memory controllers. These approaches are
difficult to tune because they use thresholds, which are sys-
tem and application dependent.

Previous hardware-based approaches for DRAM power
savings assume FIFO scheduling in the memory controller.
However, it has been shown that better memory schedul-
ing approaches can substantially improve performance [30,
6, 28, 33, 16]. Such approaches improve performance by
reducing gaps between commands. Since threshold-based
predictive algorithms passively monitor memory traffic to
schedule power-down commands, we expect that shorter
gaps will make those algorithms less effective. By contrast,
our work takes an active approach and reorders commands
to save power while preserving performance.

Compiler-directed [21, 35, 27, 7] and operating system-
based methods [26, 36, 23, 9] have also been proposed to
save DRAM power. For modern systems with multi-level
caches, multiple threads, or shared memory controllers, the
role of compiler for DRAM power savings is limited. Our
scheduling methods appear to be complementary to OS-
based approaches, which operate at a much coarser gran-
ularity. For example, a recent OS-based method by Huang
et al. [13] is similar to our command reordering approach,
but it reshapes memory traffic at the page granularity.

Various throttling approaches have been proposed, in-
cluding dynamic voltage scaling, dynamic frequency scal-
ing, and decode throttling. Brooks and Martonosi [5] dis-
cuss these throttling methods in the context of CPU power
management. Our throttling approach is similar to decode
throttling in the sense that it reduces the flow of commands,
but unlike the previous studies, we focus on DRAM power
management.

Felter et al. [12] were the first to present a throttling ap-
proach for DRAM power management (and the first to pro-
pose the idea of Power Shifting), and we take their solution
as the baseline for comparison. Our study differs from their

work in two ways: (1) we develop a much more accurate
method of estimating DRAM power, significantly reducing
performance degradation; and (2) we describe how to im-
plement our method in the memory controller, whereas they
leave implementation details as future work.

More recently, Diniz et al. [10] present a set of throttling
techniques that provide extremely low performance degra-
dation. Their key is to compute, for each memory command
that is issued, a complete, fine-grained power estimate for
every DRAM structure. Our work shows that a simpler,
lower-cost solution can also be quite effective.

Recent work by Li et al. [25] present a power-down
mechanism that solves the dual of our problem, guarantee-
ing that performance degradation falls within some speci-
fied limit.

Recent studies have shown the importance of addressing
DRAM power consumption in large server systems [24, 3].
In contrast to most prior work, we introduce techniques for
server-class memory controllers with mechanisms suitable
for server-class memory topologies.

3 Our Solution

This section describes our approach to memory con-
troller design, which makes the memory controller both
power-aware and performance-aware. To provide context,
we first briefly describe the Power5+’s memory controller.
We then present our additions to current memory con-
trollers in two subsections. First, we describe a power-
down mechanism to schedule power-down/up signals; and
we present an augmented form of adaptive history-based
schedulers [16, 17, 14, 18, 15] that includes power crite-
ria. Second, we introduce an adaptive throttling mechanism
that can arbitrarily reduce DRAM power consumption.

The Power5+ Memory Controller. As shown in Fig-
ure 1, the Power5+ memory controller sits between the
L2/L3 caches and DRAM. As memory commands enter the
memory controller, they are placed in the reorder queues.
On each cycle, the scheduler selects from the reorder queues
a command, which is then sent to the CAQ, which in
turn transmits commands to DRAM in FIFO order. The
Power5+ memory controller uses a command bus to trans-
mit memory commands to DRAM. Every command on this
bus has a command type and an address. The DRAM is
organized as 4ranks, where each rank is an organizational
unit consisting of 4banks.

3.1 Effective Use of Low-Power Modes

With multiple ranks in current DRAMs, it is possible
that at any given instant, some fraction of devices is idle.
While DRAM power consumption is significantly lower

Read/Write

Controller
Memory

Arbiter

(CAQ)

Centralized

DRAM

from processors
Reads/Writes

Queues
Reorder

Scheduler

Queue

Figure 1. The IBM Power5+ Memory System.

when idle, the low power modes reduce power consump-
tion by another order of magnitude [31]. To effectively
use low power modes without adversely affecting perfor-
mance, we present two additions to current memory con-
trollers: a power-down strategy for generating rank power-
down/up commands and an augmented form of adaptive
history-based schedulers that includes a power reduction
criterion.

The non-optimal use of power-down/up commands can
limit performance in three ways. First, power-down/up
commands consume command bus bandwidth between the
memory controller and DRAM. Second, there may be un-
necessary switches between low and high power modes,
which waste two DRAM cycles for each switch. Third, in
most modern DRAM chips, when a rank enters a low power
mode, it has to remain in that mode for a certain number of
cycles. Thus, powering down a rank prematurely can in-
crease the latency for memory commands that are waiting
for the powered-down rank.

