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ABSTRACT
Metastability is a phenomenon that can cause system fail-
ures in digital circuits. It may occur whenever signals are
being transmitted across asynchronous or unrelated clock
domains. The impact of metastability is increasing as pro-
cess geometries shrink and supply voltages drop faster than
transistor Vts. FPGA technologies are significantly affected
since leading edge FPGAs are amongst the first devices to
adopt the most recent process nodes. In this paper, we
present a comprehensive suite of techniques for modeling,
characterizing and optimizing metastability effects in FP-
GAs. We first discuss a theoretical model of metastability,
and verify the predictions using both circuit level simula-
tions and board measurements. Next we show how design-
ers have traditionally dealt with metastability problems and
contrast that with the automatic CAD algorithms described
in this paper that both analyze and optimize metastability-
related issues. Through our detailed experimental results,
we show that we can improve the metastability characteris-
tics of a large suite of industrial benchmarks by an average
of 268,000 times with our optimization techniques.

Categories and Subject Descriptors
B.7.3 [Hardware]: Integrated Circuits—Reliability and Test

General Terms
Algorithms, Measurement, Reliability

1. INTRODUCTION
Metastability is a phenomenon that can occur whenever

the setup or hold time of a flip-flop is violated. This can
happen when there are either asynchronous signals in the de-
sign, or multiple phase-unrelated clock domains which must
communicate. Since phase-unrelated clocks have no fixed
phase relationship, no static timing analysis constraints can
be created for data transfers between these clock domains.
Whenever the setup or hold relationship between the source
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and the destination register is violated, the output of the reg-
ister has a chance to become metastable, a condition where
the output voltage is neither high nor low, but hovers at
some intermediate voltage for an indefinite period of time.
Eventually, the metastable value will resolve to a state of
logic-0 or logic-1. This situation is illustrated graphically
in Fig. 1. It shows that the input signal to the flip-flop
changes during the window defined by tsu (FF setup time)
and th (FF hold time) where no transitions should occur for
normal behavior. In this situation, the output value may
become metastable and eventually resolve to its new logic
value (FF Output (a)) or revert to its old logic value (FF
Output (b)). The resolution time happens sometime after
the nominally specified tco (clock-transition to output delay)
of the flip-flop. If this extra time isn’t accounted for with
extra timing slack, then failures may occur.
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Figure 1: Metastable FF behaviour.

Entering a metastable state is a probabilistic function re-
lated to the clock frequency, the transition frequency of the
asynchronous data signal and a constant that defines the
window in which a transition can cause metastability. Once
in a metastable state, the value to which the flip-flop resolves
cannot be determined. The amount of time required for res-
olution is also a probabilistic function whose distribution is
defined by a metastability “time constant” for the flip-flop.

The problem with metastable events is not merely their
occurrence, but when the event causes inconsistent values to
be latched into subsequent flip-flops as shown in Fig. 2(a).
In this example, if one flip-flop latches a value of 1 while
another latches a value of 0, then the design can become un-
predictable and may fail. This situation may occur because
the two paths shown could have different routing delays and
it isn’t necessarily the case that the resolved value will reach
both flip-flops before the next clock sample.

To reduce the chance of metastable events propagating
through the design, designers often use a sequence of back-
to-back flip-flops, called a synchronizer chain or a synchro-
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Figure 2: Metastability Propagation and Mitigation.

nizer, whenever data is transferred between unrelated clock
domains. An example of a synchronizer is shown in Fig. 2(b).
Each flip-flop in the chain, except the last, feeds only one
flip-flop so there is no chance of a metastable output being
resolved differently by two fanout flip-flops, and the failure
mechanism of Fig. 2(a) does not occur within the chain.

Should the output of the first synchronization flip-flop be-
come metastable, it still needs to propagate through the rest
of the chain before its value will be used by the rest of the
design. The extra amount of time provided by the addi-
tional synchronizer flip-flops increases the probability that
the metastable value will resolve, and lowers the possibility
that the design will fail. The cost of the synchronizer chain
is that it increases the design latency.

Synchronizer chains reduce the chance that metastable
events cause system failures; however, the metastability prob-
lem can never be completely avoided in any system that is
not purely synchronous. We typically quantify the likeli-
hood of system failure due to metastability using the metric
of Mean Time Between Failures (MTBF) [11, 10, 9].

Since the discovery of metastability, numerous studies have
been undertaken to analyze this phenomenon both theoret-
ically and empirically. These improvements have led to cir-
cuit level optimizations that can substantially improve the
metastability robustness of systems.

However, these techniques cannot eliminate metastability-
related failures, and such failures are a significant portion
of total system soft errors. They are extremely difficult to
debug in-system, as they occur at random time intervals
and are hard to distinguish from soft errors due to other
effects such as radiation-induced flip-flop or configuration
RAM upsets. As we show in Section 2.1, the fundamental
metastability robustness of flip-flops is rapidly diminishing
with process scaling, so without new design and CAD tech-
niques metastability will become an ever larger source of
system failures. This paper presents novel CAD algorithms
to analyze and optimize metastability, making it easier for
FPGA designers to achieve metastability robustness without
compromising other system metrics.

