
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014 5471

A Comprehensive Approach to Universal Piecewise

Nonlinear Regression Based on Trees
N. Denizcan Vanli and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract—In this paper, we investigate adaptive nonlinear
regression and introduce tree based piecewise linear regression

algorithms that are highly efficient and provide significantly

improved performance with guaranteed upper bounds in an
individual sequence manner. We use a tree notion in order to

partition the space of regressors in a nested structure. The intro-

duced algorithms adapt not only their regression functions but
also the complete tree structure while achieving the performance

of the “best” linear mixture of a doubly exponential number

of partitions, with a computational complexity only polynomial
in the number of nodes of the tree. While constructing these

algorithms, we also avoid using any artificial “weighting” of

models (with highly data dependent parameters) and, instead,
directly minimize the final regression error, which is the ultimate

performance goal. The introduced methods are generic such that

they can readily incorporate different tree construction methods
such as random trees in their framework and can use different

regressor or partitioning functions as demonstrated in the paper.

Index Terms—Nonlinear regression, nonlinear adaptive fil-

tering, binary tree, universal, adaptive.

I. INTRODUCTION

N ONLINEAR adaptive filtering and regression are ex-

tensively investigated in the signal processing [1]–[19]

and machine learning literatures [20]–[23], especially for

applications where linear modeling [24], [25] is inadequate,

hence, does not provide satisfactory results due to the structural

constraint on linearity. Although nonlinear approaches can be

more powerful than linear methods in modeling, they usually

suffer from overfitting, stability and convergence issues [1],

[26]–[28], which considerably limit their application to signal

processing problems. These issues are especially exacerbated

in adaptive filtering due to the presence of feedback, which

is even hard to control for linear models [26], [27], [29].

Furthermore, for applications involving big data, which require

to process input vectors with considerably large dimensions,

nonlinear models are usually avoided due to unmanageable

computational complexity increase [30]. To overcome these

difficulties, “tree” based nonlinear adaptive filters or regressors

Manuscript received July 24, 2013; revised December 23, 2013; accepted

August 14, 2014. Date of publication August 20, 2014; date of current version

September 16, 2014. The associate editor coordinating the review of this man-

uscript and approving it for publication was Dr. Slawomir Stanczak. This work

was supported in part by the IBMFaculty Award and in part by TUBITAK under

Contract 112E161 and Contract 113E517.

The authors are with the Department of Electrical and Electronics En-

gineering, Bilkent University, Bilkent, Ankara 06800, Turkey (e-mail:

vanli@ee.bilkent.edu.tr; kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2014.2349882

Fig. 1. The partitioning of a two dimensional regressor space using a complete

tree of depth-2 with hyperplanes for separation. The whole regressor space is

first bisected by , which is defined by the hyperplane , where the region

on the direction of vector corresponds to the child with “1” label. We then

continue to bisect children regions using and , defined by and ,

respectively.

are introduced as elegant alternatives to linear models since

these highly efficient methods retain the breadth of nonlinear

models while mitigating the overfitting and convergence issues

[2], [4], [30]–[33].

In its most basic form, a regression tree defines a hierarchical

or nested partitioning of the regressor space [2]. As an example,

consider the binary tree in Fig. 1, which partitions a two di-

mensional regressor space. On this tree, each node represents

a bisection of the regressor space, e.g., using hyperplanes for

separation, resulting a complete nested and disjoint partition

of the regressor space. After the nested partitioning is defined,

the structure of the regressors in each region can be chosen as

desired, e.g., one can assign a linear regressor in each region

yielding an overall piecewise linear regressor. In this sense, tree

based regression is a natural nonlinear extension to linear mod-

eling, in which the space of regressors is partitioned into a union

of disjoint regions where a different regressor is trained. This

nested architecture not only provides an efficient and tractable

structure, but also is shown to easily accommodate to the in-

trinsic dimension of data, naturally alleviating the overfitting

issues [30], [34].

Although nonlinear regressors using decision trees are pow-

erful and efficient tools for modeling, there exist several algo-

rithmic preferences and design choices that affect their perfor-

mance in real life applications [2], [4], [31]. Especially their

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5472 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

Fig. 2. All different partitions of the regressor space that can be obtained using

a depth-2 tree. Any of these partition can be used to construct a piecewise linear

model, which can be adaptively trained to minimize the regression error. These

partitions are based on the separation functions shown in Fig. 1.

adaptive learning performance may greatly suffer if the algo-

rithmic parameters are not tuned carefully, which is particu-

larly hard to accommodate for applications involving nonsta-

tionary data exhibiting saturation effects, threshold phenomena

or chaotic behavior [4]. In particular, the success of the tree

based regressors heavily depends on the “careful” partitioning

of the regressor space. Selection of a good partition, including

its depth and regions, from the hierarchy is essential to balance

the bias and variance of the regressor [30], [34]. As an example,

even for a uniform binary tree, while increasing the depth of

the tree improves the modeling power, such an increase usu-

ally results in overfitting [4]. There exist numerous approaches

that provide “good” partitioning of the regressor space that are

shown to yield satisfactory results on the average under certain

statistical assumptions on the data or on the application [30].

We note that on the other extreme, there exist methods in

adaptive filtering and computational learning theory, which

avoid such a direct commitment to a particular partitioning but

instead construct a weighted average of all possible piecewise

models defined on a tree [4], [35], [36]. Note that a full binary

tree of depth- , as shown in Fig. 1 for , with hard

separation boundaries, defines a doubly exponential number

[37] of complete partition of the regressor space (see Fig. 2).

Each such partitioning of the regressor space is represented

by the collection of the nodes of the full tree where each node

is assigned to a particular region of the regressor space. Any

of these partitions can be used to construct and then train a

piecewise linear or nonlinear regressor. Instead of fixing one of

these partitions, one can run all the models (or subtrees) in par-

allel and combine the final outputs based on their performance.

Such approaches are shown to mitigate the bias variance trade

off in a deterministic framework [4], [35], [36]. However, these

methods are naturally constraint to work on a specific tree or

partitionings, i.e., the tree is fixed and cannot be adapted to

the data, and the weighting among the models usually have no

theoretical justifications (although they may be inspired from

information theoretic considerations [38]). As an example, the

“universal weighting” coefficients in [4], [24], [39]–[41] or

the exponentially weighted performance measure are defined

based on algorithmic concerns and provide universal bounds,

however, do not minimize the final regression error. In partic-

ular, the performance of these methods highly depends on these

weighting coefficients and algorithmic parameters that should

be tuned to the particular application for successful operation

[4], [31].

To this end, we provide a comprehensive solution to nonlinear

regression using decision trees. In this paper, we introduce al-

gorithms that are shown i) to be highly efficient ii) to provide

significantly improved performance over the state of the art ap-

proaches in different applications iii) to have guaranteed per-

formance bounds without any statistical assumptions. Our al-

gorithms not only adapt the corresponding regressors in each

region, but also learn the corresponding region boundaries, as

well as the “best” linear mixture of a doubly exponential number

of partitions to minimize the final estimation or regression error.

We introduce algorithms that are guaranteed to achieve the per-

formance of the best linear combination of a doubly exponen-

tial number of models with a significantly reduced computa-

tional complexity. The introduced approaches significantly out-

perform [4], [24], [39] based on trees in different applications in

our examples, since we avoid any artificial weighting of models

with highly data dependent parameters and, instead, “directly”

minimize the final error, which is the ultimate performance goal.

Our methods are generic such that they can readily incorporate

random projection (RP) or -d trees in their framework as com-

mented in our simulations, e.g., the RP trees can be used as the

starting partitioning to adaptively learn the tree, regressors and

weighting to minimize the final error as data progress.