3.1.1 Queue-Aware Power-Down Mechanism

We now describe a new technique for powering down/up
ranks of DRAM; the basic idea is to be aware of the com-
mands that are resident in the memory controller. Our
queue-aware power-down mechanism generates commands
to put idle DRAM ranks into low power mode. We intro-
duce a new type of memory command, in which the ranks
to be powered down/up are encoded in the address bits of
the command. In the power-down mechanism, we main-
tain two hardware components for each rank: a status bit
and a counter. The status bit is set to 1 when the rank is
in the low power mode. The counter maintains the number
of cycles remaining until the rank becomes idle. Each time
a Read or a Write is sent to any bank of a rank, the rank’s
counter is initialized to the maximum of the current value

and the latency of the new command; otherwise the counter
is decremented by one on every cycle.

We now present a protocol to decide when to send
a power-down command to DRAM. On every cycle, the
power-down mechanism checks the rank counters, rank sta-
tus bits, and commands waiting in the CAQ. A power-down
command is generated for the ranks that meet all of the fol-
lowing conditions. (1) The rank counter is zero, which in-
dicates that the rank is idle. (2) The rank status bit is zero,
because otherwise the rank is already in low power mode.
(3) The command at the front of the CAQ cannot be issued
in this cycle, which implies that regular commands have
priority over power-down commands. (4) There is no com-
mand in the CAQ with the same rank number; this condition
avoids powering down a rank if a Read or Write to that rank
is imminent. The fourth condition can be extended to in-
clude the reorder queues as well, but we don’t evaluate that
option in this paper.

To generate power-up commands, the mechanism keeps
track of the commands entering the CAQ. Whenever a new
Read or a Write command enters the CAQ from the reorder
queues, a power-up command is generated for the appro-
priate rank, the rank status bit is set to zero, and the rank
counter is initialized.

3.1.2 Power-Aware Memory Scheduler

In this section, we describe how to modify an Adaptive
History-Based (AHB) scheduler [16] to make it power-
aware (PA-AHB).

An intelligent memory scheduler would seem to be a
natural partner with the low power modes, but the schedul-
ing goals of low power and good performance are at odds.
For good performance, the scheduler typically selects com-
mands that avoid hardware conflicts, essentially spreading
the commands across many physical memory devices. On
the ohter hand, to reduce power consumption, the scheduler
attempts to cluster commands to a subset of the physical
devices, allowing one or more of them to be put into low
power mode.

An adaptive history-based scheduler uses the history of
recently scheduled memory commands when selecting the
next memory command. In particular, scheduling goals are
encoded in finite state machines (FSM). Previously, two
scheduling goals were used to improve performance: (1)
minimize the latency of the scheduled commands, and (2)
match some desired balance of Reads and Writes. We aug-
ment the AHB scheduler by adding power savings as a third
goal.

To satisfy the power savings goal of the scheduler, we
create a new FSM that groups same-rank commands, in
the memory queue as close as possible, so that the total
number of rank power-down operations is reduced. In the

new state machine, we define the priorities for each pos-
sible command in the reorder queues as follows: The set
of commands destined for the same rank as the last com-
mand sent to the memory queue has the highest priority, the
set of commands to the same rank as the second from the
last command has second priority, and so on. Since there
may be more than one command in each of these sets, our
approach breaks ties using performance as the second crite-
rion.

Because both performance and power goals are impor-
tant, we probabilistically combine the new FSM with the
finite state machines of the original AHB, giving each of
the three FSM’s equal weighting. (We find that the behav-
ior of our solution is not very sensitive to these weightings.)
The result is a history-based scheduler that is optimized for
both performance and power, but for one particular mix of
Read/Writes. To accommodate a wide range of Read/Write
mixes, we use adaptivity in the same sense as the original
AHB scheduler, namely, our adaptive scheduler observes
the recent command pattern and periodically chooses the
most appropriate of the multiple history-based schedulers.

3.2 Adaptive Memory Throttling

Our throttling approach blocks commands inside the
memory controller for all DRAM ranks for some fixed pe-
riod of processor cycles, which we refer as the throttling
delay. Commands that are blocked cannot proceed to the
CAQ, so they accumulate in the reorder queues, reducing
bandwidth between the memory controller and DRAM, and
allowing ranks to remain in low power mode for longer pe-
riods of time.

To reduce DRAM power consumption to a target level,
accurate estimation of the throttling delay is crucial, so
we augment the memory controller with adelay estimator,
which takes as input a power threshold and some informa-
tion about the state of the DRAM, and produces as output
an estimated throttling delay. The next section provides de-
tails about this delay estimator and its input parameters, but
at a high level, the estimator uses a linear model of delay
that is embedded in the memory controller. To calculate
the throttling delay for a given power threshold, the esti-
mator multiplies the relevant input parameters with corre-
sponding model coefficients and sums the results. Because
both the model parameters and the target power level can
change over time, the estimator periodically calculates a
new throttling delay; we refer to this period as anepoch.
Our approach thus makes two assumptions: (1) the mea-
sured command flow in the current epoch is similar that of
the next epoch; and (2) the epoch length is sufficiently long
(we use one million processor cycles) that the overhead of
delay calculation is negligible.