The rest of this paper is organized as follows. First we
review and derive a theoretical model for metastability and
use this model to highlight methods by which metastability
can be optimized. Next, we perform SPICE circuit simu-
lations to generate the metastability model parameters for
several commercial FPGA devices. To validate our models,
we then develop a hardware characterization methodology
and compare the simulated results against device measure-
ments. Given this accurate model, we describe a CAD tool
that can automatically analyze a design for metastability
issues and we describe optimizations that the designer can
perform to improve the metastability characteristics of his
or her design. We conclude by presenting a new automatic
CAD tool that can optimize a design without any user in-

tervention to achieve an orders of magnitude improvement
in MTBF on a suite of industrial benchmarks, with no im-
pact on system latency, and with minimal impact on design
operating speed.

2. METASTABILITY MODELLING
Although we have described metastability in terms of flip-

flops, the analysis of a single latch simplifies many issues.
The single latch analysis can then be easily extended to a
cascade of latches such as found in a master-slave flip-flop
or a synchronizer chain.

Consider the simple CMOS latch in Fig. 3(a). In a noise-
less system, it can be viewed as a deterministic device, with a
discrete sampling instant somewhere in time closely related
to the clock. The particular time that the data transitions
at is referred to as Tdc (the transition of the data signal with
reference to the sampling clock transition). When Tdc is a
small number close to 0, the clock-to-output delay, Tco, of
the latch is increased as described in [7, 6]. Note that a
small positive Tdc corresponds to a FF hold violation, while
a small negative Tdc corresponds to a FF setup violation.
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Figure 3: Latch Circuit and Behaviour.

The increase in Tco is denoted as Textra and varies in the
way shown in Fig. 3(b). It is 0 for normal (non-metastable)
operation of the latch. However if Tdc is allowed to approach
0, and goes below some constant c1, Textra increases from
0 with a logarithmic behaviour and a slope of −c2. The
constant c1 defines a window in which a data transition will
cause a metastable event while the constant c2 is related
to the extra time required to resolve the metastable state.
The equation relating these values can be expressed in the
following manner:

Textra =

{ −c2 log |Tdc|
c1

|Tdc| ≤ c1

0 otherwise
(1)

To gain a physical understanding of this relationship, we
can perform a simplified analytic examination of the CMOS
latch. The transfer curve relating Vin to Vout for a pair of
back-to-back inverters is shown in Fig. 4. During normal op-
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Figure 4: Transfer Function.

eration of the latch, this loop propagates either a logic-0 or
logic-1 to store a particular state. However, in metastable



operation the loop propagates a signal that somewhere in
between these two extremes. The inverters act as amplifiers

Time

Vo(t)

Figure 5: Latch Vo vs. time for different Vinitial.

and positive feedback causes the loop to eventually settle
to one of the two logic values as shown in Fig. 5. We can
use standard techniques to analyze this situation. First the
DC bias point can be calculated as the voltage at which the
transfer curve intersects Vin = Vout. Given that the trans-
fer function behaves approximately linearly around the bias
point, we can perform transient analysis using the small sig-
nal model as shown in Fig. 6. The gm values represent the
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Figure 6: Small Signal Model.

total transconductance contribution from the N and P tran-
sistors in the inverters. Similarly, R and C are lumped values
accounting for contributions from various sources. The sys-
tem of equations describing this system can be written as
follows:

gmVo + V1
R

+ C dV1
dt

= 0

gmV1 + Vo
R

+ C dVo
dt

= 0
(2)

Assuming solutions of the form V est for both Vo and V1, we
find that:

Vo = Vo(0)e

(
gm− 1

R
C

)
t

(3)

Rearranging and solving for a particular Vo(t) = V (corre-
sponding to a value for logic-0 or 1), we can find the amount
of time required for metastability resolution:

t = − C

gm − 1
R

log
Vo(0)

V
(4)

Eq. 4 has the same fundamental structure as Eq. 1, where
c2 = C

gm− 1
R

. Similarly, the inital value Vo(0) is related to

the sampling time Tdc and a constant c1. A more complete
analysis of the small signal model, including second order
effects such as the Miller capacitance, can be found in [8].

Given the relationship between Tdc and Textra, we can
derive the equations for the failure rate of a latch [7, 6] in
the presence of a data source whose transition times are
uncorrelated to the clock input. We denote the slack on
the latch output under consideration as Tmet, the amount
of time that the latch has to resolve a metastable state. If
we exceed Tmet, it is possible that errors will propagate to

other “down-stream” components and cause the system to
enter an incorrect state. Thus the probability of failure can
be expressed as p(failure) = p(Textra ≥ Tmet). Subsituting
Eq. 1, we can derive the following:

p(failure) = p

(
|Tdc| < c1e

−Tmet
c2

)
(5)

Thus the probability of failure is equal to the probabil-

ity of a transition occuring between Tdc = −c1e
−Tmet

c2 and

Tdc = +c1e
−Tmet

c2 . Assuming the data signal is uniformly
distributed with a frequency of Fd, then the probability of
failure can simply be expressed as:

p(failure) = 2 ∗ Fd ∗ c1 ∗ e
−Tmet

c2 (6)

This equation can be interpreted as the probability of failure
given a single clock transition. Assuming that the latch is
operating at a frequency of Fc, then the total number of
failures per second can be given as:

2 ∗ Fd ∗ Fc ∗ c1 ∗ e
−Tmet

c2 (7)

The MTBF is simply the reciprocal of this value:

MTBF =
e

Tmet
c2

2 ∗ Fd ∗ Fc ∗ c1
(8)