In this paper, we first introduce an algorithm that asymptoti-

cally achieves the performance of the “best” linear combination

of a doubly exponential number of different models that can

be represented by a depth- tree a with fixed regressor space

partitioning with a computational complexity only linear in the

number of nodes of the tree.We then provide a guaranteed upper

bound on the performance of this algorithm and prove that as

the data length increases, this algorithm achieves the perfor-

mance of the “best” linear combination of a doubly exponential

number of models without any statistical assumptions. Further-

more, even though we refrain from any statistical assumptions

on the underlying data, we also provide the mean squared per-

formance of this algorithm compared to the mean squared per-

formance of the best linear combination of the mixture. These

methods are generic and truly sequential such that they do not

need any a priori information, e.g., upper bounds on the data

[2], [4], (such upper bounds does not hold in general, e.g., for

Gaussian data). Although the combination weights in [4], [35],

[36] are artificially constraint to be positive and sum up to 1

[42], we have no such restrictions and directly adapt to the data

without any constraints. We then extend these results and pro-

vide the final algorithm (with a slightly increased computational

complexity), which “adaptively” learns also the corresponding

regions of the tree to minimize the final regression error. This

approach learns i) the “structure” of the tree, ii) the regressors in

each region, and iii) the linear combination weights to merge all

possible partitions, to minimize the final regression error. In this

sense, this algorithm can readily capture the salient characteris-

tics of the underlying data while avoiding bias to a particular

model or structure.



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5473

In Section III, we first present an algorithm with a fixed re-

gressor space partitioning and present a guaranteed upper bound

on its performance. We then significantly reduce the compu-

tational complexity of this algorithm using the tree structure.

In Section IV, we extend these results and present the final al-

gorithm that adaptively learns the tree structure, region bound-

aries, region regressors and combination weights to minimize

the final regression error. We then demonstrate the performance

of our algorithms through simulations in Section V. We then fi-

nalize our paper with concluding remarks.

II. PROBLEM DESCRIPTION

In this paper, all vectors are column vectors and denoted by

boldface lower case letters. Matrices are represented by bold-

face uppercase letters. For a vector is the

-norm, where is the ordinary transpose. Here, repre-

sents a dimensional identity matrix.

We study sequential nonlinear regression, where we observe

a desired signal , and regression vectors

, such that we sequentially estimate by

and is an adaptive nonlinear regression function. At each

time , the regression error is given by

Although there exist several different approaches to select the

corresponding nonlinear regression function, we particularly

use piecewise models such that the space of the regression vec-

tors, i.e., , is adaptively partitioned using hyperplanes

based on a tree structure. We also use adaptive linear regressors

in each region. However, our framework can be generalized

to any partitioning of the regression space, i.e., not necessarily

using hyperplanes, such as using [30], or any regression func-

tion in each region, i.e., not necessarily linear. Furthermore,

both the region boundaries as well as the regressors in each

region are adaptive.

A. A Specific Partition on a Tree

To clarify the framework, suppose the corresponding space

of regressor vectors is two dimensional, i.e., , and we

partition this regressor space using a depth-2 tree as in Fig. 1.

A depth-2 tree is represented by three separating functions

and , which are defined using three hyperplanes with di-

rection vectors and , respectively (See Fig. 1). Due

to the tree structure, three separating hyperplanes generate only

four regions, where each region is assigned to a leaf on the tree

given in Fig. 1 such that the partitioning is defined in a hierar-

chical manner, i.e., is first processed by and then by

. A complete tree defines a doubly exponential number,

, of subtrees each of which can also be used to partition

the space of past regressors. As an example, a depth-2 tree de-

fines 5 different subtrees or partitions as shown in Fig. 2, where

each of these subtrees is constructed using the leaves and the

nodes of the original tree. Note that a node of the tree represents

a region which is the union of regions assigned to its left and

right children nodes [38].

The corresponding separating (indicator) functions can be

hard, e.g., if the data falls into the region pointed by the

direction vector , and otherwise. Without loss of gen-

erality, the regions pointed by the direction vector are labeled

as “1” regions on the tree in Fig. 1. The separating functions can

also be soft. As an example, we use the logistic regression clas-

sifier [43]

(1)

as the soft separating function, where is the direction vector

and is the offset, describing a hyperplane in the -dimen-

sional regressor space. With an abuse of notation we combine

the direction vector with the offset parameter and denote

it by . Then the separator function in (1) can be

rewritten as

(2)

where . One can easily use other differentiable soft

separating functions in this setup in a straightforward manner as

remarked later in the paper.

To each region, we assign a regression function to generate

an estimate of . For a depth-2 (or a depth- ) tree, there are 7

(or ) nodes (including the leaves) and 7 (or )

regions corresponding to these nodes, where the combination of

these nodes or regions form a complete partition. In this paper,

we assign linear regressors to each region. For instance consider

the third model in Fig. 2, i.e., , where this partition is the

union of 4 regions each corresponding to a leaf of the original

complete tree in Fig. 1, labeled as 00, 01, 10, and 11. The

defines a complete partitioning of the regressor space, hence

can be used to construct a piecewise linear regressor. At each

region, say the 00th region, we generate the estimate

(3)

where is the linear regressor vector assigned to

region 00. Considering the hierarchical structure of the tree and

having calculated the region estimates, the final estimate of

is given by

(4)

for any . We emphasize that any can be used

in a similar fashion to construct a piecewise linear regressor.

Continuing with the specific partition , we adaptively train

the region boundaries and regressors to minimize the final re-

gression error. As an example, if we use a stochastic gradient

descent algorithm [42], [44]–[46], we update the regressor of

the node “00” as

where is the step size to update the region regressors. Sim-

ilarly, region regressors can be updated for all regions

. Separator functions can also be trained using the

same approach, e.g., the separating function of the node 0, ,

can be updated as



5474 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

where is the step size to update the separator functions and

(5)

according to the separator function in (2). Other separating func-

tions (different than the logistic regressor classifier) can also be

trained in a similar fashion by simply calculating the gradient

with respect to the extended direction vector and plugging in

(5).

Until now a specific partition, i.e., , is used to construct

a piecewise linear regressor, although the tree can represent

. However, since the data structure is unknown, one

may not prefer a particular model [4], [35], [36], i.e., there may

not be a specific best model or the best model can change in

time. As an example, the simpler models, e.g., , may perform

better while there is not sufficient data at the start of training

and the finer models, e.g., , can recover through the learning

process. Hence, we hypothetically construct all doubly expo-

nential number of piecewise linear regressors corresponding to

all partitions (see Fig. 2) and then calculate an adaptive linear

combination of the outputs of all, while these algorithms learn

the region boundaries as well as the regressors in each region.

In Section III, we first consider the scenario in which the re-

gressor space is partitioned using hard separator functions and

combine different models for a depth- tree with a com-

putational complexity . In Section IV, we partition the

regressor space with soft separator functions and adaptively up-

date the region boundaries to achieve the best partitioning of

the -dimensional regressor space with a computational com-

plexity .

III. REGRESSOR SPACE PARTITIONING VIA HARD

SEPARATOR FUNCTIONS

In this section, we consider the regression problem in which

the sequential regressors (as described in Section II.A) for all

partitions in the doubly exponential tree class are combined

when hard separation functions are used, i.e., . In

this section, the hard boundaries are not trained, however, both

the regressors of each region and the combination parameters to

merge the outputs of all partitions are trained. To partition the

regressor space, we first construct a tree with an arbitrary depth,

say a tree of depth- , and denote the number of different models

of this class by , e.g., one can use RP trees as the

starting tree [30]. While the th model (i.e., partition) gen-

erates the regression output at time for all ,

we linearly combine these estimates using the weighting vector

such that the final estimate of our al-

gorithm at time is given as

(6)

where . The regression error at time is

calculated as

For different models that are embedded within a depth- tree,

we introduce an algorithm (given in Algorithm 1) that asymptot-

ically achieves the same cumulative squared regression error as

the optimal linear combination of these models without any sta-

tistical assumptions. This algorithm is constructed in the proof

of the following theorem and the computational complexity of

the algorithm is only linear in the number of the nodes of the

tree.