The coefficients of the model are computed by a software

tool, themodel builder, which performs measurements on a
set of workloads by applying linear regression on the mea-
sured data. Unlike the estimator, the model builder is active
only at system installation or configuration time.

0

20

40

60

80
copy

P
ow

er
 (W

at
ts

)

0

20

40

60

80
scale

0

20

40

60

80
vsum

P
ow

er
 (W

at
ts

)

0

20

40

60

80
triad

0

20

40

60

80
fill

P
ow

er
 (W

at
ts

)

0

20

40

60

80
sum

0 2000 4000 6000 8000 10000
0

20

40

60

80
daxpy

P
ow

er
 (W

at
ts

)

Throttling Delay (cycles)
0 2000 4000 6000 8000 10000

0

20

40

60

80
ALL

Throttling Delay (cycles)

Figure 2. Relation between DRAM power con-
sumption and the throttling delay for the
Stream benchmarks (interval length is 10,000
cycles).

3.2.1 The Delay Estimator Model

This section explains our model for estimating the throttling
delay. Our goal is to produce an accurate closed form equa-
tion that has a minimal number of input parameters. Aside
from P , the target power threshold, the inputs to the model
describe the state of the memory system, because the delay
for a given command is affected by the states of the various
physical substructures of the DRAM. Many possible input
parameters could be considered, including the number of
Reads issued in an epoch, the number of Writes issued in
an epoch, the number of bank conflicts in an epoch, and
many other measurements of the state of DRAM.

We conducted a number of experiments to determine the
importance of various parameters. We cannot show all of
our experiments here, but we show one example in Figure 2.
Each graph in this figure is obtained by generating a random
sampling of data alignments for the inputs to the Stream

benchmarks, and each point in a graph represents the delay
for such an experiment and the resulting power consump-
tion. The lower right graph summarizes the results over the
entire benchmark suite, and we see that the power varies
widely with the relative alignment of data; in particular, for
a target power consumption of 40 Watts, the corresponding
delay varies between about 500 and 5,000 cycles, depend-
ing on the specific benchmark and the relative alignment of
data. From Figure 2 we infer that the number of bank con-
flicts is an important input parameter to our model, because
as the relative alignment of data changes, so does the num-
ber of bank conflicts. Because the number of bank conflicts
is expensive to compute, our model instead uses a simpler,
related value, namely, the number of cycles for which no
command could be moved from the reorder queues to the
CAQ due to a bank conflict.

From our experiments, we identify four important pa-
rameters:P , the power threshold;R, the number of Reads
in the epoch;W , the number of Writes in the epoch, andB,
the number of times in an epoch that bank conflicts prevent
the movement of a command from the reorder queues.

The next subsection explains how we compute coeffi-
cients for these parameters, i.e., we explain the role of the
model builder.

3.2.2 Determining Model Coefficients

The model builder determines the coefficients of the regres-
sion model for the estimator in two steps. First, for various
values of throttling delay, it performs experiments for a set
of workloads and collects data. We believe that the Stream
benchmarks with multiple array offsets are good candidates
for this purpose. Second, the model builder sets up a sys-
tem of equations, where the known values are the measure-
ment data and the unknowns are the model coefficients. We
solve this system to determine the values of the model co-
efficients.

Linear regression models for throttling delay can be de-
fined as:

yi = β0 +β1Φi1 +β2Φi2 + ... +βpΦip, i = 1, 2, ..., n.

(1)
wheren is the number of measurements,p is one less than
the number of coefficients in the model, and theyi’s are the
throttling delays in the experiments. The same equation can
also be stated in matrix form as:

y = Φβ (2)

The elements of theΦ matrix are known, and each col-
umn of the matrix represents one feature of the model. A
sample matrix might be: the first column represents the
measured DRAM power, the second column the number of

0.5

1

1.5
Model T1: uses Power

Test Data Set

copy scale vsum triad fill sum daxpy

E
st

im
at

ed
 P

ow
er

 /
A

ct
ua

l P
ow

er

0.5

1

1.5
Model T2: uses Power, Reads, and Writes

Test Data Set

copy scale vsum triad fill sum daxpy

0.5

1

1.5
Model T3: uses Power, Reads, Writes, and Bank Conflicts

Test Data Set

copy scale vsum triad fill sum daxpy

Figure 3. Estimated power vs. actual power for the three regr ession models. A y-axis value of 1
represents the ideal estimator. Each dot represents an elem ent of the test data set.

Reads, the third column the number Writes, and the fourth
column the number of processor cycles when no command
could be moved from the reorder queues to the CAQ due
to a bank conflict. To find the value of theβ vector, i.e.
the coefficients of the model, the model builder uses a least
squares method, which is defined as:

β = Φ+y (3)

whereΦ+ is the pseudo-inverse ofΦ [4].
To calculate the unknown coefficients of the regression

models, we perform experiments using the Stream bench-
marks. For each benchmark, we collect 200 data points by
blocking commands in the memory controller with differ-
ent throttling delays. Each data point represents one of 16
different offsets between data arrays and includes the num-
ber of Reads, number of Writes, DRAM power consump-
tion, and the number of cycles for which no command could
be sent to the CAQ from the reorder queues due to a bank
conflict. We designate half of the measurements from each
benchmark as the training data set and the other half as the
test data set.