Flip-flops typically consist of a cascaded latch structure con-
sisting of a master and a slave which do not necessarily have
the same c1 and c2 constants as shown in Fig. 7. The analy-
sis of such a multi-stage structure can be derived in a similar
manner as the single latch analysis shown above. We seek
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Figure 7: Master-Slave flip-flop.

to derive the conditions under which the second latch in the
cascade becomes metastable. As described above, transi-
tions that occur between −c1 ≤ Tdc ≤ c1 on the input of
the second latch can cause metastability. We assume that
such transitions are solely the result of a metastability event
on the first latch. For a system that meets all its timing
constraints, all synchronous transitions happen outside this
window. Thus, we need to consider when metastable transi-
tions from the first latch occur. Using Eq. 6, we can express
the probability of a transition occurring after some time t
as:

p(Textra > t) = 2 ∗ Fd ∗ c1 ∗ e
−t
c2 (9)

The cumulative distribution function CDF (Textra) is:

CDF (Textra) = p(Textra < t) = 1 − 2 ∗ Fd ∗ c1 ∗ e
−t
c2 (10)

Differentiating the CDF produces a probability distribution
for the transitions at the input of the second latch:

p(Textra = t) = 2 ∗ Fd ∗ c1

c2
∗ e

−t
c2 (11)



In the case of a master-slave flip-flop, the second latch sam-
ples the output of the first at time Tclk/2 before becom-
ing opaque. The amount of timing slack available is Tclk/2
minus the nominal Tco of the first latch. We refer to this
quantity as Tmet1. Similarly, Tmet2 is defined as the amount
of slack available between when the second latch becomes
opaque and when this value is latched downstream. We are
interested in the window where Textra from the first latch
causes transitions in the window defined by c1 on the second
latch. The PDF of transitions during this window happen
between Tmet1 − c1 ≤ t ≤ Tmet1 + c1 and are shown in
Fig. 8. In the analysis of the single latch case, we assumed

t = Tmet1

Tmet1 + c1 timeTmet1 − c1

p(Textra = t)

Figure 8: p(Textra = t) at the output of the first latch.

that the transition probability was uniformly distributed.
From Eq. 11, we find that this is no longer true. However,
to simplify the analysis, Eq. 11 can be approximated as a
uniformly distributed function in the area of interest:

p(Textra = t) ≈ 2 ∗ Fd ∗ c1

c2
∗ e

−Tmet1
c2 (12)

In a similar manner to Eq. 6, we can express the probability
of failure of the second latch as:

p(failure, 2nd) = 2∗(2∗Fd∗ c1

c2
∗e

−Tmet1
c2 )∗c1∗e

−Tmet2
c2 (13)

Simplifying, this leads to:

p(failure, 2nd) = 4 ∗ Fd ∗ c2
1

c2
∗ e

−Tmet1−Tmet2
c2 (14)

One implicit assumption that we have made in this deriva-
tion is that the slack Tmet2 from the second latch is a positive
value (the maximum delay from the output of the second
latch to its destination flip-flops is less than Tclk/2). In the
case where this is not true, we need to do a more complex
analysis where we consider metastable events from the first
latch “flowing through” the second latch in its transparent
state. This analysis is complex, but does not change the
fundamental formulas that we are describing.

Note Eq. 14 is identical in form to the equation for the
single latch with a few exceptions. The extra factor of 2
can easily be removed by incorporating it into c1. In addi-
tion, note the extra factor of c1

c2
in comparison to the failure

rate for a single latch. This factor is attained because the
second latch “filters out” the tail of the probability distribu-
tion shown in Fig. 8. Our simple analysis above made some
assumptions that caused this calculation to be somewhat op-
timistic. For example, it was assumed that the output of the
first latch would only transition once before it resolved from
a metastable state. This is not necessarily true as some latch
structures may oscillate before resolution. Logic between
synchronizer stages may also cause transitions which are not
modelled by our analysis. To account for these factors, we
use a slightly more conservative formulation where we as-
sume that subsequent latches in the cascade do no filtering,

but only “passes through” the output of the first latch. In
this case, the cascade of latches only increases the effective
Tmet. Thus, our formula for the MTBF of multi-stage syn-
chronizers can be expressed as:

MTBF =
e

ΣiTmet,i
c2

Fd ∗ Fc ∗ c1
(15)

Although this is clearly not the case for sequences of master-
slave flip-flops, we use it as a worst-case bound.

Simply, this formula indicates that the MTBF of a chain
is determined by the “chain slack” which is the sum of the
output slacks of each latch along the chain. For simplicity,
we have assumed that the c1 and c2 constants are the same
for each latch in the cascade. This is not necessarily true
and the implementation of this model used in this paper
does not make this assumption.

The analysis above assumed a noiseless system. In a real
system having conditions close to the metastable point, the
resolution to 0 or 1 will be a stochastic process. However
the presence of noise has been shown to have no effect on
the overall circuit reliability due to metastability [11, 5].

Eq. 15 provides a formula for the MTBF of a single syn-
chronizer chain. A design may consist of chains denoted as
S1, S2 . . . Sn. The total number of failures per second of the
entire system can be given as:

1

MTBF (S1)
+

1

MTBF (S2)
+ · · · + 1

MTBF (Sn)
(16)

The MTBF of the entire system is simply the reciprocal of
this failure value:

1
1

MTBF (S1)
+ 1

MTBF (S2)
+ · · · + 1

MTBF (Sn)

(17)

This equation corresponds to the 1
n
th of the harmonic mean

of all synchronizer chain MTBFs and indicates that the per-
formance of the system is heavily influenced by the perfor-
mance of the worst chain in the design.

