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Abstract: In order to perform sensing tasks, most current Intelligent Transportation 

Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more 

recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which 

reduces the required investment and enables the development of new collaborative and 

intelligent applications that further contribute to improve both driving safety and traffic 

efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the 

main issues that may arise when developing these systems. The paper is divided into 

sections which address different matters including vehicle detection and classification as 

well as the selection of appropriate communication protocols, network architecture, 

topology and some important design parameters. In addition, in line with the multiplicity of 

different technologies that take part in ITS, it does not consider WSNs just as stand-alone 

systems, but also as key components of heterogeneous systems cooperating along with 

other technologies employed in vehicular scenarios. 
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1. Introduction  

The two main concerns with the increasing number of vehicles on the roads are congestion and 

safety. In the USA alone, congestion accounts for 115 billion dollars in fuel costs [1], with similar 

figures in other developed countries. Worldwide traffic casualties amount to 1.17 million per year [2]. 

In this context, Intelligent Transportation Systems (ITS) aim at enhancing transportation efficiency and 

safety through the use of advanced information processing, communications, control, as well as new 

electronic technologies. 

Sensing the environment is a major aspect of ITS, as well as of other novel applications in future 

vehicular scenarios. Traditionally these systems have relied on different alternatives [3]. One group 

frequently employed to detect traffic flows comprises intrusive sensors, including sensors such as 

inductive loops, magnetometers, pneumatic road tubes and diverse kinds of weigh-in-motion sensors. 

However, the installation and maintenance of these sensors has important associated costs, since large 

sections of the road need to be torn up, disrupting traffic flow. Other non-intrusive sensors can also be 

used, such as video cameras, radars, acoustic arrays and ultrasonic sensors, which can be placed above 

ground. Their main drawbacks are that they are usually large-sized, power-hungry sensors and may be 

affected by different environmental conditions. In addition, both intrusive and non-intrusive sensors are 

expensive and associated with difficult installation, classically requiring wired infrastructures and power 

lines for energy supply. This leads to the deployment of those sensors only at critical locations, which 

work independently of each other. The information they produce must be transmitted to distant Traffic 

Management Centers (TMCs) for centralized data processing, which require the transmission of high 

amounts of data through expensive communication infrastructures. In general, this results in 

unacceptable data dissemination delays which limit the utilization of the system for vehicle safety 

applications requiring a quick response (even real time in most of the cases). 

An alternative to these highly centralized solutions is the use of a cooperative approach where 

processing is performed in-situ among distributed devices, enabling faster reaction times. In addition, 

if this is combined with wireless communications, some of the inconveniences derived from the 

emplacement of nodes may be alleviated. Vehicular Ad Hoc Networks (VANETs) are an example of 

such combinations [4]. In a VANET, moving vehicles, as well as roadside infrastructure, become nodes 

of a highly dynamic mobile network that can disseminate relevant information over long distances and 

collaborate to offer drivers and users improved distributed vehicular services. Nevertheless, VANETs 

only monitor road conditions opportunistically, that is, when a vehicle is nearby, and their proper 

behavior is conditioned by the number of vehicles traveling as well as by the penetration rate of such 

technology into vehicles. 

Wireless Sensor Networks (WSNs) are a technology which is becoming more mature and is gaining 

momentum as one of the enabling technologies for the Future Internet. Therefore, it is being applied 

ubiquitously and, in particular, to ITS. They consist of medium to large networks of inexpensive 

wireless sensor nodes capable of sensing, processing and distributing information acquired from the 

environment through the collaborative effort of nodes [5]. WSNs provide significant advantages both 

in cost as well as in distributed intelligence. On the one hand, installation and maintenance expenses 

are reduced because of the use of cheap devices which do not require wiring. Furthermore, distributed 
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intelligence enables the development of diverse real-time traffic safety applications not feasible with 

centralized solutions. 

Moreover, WSNs cannot be regarded just as stand-alone systems intended for ITS; on the contrary, 

they should be considered in the ITS context as additional components of a heterogeneous system, 

where they cooperate with other technologies such as VANET. Figure 1 illustrates a possible  

WSN-based application example in which a WSN is employed to detect wildlife on the road and 

interacts with VANET (or other related technology) equipped vehicles to enhance the driver’s and 

passengers’ safety and at the same time to avoid, for instance, endangered species fatalities. 

Figure 1. WSN-based ITS application example. 

 

Therefore, this survey paper details the fundamental aspects of the design of WSNs for ITS, 

considering not only WSN independent applications, but also their position in heterogeneous systems. 

There are other works surveying some specific issues about the application of WSNs to ITS. However, 

we differentiate from them by adopting a broader approach. In this respect, Tubaishat et al. [6] 

introduced an interesting work about the application of WSNs to ITS, but it readily focuses on 

estimation algorithms for traffic congestion avoidance, and it does not consider safety or applications 

that combine different technologies, among others. Mouftah et al. [7], in turn, focused their attention 

on architecture, providing their vision of the architecture of ITS. Our work, conversely, has a more 

general scope and makes an effort to cover a diversity of closely related technological issues in order 

to offer the readers and developers a complete state-of-the-art of the actual role and challenges of 

applying WSNs to ITS. On the other hand, there are other surveys covering the development of 

heterogeneous ITS systems such as the works presented by Hossain et al. [8] and Lee et al. [9], 

however WSN contributions are not tackled in any of them. The former focuses on the challenges of 

using multiple wireless technologies in a collaborative manner, providing the AHVN (Advanced 

Heterogeneous Vehicular Network) architecture for the development of applications. The latter is 

devoted to the so-called Vehicular Sensor Networks (VSN) which are built on top of a VANET by 

equipping vehicles with onboard sensing devices [10] and, unlike WSN, are not subject to strict 

resource limitations. 
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The rest of the paper is organized as follows. In Section 2, the possible applications of WSNs to 

different traffic domains are presented. Section 3 gives a vision of the network architecture of  

WSN-based ITS systems which stresses the importance of several factors such as the layout of nodes 

or the use of heterogeneous devices. Section 4 goes into detail about how vehicle and road state 

detection is performed by WSN nodes. Section 5 reviews and remarks several crucial design issues 

which govern the performance of the ITS application. Section 6 deals with the issues related to 

communication protocols. Finally, Section 7 presents the concluding remarks of this work and 

introduces relevant open issues which have been identified. 

2. WSN-Based ITS Applications 

WSNs are an interesting alternative to other technologies traditionally used for monitoring.  

Their use entails low installation and maintenance costs and enables the development of distributed 

collaborative applications, thus not limiting their functionality to the mere acquisition of data.  

In addition, WSNs can be used in conjunction with other technologies making more complex 

applications possible. The functions performed by these applications fall into four different categories: 

(a) traffic safety, (b) traffic law enforcement, (c) traffic control, and (d) smart parking applications. 

Some of the most relevant works related to each of these categories are reviewed in Tables 1 and 2 in 

Appendix according to their main functional properties (more detail about outstanding characteristics 

of these and other works is given along the paper). In addition, it is also possible that WSNs participate 

in other applications conducting tasks such as information retrieval (e.g., local services discovery) or 

entertainment; their contribution to these applications is limited though, as they are in principle less 

appropriate than other technologies, thus restricting their use to situations where these more suitable 

technologies are not available.  

2.1. Traffic Safety Applications 

Traffic safety applications deal with the prevention of accidents. In order to fulfill this purpose they 

make sensor devices work proactively to warn drivers about potentially dangerous situations, such as 

the presence of obstacles, animals, adverse road conditions (ice or water) and vehicles either stopped 

(queue-end warning) or driving in the opposite direction (overtaking assistance, wrong-way driving 

warning). The collaboration among these devices enables to notify drivers of events beyond  

line-of-sight, thus increasing the available time of response.  

There are two ways of approaching these applications, although it could also be possible to  

develop applications that use a combination of both. In the first approach, upon the detection of  

the arrival of a vehicle by a static sensor node, the latter activates the subsequent static nodes  

in order to obtain the condition of the following stretches of the road. This approach has been 

employed by different applications to support overtaking assistance [11] or animal detection [12],  

by checking that, correspondingly, there are no vehicles or animals present within a safety zone 

defined by the application.  

The second approach consists of making road information available to nodes before vehicles reach 

them. This implies that, whenever some data of interest is acquired, it is disseminated within a certain 

area so that, later, they are gathered by passing vehicles (store & forward scheme). This approach is 
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well suited for the detection of non ephemeral events, such as the occurrence of dangerous road 

conditions. In this category of applications it is common to find collaboration between WSNs  

and VANETs, which helps spreading information and prolongs the lifetime of static nodes. As an 

example, [13] suggests emplacing static nodes at the beginning of each road, which allows all vehicles 

accessing it to learn in advance about the conditions of the road (previously gathered by other 

vehicles). A denser deployment is used in [14], in which WSNs monitor the road and VANET 

disseminates the information either to other vehicles traveling in road segments without WSN 

infrastructure or to distant static nodes which will warn drivers in the absence of other vehicles. 

2.2. Traffic Law Enforcement Applications 

Traffic law enforcement applications can be considered as a special case of traffic safety 

applications, since one of the final goals of traffic laws is to increase safety. Currently, traffic law 

violations are usually detected and put into effect when a police officer or a traffic enforcement vehicle 

is nearby. WSNs though, offer permanent monitoring of the locations where they are deployed, 

enabling to automate the process of reporting infractions. Some laws which can be supervised are 

speeding, illegal parking, going through red traffic lights, unauthorized use of bus lanes or access to 

restricted or congestion charge areas; yet the first two are those typically included in applications so 

far. Applications such as [15,16] detect speed limit violations with high precision through the 

collaboration between adjacent nodes. They rely on cameras triggered upon the detection of the 

infraction, whose photographs are sent to a Traffic Management Center (TMC) where they are 

processed and stored. In addition, it is also possible to warn drivers by means of Variable Message 

Signs (VMS) before proceeding to fining. Illegal parking is also detected by [16] using sensor nodes 

placed next to curbs which, in turn, after warning through a loudspeaker, activate a camera that takes a 

picture of the license plate number of the vehicle. 

Another application related to traffic law enforcement is post-accident investigation, performed in 

order to determine responsibilities after an accident. WSNs deployed along the road for a particular 

purpose get data that is used within a short period of time to fulfill this purpose, e.g., traffic safety. 