3.2.3 Evaluating Model Accuracy

Using the model builder, we created three models, which we
now evaluate. ModelT 1 = f(P) is the simplest possible
model, which does not consider any information about the
state of the DRAM; modelT 2 = f(P, R, W) considers the
number of Reads and Writes and is similar to the model pro-
posed by Felter et al. [12]; and modelT 3 = f(P, R, W, B)
is our proposed model.

To fit the regression models to our measured data, we
apply linear regression to the training data set, and we cal-
culate theR2 statistic [22] using the test data set. For the
entire test data set of the Stream benchmarks, we obtainR2

values of 0.1911, 0.1218, and 0.0032 for modelsT 1, T 2,
andT 3, respectively. As indicated by its lowR2 value, the
T 3 model achieves the best accuracy, and it is also the only
model that satisfies the<0.01 criterion for theR2 statistic.

Figure 3 shows how the estimated power produced by
each of the three models compares with actual power. In
these graphs, a perfect model would produce a horizontal
line at 1. From the rightmost graph, we see that theT 3
model comes close to this perfect model. By contrast, the
graphs for the other two models show great variation from
the actual power.

The models we have discussed are called first-order re-
gression models, because the exponent of eachΦj is one.
Alternatively, we can define higher order models. Although
higher order models may sometimes provide better fit for
measured data, they might not generalize well. Thus, we
have only considered first-order models.

4 Methodology

In this section, we describe our simulation methodology,
our simulated system, and the benchmarks that we use in
evaluating our techniques.

4.1 Simulation Methodology

To evaluate performance, we use a cycle-accurate sim-
ulator for the IBM Power5+, which has been verified to
within 1% of the performance of the actual hardware. This
simulator, one of several used by the Power5+ design team,
is on the order of 1 million lines of high-level language
code, and it uses execution traces to simulate both the pro-
cessor and the memory system. To simulate our bench-
marks, which have billions of dynamic instructions, we use
uniform sampling, taking 50 uniformly chosen samples that
each consist of 2 million instructions. This Power5+ sim-
ulator is integrated with Memsim [32], a DRAM simula-
tor that jointly models power and performance of the main
memory subsystem. In this simulation environment, Mem-
sim models all the memory system activity, including re-
freshes, while synchronizing with the Power5+ simulator
on every processor cycle.

Parameter Value Parameter Value

Number of ports 2 tRRD: Row active to row active delay 7.5 ns
SMIs per port 4 tWTR: Write to Read command delay 10 ns
DIMMs per SMI 4 tRFC: Auto-refresh command period 105 ns
DIMM width 64 tREFI: Average periodic refresh interval 7.8µs
Devices per DIMM 16 tXP: Exit precharge power-down to any non-Read command7.5 ns
Device width 8 tCKE: Minimum high/low time 11.25 ns
DRAM burst length 4 IDD0: One bank active-precharge current 80 mA
Number of ranks 4 IDD2P: Precharge power-down current 7 mA
Number of banks 4 IDD2N: Precharge standby current 45 mA
Rows per bank 128 IDD3P: Active power-down current 30 mA
Columns per bank 1024 IDD3N: Active standby current 55 mA
tRP: Row precharge time 15 ns IDD4R: Burst Read current 145 mA
tRCD: RAS to CAS delay 15 ns IDD4W: Burst Write current 140 mA
tRAS: Row active time 45 ns IDD5: Burst refresh current 170 mA
CL: CAS latency 15 ns IDD6: Self refresh current 7 mA
tRC: Row cycle time 60 ns IOL: Output minimum sink DC current 13.4 mA
tWR: Write recovery time 15 ns maxVdd: Maximum supply voltage 1.9 V
AL: CAS additive latency 0 nomVdd: Nominal supply voltage 1.8 V

Table 1. Memory system details.

4.2 Simulated System

We evaluate our techniques in the context of the IBM
Power5+ [20]. The Power5+ has one memory controller—
with an AHB memory scheduler—and two processors per
chip, where each processor supports two SMT threads. The
Power5+ has also a hardware data prefetching unit.

We simulate a Power5+ running at 2.132GHz. Our sim-
ulator models all three levels of the cache. The L1D cache
is 32KB with 4-way set associativity, and the L1I cache
is 64KB with 2-way set associativity. The L2 cache is a
3×640KB shared cache, with 10-way set associativity and
a line size of 128B. The off-chip L3 cache is 36MB.

The Power5+ memory controller has two ports to mem-
ory. Each port is connected to memory via Synchronous
Memory Interface (SMI) chips [34]. We evaluate our tech-
niques on a configuration with 4 SMIs and DDR2 SDRAM
running at 533MHz, a common configuration for high-end
Power5+ systems. In Table 1 we present some of the signif-
icant memory system parameters that we use in our study.
We use the precharge power-down mode, which has the
lowest possible power consumption for the DRAM type that
we evaluate. More details about the DRAM chips that we
model can be found in the datasheet from Micron [31].