Theorem 1: Let and be arbitrary, bounded,

and real-valued sequences. The algorithm given in Algorithm

1 when applied to these data sequence yields

(7)

for all , when is strongly convex , where

, and are the estimates of

at time for .

This theorem implies that our algorithm (given in Algorithm

1), asymptotically achieves the performance of the best combi-

nation of the outputs of different models that can be rep-

resented using a depth- tree with a computational complexity

. Note that as given in Algorithm 1, no a priori informa-

tion, e.g., upper bounds, on the data is used to construct the algo-

rithm. Furthermore, the algorithm can use different regressors,

e.g., [4], or regions seperation functions, e.g., [30], to define the

tree.

Assuming that the constituent partition regressors converge

to stationary distributions, such as for Gaussian regressors, and

under widely used separation assumptions [26], [47] such that

the expectation of , and are separable,

we have the following theorem.

Theorem 2: Assuming that the partition regressors, i.e.,

, and converge to zero mean stationary distri-

butions, we have

where is the learning rate of the stochastic gradient update,

for the algorithm (given in Algorithm 1).

Theorem 2 directly follows Chapter 6 of [26] since we use a

stochastic gradient algorithm to merge the partition regressors

[26], [47]. Hence, the introduced algorithmmay also achieve the

mean square error performance of the best linear combination

of the constituent piecewise regressors if is selected carefully.

A. Proof of Theorem 1 and Construction of Algorithm 1

To construct the final algorithm, we first introduce a “di-

rect” algorithmwhich achieves the corresponding bound in The-

orem 1. This direct algorithm has a computational complexity

since one needs to calculate the correlation information

of models to achieve the performance of the best linear

combination. We then introduce a specific labeling technique



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5475

and using the properties of tree structure, construct an algo-

rithm to obtain the same upper bound as the “direct” algorithm,

yet with a significantly smaller computational complexity, i.e.,

.

For a depth- tree, suppose , are obtained

as described in Section II.A. To achieve the upper bound in (7),

we use the stochastic gradient descent approach and update the

combination weights as

(8)

where is the step-size parameter (or the learning rate) of the

gradient descent algorithm. We first derive an upper bound on

the sequential learning regret , which is defined as

where is the optimal weight vector over , i.e.,

Following [44], using Taylor series approximation, for some

point on the line segment connecting to , we have

(9)

According to the update rule in (8), at each iteration the update

on weights are performed as . Hence,

we have

Then we obtain

(10)

Under the mild assumptions that for some

and is -strong convex for some [44], we

achieve the following upper bound

(11)

By selecting and summing up the regret terms in

(11), we get

Note that (8) achieves the performance of the best linear combi-

nation of piecewise linear models that are defined by the

tree. However, in this form (8) requires a computational com-

plexity of since the vector has a size of . We

next illustrate an algorithm that performs the same adaptation in

(8) with a complexity of .

We next introduce a labeling for the tree nodes following [38].

The root node is labeled with an empty binary string and as-

suming that a node has a label , where is a binary string, we

label its upper and lower children as and , respectively.

Here we emphasize that a string can only take its letters from

the binary alphabet , where 0 refers to the lower child, and

1 refers to the upper child of a node. We also introduce another

concept, i.e., the definition of the prefix of a string. We say that

a string is a prefix to string if

and for all , and the empty string is a

prefix to all strings. Let represent all prefixes to the string

, i.e., , where is the length of

the string is the string with , and is

the empty string, such that the first letters of the string

forms the string for .

We then observe that the final estimate of any model can be

found as the combination of the regressors of its leaf nodes.

According to the region has fallen, the final estimate will be

calculated with the separator functions. As an example, for the

second model in Fig. 2 (i.e., partition), say , and

hard separator functions are used. Then the final estimate of this

model will be given as . For any separator function,

the final estimate of the desired data at time of the thmodel,

i.e., can be obtained according to the hierarchical structure

of the tree as the sum of regressors of its leaf nodes, each of

which are scaled by the values of the separator functions of the

nodes between the leaf node and the root node. Hence, we can

compactly write the final estimate of the th model at time as

(12)

where is the set of all leaf nodes in the th model, is

the regressor of the node is the length of the string

is the prefix to string with length is the th

letter of the string , i.e., , and finally denotes

the separator function at node such that



5476 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

with defined as in (2). We emphasize that we dropped -de-

pendency of and to simplify notation.

As an example, if we consider the third model in Fig. 2 as

the th model (i.e., ), where , then

we can calculate the final estimate of that model as follows

(13)

Note that (4) and (13) are the same special cases of (12).

We next denote the product terms in (12) as follows

(14)

to simplify the notation. Here, can be viewed as the estimate

of the node (i.e., region) given that for some ,

where denotes all leaf nodes of the depth- tree class, i.e.,

. Then (12) can be rewritten as follows

Since we now have a compact form to represent the tree and

the outputs of each partition, we next introduce a method to cal-

culate the combination weights of piecewise regressor

outputs in a simplified manner.

To this end, we assign a particular linear weight to each node.

We denote the weight of node at time as and then we

define the weight of the th model as the sum of weights of its

leaf nodes, i.e.,

for all . Since the weight of eachmodel, saymodel

, is recursively updated as

we achieve the following recursive update on the node weights

(15)

where is defined as in (14).

This result implies that instead of managing memory

locations, and making calculations, only keeping track

of the weights of every node is sufficient, and the number of

nodes in a depth- model is , where denotes

the set of all nodes in a depth- tree. As an example, for

we obtain . Therefore we can re-

duce the storage and computational complexity from to

by performing the update in (15) for all . We then

continue the discussion with the update of weights performed at

each time when hard separator functions are used.

Without loss of generality assume that at time , the regression

vector has fallen into the region specified by the node

. Consider the node regressor defined in (14) for some

node . Since we are using hard separator functions, we

obtain

where represents all prefixes to the string , i.e.,

. Then at each time we only update the weights

of the nodes , hence we only make

updates since the hard separation functions are used for parti-

tioning of the regressor space.

Before stating the algorithm that combines these node

weights as well as node estimates, and generates the same final

estimate as in (6) with a significantly reduced computational

complexity, we observe that for a node with length

, there exist a total of

different models in which the node is a leaf node of that

model, where and for all . For

case, i.e., for , one can clearly observe that there

exists only one model having as the leaf node, i.e., the model

having no partitions, therefore .

Having stated how to store all estimates and weights in

memory locations, and perform the updates at each iteration, we

now introduce an algorithm to combine them in order to obtain

the final estimate of our algorithm, i.e., . We empha-

size that the sizes of the vectors and are , which

forces us to make computations. We however introduce

an algorithm with a complexity of that is able to achieve

the exact same result.

Algorithm 1: Decision Fixed Tree (DFT) Regressor

1: for to do

2:

3:

4: for all do

5:

6:

7: for all do

8:

9:

10: end for

11:

12: end for

13:

14: for all do

15:

16:

17: end for

18: end for



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5477

For a depth- tree, at time say for a node .

Then the final estimate of our algorithm is found by

(16)

where is the set of all leaf nodes inmodel , and

is the longest prefix to the string in the th model, i.e.,

. Let denote the set of all

prefixes to string . We then observe that the regressors of the

nodes will be sufficient to obtain the final estimate

of our algorithm. Therefore, we only consider the estimates of

nodes.