However, it is also possible to permanently store this information and use it later to investigate the 

causes of the accident (car accident forensics). Although WSN devices are, by nature, constrained 

devices, they are less and less constrained in storage capacity and can thus hold an important amount 

of information. Subsequently, this information can be wirelessly gathered by some super-users of the 

system with special privileges through secure access methods [17], allowing to judge the drivers’ 

driving style and taking into account the road conditions at the moment of the accident. 

2.3. Traffic Control Applications 

Traffic control involves applications directing vehicles within a road network. These applications 

consider a road network as a graph composed of intersections (vertices) and road segments (edges), 

with sensor nodes deployed at and along both of them. Sensor nodes along segments are used to 

measure the traffic flow in roads, obtaining information such as vehicle density, speed, formation of 

platoons or distribution of vehicles according to different categories. Sensor nodes at intersections, in 

turn, are responsible for making the appropriate decisions on how to direct traffic based on the 
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information provided by the sensor nodes along the road. It is also possible to make these decisions in 

TMCs; however this is a less often explored possibility which implies the transmission of information 

to a centralized TMC through an external network. 

Two different groups of traffic control can be identified. The first group includes traffic guidance 

applications such as path planning [18] which, due to the size a static road deployment may cover (at 

low cost), are best suited for urban scenarios. In them WSNs can be used to monitor small to medium 

size road networks, estimating the time cost of each road segment in order to obtain the optimum path 

for a specific destination. The second group comprises applications which manage traffic at 

intersections by means of traffic lights, governing the scheduling of traffic phases (group of directions 

which are allowed to enter the intersection at a given time). They are based on placing nodes before 

the traffic lights, possibly one per lane, to find out the number of arrivals at the intersection from each 

segment [19]. In addition, sensor nodes can also be placed after the traffic lights to obtain the number 

of departures and, combining both data, infer the queue length at each traffic light [20,21]. These 

systems require a very small number of deployed nodes, therefore providing very cost-effective 

solutions. Only if scheduling algorithms relying on the number of vehicles driving towards the 

intersection (rather than on the number of those waiting) are used, a higher number of sensors are 

required to forward vehicle detections from distant parts of the road segment. 

Traffic control applications need an estimation of the state of the different road segments. Most 

basic schemes consist of forwarding raw data detected by the sensor nodes towards an intersection or 

TMC where these data is processed. However, collaborative processing may be applied in order to 

reduce the amount of information delivered, detecting situations which require traffic diversion in a 

distributed manner. One such situation is congestion. In [22] a mechanism is used that, on the one 

hand, reduces the frequency of transmissions by segmenting data into time series of variable length. 

This length is established by the similarity of sensed data in such a way that only when the traffic state 

presents significant variations a message is sent. On the other hand, the mechanism reduces the 

number of transmissions by means of data fusion, making the number of messages delivered increase 

with the number of nodes of a segment according to a linear progression. This is possible thanks to the 

use of the Discrete Fourier Transform (DFT) for compression and its property of linearity, which 

allows a simple and distributed synthesis of the road state from the individual state of every single 

sensor. 

Another situation requiring traffic diversion is the occurrence of accidents. Several methods have 

been proposed for their detection. A simple scheme is to check if a vehicle did not transmit its 

condition over a certain period of time. However, in a distributed network, this may imply the 

interchange of an excessive number of messages between static nodes. Acoustic detectors based on 

neural networks [23] and vibration sensors in vehicles [24] are more feasible options which provide 

high accuracy. However, in order to reduce costs and power consumption, a purely collaborative WSN 

solution such as the shockwave detection algorithm is more appropriate [25]. It is based on the fact that 

an accident causes two shockwaves in the traffic flow, one of them propagates in the opposite direction 

of traffic (upstream), forming a queue of stopped or slowing down vehicles, while the other one 

propagates in the direction of traffic (downstream), decreasing the vehicle density beyond the incident. 

This method can be seen in practice in [26], where sensor nodes placed along the road estimate traffic 

volume and detect potential shockwaves which are validated by adjacent sensor nodes. 
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2.4. Smart Parking Applications 

The lack of parking spaces in cities is a concern which leads to illegal parking, congestion due to 

low speed driving and long searching times suffered by drivers. In order to minimize inconvenience to 

drivers, numerous smart parking systems have been developed which guide drivers to vacant parking 

spots (PGIS, Parking Guidance Information System) and enable smart payment and reservation 

options. WSNs are useful for the deployment of smart parking systems as a substitute of more 

expensive wired sensors. Simpler applications using WSNs may involve detecting the distribution of 

vacant parking slots throughout several floors by emplacing sensor nodes at the entrance of each  

floor [27]. However the power of sensor networks comes from the accuracy they provide, allowing to 

find out about the state of each parking space. There is a considerable number of applications that take 

benefit from this characteristic [28-30]. In them the WSN is deployed in a grid layout over the parking 

area, being responsible of the detection of vehicles and leaving other functions such as reservation of 

parking spaces or guidance to other external subsystems. 

Another advantage of WSNs is that they facilitate the development of on-street parking applications. 

In these applications, unlike off-street parking lots, it is not cost-effective to install additional VMS 

(Variable Message Signs) or other informative panels in the streets merely for parking purposes. 

Therefore, on-street parking systems must rely on smart vehicles equipped with On Board Units 

(OBU), which receive parking information, and with devices for visualization. In order to obtain the 

location of nearby vacant spaces, vehicles must poll the WSN which will answer with the appropriate 

information. However, polling from vehicles introduces the problem of mobility, making new routing 

protocols necessary, which consider that the answers may be delivered to locations different than those 

where the polling was originated [31]. 

2.5. Factors Influencing Application Design 

An ITS application which uses WSNs is affected by several factors which impose or relax the 

constraints which drive the application design. The most important of them is the limitation of 

resources of WSN devices. Energy is a scarce resource in WSNs, turning power efficiency into a must. 

The CPU, in addition, is limited in processing power and its use must be restricted in order to save 

energy. Something similar happens with wireless communications, offering low rate transfers whose 

utilization must be reduced in order to improve power efficiency. All of these constraints make WSN  

a unique technology which requires specialized protocols and algorithms as covered in many different 

works [5]. In the same way, dedicated software built on top of the popular TinyOS operating  

system [32], and hardware, for example the well-known sensing platforms TelosB, MicaZ and  

Mica2 from MEMSIC and their respective sensorboards, which meet the previous constraints, have 

been developed. 

In spite of experiencing these limitations typical of generic WSNs, an ITS application might not 

always be subject to them. This is due to the existence of reusable road facilities which provide 

additional energy availability or processing power. Energy availability is given by the access to power 

lines in some points of the road where traffic lights or VMS are placed. This does not allow powering 

all sensor nodes but only a few of them; however it may be enough if those nodes are assigned the 
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most demanding tasks. On the contrary, if power lines are not available, solar panels or other 

renewable power sources as well as energy scavenging techniques are also interesting options.  

Regarding processing power, it is possible to integrate WSNs into heterogeneous vehicular 

technology systems, therefore relying complex processing on more powerful devices such as RSUs 

(Roadside Units). In addition there are other benefits from the integration with other networking 

technologies, mainly with VANET and WAN (Wide Area Networks). On the one hand VANETs and 

WSNs can complement each other. Firstly, they handle different data to a large extent. VANETs use 

the data gathered from sensors onboard vehicles, which allows obtaining their state. WSN in turn 

monitors the road itself and may get valuable information prior to the arrival of vehicles. A small 

overlap exists between the information provided, though. However, this increases robustness. 

Secondly, they are also complementary in how they propagate information. While VANETs promote 

information dispersion, WSNs favor keeping information in a static location, enabling schemes which 

combine both. The combination of VANET and WSN has been referred to by some authors as Hybrid 

Sensor-Vehicular Network (HSVN) [13,14,33]. On the other hand, the integration with WAN 

technologies enables transporting the acquired information to distant locations, such as Traffic 

Management Centers, or to passengers in vehicles by means of cellular networks. As it can be seen, 

WSNs may be only a part of a global solution composed of different complementary technologies. 

The last consideration regards the scenario where the designed system is used. Three generic 

scenarios may be considered: urban, highway and rural. The choice of the scenario where the 

application is adopted has an important effect, as it determines the circumstances under which the 

system operates. Urban scenarios are characterized by the presence of dense grids of streets and 

intersections as well as medium to high traffic densities. Highways, in turn, present long linear layouts 

without intersections and peaks of high traffic loads at some points. Finally, rural scenarios have low 

densities of vehicles and scattered intersections, and unlike the other two scenarios, a low availability 

of reusable facilities and less frequent maintenance support. Therefore, all of these conditions must be 

taken into account in the design. 

2.6. Requirements 

The success or failure of a WSN-based ITS application is decided by many factors. As regards the 

design of the application, there are some of them which, to a greater or lesser extent, must be satisfied. 

Some of these are as follows: 

• Low cost. In order to be an attractive alternative to other technologies, a WSN-based system 

must be cost-effective. This implies reducing the costs of the deployment and maintenance by 

using as few devices as possible and assigning them the minimum set of functionalities 

required, reserving more costly functions to a reduced group of nodes.  

• Lifetime. The deployment of the system infrastructure carries an associated investment. Its 

benefit will depend on the period of time during which the system is exploited. Given the power 

restrictions of WSN, this period will be determined by the ability of the network to reduce 

power consumption and by the use of additional power supply sources. 
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• Flexibility and scalability. A system must be able to adapt to the different situations which are 

expected under its normal operation. This includes variable traffic conditions and the 

penetration ratios of smart vehicles in the system. Similarly, it is desirable that a system be 

versatile enough as not to be restricted to a fixed scenario, making it reusable for different 

purposes and in different locations. On the other hand, the system must be allowed to grow, 

either in number of users or in the size of the area it covers. To this extent, growth must be 

facilitated, making necessary to provide the system with self-organizing capabilities. 

• Robustness and fault tolerance. Sensor nodes deployed on the road are subject to adverse 

situations such as the passing of vehicles over them and unfavorable atmospheric conditions 

which may provoke either the failure of the node itself or its malfunction. This imposes the 

necessity for means of physical protection. In addition, in case of breakdown of single nodes 

due to harsh conditions or battery depletion, the overall operation of the network must not be 

affected, which implies providing the network with redundancy or alternative mechanisms to 

guarantee connectivity. 