4.3 Benchmarks

Our evaluation uses the Stream [29], NAS [1], and
SPEC2006fp benchmarks suites, along with a set of inter-
nal IBM commercial benchmarks. We combine the origi-
nal Stream and Stream2 benchmarks to create an extended
set of the Stream benchmarks that consists of seven vector
kernels. The NAS benchmarks are a group of eight pro-
grams derived from computational fluid dynamics applica-
tions; we use serialized versions of the class B benchmarks.

The commercial benchmarks consist of four server appli-
cations, namely,tpcc, cpw2, trade2, andsap. Tpcc is an
online transaction processing workload; cpw2 simulates the
database server of an online transaction processing environ-
ment; trade2 is an end-to-end web application that models
an online brokerage; and sap is a database workload. We
exclude SPEC2006int, because they have low memory pres-
sure, so even a trivial power-down approach will suffice for
those benchmarks.

5 Evaluation

In this section, we empirically evaluate our three tech-
niques. Our baseline for evaluation is a Power5+ system
that uses an AHB memory scheduler. We evaluate our tech-
niques in terms of performance, power, and energy effi-
ciency.

5.1 Effects of Queue-Aware Power-Down Mecha-
nism

We first evaluate the queue-aware power-down mecha-
nism by comparing it against a simpler power-down pol-
icy, greedy power-down, which is similar to queue-aware
power-down except it omits the fourth condition given in
Section 3.1.1, so it greedily powers down a rank as soon as
it can. We find that greedy power-down improves energy
efficiency, on average, by 4.3%, 12.6%, 41.2%, and 32.7%
for the Stream, NAS, SPEC2006fp, and commercial bench-
marks, respectively. The queue-aware power-down pol-
icy improves energy efficiency over the baseline by 11.6%,
18.1%, 43.4%, and 34.2% for the four benchmark sets, re-
spectively.

co
py

sc
al

e

vs
um

tr
ia

d

da
xp

y

fil
l

su
m

bt cg ep ft is lu m
g sp

bw
av

es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

tp
cc

cp
w

2

tr
ad

e2 sa
p

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Baseline
Our MethodStream

NAS SPEC2006fp Commercial

Figure 4. Power effects of the Queue-Aware Power-Down mecha nism and the Power-Aware AHB
scheduler over the baseline system.

Power Power
Consumption Consumption Power Performance Energy Efficiency

Benchmark (baseline) (our method) Reduction Degradation Improvement
(Watts) (Watts) (%) (%) (%)

Stream 65.2 53.0 18.7 2.7 18.2
NAS 44.1 34.5 21.9 1.2 21.7
SPEC2006fp 35.6 19.1 46.4 0.8 46.1
Commercial 36.9 23.1 37.3 0.6 37.1

Table 2. Power, performance, and energy efficiency comparis on of our approach to the baseline
system.

5.2 Effects of Power-Aware Scheduling

Figure 4 shows that there is a benefit to combining the
queue-aware power-down mechanism and the power-aware
AHB scheduler. Both techniques attempt to reduce the fre-
quency of transitions into and out of low power mode, so
we conclude that neither approach subsumes the other.

Table 2 summarizes the results, and also shows the per-
formance and energy efficiency effects of our techniques.
Not shown in this table is the benefit of the Power-Aware
scheduler with the greedy power-down mechanism, which
yields energy efficiency improvements over the baseline of
13.7%, 18.6%, 43.1%, and 33.8% for the Stream, NAS,
SPEC2006fp, and commercial benchmarks, respectively.

5.3 Effects of the Memory Scheduler

Our baseline system uses the AHB scheduler, but many
other systems use simpler schedulers. In this section we
investigate the interaction of the power-down mechanism
with other type of schedulers [16, 17], namely the in-order,
memoryless, and AHB scheduler. Thein-order scheduler
implements the simple FIFO policy used by most general
purpose memory controllers today. Thememorylesssched-
uler implements the ideas proposed by Rixner et al. [33].

Basically, the memoryless scheduler avoids long bank con-
flict delays by selecting commands from the reorder queues
that do not conflict with commands in DRAM.

To explore the effects of the memory schedulers, we first
present detailed results for thedaxpykernel; we then pro-
vide results for the entire Stream benchmark set. Through-
out Section 5.3 the power-down policy is the queue-aware
power-down policy.

Daxpy Results. Figure 5 shows how the three previously
studied memory schedulers compare in terms of power (left
graph) and performance (right graph). We find that the more
sophisticated schedulers provide better performance at the
expense of higher average power consumption.

Figure 6 compares the power and performance of the
three schedulers when combined with the queue-aware
power-down policy. These results are all normalized with
respect to the in-order scheduler with no power-down pol-
icy. We find that queue-aware power-down policy lowers
the power consumption of the in-order, memoryless, and
AHB schedulers by 19.7%, 7.3%, and 10.2%, respectively.
Comparing the right graphs of Figures 5 and 6, we see that
the power-down policy degrades performance by a small
amount. Execution time increases by 1.2% for the in-order
scheduler, by 1.4% for the memoryless scheduler, and by

0

20

40

60

80

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
) in-order

memoryless
AHB

0

50

100

150

E
xe

cu
tio

n
T

im
e

(m
s)

in-order
memoryless
AHB

Figure 5. Left: Power consumption of In-
order, Memoryless, and Adaptive History-
Based schedulers (without the power-down
mechanism). Right: Performance of the three
schedulers.