In order to further simplify the final estimate in (16), we first

let , i.e., denotes the set

of all nodes of a depth- tree, whose set of prefixes include the

node . As an example, for a depth-2 tree, we have

. We then define a function for arbitrary two

nodes , as the number of models having both and

as its leaf nodes. Trivially, if , then . If

, then letting denote the longest prefix to both and ,

i.e., the longest string in , we obtain

(17)

Since from the definition of the tree, we

naturally have .

Now turning our attention back to (16) and considering the

definition in (17), we notice that the number of occurrences of

the product in is given by . Hence, the com-

bination weight of the estimate of the node at time can be

calculated as follows

(18)

Then, the final estimate of our algorithm becomes

(19)

We emphasize that the estimate of our algorithm given in (19)

achieves the exact same result with with a computa-

tional complexity of . Hence, the proof is concluded.

IV. REGRESSOR SPACE PARTITIONING VIA ADAPTIVE SOFT

SEPARATOR FUNCTIONS

In this section, the sequential regressors (as described in

Section II.A) for all partitions in the doubly exponential tree

class are combined when soft separation functions are used,

i.e., , where is the extended

regressor vector and is the extended direction vector. By

using soft separator functions, we train the corresponding

region boundaries, i.e., the structure of the tree.

As in Section III, for different models that are embedded

within a depth- tree, we introduce the algorithm (given in

Algorithm 2) achieving asymptotically the same cumulative

squared regression error as the optimal combination of the best

adaptive models. The algorithm is constructed in the proof of

the Theorem 3.

The computational complexity of the algorithm of Theorem

3 is whereas it achieves the performance of the best

combination of different “adaptive” regressors that par-

titions the -dimensional regressor space. The computational

complexity of the first algorithm was , however, it was

unable to learn the region boundaries of the regressor space. In

this case since we are using soft separator functions, we need to

consider the cross-correlation of every node estimate and node

weight, whereas in the previous case there we were only con-

sidering the cross-correlation of the estimates of the prefixes

of the node such that and the weights of

every node. This change transforms the computational com-

plexity from to . Moreover, for all inner nodes

a soft separator function is defined. In order to update the re-

gion boundaries of the partitions, we have to update the direc-

tion vector of size since . Therefore, considering

the cross-correlation of the final estimates of every node, we get

a computational complexity of .

Theorem 3: Let and be arbitrary, bounded,

and real-valued sequences. The algorithm given in Algorithm

2 when applied these sequences yields

(20)

for all , when is strongly convex , where

and represents the estimate

of at time for the adaptive model .

This theorem implies that our algorithm (given in Algorithm

2), asymptotically achieves the performance of the best linear

combination of the different adaptive models that can

be represented using a depth- tree with a computational com-

plexity . We emphasize that while constructing the al-

gorithm, we refrain from any statistical assumptions on the un-

derlying data, and our algorithm works for any sequence of

with an arbitrary length of . Furthermore, one can

use this algorithm to learn the region boundaries and then feed

this information to the first algorithm to reduce computational

complexity.

A. Outline of the Proof of Theorem 3 and Construction of

Algorithm 2

The proof of the upper bound in Theorem 3 follows similar

lines to the proof of upper bound in Theorem 1, therefore is

omitted. In this proof, we provide the detailed algorithmic

description and highlight the computational complexity

differences.



5478 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

According to the same labeling operation we presented in

Section II, the final estimate of the th model at time can be

found as follows

Similarly, the weight of the th model is given by

Since we use soft separator functions, we have and

without introducing any approximations, the final estimate of

our algorithm is given as follows

Here, we observe that for arbitrary two nodes , the

product appears times in , where is

the number of models having both and as its leaf nodes (as

we previously defined in (17)). Hence, according to the notation

derived in (17) and (18), we obtain the final estimate of our

algorithm as follows

(21)

Note that (21) is equal to with a computational

complexity of .

Unlike Section III, in which each model has a fixed parti-

tioning of the regressor space, here, we define the regressor

models with adaptive partitions. For this, we use a stochastic

gradient descent update

(22)

for all nodes , where is the learning rate of the

region boundaries and is the derivative of

with respect to . After some algebra, we obtain

(23)

where we use the logistic regression classifier as our separator

function, i.e., . Therefore, we have

(24)

Algorithm 2: Decision Adaptive Tree (DAT) Regressor

1: for to do

2:

3: for all do

4:

5: end for

6: for all do

7:

8:

9: for to do

10:

11: end for

12:

13:

14: for all do

15:

16:

17: end for

18:

19: end for

20:

21: for all do

22:

23:

24: end for

25: for all do

26:

27: for all do

28:

29: end for

30: for all do

31:

32: end for

33:

34: end for

35: end for

Note that other separator functions can also be used in a similar

way by simply calculating the gradient with respect to the ex-

tended direction vector and plugging in (23) and (24).

We emphasize that includes the product of and

terms, hence in order not to slow down the learning

rate of our algorithm, we may restrict for

some . According to this restriction, we define the

separator functions as follows

According to the update rule in (23), the computational com-

plexity of the introduced algorithm results in . This

concludes the outline of the proof and the construction of the

algorithm.

B. Selection of the Learning Rates

We emphasize that the learning rate can be set according

to the similar studies in the literature [26], [44] or considering



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5479

the application requirements. However, for the introduced al-

gorithm to work smoothly, we expect the region boundaries to

converge faster than the node weights, therefore, we conven-

tionally choose the learning rate to update the region bound-

aries as . Experimentally, we observed

that different choices of also yields acceptable performance,

however, we note that when updating , we have the multi-

plication term , which significantly decreases the

steps taken at each time . Therefore, in order to compensate for

it, such a selection is reasonable.

On the other hand, for stability purposes, one can consider to

put an upper bound on the steps at each time . When is suffi-

ciently away from the region boundaries , it is either close to

or . However, when falls right on a region boundary,

we have , which results in an approximately 25 times

greater step than the expected one, when . This issue

is further exacerbated when falls on the boundary of multiple

region crossings, e.g., say when we have the four

quadrants as the four regions (leaf nodes) of the depth-2 tree. In

such a scenario, one can observe a times greater step than

expected, which may significantly perturb the stability of the al-

gorithm. That is why, two alternate solutions can be proposed: 1)

a reasonable threshold (e.g., )) over the steps can

be embedded when is small (or equivalently, a regularization

constant can be embedded), 2) can be sufficiently increased

according to the depth of the tree. Throughout the experiments,

we used the first approach.

C. Selection of the Depth of the Tree

In many real life applications, we do not know how the true

data is generated, therefore, the accurate selection of the depth

of the decision tree is usually a difficult problem. For instance,

if the desired data is generated from a piecewise linear model,

then in order for the conventional approaches that use a fixed

tree structure (i.e., fixed partitioning of the regressor space) to

perfectly estimate the data, they need to perfectly guess the un-

derlying partitions in hindsight. Otherwise, in order to capture

the salient characteristics of the desired data, the depth of the

tree should be increased to infinity. Hence, the performance of

such algorithms significantly varies according to the initial par-

titioning of the regressor space, which makes it harder to decide

how to select the depth of the tree.

On the other hand, the introduced algorithm adapts its region

boundaries to minimize the final regression error. Therefore,

even if the initial partitioning of the regressor space is not accu-

rate, our algorithm will learn to the locally optimal partitioning

of the regressor space for any given depth . In this sense, one

can select the depth of the decision tree by only considering the

computational complexity issues of the application.