• Appropriate Quality of Service (QoS) provision. According to the function of the system 

different QoS parameters must be satisfied including reliability (referring to the correct 

reception of delivered data at the destination), delay and, in infrequent cases, bandwidth. Safety 

applications are the most demanding when it comes to reliability and delay, since it is crucial to 

report any imminent danger well in advance. Other applications are less strict as sporadic losses 

or delays neither provoke accidents nor probably the malfunction of the system. 

3. Network Architecture and Topology 

A distributed WSN-based ITS application accomplishes four different main tasks: (i) acquisition of 

information, (ii) data distribution, (iii) data processing in order to plan the necessary actions, and 

finally, (iv) execution of the appropriate actions. Since these tasks may be carried out independently, it 

can be considered that they correspondingly define four differentiated subsystems which are present in 

ITS systems, namely, the Sensing subsystem, the Distribution subsystem, the Decision Making 

subsystem and the Execution subsystem. In this paper these subsystems have been abstracted in a 

reference architecture depicted in Figure 2, which is inspired by the architectures proposed in [34,35]. 

It is defined by placing the different subsystems at separate hierarchical levels, where each subsystem 

may interact with its neighbors at the immediately higher and lower levels. The architecture of a 

particular system will be based on the allocation of these subsystems into tiers of distributed and 

potentially heterogeneous devices. This may result in architectures varying from single tiered 

architectures, where all the devices perform all the tasks of the system, to multi-tiered architectures, in 

which each tier of devices specializes in the tasks of one or several subsystems as will be described in 

Section 3.5. The following subsections describe into more detail each of the four subsystems 

mentioned above. In addition, Table 3 in Appendix summarizes how the reviewed systems implement 

these subsystems. 
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Figure 2. Reference architecture for WSN-based ITS applications. 

 

3.1. Sensing Subsystem 

The Sensing subsystem is composed of all the devices in charge of acquiring relevant information 

mainly relative to traffic and road states. In a WSN-based ITS application, not necessarily all the 

devices use WSN technology, allowing a distribution of tasks among devices using different 

technologies. However, as regards the acquisition of data, WSNs are the prevailing technology of 

choice. Consequently, the implantation of the sensing subsystem consists of the deployment of one or 

several WSNs throughout the observation area (roads or parking lots), which detect vehicles through 

their sensors and optionally communicate wirelessly with them. After observing how different 

applications have dealt with the deployment of these WSNs, it was noticed that they follow some basic 

topological patterns which determine important properties of the system such as lifetime, costs and 

functionality. WSN nodes are divided into groups following a similar outline, and the deployment 

consists of a composition, typically homogeneous, of these groups of nodes. Therefore, they can be 

considered as the building blocks of the sensing subsystem. It should be noted that, in addition, the 

nodes forming these blocks may propagate information within them, but this should not be confused 

with the Distribution subsystem. Data propagation in the Sensing subsystem is restricted to local areas, 

aimed at extracting information from the block/group (towards a sink node) or enabling collaborative 

processing with nearby nodes. If data dissemination through larger areas is required, for example to 

transmit information to distant TMCs or to communicate with neighbor blocks, a distribution 

subsystem is also required. Below, the different topologies which were identified, shown in Figure 3, 

are introduced: 

• Mesh Topology  

A mesh topology presents a generic case used in applications concerning many WSN domains. As a 

result, there are many communication protocols available which are intended for the creation of  

self-forming and self-healing (fault-tolerant) networks, performing many-to-one and one-to-many 
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communications. Consequently, this topology is adequate for applications which need to deploy their 

nodes in a grid layout (e.g., parking lots [28]), not necessarily regular, and which deliver their data to a 

central sink for decision making. However, this topology complicates the development of collaborative 

applications since the network self-forming mechanisms do not allow to control how nodes establish 

links between them. 

Figure 3. Sensing topologies and examples: (a) String topology, overtaking assistance,  

(b) mesh topology, parking lot, (c) star topology, speed detection. 

 

• String and Cluster String Topologies 

Linear or string based topologies arrange static nodes in a row parallel to the road, leading to an 

important reduction in the complexity of the routing protocols, since every node only has to decide in 

which direction to forward. This implies the use of a 1-dimensional geo-routing policy with simple 

addressing schemes which enables point-to-point communications between nodes, thus simplifying the 

development of collaborative applications. For example, a node detecting a vehicle can start the 

collaboration with neighbor nodes just by indicating that it intends to share the event with nodes up to 

a determined hop count. 

Two different alternatives fall into this group of topologies, the uniform string topology [36] and 

the cluster string one [11]. The difference between them lies in the allocation of tasks among the 

nodes. In a uniform string topology all the nodes have similar hardware resources and perform 

comparable tasks regarding vehicle detection and routing. In a clustered string, nodes are grouped into 

clusters including a more powerful Cluster Head (CH) and several constrained cluster nodes. Through 

this arrangement it becomes possible for those tasks requiring more powerful hardware or higher 

power consumption to be accomplished by a small subset of the nodes with additional capabilities; 

therefore allowing a reduction in costs and prolonging the lifetime of the rest of the network. The 
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typical actions of CHs are the execution of routing tasks to other clusters or subsystems [26], activation 

of sleeping nodes upon the detection of a vehicle [12] or the communication with vehicles through 

additional wireless interfaces [12].  

• Star Topology 

In the star topology a few sensor nodes are set around a sink. Its advantages are simplicity and the 

avoidance of routing schemes, which helps to preserve energy. Two differentiated cases can be 

considered depending on whether transmissions are performed in a unidirectional [37] or bidirectional 

way [15]. Unidirectional communications are assumed to deliver information from sensor nodes 

towards a sink for data analysis. In spite of potentially offering less functionality, they enable 

additional power savings since sensor nodes are not the destination of any message and, therefore, they 

do not need to periodically power up their radio and wait for incoming messages. Consequently, these 

are the most energy-efficient cases of all, especially the former. However, the placement of nodes is 

limited to the area of coverage of the sink. 

• Barrier Topology  

The barrier topology deploys several nodes transversely, one per lane, across the road (see an 

example in Figure 4). It can be considered as a particular case of star topology, which inherits all of its 

characteristics. Since it is a very simple topology, its functionality is restricted. However, it allows to 

obtain the number of vehicles passing a determined point of the road and it is therefore quite useful in 

applications which need an estimation of the traffic load. 

Figure 4. Distribution subsystem based on the availability of cellular networks. 

 

 

This topology may be employed in a clustered fashion [37]. Each of the sensor nodes at every lane 

does a simpler function, detecting vehicles and reporting to the cluster head at the roadside (therefore 

likely to employ only unidirectional communications). Apart from receiving notifications from sensor 

nodes, the latter manages communications with vehicles as well as with other neighbor clusters 

through the Distribution subsystem. 
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• Disconnected Nodes (with Mobile Sinks) 

A common requisite of all the previous topologies is that there must be connectivity between any 

static node in the deployment and at least one of its neighbors, which limits the maximum separation 

between nodes and forces the emplacement of nodes in areas where other neighbor nodes are situated. 

Using vehicles as mobile sinks can overcome this limitation since disconnected static nodes can send 

and receive information while a vehicle is nearby. Therefore, they can be placed arbitrarily. This offers 

several advantages including scalability, since the system may be easily extended by installing a single 

node at the desired position; robustness, since the malfunction of one node does not affect its 

neighbors; and finally, as a consequence of not having a maximum separation between nodes, the 

possibility of covering larger areas at lower cost (at the expense of a low resolution). In contrast, this 

scheme has some drawbacks, such as requiring that all static nodes be provided with extended 

capabilities (they all have to sense and communicate with vehicles) or restricting the events about 

which a node can inform to those happening in its local sensing area, which are transmitted to vehicles 

when they are close to the phenomenon. The latter can be partially overcome by using communication 

standards which support transmissions at a longer range than typical WSNs protocols. However, in 

order to increase the anticipation with which vehicles receive information, the use of a vehicular 

distribution tier is required [38]. A special class of disconnected networks is the disconnected clustered 

barriers [33] for multi-lane roads, which combine advantages from clustered barriers with arbitrary 

emplacement thanks to the use of mobile sinks.  

• Vehicular Sensing 

In addition to obtaining traffic and road information by means of static nodes, it is also possible to 

use vehicles for this purpose. In this respect, measurements taken from the different sensors installed 

onboard vehicles, as well as information about the presence of other vehicles, can be transmitted via 

radio to roadside nodes. Therefore vehicular sensing requires static deployments of one of the 

arrangements above. The fact that a vehicle itself announces its presence by means of RF transmissions, 

which henceforth will be denoted as active vehicle detection [14], allows that only vehicles that are 

able to interact with the system will be detected by the roadside deployment. On the contrary,  

non-equipped vehicles are disregarded by the system, which is a problem for applications requiring a 

detailed knowledge of the traffic state. 

3.2. Distribution Subsystem 

The Distribution subsystem is responsible for exchanging information between the different 

subsystems of an ITS application. In a tiered architecture such as the one in Figure 2, it is placed in a 

central position, receiving communication requests from all the other subsystems and serving them 

accordingly. It is in charge of the transmission of sensed data to the Decision Making subsystem and, 

conversely, of the transmission of commands from the Decision Making subsystem to the Sensing and 

Execution subsystems [37]. Similarly, it interconnects the different sensing groups of a network 

(described above). This results in a scalable network created by the composition of these groups.  

In this respect, the Distribution subsystem can also interconnect physically isolated groups of nodes  
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or vehicles, thus enabling the interconnection of WSN islands deployed in different parts along the 

road [14] or of clusters of vehicles which other way would form unconnected VANETs [33].  

The Distribution subsystem consumes a significant amount of power owing to the requirements 

imposed on its devices. They are in charge of forwarding every event reported by every node of the 

Sensing subsystem, which may occur at a high rate. In addition, it must be done under the time constraints 

defined by the application. This requires very active nodes in order to guarantee information delivery 

in a timely manner, jeopardizing energy savings. Therefore, the devices used in this subsystem need a 

more generous power budget than the sensing nodes, thus making additional power sources necessary.  