1.9% for the AHB scheduler. Figure 6 also shows the
results for the Power-Aware AHB scheduler, which when
compared with the AHB scheduler that uses queue-aware
power-down, reduces power by 9.3% and degrades perfor-
mance by 0.8%.

0

20

40

60

80

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
) in-order

memoryless
AHB
Power-Aware AHB

0

50

100

150

E
xe

cu
tio

n
T

im
e

(m
s)

in-order
memoryless
AHB
Power-Aware AHB

Figure 6. Left: Power consumption of the
In-order, Memoryless, and Adaptive History-
Based schedulers with the power-down
mechanism. Right: Performance of the
schedulers with the power-down mechanism.

Finally, Figure 7 shows that our two techniques—the PA-
AHB scheduler and the queue-aware power-down policy—
combine to provide the best energy efficiency. In particular,
we find that such a system is 8.6% more energy efficient
than a system that uses the AHB scheduler in combination
with queue-aware power-down.

Stream Results. Figure 8 compares the four schedulers
with and without queue-aware power-down for the Stream
benchmarks. We find that the Power-Aware AHB scheduler
provides the best energy efficiency for all benchmarks. In
particular, when the memory controller uses queue-aware
power-down, a system with the PA-AHB scheduler is, on
average, 14.7%, 19.1%, and 11.6% more efficient than the

0

1

2

3

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 7. Energy efficiency comparison of the
schedulers for the daxpy benchmark.

systems with the in-order, the memoryless, and the AHB
scheduler, respectively.

5.4 Evaluation of Adaptive Memory Throttling

In this section, we evaluate the adaptive memory throt-
tling approach presented in Section 3.2. We compare the
baseline model and our proposed model described in Sec-
tion 3.2.3 against a perfect estimator that can calculate the
exact throttling delay for any target power level.

Table 3 summarizes our experimental results for our four
benchmark suites. For the Stream results, we use the test
data described in Section 3.2. For the NAS, SPEC2006fp,
and commercial benchmarks, we perform experiments for
three different power target levels: 75%, 50%, and 25% of
the original. As expected, the more accurateT 3 model leads
to significantly better energy efficiency.

Figure 9 illustrates the performance effects of the two
regression models on the Stream benchmarks. We see that
due to inaccuracies in estimating the throttling delay, model
T 2 degrades performance by up to 115.9% beyond the ideal
throttling, while modelT 3 degrades performance by up to
5.8% beyond the ideal.

5.5 Multithreading Results

We have repeated the above experiments on a system that
uses two SMT threads on the same processor, but for space
reasons we omit the graphs. For these experiments, we use
the same trace file for both threads, but we start the second
thread 1 million instructions after the first thread.

We find that the queue-aware power-down and power-
aware AHB techniques improve energy efficiency of the
SMT runs, on average, by 17.4%, 19.6%, 34.7%, and 28.1%
for the Stream, NAS, SPEC2006fp, and commercial bench-
marks, respectively. For the benchmarks that already have
high utilization of memory bandwidth, e.g., the Stream, the

co
py

sc
al

e

vs
um

tr
ia

d

da
xp

y

fil
l

su
m

A
ve

ra
ge

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 E
ne

rg
y

E
ffi

ci
en

cy

in-order + no power-down
memoryless + no power-down
AHB + no power-down
in-order + power-down
memoryless + power-down
AHB + power-down
Power-Aware AHB + power-down

Figure 8. Energy efficiency comparison of the schedulers for the Stream benchmarks.

Target Estimated Power Energy
Power Power Estimation Performance Efficiency

Benchmark Model {75%, 50%, 25%} {75%, 50%, 25%} Error Degradation Degradation
(Watts) (Watts) (%) (%) (%)

Stream T2 (baseline) {39.8, 26.5, 13.3} {29.3, 21.7, 9.7} 23.7 29.6 46.3
T3 (our model) {39.8, 26.5, 13.3} {39.3, 26.1, 13.1} 1.2 4.4 5.6

NAS T2 (baseline) {25.9, 17.3, 8.6} {20.6, 12.8, 7.1} 21.4 20.7 37.7
T3 (our model) {25.9, 17.3, 8.6} {25.0, 16.2, 8.4} 4.2 0.9 5.1

SPEC2006fp T2 (baseline) {14.3, 9.6, 4.8} {11.4, 7.7, 4.1} 17.8 18.9 33.4
T3 (our model) {14.3, 9.6, 4.8} {13.9, 9.1, 4.7} 3.1 1.3 4.3

Commercial T2 (baseline) {17.3, 11.6, 5.8} {13.7, 9.6, 4.6} 19.3 16.4 32.5
T3 (our model) {17.3, 11.6, 5.8} {17.1, 11.3, 5.7} 1.9 2.7 4.5

Table 3. Comparison of the throttling delay estimators (ave rages): Our model achieves significantly
more accurate results than the baseline.