V. SIMULATIONS

In this section, we illustrate the performance of our al-

gorithms under different scenarios with respect to various

methods. We first consider the regression of a signal generated

by a piecewise linear model when the underlying partition of

the model corresponds to one of the partitions represented by

the tree. We then consider the case when the partitioning does

not match any partition represented by the tree to demonstrate

the region-learning performance of the introduced algorithm.

We also illustrate the performance of our algorithms in underfit-

ting and overfitting (in terms of the depth of the tree) scenarios.

We then consider the prediction of two benchmark chaotic

processes: the Lorenz attractor and the Henon map. Finally, we

illustrate the merits of our algorithm using benchmark data sets

(both real and synthetic) such as California housing [48]–[50],

elevators [48], kinematics [49], pumadyn [49], and bank [50]

(which will be explained in detail in Subsection V.F).

Throughout this section, “DFT” represents the decision fixed

tree regressor (i.e., Algorithm 1) and “DAT” represents the

decision adaptive tree regressor (i.e., Algorithm 2). Similarly,

“CTW” represents the context tree weighting algorithm of [4],

“OBR” represents the optimal batch regressor, “VF” represents

the truncated Volterra filter [5], “LF” represents the simple

linear filter, “B-SAF” and “CR-SAF” represent the Beizer

and the Catmul-Rom spline adaptive filter of [6], respectively,

“FNF” and “EMFNF” represent the Fourier and even mirror

Fourier nonlinear filter of [7], respectively. Finally, “GKR”

represents the Gaussian-Kernel regressor and it is constructed

using node regressors, say , and a fixed Gaussian

mixture weighting (that is selected according to the underlying

sequence in hindsight), giving

where and

for all .

For a fair performance comparison, in the corresponding

experiments in Subsections V.E and V.F, the desired data and

the regressor vectors are normalized between since the

satisfactory performance of the several algorithms require the

knowledge on the upper bounds (such as the B-SAF and the

CR-SAF) and some require these upper bounds to be between

(such as the FNF and the EMFNF). Moreover, in the

corresponding experiments in Subsections V.B, V.C, and V.D,

the desired data and the regressor vectors are normalized

between for the VF, the FNF, and the EMFNF due

to the aforementioned reason. The regression errors of these

algorithms are then scaled back to their original values for a

fair comparison.

Considering the illustrated examples in the respective papers

[4], [6], [7], the orders of the FNF and the EMFNF are set to

3 for the experiments in Subsections V.B, V.C, and V.D, 2 for

the experiments in Subsection V.E, and 1 for the experiments

in Subsection V.F. The order of the VF is set to 2 for all experi-

ments, except for the California housing experiment, in which it

is set to 3. Similarly, the depth of the tree of the DAT algorithm

is set to 2 for all experiments, except for the California housing

experiment, in which it is set to 3. The depths of the trees of the

DFT and the CTW algorithms are set to 2 for all experiments.

For the tree based algorithms, the regressor space is initially par-

titioned by the direction vectors for all

nodes , where if ,

e.g., when , we have the four quadrants as the

four leaf nodes of the tree. Finally, we used cubic B-SAF and

CR-SAF algorithms, whose number of knots are set to 21 for all



5480 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

TABLE I

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE PROPOSED

ALGORITHMS. IN THE TABLE, REPRESENTS THE DIMENSIONALITY OF

THE REGRESSOR SPACE, REPRESENTS THE DEPTH OF THE TREES IN

THE RESPECTIVE ALGORITHMS, AND REPRESENTS THE ORDER OF THE

CORRESPONDING FILTERS AND ALGORITHMS

experiments. We emphasize that both these parameters and the

learning rates of these algorithms are selected to give equal rate

of performance and convergence.

A. Computational Complexities

As can be observed from Table I, among the tree based algo-

rithms that partition the regressor space, the CTW algorithm has

the smallest complexity since at each time , it only associates

the regressor vector with nodes (the leaf node has

fallen into and all its prefixes) and their individual weights. The

DFT algorithm also considers the same nodes on the tree,

but in addition, it calculates the weight of the each node with re-

spect to the rest of the nodes, i.e., it correlates nodes with

all the nodes. The DAT algorithm, however, estimates the

data with respect to the correlation of all the nodes, one another,

which results in a computational complexity of . In order

for the Gaussian-Kernel Regressor (GKR) to achieve a compa-

rable nonlinear modeling power, it should have mass points,

which results in a computational complexity of .

On the other hand, the filters such as the VF, the FNF, and

the EMFNF introduce the nonlinearity by directly considering

the th (and up to th) powers of the entries of the regressor

vector. In many practical applications, such methods cannot be

applied due to the high dimensionality of the regressor space.

Therefore, the algorithms such as the B-SAF and the CR-SAF

are introduced to decrease the high computational complexity of

such approaches. However, as can be observed from our simula-

tion results, the introduced algorithm significantly outperforms

its competitors in various benchmark problems.

The algorithms such as the VF, the FNF, and the EMFNF

have more than enough number of basis functions, which result

in a significantly slower and parameter dependent convergence

performance with respect to the other algorithms. On the other

hand, the performances of the algorithms such as the B-SAF,

the CR-SAF, and the CTW algorithm are highly dependent on

the underlying setting that generates the desired signal. Fur-

thermore, for all these algorithms to yield satisfactory results,

prior knowledge on the desired signals and the regressor vec-

tors is needed. The introduced algorithms, on the other hand,

do not rely on any prior knowledge, and still outperform their

competitors.

Fig. 3. Regression error performances for the second order piecewise linear

model in (25) averaged over 10 trials.

B. Matched Partitions

In this subsection, we consider the case where the desired

data is generated by a piecewise linear model that matches with

the initial partitioning of the tree based algorithms. Specifically,

the desired signal is generated by the following piecewise linear

model

(25)

where

is a sample function from a zero

mean white Gaussian process with variance 0.1, and

are sample functions of a jointly Gaussian process of

mean and variance . The desired data at time

is denoted as whereas the extended regressor vector is

, i.e., represents the first dimension and

the second dimension.

For this scenario, the learning rates are set to 0.005 for

the DFT algorithm, the FNF, and the CTW algorithm,

0.025 for the B-SAF and the CR-SAF, 0.05 for the VF

and the EMFNF, 1 for the GKR. Moreover, for the GKR,

and for

, are set to exactly match the underlying parti-

tioning that generates the desired data.

In Fig. 3, we demonstrate the time accumulated regression

error of the proposed algorithms averaged over 10 trials. Since

the desired data is generated by a highly nonlinear piecewise

model, the algorithms such as the GKR, the FNF, the EMFNF,

the B-SAF, and the CR-SAF cannot capture the salient charac-

teristics of the data. These algorithms yield satisfactory results

only if the desired data is generated by a smooth nonlinear func-

tion of the regressor vector. In this scenario, however, we have

high nonlinearity and discontinuity, whichmakes the algorithms

such as the DFT and the CTW appealing.

Comparing the DFT and the CTW algorithms, we can ob-

serve that even though the partitioning of the tree perfectly



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5481

Fig. 4. Progress of (a) the model weights and (b) the node weights averaged over 10 trials for the DFT algorithm. Note that the model weights do not sum up to 1.

matches with the underlying partition in (25), the learning

performance of the DFT algorithm significantly outperforms

the CTW algorithm especially for short data records. As

commented in the text, this is expected since the context-tree

weighting method enforces the sum of the model weights to be

1, however, the introduced algorithms have no such restrictions.