There are different ways of implementing the Distribution subsystem. Although the most obvious is 

deploying WSNs with external power sources, there are other possibilities. One of them consists of 

employing vehicular networks to disseminate information. Devices used on the vehicles have no 

energy constraints since they can be powered by the vehicle’s onboard facilities. In addition, the 

mobility of vehicles, which is a limiting factor for other kind of applications, helps spreading data 

throughout vehicles and static nodes along the road, and it relieves static nodes from distribution tasks. 

The simplest scheme entails using direct transmission between vehicles, i.e., a one-hop network which 

enables data sharing from a source vehicle to every vehicle approaching it [38,39]. Given the 

technologies used up to now, this usually translates into mobile WLANs to which other vehicles 

associate. The second alternative is based on using a multi-hop VANET distribution network [12,40]. 

This option requires more system resources, but it also facilitates faster data dissemination and scales 

much better as the number of technologically equipped vehicles grows. 

Obviously VANETs exhibit important advantages which make them an alternative to be considered 

for the Distribution system. However, they also have some drawbacks; the main one is the negative 

impact of low technology penetration rates on the system performance. If the density of equipped 

vehicles is not high enough, multihop routes cannot be constructed and connectivity between vehicles 

is very sporadic. Currently the implantation of VANETs is still in its early stages and full sets of 

equipped vehicles can only be seen in some research works but rarely in real life. Therefore, 

alternative solutions with higher penetration ratios are still an interesting option. Clear examples are 

smartphones, whose number is increasing exponentially, with 297 million sales in 2010, 72.1% more 

than the previous year [41]. They are not a distribution technology in themselves, but rather devices 

intended for user interaction. However, they are supported by cellular networks which can distribute 

information. As a result, gateways to cellular networks such as 3G networks can be included in the 

system design as the distribution technology [11]. 

A Distribution subsystem based on cellular networks is an attractive option, not only because of its 

high availability but also because of its deployment cost. Even gateways are expensive devices which 

require cellular network interfaces, only a few of them are required to be placed close to cellular Base 

Stations (BS) and some cheaper nodes which connect the sensing nodes with the gateways must be 

deployed (see Figure 4). On the other hand, exploitation costs must also be taken into account since 

cellular operators bill the use of BS. This may lead to another choice either when it is not planned to 

pay for the use of BS or they are not available, which consists of using IMS (Internet Multimedia 

Subsystems) [11,42] that provide access to the Distribution System through different radio technologies 

(2G, 2.5G, 3G, WLAN) regardless of the operator. 
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3.3. Decision Making Subsystem 

The Decision Making subsystem (DMS) is in charge of planning the necessary actions in order to 

achieve the objectives of the system. The tasks which are assigned to this subsystem can be divided 

into three different groups. The first of them comprises tasks aimed at data storage and preprocessing. 

It deals with the huge amount of data which arrives at the subsystem, filtering and storing only relevant 

information and subsequently accessing to it. The second group handles traffic information from 

different sources and processes it according to the aim of the application. Finally, the third group of 

tasks is responsible for addressing control commands as well as for managing the network. 

The DMS can be executed at different levels. In a top level it can be implemented at centralized 

TMCs. This implies that all data gathered by the sensing subsystem is sent, via the Distribution 

subsystem, to the DMS, which must support an asymmetric data flow. The main advantage of this 

approach is the possibility of performing complex calculations over a great amount of information. 

Conversely, if only simple processing is to be applied, the DMS can be distributed among the sensor 

nodes. This enables performing simple collaborative algorithms between neighbor nodes which allow 

the execution of real-time traffic safety applications. Finally, another solution is the use of smart 

devices (smartphones, etc.) in vehicles, which may receive raw data from road networks and use them, 

for example, to plan routes. 

3.4. Execution Subsystem 

The Execution subsystem performs the necessary actions which foster changes in the traffic flow 

according to the objective of the ITS application. It is mainly composed of devices providing visual 

and acoustic stimuli to drivers, though others aimed at vehicle automation would also pertain to this 

subsystem. Different equipment may be used. Traffic lights or Variable-Message Signs installed along 

the roads are attractive options which provide strict control and adaptability to different situations, 

respectively. They offer the advantage of being widely adopted road infrastructures, suitable for reuse 

in ITS applications, which help reducing deployment costs. The use of panels attached to the sensing 

nodes is another possible solution; nevertheless power supply restrictions of unwired nodes limit their 

application to small panels or informative leds. Finally, the employment of in-vehicle systems offers, 

on the one hand, the possibility of presenting customized information for every vehicle and, on the 

other hand, the chance to use acoustic signals and messages that diminish distractions while driving. In 

addition, the information from the road systems can be integrated into In-Vehicle Infotainment (IVI) 

systems, for example, for its fusion with digital maps or other information services (transport 

timetables, weather forecasts, etc.). Currently, the considerable and increasing number of smartphones, 

navigators or tablets paves the way for the adoption of in-vehicle systems. However, there is a growing 

interest of vehicle manufacturers to incorporate IVI systems in their products as an added value. In this 

respect, new automobile models from important companies are equipped with systems such as BMW’s 

iDrive [43], Audi’s MMI [44], Ford’s SYNC [45] or GENIVI Apollo from the GENIVI alliance [46], 

which aim at facilitating the development of IVI applications. 
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3.5. Network Architecture Classification 

The architectures of real ITS systems can be obtained by mapping the subsystems depicted in 

Figure 2 onto physical tiers of devices. This leads to largely differentiated systems according to the 

way that it is done. Two top level decisions should be made; firstly, a flat vs. a hierarchical network 

must be selected and, secondly, for the latter case, a homogenous vs. heterogeneous use of wireless 

technologies. The next sections describe different alternatives which can be found in any of these cases. 

3.5.1. Flat Networks 

In flat networks all the deployed nodes play the same role and therefore perform the same tasks. 

ITS systems employing them are single-tier systems where a roadside WSN carries out sensing, 

distribution and, if required, collaborative decision making tasks. Conversely, centralized decision 

making and execution tasks, due to the limitations of WSNs, are undertaken by other external 

subsystems. The main advantage of these systems is their simplicity. Nodes with higher complexity 

are not needed since, on the one hand, it is not necessary to deal with issues related to the 

interconnection of different technologies and, on the other hand, routing protocols in flat networks are 

usually simple. However, flat networks have an important disadvantage in what regards scalability.  

As the number of nodes in a network increases, the gateway node and those around it are subject to an 

overload which can either degrade the performance (by means of information packet collisions and 

increased latencies) or force the use of a longer active period in the nodes, thus increasing power 

consumption. 

The lack of scalability of this pattern restricts its use to small areas. As a consequence, it is mostly 

used for smart parking applications [29,47], in which sensor nodes are installed on every parking slot 

forming a grid layout which suits the use of generic routing protocols for flat networks [48]. However, 

it is also possible to find traffic applications using flat networks with string sensing topologies [36]. 

Their use is feasible in applications aimed at controlling isolated hotspots on the road, not requiring a 

centralized and distant DMS, for example in overtaking assistance in dangerous locations, since it is 

only necessary to share events with a few neighbors. 

3.5.2. Hierarchical Networks 

Unlike flat networks, these networks make use of a hierarchical distribution of tasks among nodes. 

The network consists of heterogeneous nodes where the most powerful one performs the most 

demanding tasks and the less powerful nodes are reserved for the less challenging ones, thus saving as 

much energy as possible. This can be accomplished by using simple schemes. The simplest approach 

is the one used in many traffic control applications, in which one or few sensor nodes are responsible 

for traffic detection, while nodes at intersections control traffic lights. However, hierarchical networks 

are able to offer a more important benefit when they are applied to larger systems. 

A well-known class of hierarchical networks is clustered networks, which stand out thanks to their 

scalability. They are based on grouping nodes into clusters where one of them is selected as the cluster 

head, which will present the services offered by all cluster nodes to the external devices. This results, 

as it was stated, in saving costs and energy, since most of the nodes implement only lightweight 
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functions and a few of them, the cluster heads, require a greater investment in more powerful devices 

and in larger power units and solar panels [11,15]. Scalability is provided by increasing the number of 

clusters, which does not increase the complexity of each cluster. Consequently, simple routing 

algorithms can be applied within the cluster, being single hop star topology a feasible option. This can 

be useful not only for traffic applications [15] but also in parking applications [30], deploying a cluster 

star network formed by the composition of different groups of nodes with a star topology which 

transmit to a central base station.  

If scalability to wider areas is required there is the possibility that the cluster heads self-organize 

into a multihop network that delivers information to farther points. The result is a two-tiered system 

where constrained cluster nodes compose the sensing tier and more powerful cluster heads pertain to 

the distribution tier, as can be seen in the example shown in Figure 4. This permits sharing road 

information with distant nodes in order to warn drivers timely as well as communicating with a distant 

DMS since a tiered architecture allows separating delay sensitive operations (speed measurement, 

detection of dangerous vehicles) from delay insensitive operations (storage at the DMS). In the latter 

case, when a distant DMS is present in the system, it can be considered as the third tier of it, in charge 

of the centralized decision making [34]. 

3.5.3. Heterogeneous Networks 

Heterogeneous systems combine several wireless technologies to facilitate the development of more 

effective applications. Since every wireless technology offers distinctive advantages and disadvantages, a 

heterogeneous system seeks to focus on the advantages of a particular technology to compensate the 

drawbacks of another technology also employed in the final system. For example, WSNs have their 

main weakness in their constrained use of the scarce available energy. However, this is a minor issue 

in VANETs. On the contrary, achieving high technology penetration rates in VANETs in order to 

boost performance is not straightforward, but the installation of WSN nodes on selected roads is a 

simpler task. One can take advantage of the composition of heterogeneous technologies, which results 

in the devices of each technology arranged in their own tier, assigning sensing and distribution tasks to 

either of the tiers. 

Two different types of heterogeneous applications can be distinguished. The first are WSN-centric 

applications, in which a road WSN deployment is complemented by a VANET [12,38] or a cellular 

network [11,15]. Those applications are quite similar to those described in the preceding sections, but 

they differ from them in that either VANETs or cellular networks perform the data distribution tasks. 

This may suppose alleviating static WSN nodes from the burden of long range data forwarding and 

thus preserving energy. In the case of VANETs, they offer the possibility of propagating information 

gathered by the WSNs either to other vehicles which are approaching to the sensed area or to distant 

WSN nodes, possibly detached with the originating nodes. Therefore, vehicles may know the existence 

of dangerous conditions in advance, as shown in Figure 1 above. The same can be achieved by using 

cellular networks. However, information follows a different path in order to arrive to smartphones in 

the vehicles or, thanks to the wide coverage of cellular networks, to distant and centralized TMCs [15]. 