0.5

1

1.5

2

2.5

3

E
st

im
at

ed
 C

P
I /

 A
ct

ua
l C

P
I

Baseline Model (T2): uses Power, Reads, and Writes

Test Data Set

copy scale vsum triad fill sum daxpy

0.5

1

1.5

2

2.5

3
Our Model (T3): uses Power, Reads, Writes, and Bank Conflicts

Test Data Set

copy scale vsum triad fill sum daxpy

Figure 9. Performance effects of the regression models. A Y- axis value of 1 represents the ideal
estimator, so model T3 is much more accruate than T2.

improvements from our techniques are about the same as
the single-threaded results. As the memory bandwidth uti-
lization of the single thread decreases, the power saving op-
portunities for the SMT runs decrease as well. However, as
previous studies [18] confirm, in modern memory systems,
constraints in the memory controller make it almost impos-
sible to keep all the ranks busy all the time. Thus, we expect
our techniques to be effective even beyond two threads.

The improvements relative to the baseline from our adap-
tive throttling technique are about the same as for the single-
threaded results. We find that our approach provides perfor-
mance that is within 4.9%, 1.4%, 1.9%, and 3.8% of a per-
fect oracular model, for our four benchmark suites, respec-
tively. By contrast, the baseline model loses 32.7%, 23.1%,
19.2%, and 18.3% of performance for the same benchmark
suites.

5.6 Hardware and Power Costs

The current Power5+ memory controller occupies about
1.6% of the entire chip area. The power-down mecha-
nism that we propose requires an 8-bit counter and a sta-
tus bit per rank. We conservatively assume that the Power-
Aware AHB scheduler will double the size of the already
existing AHB scheduler of the Power5+. For the throttling
scheme, the circuitry to detect bank conflicts and to count
Reads/Writes in an epoch already exists, but we need an
additional 16-bit counter to keep track of the bank conflict
information, and we need space to store four 64-bit model
coefficients. Using an implementation of the Power5+ to
provide detailed estimates of transistor counts, we estimate
that our power management extensions increase the area of
the memory controller by about 2.5%, which increases the
overall chip’s transistor count by about 0.04%.

Of course, the implementation of the power management
mechanisms itself also consumes power. We do not have
benchmark-specific analyses of this power usage, but we
know that the current memory controller on the Power5+
consumes about 1% of the chip’s power. With an area-based
estimation, we find that our power management mecha-
nisms increase the chip’s total power by about 0.025%. As a
reference, the Power5+ chip typically consumes roughly 2-
4 times the power as the DRAM chips for our workloads.

6 Conclusions

We have presented a three-pronged approach to manag-
ing DRAM power and energy. Our first two prongs are con-
ceptually simple but combine to reduce power with only
minimal reduction in performance. Our third prong sup-
ports the notion of throttling, where the key problem is to
accurately estimate the necessary throttling delay to staybe-
low a given power threshold.

Our main conceptual contribution lies in our method of
estimating throttling delay. Previous work has shown that
good throttling decisions can be made by maintaining de-
tailed information about the state of all of DRAM’s physical
sub-structures [10]. We instead show how to produce good
estimates at much lower cost. The key is to do as much
of the work statically as possible. Thus, we first conducted
experiments to identify three key parameters for describing
the state of DRAM. We then used an offline model builder
to determine specific coefficients for each of these param-
eters. This model builder is trained once at system con-
figuration time. The resulting hardware estimator maintains
only a small amount of dynamic state and a small amount of
logic to compute the throttling delay. We believe that sim-
ilar models can be used by other microarchitectural struc-
tures that need to estimate the effects of complex behavior,
including instruction throttling for the CPU.

Acknowledgments. We thank Alper Buyuktosunoglu for
his helpful expertise on power consumption. We thank
the entire IBM Power5 team, in particular, Cheryl Chunco,
Steve Dodson, Gary Morrison, Stephen J. Powell, and
Karthick Rajamani. This work was supported by NSF grant
ACI-0313263 and by an IBM Faculty Partnership Award.

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. The NAS parallel benchmarks (94).
Technical Report RNR-94-007, NASA Ames Research Cen-
ter, March 1994.

[2] L. Benini, A. Macii, and M. Poncino. Energy-aware design
of embedded memories: A survey of technologies, architec-
tures, and optimization techniques.ACM Transactions on
Embedded Computing Systems, 2(1):5–32, 2003.

[3] R. Bianchini and R. Rajamony. Power and energy manage-
ment for server systems. Technical Report DCS-TR-528,
Rutgers University, June 2003.

[4] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[5] D. Brooks and M. Martonosi. Dynamic thermal man-
agement for high-performance microprocessors. InPro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture, pages 171–184, 2001.