As seen in Fig. 4(a), the model weights sum up to 2.1604 in-

stead of 1. Moreover, in the CTW algorithm all model weights

are “forced” to be nonnegative whereas in our algorithm model

weights can also be negative as seen in Fig. 4(a). In Fig. 4(b),

the individual node weights are presented. We observe that the

nodes (i.e., regions) that directly match with the underlying

partition that generates the desired data have higher weights

whereas the weights of the other nodes decrease. We also point

out that although the tree based algorithms [4], [35], [36] need a

priori information, such as an upper bound on the desired data,

for a successful operation, whereas the introduced algorithm

has no such requirements.

C. Mismatched Partitions

In this subsection, we consider the case where the desired data

is generated by a piecewise linear model that mismatches with

the initial partitioning of the tree based algorithms. Specifically,

the desired signal is generated by the following piecewise linear

model

(26)

where

is a sample function from a

zero mean white Gaussian process with variance 0.1, and

are sample functions of a jointly Gaussian process of mean

and variance . The learning rates are set to 0.005 for

the DFT, the DAT, and the CTW algorithms, 0.1 for the FNF,

0.025 for the B-SAF and the CR-SAF, 0.05 for the EMFNF and

the VF. Moreover, in order to match the underlying partition,

Fig. 5. Regression error performances for the second order piecewise linear

model in (26).

the mass points of the GKR are set to

, and

with the same covariance matrix

in the previous example.

Fig. 5 shows the normalized time accumulated regression

error of the proposed algorithms. We emphasize that the DAT

algorithm achieves a better error performance compared to its

competitors. Comparing Figs. 3 and 5, one can observe the

degradation in the performances of the DFT and the CTW al-

gorithms. This shows the importance of the initial partitioning

of the regressor space for tree based algorithms to yield a

satisfactory performance. Comparing the same figures, one can

also observe that the rest of the algorithms performs almost

similar to the previous scenario.

The DFT and the CTW algorithms converge to the best batch

regressor having the predetermined leaf nodes (i.e., the best

regressor having the four quadrants of two dimensional space



5482 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

Fig. 6. Changes in the boundaries of the leaf nodes of the depth-2 tree of the DAT algorithm for . The separator functions

adaptively learn the boundaries of the piecewise linear model in (26).

Fig. 7. Progress of the node weights for the piecewise linear model in (26) for (a) the DFT algorithm and (b) the DAT algorithm.

as its leaf nodes). However that regressor is sub-optimal since

the underlying data is generated using another constellation,

hence their time accumulated regression error is always lower

bounded by compared to the global optimal regressor. The

DAT algorithm, on the other hand, adapts its region boundaries

and captures the underlying unevenly rotated and shifted re-

gressor space partitioning, perfectly. Fig. 6 shows how our al-

gorithm updates its separator functions and illustrates the non-

linear modeling power of the introduced DAT algorithm.

We also present the node weights for the DFT and the DAT

algorithms in Fig. 7(a) and (b), respectively. In Fig. 7(a), we

can observe that the DFT algorithm cannot estimate the under-

lying data accurately, hence its node weights show unstable be-

havior. On the other hand, as can be observed from Fig. 7(b),

the DAT algorithm learns the optimal node weights as the re-

gion boundaries are learned. In this manner, the DAT algorithm

achieves a significantly superior performance with respect to its

competitors.



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5483

Fig. 8. Regression error performances for (a) the first order piecewise linear model in (27) (b) the third order piecewise linear model in (28).

D. Mismatched Partitions With Overfitting & Underfitting

In this subsection, we consider two cases (and perform two

experiments), where the desired data is generated by a piece-

wise linear model that mismatches with the initial partitioning

of the tree based algorithms, where the depth of the tree overfits

or underfits the underlying piecewise model. In the first set of

experiments, we consider that the data is generated from a first

order piecewise linear model, for which using a depth-1 tree is

sufficient to capture the salient characteristics of the data. In the

second set of experiments, we consider that the data is gener-

ated from a third order piecewise linear model, for which it is

necessary to use a depth-3 tree to perfectly estimate the data.

The first order piecewise linear model is defined as

(27)

and the third order piecewise linear model is defined as

(28)

where

is a sample function

from a zero mean white Gaussian process with variance 0.1,

and are sample functions of a jointly Gaussian process

of mean and variance . The learning rates are set to

0.005 for the DFT, the DAT, and the CTW algorithms, 0.05 for

the EMFNF, 0.01 for the B-SAF, the CR-SAF, and the FNF, 0.5

for the VF, and 1 for the GKR, where the parameters of the GKR

are set to the same values in the previous example.

We present the normalized regression errors of the proposed

algorithms in Fig. 8. Fig. 8(a) shows the performances of the

algorithms in the overfitting scenario, where the desired data is

generated by the first order piecewise linear model in (27). Sim-

ilarly, Fig. 8(b) shows the performances of the algorithms in the

underfitting scenario, where the desired data is generated by the

third order piecewise linear model in (28). From the figures, it

is observed that the DAT algorithm outperforms its competitors

by learning the optimal partitioning for the given depth, which

illustrates the power of the introduced algorithm under possible

mismatches in terms of .

E. Chaotic Signals

In this subsection, we illustrate the performance of our algo-

rithm when estimating a chaotic data generated by i) the Henon

map and ii) the Lorenz attractor [51].

First, we consider a zero-mean sequence generated by the

Henon map, a chaotic process given by

(29)

and known to exhibit chaotic behavior for the values of

and . The desired data at time is denoted as whereas

the extended regressor vector is , i.e., we

consider a prediction framework. The learning rates are set to

0.025 for the B-SAF and the CR-SAF algorithms, whereas it is

0.05 for the rest.

Fig. 9 shows the normalized regression error performance of

the proposed algorithms. One can observe that the algorithms

whose basis functions do not include the necessary quadratic

terms and the algorithms that rely on a fixed regressor space par-

titioning yield unsatisfactory performance. On the other hand,

we emphasize that the VF can capture the salient characteris-

tics of this chaotic process since its order is set to 2. Similarly,

the FNF can also learn the desired data since its basis functions

can well approximate the chaotic process. The DAT algorithm,

however, uses a piecewise linear modeling and still achieves



5484 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

Fig. 9. Regression error performances of the proposed algorithms for the

chaotic process presented in (29).

the asymptotically same performance as the VF, while outper-

forming the FNF algorithm.

Second, we consider the chaotic signal set generated using

the Lorenz attractor [51] that is defined by the following three

discrete time equations:

(30)

(31)

(32)

where we set , and to gen-

erate the well-known chaotic solution of the Lorenz attractor.

In the experiment, is selected as the desired data and the two

dimensional region represented by is set as the regressor

space, that is, we try to estimate with respect to and .

The learning rates are set to 0.01 for all the algorithms.

Fig. 10 illustrates the nonlinear modeling power of the DAT

algorithm even when estimating a highly nonlinear chaotic

signal set. As can be observed from Fig. 10, the DAT algo-

rithm significantly outperforms its competitors and achieves a

superior error performance since it tunes its region boundaries

to the optimal partitioning of the regressor space, whereas

the performances of the other algorithms directly rely on the

initial selection of the basis functions and/or tree structures and

partitioning.

F. Benchmark Real and Synthetic Data

In this subsection, we first consider the regression of a

benchmark real-life problem that can be found in many data

set repositories such as [48]–[50]: California housing—esti-

mation of the median house prices in the California area using

California housing database. In this experiment, the learning

rates are set to 0.01 for all the algorithms. Fig. 11 provides

the normalized regression errors of the proposed algorithms,

where it is observed that the DAT algorithm outperforms its

competitors and can achieve a much higher nonlinear modeling

power with respect to the rest of the algorithms.

Fig. 10. Regression error performances for the chaotic signal generated from

the Lorenz attractor in (30), (31), and (32) with parameters

, and .

Fig. 11. Regression error performances for the real data set: California

housing—estimation of the median house prices in the California area using

California housing database [48]–[50].