In this case the distribution tier is not only formed by the cellular network itself, but also by a set of WSN 

nodes which forward data from the sensing nodes to the nearest base station [11], as illustrated in Figure 4.  
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The other category of heterogeneous applications is the VANET-centric applications. In this 

category the WSNs are used to improve the performance of existing VANETs [13,33]. They assume 

that VANETs are established but that they are split into different isolated partitions, which 

consequently cannot share information. WSNs can solve this problem in an analogous way as RSUs 

do, i.e., storing information from a partition and delivering it to subsequent partitions when vehicles 

arrive at the WSN location (as depicted in Figure 5). However, RSUs are scarce and expensive 

equipment. In contrast, simple WSN islands, ranging from a single node to a barrier of them, are a 

cheaper solution for those locations where RSUs are not already available or cost-effective.  

Figure 5. VANET-centric application. Data Interchange between disconnected vehicles: 

(1) source vehicle detection, (2) notification to Cluster Head, (3) data request to vehicle, 

(4) data reply (stored at the Cluster Head), (5) destination vehicle detection, (6) notification 

to Cluster Head, (7) data delivery to destination vehicle. 

 

 

Applications which involve the use of VANET communication entail the interconnection of  

two different wireless network technologies. Consequently, they require gateway devices equipped 

with two wireless interfaces in order to enable the intercommunication between both networks  

(e.g., portable PCs with WiFi [49] and 802.15.4 [50] or the recently available NEC LinkBird-MX [51] 

with 802.11p [52] and 802.15.4 interfaces). These are more expensive and power consuming devices, 

which motivates several saving procedures. Clustering devices are the most common. At the road 

WSN deployment, assigning gateway functionalities to cluster heads decreases power consumption 

and costs in the rest of cluster members. Similarly, arranging vehicles into clusters also saves energy, 

since gateways only need to communicate with the leading vehicle of each cluster which can, in turn, 

disseminate information within the cluster. Another typical scheme is done by placing the gateways in 

vehicles, which have greater energy availability [12,14], as opposed to placing them on the roadside [40]. 

The drawbacks of this option though, are, firstly, that it requires an extra investment since the potential 

number of vehicles may be greater than the number of static nodes and, secondly, that the 

interconnection between vehicles and static nodes is accomplished using WSN communication 

standards which are not specifically designed for vehicular applications, thus offering worst mobility 
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support, radio coverage and throughput. However, standards such as 802.15.4 and B-MAC [53]  

have been used in applications involving vehicles traveling at low to medium speeds [14,40].  

As pointed in [40] the coexistence of both approaches in a same system can be desirable, providing a 

compromise between costs and achieved performance according to the road operator’s needs. 

4. Road Sensing 

One key feature of WSNs is their ability to acquire information from the environment. WSN nodes 

are able to obtain raw data from their sensors and process them in order to determine the occurrence of 

some events. The information that they may provide is very extensive, not constrained to the mere 

detection of vehicles. For instance, vehicle length and speed can be obtained easily. Besides, more 

advanced features such as vehicle classification and re-identification can also be accomplished by 

WSNs. Classification is useful for making statistics of the utilization of roads by different vehicles and 

it does not boil down to classifying vehicles into a few classes; it is even possible to distinguish 

between different models of vehicles. Re-identification, in turn, matches the detection of a single 

vehicle at different locations of the road network, thus enabling vehicle tracking in order to obtain 

information about travel paths, travel times and origin/destination demands [54]. On the other hand, 

WSNs have been widely used in environmental monitoring applications; therefore they are a proven 

solution to detect different situations which may affect driving safety such as adverse atmospheric 

conditions or the presence of animals or obstacles on the road. 

The execution of the sensing tasks can take place under three different scenarios, namely, (i) detecting 

and monitoring moving vehicles, (ii) detecting stationary vehicles, and (iii) monitoring the road state. 

The next subsections are devoted to these particular scenarios, which determine the figures of interest 

that can be measured and how to do it. 

4.1. Detecting and Monitoring Moving Vehicles 

The detection of vehicles traveling on the roads is essential for most traffic safety and control 

applications. It is characterized by the low time available to detect a moving target, which is bound to 

the period during which a sensor reports an altered output because of the passing vehicle. In order to 

properly detect the vehicle at least one measurement must be performed during this period (more 

measurements for greater reliability), which must be higher than a predefined threshold value. For 

example, a 4 meters vehicle traveling at a maximum speed of 120 Km/h would require at least a 12 Hz 

sampling rate, provided that the vehicle produces a noticeable sensing output during all the period 

where it is close to the sensor; a higher sampling frequency would be required if the excitation of the 

sensor is not constantly over the chosen threshold value. The selection of the sampling rate is an 

important issue, since it has a considerable impact on power consumption. Low sampling rates 

promote the use of duty cycle schemes where both sensor and CPU may sleep while it is not necessary 

to perform any measurement. Consequently, the lower the sampling rate and the wake-up time of 

sensors and CPU are, the more energy efficient the system is. Note that there are a considerable 

number of applications that use cameras for vehicle detection, however we consider it out of the scope 

of this paper, since they usually involve image processing schemes that exceed the processing capabilities 

of wireless sensor nodes. 
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An additional magnitude which can be measured by WSNs is velocity. Although it is possible to 

obtain the speed of a car using a single node it presents some difficulties according to the method that 

is employed. A straightforward solution consists of mounting two closely spaced sensors in the same 

node and computing speed as the quotient between their separation and the difference between 

detection times. However, in order to provide accurate results, the sampling rate must be very high, 

thus exhausting power reserves. There are more effective methods for computing speed with a single 

node, but they require additional information. For example, in order to obtain the speed of vehicles 

traveling in a platoon, the mean vehicle length is necessary [55]. Using collaborative processing nodes 

is a more appropriate solution in terms of power consumption since placing sensors at greater distances 

in separate nodes alleviates the inaccuracy introduced by inadequate sampling rates and minimal 

displacements of sensors from their optimal positions. At least two nodes separated by several meters 

are necessary to perform this calculation, though three nodes provide slightly more accurate estimations, 

since they allow to compensate errors introduced by computing and transmission delays [56].  

Provided that the speed is known, it is possible to calculate the length of the vehicles, which can be 

used as a basic classifier, distinguishing between small, medium and large vehicles (or either between 

passenger car/minivan, truck, etc.). In order to estimate this magnitude several measurements of a 

same vehicle are required from every single sensor, thus demanding an increase in the sampling rate. 

However, this must not necessarily increase power consumption since not all deployed nodes need to 

perform such estimation. Instead it is possible to increase sampling rates only when neighbor nodes 

detect an incoming vehicle, thus maintaining power consumption low as well as offering accurate 

length estimations.  

The estimation of the vehicle length requires almost no computations but gives a very rough 

classification. More complex classifications are feasible using the vehicle signatures which sensors 

may provide. The signature of a vehicle for a particular type of sensor is the variation in time of the 

sensor output that produces a vehicle traversing the sensing area. An example corresponding to the 

magnetic signature generated by AMR (Anisotropic Magneto-Resistance) sensors can be seen in 

Figure 6. Each vehicle class has its own characteristic signature, which enables classifying vehicles 

that match it. The matching process depends on the sensor used as will be shown in the next subsections. 

Figure 6. Magnetic signature for: (a) longitudinal axis to the direction of movement of a 

vehicle, (b) Z axis. Sensor located at the roadside. From [58], courtesy of Honeywell 

International, Inc. 

 

(a) (b)(a) (b)(a) (b)
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4.1.1. Sensors 

There are several factors to consider before the selection of a proper sensor. These are, among 

others, the functionality it may provide, the power consumption incurred, the detection range and the 

need for special encapsulation. The possible applications have been outlined in the previous 

paragraphs and they determine, to a great extent, the particular sensor employed. The power 

consumption depends on the selected sensor and, more importantly, on the purpose given to it since it 

establishes the sampling rate. The range of detection, apart from setting the distance from which 

vehicles can be detected, also reveals whether a single sensor can perform detections in multiple lanes. 

However, multi-lane sensing with long range sensors complicates the election of detection thresholds. 

Conversely, sensors with shorter detection ranges have the advantage of being able to effectively 

distinguish between traffic in different lanes. The sensitivity to external factors such as temperature, 

rain or wind may in turn affect the performance of sensors negatively, providing inaccurate 

measurements which may require filtering or a constant adjustment of the detection criteria. Finally, 

the use of some sensors introduces additional encapsulation requirements depending on whether the 

sensor needs to be placed in a part of the road where vehicles may pass, requiring extra physical 

resistance, or whether it needs to improve its detection capabilities (e.g., use of Fresnel lenses with 

infrared sensors), etc. 

• Anisotropic Magneto-Resistance (AMR) Sensors 

AMR sensors are the most common sensors for detecting vehicles because of their small size and 

detection properties [57,58]. They are low power and provide accurate detections using low sampling 

rates of few Hz. The operation of these sensors is based on measuring the variation produced in the 

Earth’s magnetic field by the ferrous elements of a vehicle, providing outputs for the X, Y and Z 

magnetic axes. Their range of detection is low, quickly fading out with the distance. Consequently, 

they are used to detect traffic on a single lane. One of their main drawbacks is that they are very 

sensitive to the orientation of the sensor and the lateral offset of vehicles with respect to the sensor, 

which noticeably affects the signature produced by vehicles. In addition, they are also sensitive to 

temperature which influences the detection threshold values, requiring frequent adjustments. 

The signature given by AMR sensors offers valuable information. A signature example can be seen 

in Figure 6, which corresponds to a sensor placed at the roadside. Besides detecting a vehicle, it allows 

determining the direction in which it travels inspecting the output provided by the magnetic axis 

longitudinal to the road. If the falling edge of the signal waveform occurs before the rising edge, the 

vehicle is traveling in the direction of the axis. Conversely, if the rising edge occurs first, the vehicle is 

traveling in the opposite direction to the axis orientation. 