[6] J. Corbal, R. Espasa, and M. Valero. Command vector mem-
ory systems: High performance at low cost. InProceedings
of the 1998 International Conference on Parallel Architec-
tures and Compilation Techniques, pages 68–79, 1998.

[7] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Ir-
win. Energy-oriented compiler optimizations for partitioned
memory architectures. InProceedings of the 2000 Interna-
tional Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 138–147, 2000.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra-
maniam, and M. Irwin. DRAM energy management using
software and hardware directed power mode control. InPro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture, pages 159–170, 2001.

[9] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykr-
ishnan, and M. Irwin. Scheduler-based DRAM energy man-
agement. InProceedings of the 39th Conference on Design
Automation, pages 697–702, 2002.

[10] B. Diniz, D. Guedes, J. Wagner Meira, and R. Bianchini.
Limiting the power consumption of main memory. InPro-
ceedings of the 34th Annual International Symposium on
Computer Architecture, pages 290–301, 2007.

[11] X. Fan, C. Ellis, and A. Lebeck. Memory controller poli-
cies for DRAM power management. InProceedings of the
2001 International Symposium on Low-Power Electronics
and Design, pages 129–134, 2001.

[12] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A
performance-conserving approach for reducing peak power
consumption in server systems. InProceedings of the 19th
Annual International Conference on Supercomputing, pages
293–302, 2005.

[13] H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improv-
ing energy efficiency by making DRAM less randomly ac-
cessed. InProceedings of the 2005 International Sympo-
sium on Low-Power Electronics and Design, pages 393–398,
2005.

[14] I. Hur. Enhancing Memory Controllers to Improve DRAM
Power and Performance. PhD thesis, The University of
Texas at Austin, 2006.

[15] I. Hur. Method and system for creating and dynamically se-
lecting an arbiter design in a data processing system.U.S.
Patent 7,287,111, assigned to International Business Ma-
chines Corporation, 2007.

[16] I. Hur and C. Lin. Adaptive history-based memory sched-
ulers. InProceedings of the 37th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pages 343–354,
2004.

[17] I. Hur and C. Lin. Adaptive history-based memory sched-
ulers for modern processors.IEEE Micro, 26(1):22–29,
2006.

[18] I. Hur and C. Lin. Memory scheduling for modern micro-
processors.ACM Transactions on Computer Systems, 25(4),
December 2007.

[19] S. Irani, S. Shukla, and R. Gupta. Online strategies fordy-
namic power management in systems with multiple power-
saving states.ACM Transactions on Embedded Computing
Systems, 2(3):325–346, 2003.

[20] R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A
dual-core multithreaded processor.IEEE Micro, 24(2):40–
47, 2004.

[21] M. Kandemir. Impact of data transformations on memory
bank locality. InProceedings of the Conference on Design,
Automation and Test in Europe, pages 506–511, 2004.

[22] T. O. Kvalseth. Cautionary note about R2.The American
Statistician, 39(4):279–285, November 1985.

[23] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware
page allocation. InProceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 105–116, 2000.

[24] C. Lefurgy, K. Rajamani, F. L. Rawson III, W. Felter,
M. Kistler, and T. W. Keller. Energy management for com-
mercial servers.IEEE Computer, 36(12):39–48, 2003.

[25] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Ku-
mar. Performance directed energy management for main
memory and disks. InProceedings of the Eleventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 271–283,
2004.

[26] Y.-H. Lu, L. Benini, and G. D. Micheli. Operating-system
directed power reduction. InProceedings of the 2000 Inter-
national Symposium on Low-Power Electronics and Design,
pages 37–42, 2000.

[27] C.-G. Lyuh and T. Kim. Memory access scheduling
and binding considering energy minimization in multi-bank
memory systems. InProceedings of the 41st Annual Con-
ference on Design Automation, pages 81–86, 2004.

[28] B. Mathew, S. McKee, J. Carter, and A. Davis. Design of
a parallel vector access unit for sdram memory systems. In
Proceedings of the Sixth International Symposium on High-
Performance Computer Architecture, pages 39–48, 2000.

[29] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers.IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, December 1995.

[30] S. A. McKee. Hardware support for dynamic access order-
ing: Performance of some design options. Technical Report
CS-93-08, University of Virginia, 1993.

[31] Micron. http://download.micron.com/pdf/datasheets/dram/
ddr2/512MbDDR2.pdf, 2004.

[32] K. Rajamani. Memsim user’s guide, IBM research report
RC23431. 2004.

[33] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. InProceedings of the
27th Annual International Symposium on Computer Archi-
tecture, pages 128–138, 2000.

[34] J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Lee, and
B. Sinharoy. Power4 system microarchitecture.IBM Journal
of Research and Development, 46(1):5–26, 2002.

[35] Z. Wang and X. S. Hu. Power aware variable partitioning
and instruction scheduling for multiple memory banks. In
Proceedings of the Conference on Design, Automation and
Test in Europe, pages 312–317, 2004.

[36] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,
and S. Kumar. Dynamic tracking of page miss ratio curve
for memory management. InProceedings of the Eleventh
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 177–
188, 2004.