2.1 Effects of Process Technology
Technology scaling has yielded faster transistors and im-

proved FPGA density. Unfortunately, as processes are scaled
the operating voltage (Vdd) decreases and the probability of
metastability failures increases. The theoretical model de-
rived above can provide us with insight into this phenomena.
From Eq. 4, we found that c2 was approximately inversely
proportional to the transconductance gm and from Eq. 15 it
is evident that larger values of c2 lead to exponential reduc-
tions in MTBF. The value of gm is given by:

gm = k
W

L
(VGS − Vt) (18)

where k is a transistor constant, W ,L define the dimensions
of the transistor, Vt is the transistor threshold voltage, and
VGS is the DC-bias point shown in Fig. 4. This voltage is
approximately Vdd/2. Therefore, the value of gm is propor-
tional to the value of Vdd/2 − Vt. Fig. 9 shows how Vdd

and Vt have scaled over time, according to the NTRS semi-
conductor roadmap [12]. This graph shows that the value
of Vdd is decreasing faster than Vt. It is evident that the
value of Vdd/2 is getting closer to the value of Vt. Given this
trend, the effective value of gm is decreasing and the value
of c2 is increasing. Fig. 10 shows the measured increase in
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Figure 9: Technology Scaling.

c2 as we decrease the operating voltage on a Stratix III de-
vice [2]. One might expect that the value of Tmet would
increase to compensate for the shrinking c2; however, fre-
quency requirements also increase as the process shrinks so
the value of Tmet does not grow with process scaling.
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Figure 10: Change in c2 vs. Voltage.

To combat the effect of process scaling on c2, we need to
make gm as large as possible while minimizing C, through
circuit design and layout techniques such as increasing W

L
and using lower Vt (LVT) transistors. The sizing ratios of
the N and P transistors can be varied to find a DC bias
point that increases gm without compromising delay.

3. SIMULATING METASTABILITY
As discussed in the previous section, metastability failure

probability is a function of two register parameters, c1 and
c2. The values of these parameters can be extracted from
SPICE simulations by measuring the increase in output de-
lay, Textra, as a function of data arrival time.

The ports of the register are loaded to provide the correct
waveform shapes at all inputs and the proper capacitive load
at all outputs. Transitions are applied at the D and CLK
input ports at times Td and Tc as shown in Fig. 11.

 
 TD  TC 

TDC  TCO 

 

Figure 11: Register simulation testbench.

The relative timing of the data and clock transitions, Tdc, is
swept by varying Td with Tc fixed. At each Tdc point, the
output transition time is measured and Textra calculated by
subtracting the nominal Tco. As Tdc is advanced it eventu-
ally reaches a point where the register no longer captures the
new data value. The last data arrival time where new data

is captured and the first where it is not bound is Tcrit. If
an input transition occurs at exactly Tcrit the register the-
oretically has an infinite resolution time. Additional data
arrival times in the Tcrit window are simulated to tighten
the bound on Tcrit and we measure Textra as input transi-
tions get closer to the decision point. The process is repeated
and each successive Tdc sweep produces a smaller Tcrit win-
dow which can be further subdivided for the next sweep.
The Tcrit window is refined until Tdc increments reach the
minimum time difference that the simulator can resolve.

Fig. 12 shows a plot of Textra values extracted using this
simulation methodology. Textra is plotted as a function of
log(Tdc − Tcrit). The plot is divided into two distinct re-
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Figure 12: Example simulation data.

gions. When the input transition satisfies the setup and
hold times of the register, Textra is zero. Once setup time
is violated, Textra increases linearly as the input transition
approaches Tcrit logarithmically. The breakpoint between
these two regions is c1, the width of Tcrit window near clock
edges where data transitions cause some increase in output
delay. The slope of the linear region is −c2, the regeneration
time constant of the latch feedback loop.

In reality, the transition between the two regions is not
completely abrupt. There exists an intermediate region where
the two lines are smoothed together. In this region input ar-
rival times are close enough to the clock edge to cause some
pushout. This pushout is due to the latch internal nodes not
swinging fully rail-to-rail before the latch closes. Until the
positive feedback of the latch restores these nodes to full-rail
values, they drive downstream gates with less-than nominal
voltages, which increases their switching delay. Data arrival
times in this region are not close enough to the decision
point to drive the latch into “deep” metastability where the
small-signal response described earlier better models latch
behavior. A two-piece linear model can underpredict Textra

in the transition region, but pushout in this region is gen-
erally small. As long as register outputs have a moderate
amount of slack, only events in the deep metastability region
will add enough Textra to cause failures. As long as c2 is ex-
tracted from the deep metastability region, the two-piece
linear model will accurately model real cases.

The approach described above characterizes the metastable
behavior of a single latch, but an edge-triggered flip-flop is
actually a cascade of two latches. Data transitions near the
rising edge of the clock can cause the master latch to go
metastable, but if the slave latch sees an input transition
near the falling clock edge it can go metastable as well. The
slave latch does not necessarily have the same characteristics
as the master so it must be characterized separately.