AMR sensors can be placed either by the roadside or at the center of a lane. Placement at the 

roadside is more appropriate for detecting vehicles, since the Z axis produces a peak while the vehicle 

is inline with the sensor, and determining direction of travel. Location at the center of lanes requires to 

perforate the road in order to install the sensor node flush with the pavement surface and therefore they 

must withstand vehicles passing over them. To this end, encapsulations based on harsh plastic box as 

well as epoxy filling may be used as in [57]. Nevertheless, this placement produces more characteristic 
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signatures, with greater precision than the provided by other traditional sensors such as inductive 

loops. The drawback is that these signatures complicate vehicle detection since it is possible to either 

report two detections upon the passing of a vehicle or report a single detection for two consecutive 

vehicles. On the other hand, they are very useful for vehicle classification and re-identification 

purposes, which can be performed with higher sampling rates, up to 128 Hz. However, the sensitivity 

to the lateral offsets of vehicles may lead to improper classification if the lateral offset does not 

correspond to the one with which the reference signature was obtained. A possible solution consists of 

placing an array of sensors transversally on the lane and selecting, from all the measured signatures, 

the one that best matches any of the reference signatures [59]. In addition, this also improves the 

detection of small vehicles like motorcycles, which are only detected when they are closer to the 

sensors, requiring at least two sensors per lane [55]. 

The process of matching the signatures requires simple algorithms to enable real-time calculations 

at the nodes. It is based on obtaining simpler vectors of characteristic parameters from the signatures 

which can be used to simplify calculations. Representative examples are the Average-Bar and the  

Hill-Pattern transformations [60]. The former divides the signature into a fixed number of pieces and 

calculates the average value of each one, thus obtaining an easier but yet valuable simplification. The 

latter transforms the signature into a sequence of 1, 0 and −1 values by comparing the slope of the 

signature with certain thresholds. The resulting data vectors can be further compressed by means of 

techniques such as the Principal Component Analysis (PCA) [61], which produces small vectors that 

can be effectively processed by the simple classifiers found in sensor nodes [60].  

• Acoustic Sensors  

They can be used to detect vehicles by capturing the engine noise with a microphone. Their main 

advantage is the long range of detection, much longer than the range of any other sensor presented. It 

can therefore be used to detect vehicles from further distances as well as in multiple lanes. In addition, 

the acoustic signature of vehicles can be used to classify them by means of neural networks [62]. 

However, it has important drawbacks. The high spectral amplitude of the monitored signal requires a 

very high sampling rate, thus making a duty-cycle scheme unachievable. In addition, acoustic sensors 

can be interfered by noise originated by different weather conditions such as wind or rain, making 

them prone to fail and report false positives as well as requiring that the signal be filtered. Finally, they 

are not appropriate for detecting slow moving vehicles or for high dense traffic situations.  

In spite of their shortcomings, they can be used to provide unreliable detections, possibly at low 

sampling rates, which can be used to wake up other sensors performing more precise detection 

methods [63]. This is a really attractive option if the acoustic detector is an independent subsystem of 

the sensor node which, rather than providing measurements upon CPU requests, work autonomously 

letting the rest of the hardware enter the power saving mode until a vehicle arrives [64]. 

• Passive Infrared (PIR) Sensors  

PIR sensors measure the IR radiation emitted by heated bodies, though usually they are 

commercially available as motion detectors which perform a binary detection of vehicles, causing a 

loss of detail in signatures. Some sensors though, such as those from the IRA-E700 series do not 
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behave as binary detectors, providing detailed signatures, which can be seen in [65]. PIR sensors and 

detectors have been frequently used for tracking people but rarely for vehicles [63]. In comparison 

with other sensors they offer an intermediate range of detection which makes them suitable for  

multi-lane detection. They can be mounted overhead or at the sideways, though overhead mounting 

offers better performance. On the other hand, the downsides of PIR devices are that they are affected 

by atmospheric conditions such as rain, snow or fog; and that the presence of humans and animals 

triggers false detections. It should be mentioned that PIR sensors usually require Fresnel lenses to 

improve long distance detection, which can also be used to change the field-of-view of the sensor. 

• Accelerometers 

Accelerometers can sense vibrations of the road caused by passing vehicles. Recently they have 

been suggested as accurate sensors for detecting and classifying vehicles [66], with potential 

applications in WSNs [11]. Although their possibilities are yet under study, they are very promising 

sensors. They provide a signature where output peaks coincide with vehicles axles, which can be used 

to estimate the number of axles and the wheel-base of a vehicle, and, using this information, its speed 

(by means of a single sensor). In addition, it is possible to use accelerometers to estimate the lateral 

offset of vehicles thanks to the different attenuation suffered by the different frequencies [66]. The 

main weakness of these sensors is that very high sampling rates are required since the signal has a 

spectral bandwidth of a few KHz, therefore requesting that this sensor be used only on demand, when 

other less accurate and less energy consuming sensor notifies a potential detection. 

4.2. Detecting Stationary Vehicles 

The detection of stationary vehicles is typically used in intelligent parking applications where the 

aim is to control which parking spaces are free. Unlike moving vehicles, where the time window for 

detecting a vehicle is small, stationary vehicles may remain close to the sensor node for a long period 

of time. This not only improves reliability in detections, since a positive occupancy can be reported 

after several measurements above a certain threshold, but it also enhances power savings by allowing 

lower sampling rates and thus more efficient duty-cycles. In addition, the use of adaptive sampling 

rates, which temporarily increase after the first above-threshold measurement, allows for additional 

reductions in consumption [30]. Furthermore, the long periods elapsed between samples let the sensor 

node enter deeper power saving modes, which require relatively long transitions to the active state and 

are otherwise unfeasible.  

Typically the detection is carried out by AMR sensors [27,28,30] despite the fact that there are 

other alternatives such as the use of light sensors [29]. Cameras and active sensors (ultrasonic, light 

with laser pointer) have also been tested in some works [27]; however, they show excessive power 

consumption. In addition, cameras generate a great amount of data to be transmitted and a more 

complex processing, while ultrasonic and light sensors with laser pointers cannot differentiate between 

humans and other objects from vehicles, needing to check extra attributes such as speed. 

AMR sensors, in the case of parking lots, can be affected by interferences (e.g., vehicles in 

contiguous parking spaces) which may lead to false positives. If nodes are placed under the vehicles, in 

the center of the parking spots, the acquired signal from vehicles parked at the place under 
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consideration is noticeably higher than that originated by vehicles in neighbor parking spaces. This, 

along with the use of properly defined threshold values for the measured signal, can be applied to 

indentify when a vehicle is currently parked at the sampled space. It should be noted that the measured 

magnetic signal depends on the type of vehicle above (vehicle elevation, layout, etc.); therefore 

threshold values must be chosen so that they are valid for the different kinds of vehicles using the 

parking. 

According to the open literature, light sensors may be considered either as a good option for 

detecting stationary vehicles [67] or as totally useless [27]. The huge difference in both of these studies 

is due to the location of the sensors. These sensors offer inaccurate results when placed in a lateral 

position (with respect to the vehicles), but provide good outcomes when placed under vehicles, since 

vehicles block all the incoming light, reporting a positive detection. However, light sensors are quite 

sensitive to environmental illumination, not being well-suited to work in shadow areas or at night.  

In [29] some additional reference nodes equipped with light sensors were used to eliminate the effect 

of environmental light variations. However, how the system behaves in dark conditions was not 

specified. A positive consideration about these sensors, though, is that they are available with most 

commercial sensing platforms, thus alleviating the complexity of installing additional hardware. 

4.3. Monitoring Road Condition 

In addition to structural health monitoring of transportation infrastructures such as bridges, typically 

carried out by WSNs by means of accelerometers [68], WSNs can also be used to examine other 

aspects related to traffic safety. In this regard, the occurrence of adverse weather conditions is a major 

concern for traffic safety, accounting for 1.5 million accidents per year in the United States [69]. 

WSNs can play an important role in reducing the accident rate associated with weather by detecting 

and reporting in advance different situations affecting the vehicle maneuverability or drivers’ visibility. 

In contrast to the detection of vehicles, the relatively slow variation in the road conditions facilitates 

low sampling rates, with the consequent reduction in power consumption.  

The sensors employed to this purpose include those typically intended for environmental conditions 

monitoring with WSNs: PIR and temperature sensors for ice and snow detection, humidity sensors for 

fog and rain detection, and ambient light sensors. The downside of these sensors in the case of detecting 

ice and snow is that they can only estimate a probability of occurrence according to other environmental 

factors. More accurate detection methods commonly imply higher power consumption. However, there 

are feasible alternatives such as measuring material’s permittivity [70]. This work presents a small 

sensor which measures the permittivity of the material found between two electrodes at two different 

frequencies, distinguishing among water, ice and air. 

The presence of pedestrians and animals in the immediacy of roads also constitutes a risk. There are 

many methods for detecting their presence but, if power consumption is the priority, PIR-based 

detectors are the most appropriate solution. They recognize the presence of moving objects, with a 

detection range which depends on the size of the targets and whose sampling rates are determined by 

the motion speeds. 
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5. WSN Application Design 

WSNs are a powerful technology to implement and deploy distributed sensing applications. 

However, during the development of WSN-based ITS applications, a set of design aspects may have a 

decisive influence on the behavior of the system. This section is aimed at discussing the main design 

concerns that arise to satisfy good performance and long system lifetime. The unavoidable issues that 

the designer must face are the placements of the nodes, the duty cycle and the message delivery delay. 

5.1. Node Placement Constraints 

The appropriate placement for the WSN nodes is an important issue dealt by different authors who 

select the node localization as a function of different constraints such as energy consumption and 

transmission range. The goal is to find a proper balance between system lifetime, functionality and 

cost. Focusing on the network lifetime, many authors suggest the use of short range links between 

nodes, considering that short hops are associated to less transmission power and that several short hops 

are preferable than a single long hop. However, this assertion, for limited power consumption devices 

such as those used in WSNs, is examined in several works, and short hops have been proven not to be 

effective. For instance, in [71] it is shown that, for short hops, the power consumed by the transceiver’s 

internal circuitry is bigger than that radiated, therefore wasting a considerable amount of energy. The 

authors provide experimental results of the utilization of commercial devices such as the Mica2 and 

MicaZ motes, which reveal that variations in the transmission power (and consequently in the 

transmission range) have little effect on the total power consumption. Many works follow this 

approach, setting large node separations that still allow small packet losses [12]. Similarly, it is also 

possible to use long-haul transmissions but relying on smaller node separation, thus allowing 

transmissions between one node and several of its neighbors. In spite of increasing cost, this adds 

robustness to the network since multiple paths to a same destination are available. As an example,  

in [65] this is achieved by selecting the farthest reachable node from all of the closest neighbors as the 

next-hop (in multi-hop transmissions), and dynamically adjusting the procedure according to packet 

losses and passive listening of neighbors’ transmissions. 