Aside from the California housing data set, we also consider

the regression of several benchmark real life and synthetic data

from the corresponding data set repositories:

� Kinematics [48] —a realistic simulation of the

forward dynamics of an 8 link all-revolute robot arm. The

task in all data sets is to predict the distance of the end-

effector from a target. (among the existent variants of this

data set, we used the variant with , which is known

to be highly nonlinear and medium noisy).

� Elevators [49] —obtained from the task of con-

trolling a F16 aircraft. In this case the goal variable is re-

lated to an action taken on the elevators of the aircraft.

� Pumadyn [49] —a realistic simulation of the

dynamics of Unimation Puma 560 robot arm. The task in

the data set is to predict the angular acceleration of one of

the robot arm’s links.



VANLI AND KOZAT: A COMPREHENSIVE APPROACH TO UNIVERSAL PIECEWISE NONLINEAR REGRESSION BASED ON TREES 5485

TABLE II

TIME ACCUMULATED NORMALIZED ERRORS OF THE PROPOSED ALGORITHMS. EACH DIMENSION OF THE DATA SETS IS NORMALIZED BETWEEN

� Bank [50] —generated from a simplistic simu-

lator, which simulates the queues in a series of banks. Tasks

are based on predicting the fraction of bank customers who

leave the bank because of full queues (among the existent

variants of this data set, we used the variant with ).

The learning rates of the LF, the VF, the FNF, the EMFNF,

and the DAT algorithm are set to , whereas it is set to 10 for

the B-SAF and the CR-SAF algorithms, where for the

kinematics, the elevators, and the bank data sets and

for the pumadyn data set. In Table II, it is observed that the per-

formance of the DAT algorithm is superior to its competitors

since it achieves a much higher nonlinear modeling power with

respect to the rest of the algorithms. Furthermore, the DAT algo-

rithm achieves this superior performance with a computational

complexity that is only linear in the regressor space dimension-

ality. Hence, the introduced algorithm can be used in real life

big data problems.

VI. CONCLUDING REMARKS

We study nonlinear regression of deterministic signals using

trees, where the space of regressors is partitioned using a nested

tree structure where separate regressors are assigned to each re-

gion. In this framework, we introduce tree based regressors that

both adapt their regressors in each region as well as their tree

structure to best match to the underlying data while asymptoti-

cally achieving the performance of the best linear combination

of a doubly exponential number of piecewise regressors rep-

resented on a tree. As shown in the text, we achieve this per-

formance with a computational complexity only linear in the

number of nodes of the tree. Furthermore, the introduced al-

gorithms do not require a priori information on the data such

as upper bounds or the length of the signal. Since these algo-

rithms directly minimize the final regression error and avoid

using any artificial weighting coefficients, they readily outper-

form different tree based regressors in our examples. The in-

troduced algorithms are generic such that one can easily use

different regressor or separation functions or incorporate par-

titioning methods such as the RP trees in their framework as

explained in the paper.

REFERENCES

[1] A. C. Singer, G. W. Wornell, and A. V. Oppenheim, “Nonlinear au-

toregressive modeling and estimation in the presence of noise,” Digit.

Signal Process., vol. 4, no. 4, pp. 207–221, 1994.

[2] O. J. J. Michel, A. O. Hero, and A.-E. Badel, “Tree-structured nonlinear

signal modeling and prediction,” IEEE Trans. Signal Process., vol. 47,

no. 11, pp. 3027–3041, 1999.

[3] R. J. Drost and A. C. Singer, “Constrained complexity generalized con-

text-tree algorithms,” in Proc. IEEE/SP 14th Workshop Statist. Signal

Process., 2007, pp. 131–135.

[4] S. S. Kozat, A. C. Singer, and G. C. Zeitler, “Universal piecewise linear

prediction via context trees,” IEEE Trans. Signal Process., vol. 55, no.

7, pp. 3730–3745, 2007.

[5] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Sys-

tems. New York, NY, USA: Wiley, 1980.

[6] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “Nonlinear

spline adaptive filtering,” Signal Process., vol. 93, no. 4, pp. 772–783,

2013.

[7] A. Carini and G. L. Sicuranza, “Fourier nonlinear filters,” Signal

Process., vol. 94, no. 0, pp. 183–194, 2014.

[8] V. Kekatos and G. Giannakis, “Sparse Volterra and polynomial re-

gression models: Recoverability and estimation,” IEEE Trans. Signal

Process., vol. 59, no. 12, pp. 5907–5920, 2011.

[9] L. Montefusco, D. Lazzaro, and S. Papi, “Fast sparse image reconstruc-

tion using adaptive nonlinear filtering,” IEEE Trans. Image Process.,

vol. 20, no. 2, pp. 534–544, 2011.

[10] Q. Zhu, Z. Zhang, Z. Song, Y. Xie, and L. Wang, “A novel nonlinear

regression approach for efficient and accurate image matting,” IEEE

Signal Process. Lett., vol. 20, no. 11, pp. 1078–1081, 2013.

[11] R. Mittelman and E. Miller, “Nonlinear filtering using a new proposal

distribution and the improved fast Gauss transform with tighter per-

formance bounds,” IEEE Trans. Signal Process., vol. 56, no. 12, pp.

5746–5757, 2008.

[12] L. Montefusco, D. Lazzaro, and S. Papi, “Nonlinear filtering for sparse

signal recovery from incomplete measurements,” IEEE Trans. Signal

Process., vol. 57, no. 7, pp. 2494–2502, 2009.

[13] W. Zhang, B.-S. Chen, and C.-S. Tseng, “Robust filtering for non-

linear stochastic systems,” IEEE Trans. Signal Process., vol. 53, no. 2,

pp. 589–598, 2005.

[14] H. Zhao and J. Zhang, “A novel adaptive nonlinear filter-based

pipelined feedforward second-order Volterra architecture,” IEEE

Trans. Signal Process., vol. 57, no. 1, pp. 237–246, 2009.

[15] L. Ma, Z. Wang, J. Hu, Y. Bo, and Z. Guo, “Robust variance-con-

strained filtering for a class of nonlinear stochastic systems with

missingmeasurements,” Signal Process., vol. 90, no. 6, pp. 2060–2071,

2010.

[16] W. Yang, M. Liu, and P. Shi, “ filtering for nonlinear stochastic

systems with sensor saturation, quantization and random packet

losses,” Signal Process., vol. 92, no. 6, pp. 1387–1396, 2012.

[17] W. Li and Y. Jia, “H-infinity filtering for a class of nonlinear discrete-

time systems based on unscented transform,” Signal Process., vol. 90,

no. 12, pp. 3301–3307, 2010.

[18] S. Wen, Z. Zeng, and T. Huang, “Reliable filtering for neutral

systems with mixed delays and multiplicative noises,” Signal Process.,

vol. 94, no. 0, pp. 23–32, 2014.

[19] M. F. Huber, “Chebyshev polynomial Kalman filter,” Digit. Signal

Process., vol. 23, no. 5, pp. 1620–1629, 2013.

[20] D. P. Helmbold and R. E. Schapire, “Predicting nearly as well as the

best pruning of a decision tree,”Mach. Learn., vol. 27, no. 1, pp. 51–68,

1997.

[21] O.-A. Maillard and R. Munos, “Linear regression with random projec-

tions,” J. Mach. Learn. Res., vol. 13, pp. 2735–2772, 2012.

[22] R. Rosipal and L. J. Trejo, “Kernel partial least squares regression in

reproducing Kernel Hilbert Space,” J. Mach. Learn. Res., vol. 2, pp.

97–123, 2001.

[23] O.-A. Maillard and R. Munos, “Some greedy learning algorithms for

sparse regression and classification with Mercer kernels,” J. Mach.