Metastability propagates from the master to the slave if
the master latch resolves near the falling clock edge. In
most flip-flops the master and slave latches are tightly cou-



pled, with little or no buffering between them. As a result
it is not possible to toggle the D input to the slave latch di-
rectly as the input waveform will not have the correct shape.
Instead it is necessary to trigger metastability in the slave
by properly timing the resolution of the master latch near
the falling clock edge. This requires precise control over
master latch resolution time. It was shown earlier that very
small differences in input arrival time create large differences
in output transition time, so it is impractical to vary slave
latch input transition time by sweeping data arrival times at
the input to the master. Fig. 13 shows typical master latch
output waveforms as it resolves from two slightly different
initial loop voltages. Since these waveforms have identical
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Figure 13: Output resolution waveforms.

shapes but are transposed in time, we can use the master
latch only to produce the proper input waveform shape and
vary the timing of the falling edge to characterize the slave.

4. METASTABILITY CORRELATION
Thus far, we have described a model for metastability and

a method for simulating the master and slave latches to ob-
tain the c1 and c2 constants that characterize these devices.
To verify the accuracy of our simulated model we “corre-
late” the simulation to actual hardware measurements. This
is a necessary step in ensuring that our models are accurate.
The task of performing meaningful correlation for metasta-
bility is difficult because metastability is a statistical event.
Unlike timing or power correlation, where absolute numbers
(such as exact delays of paths and current drawn from the
power supply) can be obtained, metastability samples must
be collected over a period of time where it consistently oc-
curs before we have sufficient statistical data to compute the
MTBF. Since typical MTBFs are often expressed in years,
it is infeasible to measure real designs in their natural envi-
ronment. An additional complication of metastability cor-
relation is that it may not be possible to obtain a part that
matches up exactly with the device process and operating
parameters used in the simulation. Because the c2 constant
is very sensitive to these parameters, it can vary widely. Due
to the exponential nature of the MTBF, we can get results
that differ by orders of magnitude. Therefore, our corre-
lation is successful as long as we can obtain MTBF mea-
surements that are bounded by the MTBFs obtained from
simulation of the device at the worst-case (slow) process and
operating condition corner.

4.1 Test Circuit
As described in the Introduction, it is impossible to detect

that a flip-flop/latch has entered a metastable state in all
cases; however, it is possible to detect the occurrence in
some situations. The failures that we do detect can provide
us with a scaled estimate of the number of true failures.

To obtain meaningful metastability measurements in a
reasonable period of time, we have constructed a test cir-
cuit that has a very small Tmet, so that its MTBF is on
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Figure 14: Correlation Test Structure.

the order of seconds, not years. This allows us to sam-
ple many occurrences of metastability within a short time
frame. A sample test circuit is shown in Fig. 14. It is con-
structed to have a data transfer between 2 unrelated clocks,
clkA and clkB. The flip-flop under test is B. Specifically, we
are trying to identify metastable events in the master latch
of flip-flop B. As shown in Fig. 15, the output value from
the master latch is sampled twice. One sample, is taken at

Tclk/2

Tclk/2 − Delay(B → C)

1 2
Captured by (C) Captured by

slave of (B)

Figure 15: Sampling the Master Latch.

Tclk/2 − Delay(B → C) by the falling edge triggered flip-
flop C. Due to the construction of the circuit, the path from
B to C is the most critical path emanating from B and thus
Tmet = Tclk/2− Delay(B → C). The other sample is taken
at Tclk/2. This sample corresponds to the time at which
the slave latch of B captures its value. If the two samples
differ, then a metastable event was detected. Fig. 16 illus-
trates the detection of the metastable event with the output
resolved after the first sample at Tmet. Thus our circuit tries
to quantify the number of transitions that occur after Tmet.

We note that this test circuit does not capture all possi-
ble metastability events, because our first sample captures
a signal in a metastable state and this state has to be dis-
cretized. Although only a subset of metastability failures
are captured, this is enough to obtain sufficient data for the
correlation of c2. The accuracy of our measurement is ex-

clkB

(B)

(C)

(D)

err

1.5 clk cycles for error to appear

Figure 16: Timing Diagram.

tremely dependent on the delays of every path because we
require small Tmet values coupled with high operating fre-



quencies to create an observable MTBF. The delays between
B and its destination flip-flops are minimized by limiting
them to the same Logic Array Block (LAB). Our test cir-
cuit is run for 1 minute, and counts the number of errors
detected. The measured MTBF can then be calculated us-
ing 60/NumErrors. This test is conducted at various clock
frequencies Fc while keeping the data frequency Fd constant.
The results, for a Stratix III device [2], are plotted on a log-
scale graph as shown in Fig. 17. On the y-axis, we plot the
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Figure 17: Correlation of 9 length-1 chains

quantity MTBF ∗ Fc and the x-axis represents the value of
Tclk/2. From Eq. 15, we can rearrange to find:

log(MTBF ∗ Fc) = Tmet
c2

− log(c1 ∗ Fd)

= Tclk/2
c2

− Delay(B→C)
c2

− log(c1 ∗ Fd)

(19)
Thus the slope of the log-graph graph provides us with a
measure of c2 (specifically 1

c2
). To capture the effects of

local variation, this test structure is replicated 9 times across
the chip. Through experimentation, the absolute number of
errors differ greatly depending on the location of the test
structure, but the slope tends to be the same.