Some works propose the use of cooperative transmission techniques such as cooperative MIMO 

(Multiple Input, Multiple Output), SIMO (Single Input, Multiple Output) and MISO (Multiple Input, 

Single Output) in order to reduce power consumption in WSNs and increase system capacity. In [72]  

it is shown that two cooperative nodes reduce power consumption in comparison with a single node 

when they transmit to a location which is at a distance greater than 60 m from them. The employment 

of more cooperative nodes improves power consumption when transmitting to locations at even larger 

distances. For example, three cooperative nodes consume less power than two nodes for transmissions 

to distances greater than 80 m, four nodes consume less than three for distances greater than 140 m, 

and so on. WSN-based ITS applications are good candidates to benefit from cooperative transmission 

techniques since there are many situations where it is possible to find nodes close enough to cooperate. 

This may happen when nodes are deployed at both sides of a road or at intersections. The intersections 

deployment case has been studied in [73], considering the deployment of nodes at road signs in 

crossroads. The purpose is to achieve low power communications between crossroads (applying 
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MIMO techniques) and between crossroads and vehicles (MISO, SIMO), with the latter being 

equipped with directive antennas in order to establish communication with crossroads even at further 

distances.  

Another consideration about the placement of nodes is related to the position of nodes within the 

road. For single lane and two-lane roads, nodes may be deployed either by the roadside or at the center 

of the lanes. The differences between both options regarding their respective performance were 

mentioned above, in Section 4. For multi-lane roads, placement at the center of the lane is required. 

Emplacing nodes at the center of the lanes, where vehicles may pass, implies that these nodes require 

special encapsulations and protections and that the nodes have to be installed aligned with the 

pavement. This leads to a reduction in transmission distances because of the ground effect suffered by 

the antennas of the nodes, which affects its radiation pattern in the directions parallel to the ground. 

This issue motivates the use of clustered barrier topologies (described in Section 3). An example of 

these can be found in [37], where two types of nodes are used in the deployment: (i) nodes located on 

the center of the lanes, with a transmission range of a few meters, and (ii) nodes on the roadside 

transmitting to neighbors at a distance of 50 meters. The second type of nodes can be placed at more 

elevated locations to reduce the ground effect. Transmissions occur from nodes at the lanes to their 

closest roadside node and, then, the messages are forwarded by the roadside string topology. 

The location of parking lots’ nodes is different to that stated in previous paragraphs. Node separations 

are necessarily small, as they correspond to the separation between parking spaces. However, in order 

to transmit to data sinks or cluster heads, these separations may be larger. The problem, in this 

particular case, stems from the disturbance that metallic vehicles cause to the communications. As it 

was written in Section 4, nodes must be placed at the center of the parking spaces in order to achieve 

proper detection. However, this implies that whenever a vehicle parks in the space under consideration, it 

may block the signal sent and received by the node beneath. Therefore, the transmission ranges are 

considerably reduced, as shown in [28]. In the worst case, for a transmission between two nodes at 

ground level that are covered by two parked vehicles, only lateral communications are possible at a 

maximum distance ranging from 2 to 4 meters. If only one of the nodes is covered by a vehicle, 

transmissions are reliable up to 5 meters, erratic up to 10 meters and impossible for greater distances. 

In some cases, if transmission ranges are not large enough, the use of intermediate relay nodes may be 

necessary. This has been studied in [74], proposing an algorithm to optimize the emplacement of relay 

nodes in order to minimize power consumption. 

5.2. Duty Cycle 

The best way to save energy in WSNs is maintaining nodes at non-operational power saving modes 

as much as it may be possible. The power consumption of the most consuming components of a node 

such as the CPU, radio and sensors varies significantly depending on their particular operational state. 

For example, the current drawn from the CPU in the sleep mode ranges between 1 µA and 50 µA 

depending on the processor technology, which is three orders of magnitude lower than under normal 

operation. Similarly, the radio consumes a comparable amount of current, for example for a MICAz 

sensor node, it ranges from less than 1 µA in the sleep mode to several mA in the operational mode [56]. 

In addition, for most commercial devices, the power spent in the receiving mode is comparable to the 
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one consumed while transmitting. Consequently, rather than reducing the number of transmissions, it 

is more beneficial to reduce the period during which the radio is active (listening to the channel). 

Power savings for all these components are usually accomplished by means of a technique known as 

“duty cycling”, which manages the activity periods of the nodes. It is aimed at dividing the working 

period of a node into two main parts, namely: (i) the active period, where the components perform 

their operation, and (ii) the sleep period, where they remain inactive. The ratio between the time the 

system is active versus the total time under consideration (active plus sleep periods) is called duty 

cycle. This concept is usually applied to the operation of the radio equipment. However, it can be 

extended to the sensor devices as well, being possible to use either the same duty cycle or a different 

one for both. In any case, a small duty cycle helps saving large amounts of energy and so it extends 

node and network lifetimes, as it allows not only the radio and sensors, but also the CPU which drives 

their operation, to periodically enter the sleep mode. On the other hand, small duty cycles may 

jeopardize the proper behavior of the system. Hence, an appropriate scheduling of the duty cycle is 

critical in order to avoid the loss of events of interest and to offer adequate QoS guarantees, especially 

for real-time safety applications. 

The duty cycle design determines the duration of both active and sleep periods. A first 

consideration regards the duration of the entire sleep/wake-up cycle, which must find a compromise 

between power consumption and responsiveness. This duration has a lower limit imposed by the  

wake-up times of the components of the node. Under this threshold the node is not power-efficient 

since the energy consumed in frequent activations of components is higher than that saved during the 

sleep period. Processors and radio transceivers are typically the most restrictive components to these 

regards, with wake-up times ranging between a few µs and several ms depending on the technology 

employed. However, some sensors may impose higher and therefore more restrictive times. 

Conversely, the desired level of system responsiveness defines the upper limit of the whole cycle and 

it is directly related to the duration of the sleep state that is described next. 

The limitations imposed on the sleep period depend mainly on its impact on the vehicle detection 

by the sensors and on the event propagation done by the radio. Regarding vehicle detection, the sleep 

period cannot be larger than the time spent by a vehicle passing near a node, otherwise there is a high 

probability of missing the event. This period is, therefore, directly related to the speed of vehicles and 

the detection range of sensors. However, there are some works that propose operational modes which 

assume that a vehicle must not necessarily be detected by a single node since it can be detected by 

subsequent nodes [36]. Concerning the radio, long sleep periods may negatively affect the dissemination 

of events by introducing additional delays in each message transmission. In an extreme situation,  

it could even cause the speed at which events are propagated to be lower than the speed of vehicles. 

This may occur if sleep periods are longer than the time required for a vehicle to move from one node 

to the next one (assuming one packet forwarding per cycle), which would be a major issue for  

many applications.  

The active period, in turn, must be designed to assure the proper transmission of information. This 

does not only include the transmission of the information itself by merely reserving a transmission 

time according to the maximum number of messages that can be transmitted per period and their 

length. It also includes time deviations, which must be taken into account, too. On the one hand, this 

implies reserving additional time to handle the synchronization variations that the system may be 
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subject to. On the other hand, if the system allows packet retransmissions (due to packet collisions in 

the channel access or to transmission errors), the active period must be extended to accommodate 

them. The extent of this non-ideal operation depends on the selected MAC protocol (Section 6.1).  

In addition, the use of routing protocols may also increase the active period duration and consequently 

the power consumption, because it may become necessary for nodes to receive and propagate additional 

messages from their neighbors, thus having to reserve additional fully operational time for the 

reception of messages.  

Given the differing frequency of events of vehicle traffic, the use of a fixed schedule for the duty 

cycle is not always the best option. In this respect, there are some works which vary the duty cycle 

according to parameters related to the traffic state and safety; in particular, they focus on adjusting the 

duty cycle of the sensors but not the one followed by the radio. For example, in [56] the speed of 

vehicles is used as the parameter governing the duty cycle. In [36], in turn, several operational 

schemes are proposed in which the duty cycle of the nodes is controlled by a master node. The 

objective is the detection of vehicles in order to report potential vehicle collisions on the road. Upon 

the detection of a vehicle from the master node, all subsequent nodes along the road are woken up.  

The risk of taking this approach is that if the master node does not detect a vehicle, none of the 

subsequent nodes will do it. As a result, master nodes are supposed to be more powerful nodes (in 

terms of energy) with less restrictive duty cycles to ensure vehicle detection. In a similar way, the loss 

of the wake-up messages also jeopardizes the detection of vehicles by the nodes. Therefore the authors 

of that work suggest the use of schemes based on the combination of wake-up messages with random 

wake-up for the nodes. In spite of this, it is still possible that some nodes remain asleep. Some works 

instead, focus on assuring communication in order to avoid this situation. For example, in [12]  

a similar scheme based on the wake up of nodes is implemented, but packets are sent by using 

guaranteed access to the radio channel and packet acknowledgements and retransmissions. 

5.3. End-to-End Latency 

Some applications are subject to strict delay requirements. In general, applications where vehicles 

need to obtain some information about the road are more sensitive to the delay. The maximum delay 

that is allowed is determined by the nature and dynamics of the sensed data, which ranges from slow 

changing road conditions to very fast vehicles suddenly entering a critical area. The impact of 

exceeding this maximum delay depends on the purpose of the designed application, being especially 

critical for safety applications. In order to obtain the actual delay to which information delivery is 

subject to, it is important to take into account the operation mechanism of the application, since it 

determines the number of times a packet is forwarded in a multihop network. These mechanisms were 

classified in Section 2 for safety applications, though the proposed classification can be extended to 

other applications not intended for traffic safety where vehicles or road deployed devices are the 

destination of the information gathered by sensor nodes. It considers two different groups of 

applications, those in which safety information is already deposited in road deployed nodes prior to the 

arrival of vehicles, and those in which the arrival of vehicles triggers a polling/activation mechanism to 

subsequent nodes along the road. Mainly, the difference between both types of applications with 

respect to the delay is that the former are subject to a one-way delay due to the forwarding of messages 



Sensors 2011, 11  

 

 

10248

from the source node to the destination. However, the latter suffer a two-way delay as they require 

query messages to be transmitted in the forward direction and responses alerting about potentially 

hazardous situations to be sent back in the opposite direction. Consequently, these applications 

following a query/response fashion further complicate the design of the system. 