Learn. Res., vol. 13, pp. 2735–2772, 2012.

[24] A. C. Singer and M. Feder, “Universal linear prediction by model

order weighting,” IEEE Trans. Signal Process., vol. 47, no. 10, pp.

2685–2699, 1999.

[25] T. Moon and T. Weissman, “Universal FIR MMSE filtering,” IEEE

Trans. Signal Process., vol. 57, no. 3, pp. 1068–1083, 2009.

[26] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ,

USA: Wiley, 2003.

[27] V. H. Nascimento and A. H. Sayed, “On the learning mechanism

of adaptive filters,” IEEE Trans. Signal Process., vol. 48, no. 6, pp.

1609–1625, 2000.



5486 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 20, OCTOBER 15, 2014

[28] T. Y. Al-Naffouri and A. H. Sayed, “Transient analysis of adaptive

filters with error nonlinearities,” IEEE Trans. Signal Process., vol. 51,

no. 3, pp. 653–663, 2003.

[29] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed,

“Mean-square performance of a convex combination of two adaptive

filters,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 1078–1090,

2006.

[30] S. Dasgupta and Y. Freund, “Random projection trees for vector quan-

tization,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3229–3242, 2009.

[31] Y. Yilmaz and S. S. Kozat, “Competitive randomized nonlinear pre-

diction under additive noise,” IEEE Signal Process. Lett., vol. 17, no.

4, pp. 335–339, 2010.

[32] G. David and A. Averbuch, “Hierarchical data organization, clustering

and denoising via localized diffusion folders,” Appl. Comput. Harmon.

Anal., vol. 33, no. 1, pp. 1–23, 2012.

[33] N. B. Lee, A. B. , and L. Wasserman, “Treelets—An adaptive multi-

scale basis for sparse unordered data,” Ann. Appl. Statist., vol. 2, no. 2,

pp. 435–471, 2008.

[34] J. L. Bentley, “Multidimensional binary search trees in database appli-

cations,” IEEE Trans. Softw. Eng., vol. SE-5, no. 4, pp. 333–340, 1979.

[35] E. Takimoto, A. Maruoka, and V. Vovk, “Predicting nearly as well

as the best pruning of a decision tree through dyanamic programming

scheme,” Theoretic. Comput. Sci., vol. 261, pp. 179–209, 2001.

[36] E. Takimoto and M. K. Warmuth, “Predicting nearly as well as the best

pruning of a planar decision graph,” Theoretic. Comput. Sci., vol. 288,

pp. 217–235, 2002.

[37] A. V. Aho and N. J. A. Sloane, “Some doubly exponential sequences,”

Fibonacci Quart., vol. 11, pp. 429–437, 1970.

[38] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The context-tree

weighting method: Basic properties,” IEEE Trans. Inf. Theory, vol. 41,

no. 3, pp. 653–664, 1995.

[39] A. C. Singer, S. S. Kozat, and M. Feder, “Universal linear least squares

prediction: Upper and lower bounds,” IEEE Trans. Inf. Theory, vol. 48,

no. 8, pp. 2354–2362, 2002.

[40] T. Linder and G. Lagosi, “A zero-delay sequential scheme for lossy

coding of individual sequences,” IEEE Trans. Inf. Theory, vol. 47, no.

6, pp. 2533–2538, 2001.

[41] A. Gyorgy, T. Linder, and G. Lugosi, “Efficient adaptive algorithms

and minimax bounds for zero-delay lossy source coding,” IEEE Trans.

Signal Process., vol. 52, no. 8, pp. 2337–2347, 2004.

[42] J. Arenas-Garcia, V. Gomez-Verdejo, and A. R. Figueiras-Vidal,

“New algorithms for improved adaptive convex combination of LMS

transversal filters,” IEEE Trans. Instrum. Meas., vol. 54, no. 6, pp.

2239–2249, 2005.

[43] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic

Regression. Hoboken, NJ, USA: Wiley, 2013.

[44] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms

for online convex optimization,” Mach. Learn., vol. 69, no. 2–3, pp.

169–192, 2007.

[45] E. Eweda, “Comparison of RLS, LMS, and sign algorithms for tracking

randomly time-varying channels,” IEEE Trans. Signal Process., vol.

42, no. 11, pp. 2937–2944, 1994.

[46] J. Arenas-Garcia, M. Martinez-Ramon, V. Gomez-Verdejo, and A. R.

Figueiras-Vidal, “Multiple plant identifier via adaptive LMS convex

combination,” in Proc. IEEE Int. Symp. Intell. Signal Process., 2003,

pp. 137–142.

[47] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady

state MSE performance analysis of mixture approaches to adaptive fil-

tering,” IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4050–4063,

Aug. 2010.

[48] C. E. Rasmussen, R. M. Neal, G. Hinton, D. Camp, M. Revow, Z.

Ghahramani, R. Kustra, and R. Tibshirani, Delve Data Sets [Online].

Available: [Online]. Available: http://www.cs.toronto.edu/delve/data/

datasets.html

[49] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, S. Garca, L. Snchez,

and F. Herrera, “KEEL data-mining software tool: Data set reposi-

tory, integration of algorithms and experimental analysis framework,”

J. Multiple-Valued Logic Soft Comput., vol. 17, no. 2–3, pp. 255–287,

2011.

[50] L. Torgo, Regression Data Sets [Online]. Available: [Online]. Avail-

able: http://www.dcc.fc.up.pt/ltorgo/Regression/DataSets.html

[51] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmosph. Sci., vol.

20, no. 2, pp. 130–141, 1963.

N. Denizcan Vanli was born in Nigde, Turkey, in

1990. He received the B.S. degree with high honors

in electrical and electronics engineering from Bilkent

University, Ankara, Turkey, in 2013.

He is currently working toward the M.S. degree

in the Department of Electrical and Electronics

Engineering at Bilkent University. His research in-

terests include sequential learning, adaptive filtering,

machine learning, and statistical signal processing.

Suleyman Serdar Kozat (A’10–M’11–SM’11) re-

ceived the B.S. degree with full scholarship and high

honors from Bilkent University, Turkey. He received

the M.S. and Ph.D. degrees in electrical and com-

puter engineering from University of Illinois at Ur-

bana Champaign, Urbana, IL. Dr. Kozat is a graduate

of Ankara Fen Lisesi.

After graduation, Dr. Kozat joined IBM Research,

T. J. Watson Research Lab, Yorktown, NewYork, US

as a Research Staff Member in the Pervasive Speech

Technologies Group. While doing his Ph.D., he was

also working as a Research Associate at Microsoft Research, Redmond, Wash-

ington, US in the Cryptography and Anti-Piracy Group. He holds several patent

inventions due to his research accomplishments at IBM Research andMicrosoft

Research. After serving as an Assistant Professor at Koc University, Dr. Kozat

is currently an Assistant Professor (with the Associate Professor degree) at the

Electrical And Electronics Department of Bilkent University.

Dr. Kozat is the President of the IEEE Signal Processing Society, Turkey

Chapter. He has been elected to the IEEE Signal Processing Theory and

Methods Technical Committee and IEEE Machine Learning for Signal Pro-

cessing Technical Committee, 2013. He has been awarded IBM Faculty Award

by IBM Research in 2011, Outstanding Faculty Award by Koc University

in 2011 (granted the first time in 16 years), Outstanding Young Researcher

Award by the Turkish National Academy of Sciences in 2010, ODTU Prof.

Dr. Mustafa N. Parlar Research Encouragement Award in 2011, Outstanding

Faculty Award by Bilim Kahramanlari, 2013 and holds Career Award by the

Scientific Research Council of Turkey, 2009.