The c1 constant is less important since it has an inversely
proportional relationship to MTBF while c2 has an expo-
nential relationship. To determine its value, we need to con-
struct a circuit to measure the on-board value of Delay(B →
C) to isolate c1 from Eq. 19. We omit these details for
brevity.

4.2 Worst-Case MTBF vs. Typical MTBF
As described in the Metastability Modeling section, the

MTBF of a design has an exponential relationship to the
c2 constant. This constant can vary widely depending on
the process, operating temperature and voltage of the de-
vice. Although we can simulate constants by assuming the
worst set of all parameters, this does not necessarily reflect
actual device behaviour. It may not be physically possible
to have all parameters simultaneously be at the worst point
for metastability. To have a more meaningful representa-
tion of design reliability, we compute two sets of MTBFs:
the Worst-Case MTBF, and the Typical MTBF. The
worst-case MTBF is obtained by performing SPICE sim-
ulation at the worst possible set of process and operating
conditions. This metric is useful when predicting the ex-
pected overall product MTBF in the field, since the overall
MTBF will be dominated by the worst-performing device.
In contrast, the typical MTBF uses nominal process and op-
erating conditions. This metric is useful when the designer is
trying to match a lab measurement to the predicted MTBF.

The designer should aim to achieve a worst-case MTBF that
ensures high product reliability.

To provide a sense of how well the simulation model lines
up with reality, we perform correlation experiments for both
the worst-case and typical MTBF on Stratix III. For the
correlation of the typical MTBF, we choose a typical pro-
cess device and conduct our test under nominal operating
conditions (Vdd = 1.1V, T = 25C). To correlate the worst-
case MTBF, we look for the slowest device available and use
the worst set of possible operating conditions. This usu-
ally occurs at the lowest operating voltage and the lowest
temperature (eg. Vdd = 1.02V, T = 0C).

In Fig. 18, we show an example of the correlation for a
design containing 2000 length-1 synchronizers. In this ex-
periment, we vary the supply voltage to demonstrate how
the change in condition impacts the measured MTBF. The
outermost lines are the predicted MTBFs, whereas the in-
ner lines are the measurements obtained when the voltage
is varied. Notice that as we lower the voltage, the mea-
sured MTBFs tend to be closer to the predicted worst-case
values. Our measurements are well correlated with the pre-
dicted MTBFs, and are consistent across frequencies. These
results provide strong validation of our simulated models.
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Figure 18: MTBF Comparison for StratixIII

5. MITIGATING METASTABILITY
In previous sections, we have established a model for metasta-

bility and validated it using hardware measurements. The
fundamental question remains: What can a designer do to
mitigate the problems caused by metastability?

As shown in Eq. 15, the MTBF of any chain has an ex-
ponential relationship with the Tmet of the chain and the c2

constant. Therefore, to improve MTBF one should focus on
either increasing the Tmet or decreasing c2.

There are several things the designer can do to improve
the Tmet of synchronizer chains on a design level. The best
way to improve the MTBF is to increase the number of
stages in each of the synchronizer chains. The designer can
also increase the available output setup slack by using lo-
cation constraints. By constraining registers of the same
synchronizer chain to the same LAB, the slack between syn-
chronizer stages is maximized. The designer must also en-
sure that synchronization registers are not merged or opti-
mized away by synthesis optimizations.

If there is a large number of synchronizer chains in the
design, the designer should prioritize optimizations to im-
prove the chain with the highest clock and data frequency,
and the lowest Tmet because the MTBF is dominated by
the chain with the worst performance. The total number of
asynchronous signals can also be reduced by using suitable
handshaking protocols and signals, so that fewer synchro-
nizer chains are needed.



To improve c2, the designer should implement their design
on a faster speed grade device if possible. A faster speed
grade device usually means that metastable events will re-
solve faster. Also, in devices where programmable power
technologies exist, synchronizers should be implemented us-
ing the highest speed setting, since this usually means the
transistor will have a lower effective Vt. From Eq. 18, a
lower Vt means that the flip-flop will have a higher gain,
and metastable events will resolve faster.

6. METASTABILITY-AWARE CAD FLOW
Many of the strategies outlined in the previous section can

be cumbersome and tedious to apply manually if there are
many synchronizer chains in the design. In addition, mod-
ern CAD tools execute numerous optimizations to improve
traditional metrics such as speed, area and power. In doing
so, the CAD tool may actually hurt the MTBF of a design
since typical flows are completely unaware of metastability.
To address these issues, we have developed a CAD flow, in-
tegrated within Altera’s Quartus II v9.0 [1], that is fully
aware of metastability, and can place and route the design
to optimize MTBF. The goals of this CAD flow are:

• To identify synchronizer chains automatically.

• To prevent optimizations that may reduce the MTBFs
of synchronizer chains.

• To optimize the design to improve MTBF with no
degradation in performance or area.

Before describing the details of our metastability-aware
CAD flow, it is useful to review the conventional FPGA
CAD flow. This is illustrated in Fig. 19. The first step is
Synthesis which transforms a design into a netlist of logic
cells, RAMs, DSPs and other specialized blocks found in
modern FPGAs. Placement then assigns a physical loca-
tion on the device to each element in the netlist with the
objective of minimizing wirelength and improving perfor-
mance. Routing attempts to create connections between el-
ements in the netlist using the FPGA’s programmable rout-
ing network. The router’s goal is to successfully route all
signals and ensure that performance is maximized. Notice
that both placement and routing are tightly coupled with
Timing Analysis. Given delays for each element and con-
nection in the netlist, timing analysis can determine the op-
erating speed of the circuit and determine timing slacks on
each connection. As we progress through the steps of place-
ment and routing, timing analysis is repeatedly executed
using the best possible delay approximations available at
these points. It can then provide both placement and rout-
ing with a measure of how critical each connection is in the
netlist. Critical connections are generally those that have
the least amount of timing slack. Both placement and rout-
ing can use this notion of criticality in their cost functions
to ensure that critical connections are placed close to each
other and get the fastest possible routing resources. After
placement and routing (P&R) are complete, a bitstream can
be generated to configure a device.

We have added metastability-“awareness” to all relevant
sections of the CAD flow (synthesis, placement and routing).
We refer to optimizations as metastability-aware when they
recognize if a potential transformation may hurt metasta-
bility, but these optimizations do not actively try to im-
prove metastability characteristics. Specifically synthesis

Synthesis

Placement

Routing

Bitstream

Timing Analysis

Timing Analysis

Figure 19: FPGA CAD flow.

optimizations such as register duplication and retiming fall
into this category.

Techniques that improve design MTBF have also been
added to both the placement and routing steps of the CAD
flow. This is achieved by enhancing timing analysis to make
edges which heavily influence the MTBF of a design seem
more critical than they would normally appear when only
considering timing performance optimization.

6.1 Automatic Synchronizer Identification
Our first step is to perform a traversal of the netlist to

identify synchronizer chains. We define a synchronizer chain
using the following criteria:

• Each flip-flop in the chain must transitively fanout to
a single flip-flop. There may be reconvergent fanout as
in Fig. 20 in the synchronizer chain.

D QD QD Q

clkB

clkA

Figure 20: Reconvergent Logic.

• The input to the first flip-flop is driven by a flip-flop in
an unrelated clock domain, or by an asynchronous sig-
nal. The flip-flop chain shown in Fig. 21 will not have
flip-flop B identified as the head of a synchronizer –
while flip-flops A and B have different clocks, there is
still a relationship between the clock frequencies and
phases which allows the creation of static timing con-
straints for the data transfer from A to B.

D QD Q

D Q

Data

Clk

A B

Figure 21: Related Clock Domains.

• The last flip-flop in the chain has more than 1 flip-flop
in its transitive fanout cone as illustrated in Fig. 22.

• All flip-flops in the synchronizer chain are driven by
the same clock.

To automatically identify synchronizer chains in the circuit,
we first identify all locations of asynchronous data transfers.



D QD QD Q

clkB

clkA

D Q

D QSynchronizer

Figure 22: Chains end at multi-fanout points.

Each receiving flip-flop of the asynchronous data transfer is
marked as the head of a potential synchronizer chain. We
then explore the output paths of each flip-flop to see if it sat-
isfies the requirements of a synchronizer chain listed above.
By using both structural and timing information, we can re-
duce mis-identifications of synchronizer chains due to related
clock domains. For each chain, we compute the MTBF us-
ing the formulae described earlier. Given the MTBF for each
chain, we can then automatically provide a design MTBF.

Once synchronizer flip-flops are identified, it becomes a
simple task to allow conventional optimization techniques to
become metastability-aware. The techniques that can hurt
the chain MTBF the most are the synthesis optimizations
of register duplication and retiming. In retiming, registers
can be moved across logic causing a decrease in the available
output slack of the chain. While this optimization may be
good for performance, it is not necessarily a good thing for
metastability. Similarly, if any flip-flop in the synchronizer
chain gets duplicated, its source flip-flop now has multiple
flip-flops in its fanout and therefore the synchronizer chain
terminates sooner. This reduces the Tmet of the chain by
removing entire synchronization stages.

6.2 Metastability Optimization
Once we have obtained a list of all synchronizer chains and

have ensured that synthesis optimizations are metastability-
aware, we can then modify the place-and-route engine to
take metastability into account when optimizing critical paths.

Consider the synchronizer chain in Fig. 2(b) as it may
appear during placement in a conventional CAD flow. The
Tmet of the synchronizer chain is the sum of the slacks on
edge B and C. The delay on edge B might be increased
significantly by the placement engine to optimize the wire-
length of A and C. While this is good for placement, it would
have a detrimental effect on the chain MTBF. Thus, the fo-
cus of metastability optimization is to make sure that the
synchronizer edges, such as edge B, receive more attention
during P&R.

Fig. 23 shows our general optimization approach. We add
an additional step at the end of timing analysis to update
the slacks and criticalities of synchronizer edges so that P&R
can understand that they are “critical” for a good MTBF. A

Synthesis

Placement

Routing

Bitstream

Timing Analysis

Update Slacks
and Criticalities
for Metastability

Figure 23: Metastability optimization approach.

simple metric of criticality can be defined as:

criticality(connection) = 1 − slack(connection)

T imingConstraint
(20)

Generally, this equation attempts to normalize slack values
so that connections with small amounts of slack relative to
the timing constraint, have high criticalities and vice-versa.
This value can be clipped so that it is in the range of 0 to 1.

As is the case with many timing-driven P&R algorithms [4],
both the placer and router use cost functions. These cost
functions use connection criticalities so that connections with
higher criticalities are placed closer to each other and con-
nected with the fastest routes. The delay of non-critical con-
nections can be increased to optimize for other metrics. If
we modify the slacks and criticalities of synchronizer edges,
we can easily instruct the P&R algorithms to optimize for
metastability. The difficulty in doing this is that we do not
wish to compromise performance in this process.

Our algorithm essentially involves reducing the slack of
paths involving synchronizer flip-flops by some amount Δ.
This increases the criticality and encourages the P&R al-
gorithms to improve the Tmet values for the chains in the
design. For paths that are internal to a synchronizer, often
a single edge paths from a source flip-flop Ri to a destination
flip-flop Rj , reducing the slack by Δ is a trivial exercise.

The value of Δ is set to be the following:

Δ = max(−α ∗ T imingConstraint + slack(Ri), 0) (21)

where slack(Ri) is defined to be the minimum slack on any
edge on the immediate fanout of Ri. This effectively ensures
that the criticality of the worst path starting from Ri is at
least 1 − α. The Δ values are never negative so we do not
increase the slack of any connection. Thus small values of α
cause synchronizer edges to become increasingly critical.

The last flip-flop in the synchronizer has transitive fanout
to more than one destination flip-flop. Let us denote the last
flip-flop as Ri. We can then reduce the slacks of all paths
emanating from Ri by Δ. This optimization is significantly
more complicated than the single edge case because we can-
not simply reduce the slacks of all edges in the transitive
fanout cone of Ri by Δ since the slacks on these edges may
involve paths that are unrelated to Ri. This concept is best
illustrated with an example as shown in Fig. 24. Suppose
that we choose the value T imingConstraint = 200, α = 0.1
and the original slack for every edge is shown in Fig. 24(a).
Given that the worst-case slack at the output of Ri = 40,
the value of Δ = 20. We first start by reducing the slack
on the immediate fanout edges of Ri. We then propagate Δ
forward to ensure that the worst-case input slack of every
intermediate node is equal to the worst-case output slack. It
is fairly straightforward to propagate through single-fanout
nodes such as nodes A and B in Fig. 24(b). However, for
node C, although one of its input edge slacks is reduced by
20, the worst-case input slack only changes by 10 since the
limiting factor is now the edge A to C, instead of y to C.
Therefore, we only need to reduce the slack of all its out-
puts by 10 (Fig. 24(c)). For node D, since its worst-case
input slack remains unchanged, we do not need to update
the slacks of its output edge (Fig. 24(d)). This process is it-
erated until the destination flip-flops of paths starting from
Ri are reached. Note that the final slacks can be obtained by
taking the original slacks and subtracting the Δs shown on
each edge. This propagation scheme ensures that the worst-
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Figure 24: Local slack adjustment cases.

case path from Ri has a criticality of at least 1 − α, while
all other paths starting from Ri are scaled appropriately.

To evaluate the performance of this algorithm, we require
designs that are fully timing-constrained. Our synchronizer
identification algorithm requires proper I/O and clock con-
straints. Since the MTBF is irrelevant if the design does not
meet its timing constraints, we measure our algorithm on a
set of 100 industrial circuits targeted to Stratix III [2] and
Stratix IV [3] with realistic timing constraints. The aver-
age size of these circuits is 35,000 logic elements (LEs) with
a range from 1020–245,000 LEs. Since the design MTBF
is limited by the worst-performing synchronizer chain, we
compare the worst-case Tmet in each circuit with and with-
out our proposed optimization and note the improvement.
Conventional metrics such as the maximum operating fre-
quency of the circuit (Fmax) and runtime penalty are also
noted. To provide context for the improvement in Tmet, we
define an MTBF multiplier as:

MTBFmultiplier = e
ΔTmet

c2 (22)

Given an increase in Tmet, this is the factor with which we
have improved the design MTBF. In all cases, we average
these metrics using the geometric mean across all circuits.

In Fig. 25, the performance of our algorithm is shown
for different values of α. The baseline is Quartus II v9.0,
with no metastability optimization and it is compared to
our version of Quartus II with metastability optimizations
enabled. As α increases, the improvement in Tmet gets
smaller while the performance (Fmax) penalty is also de-
creased. We choose a value of α that provides consistently
good results across many different circuit sets and architec-
tures. The best tradeoff between performance and metasta-
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Figure 25: α value tradeoff.

bility for Stratix III and IV is shown in Table 1. On our
benchmark set, we can achieve 600-760ps improvement in
Tmet without a significant drop in circuit performance. De-
pending on the process technology, we have improved the
average design MTBF by 22,000 to 268,000 times. The run-

time of our metastability-aware CAD flow is negligible.

Table 1: Optimization Results
Metric StratixIII StratixIV

Fmax Improvement -0.3% -0.5%
ΔTmet +600ps +760ps

MTBF Multiplier 268,000 22,000
Runtime penalty 0% 0%

7. CONCLUSIONS
In this paper, we have derived the theoretical model for

metastability from first principles, and have explained in
detail how to obtain the constants necessary for this model
through SPICE simulations. We have also validated our sim-
ulation methodology by correlating our model to silicon. To
ensure that metastability is optimized through the FPGA
CAD flow, we have introduced a technique to guide place-
ment and routing to improve the chain slacks of synchroniz-
ers. Using this approach, our results indicate that we can
improve the average design MTBF by up to 268,000 times.
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