Apart from the number of times a packet is forwarded, it is also important to consider what the 

additional delay introduced by each packet forwarding is. The sources of this delay include the time 

spent by the sender to construct and send the information packet, the time elapsed in gaining access to 

the radio channel, the propagation time over the air and the time employed by the receiver to process 

the message. Among these the most important by far is the access to the channel, due to the scheduling 

of the radio. It prevents nodes from transmitting packets just when they are generated, making them 

wait until the radio is active and the channel idle. This leads to the introduction of a cumulative delay 

which increases as each node forwards the packet under consideration in a multihop network. As it 

will be described in the next paragraphs, this delay is quite dependent on the medium access control 

mechanism (MAC) in use. In those works taking the delay into account two different approaches have 

been found, distinguishing between scheduled contention based schemes [75] and TDMA (Time 

Division Multiple Access) schemes.  

Contention based schemes such as CSMA (Carrier Sense Multiple Access) do not schedule 

transmissions but rather make nodes contend for the access to the channel. However, in order to 

achieve low power consumption, methods based on CSMA are normally used in conjunction with 

duty-cycling schemes, using a common schedule among different nodes. An advantage of using such a 

combination is that, despite the fact that transmissions are subject to a relatively long initial delay 

while waiting for the start of the active period, it is possible that a packet be forwarded through several 

hops during a single active period if this period is properly dimensioned. In addition, if the application 

requires two-way communications, the delay may be barely affected by the forwarding of responses, 

since nodes may remain in the active state until these are transmitted back. This can be seen in [11], 

where in a single active period a short query packet travels through 16 different nodes in 10 ms. In this 

work a 1% duty cycle is used, which does not jeopardize power consumption, and having a sleep time 

for the radio of 0.99 seconds, the maximum delay is not excessive. On the other hand, the drawback of 

using CSMA is that packet collisions among nodes trying to transmit may occur. This makes the delay 

unpredictable since competition for accessing the medium in case of collisions would prevent from 

forwarding all packets within a single active period, thus prolonging the waiting time during additional 

sleep periods. A possible solution to this problem would be limiting the number of nodes capable of 

transmitting packets, i.e., imposing that within a certain area only one node is able to generate new 

packets to transmit, while the remaining nodes are devoted to packet forwarding, thus avoiding 

collisions. In this context there are proposals such as [65], where only a master node is allowed to 

generate queries to subsequent nodes. In that work, the master node makes successive queries directed 

to each of the nodes arranged in a string pattern and then waits for a response. It is however more 

reasonable, for most applications, to query all nodes at once by forwarding a single query packet since 

it achieves much smaller delays. 

In opposition to CSMA, TDMA-based MAC protocols guarantee that only one node can access to 

the channel at a time. In them, time is divided into periodic frames, and frames, in turn, into time slots. 

During the duration of a time slot only one of the nodes that share the medium is allowed to transmit. 
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Similarly, destination nodes must be in the reception mode only during that slot. Planning the slot 

assignment among nodes is one of the issues when deploying TDMA networks. However, in the case 

of road-oriented ITS applications, this task is simplified, given the small number of neighbors per 

node. On the other hand, because TDMA-based protocols are collision-free, their use leads to more 

predictable delays than CSMA since the access to the medium is guaranteed (the only uncertainty is 

due to transmission errors which may imply retransmissions or result in information losses). The 

expected delay, despite the fact that it can be calculated a priori, depends on the final assignment of 

slots to nodes, and it may lead to longer delays than CSMA if it is not properly done. A simple method 

of assigning time slots which optimizes information delivery time in one direction is presented in [12], 

which allocates consecutive transmission slots to neighbor nodes. In this way, whenever a query 

packet is transmitted by a node, its subsequent neighbor will forward it in the next time slot of the 

same frame, thus achieving very fast data dissemination. This technique has however no effects on 

applications with two-way communication delay. In these the replies may suffer a long delay, 

corresponding to the length of a whole frame minus one time slot, since any packet to be retransmitted 

should wait for the time slot assigned to the neighbor node in the next frame; therefore all the time 

savings done in the forward direction are lost in the backward direction. As a consequence, the authors 

propose the use of VANETs when possible for the dissemination of warning messages in the backward 

direction. An additional concern related to TDMA MAC in applications with two-way communications 

is that nodes are required to stay in the reception mode twice as much as with one-way propagation, 

thus increasing power consumption. This is due to the fact that nodes need to receive messages from 

preceding nodes in both directions. It should be noted that in CSMA, for the same situation, while the 

active time of the nodes does not increase, the probability of collisions does. Nevertheless, if nodes 

increase the duration of the active state after receiving query packets as proposed in [11], the system 

can handle more easily this problem. 

6. Communications 

This section deals with the concept related to the design and selection of appropriate 

communication protocols for a WSN-based ITS system. Basically, this means dealing with Medium 

Access Control (Section 6.1) and routing (Section 6.2) protocols. In addition, it should also be noted 

that in some situations it could be desirable to have specific protocols to handle the interaction between 

different networks. For example, in [33], where the interchange of images between static road nodes 

and vehicles is envisaged, a communication protocol was designed in order to allow fast transmissions 

of data during the short interval a vehicle is under the transmission range of a static sensor node. In the 

same line, in [76] the case that the required information could not be delivered on time by a single 

static node is considered, making subsequent nodes in road sending the remaining information. 

Similarly, if the vehicle turns at an intersection, the static deployment based on the reception of 

acknowledge packets from the vehicle, detect the change of road and assigns the tasks of sending 

information to a new node. 
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6.1. Medium Access Control 

The Medium Access Control (MAC) layer provides link-level data addressing and access control 

mechanisms to the physical medium (radio) shared by nodes in a multi-point network. The design of 

MAC protocols for WSN is different from that for other wireless networks since it is mainly focused 

on power conservation, which implies finding a trade-off between different metrics such as latency and 

throughput in order to extend the network lifetime. In the scientific literature, many MAC protocols 

suited for WSNs can be found as well as survey works according to different purposes, including [77], 

where real-time MAC protocols are considered, and [75], which deals with energy-aware protocols.  

Conversely, MAC protocols for VANETs must provide high reliability and low delay without 

having to deal with the limitations inherent to WSN. To this aim, several works study how the 

selection of the MAC concerns the communications among vehicles, including [78], which describes 

the main features of IEEE 802.11 standards applied to the VANET environment, and [79,80], which 

provide two alternative classifications for MAC protocols. Among the existing protocols and 

standards, it should be emphasized the recently release of the IEEE 802.11p [52] standard which is 

intended to offer an efficient communication in the V2V (vehicle-to-vehicle) as well as in the V2I 

(vehicle-to-infrastructure) scenarios. 

The focus of this work is on the WSN tier of the system. The approach which has been taken to 

review how both existing (general purpose) and specifically designed MAC protocols apply to ITS 

scenarios follows the classification of protocols proposed in [75] because the different categories 

considered have an important impact on the performance of the system. According to the classification, 

on a top level we can differentiate between (i) unscheduled or random protocols, where nodes operate 

independently; (ii) scheduled protocols, which organize communications in an ordered way, with radio 

transceivers following a coordinated scheduling of their duty cycles; and (iii) hybrid protocols, which 

combine different scheduled and unscheduled techniques. In addition, sub-classifications for each one 

are also presented, where it is interesting to remark that scheduled protocols may be divided into 

contention and contention-less based protocols. 

Unscheduled protocols are popular in the WSN domain because they do not require neither clock 

synchronization among nodes nor global topology information. Nevertheless, these protocols may 

suffer higher rates of packet collisions since they usually do not provide any means for avoiding them, 

apart from carrier sensing. In an ITS scenario they provide two important advantages: (a) dynamic 

node joining, which is very useful in ITS since it facilitates communication with moving vehicles, and 

(b) adaptability to changes in topology. The latter have proven to be very important in some specific 

applications such as those requiring WSN deployments in parking lots. In them, the arrival of vehicles 

and its associated distortion on communications (see Section 5.1) may provoke the loss of existing 

links as well as worsening synchronization as shown in [28], favoring the adoption of unscheduled 

protocols. Within these protocols, preamble based ones are the most commonly found. In them,  

a sender probes the receiver with repetitive sequences of bits until the latter awakes. These sequences 

are denoted as preambles in the B-MAC protocol [53], which is currently selected for many ITS  

works [40,67,81]. In addition the B-MAC protocol is sometimes inadvertently used by developers 

because many commercial sensor nodes advertising 802.15.4 compliant transceivers actually use  

B-MAC by default. The use of this protocol in ITS scenarios has two additional consequences. First, 
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end-to-end latencies are high for data dissemination even with short preambles since prior to each 

forwarding a preamble must be transmitted. Second, applications with high vehicle traffic imply the 

generation of numerous packets and a considerable amount of energy wasted in the transmission of 

their preambles. Thus B-MAC is more appropriate for applications involving low vehicle traffic 

densities such as those found in rural environments or some parking lots. In addition this protocol has 

demonstrated its feasibility to communicate with vehicles at the typical speeds of these scenarios [40] 

if this feature is needed.  

Regarding scheduled protocols, these are more complex protocols which usually need control 

messages in order to maintain synchronization and coordinate the radio transceivers active period 

according to different strategies. This is not an important problem if these protocols are used in road 

static deployments. However, it may become a serious issue if these protocols are considered for the 

vehicle to road infrastructure communications, given the limited communication time with travelling 

vehicles and possible packet losses. 

In contention based scheduled protocols nodes basically follow a common active/sleep schedule of 

their transceivers, using CSMA during their active period. Representative examples can be found in 

the reviewed literature. S-MAC [82], currently applied to ITS in [11], synchronizes local areas or 

clusters, implying that in applications with communication between adjacent clusters the data 

dissemination delay increases and that border nodes must maintain more than one schedule. In addition, 

the A-MAC protocol [83], used in [31] for a street parking application, outstands for its ability for 

adjusting the duty cycles of nodes according to their remaining energy in such a way that it can guarantee 

a predetermined network lifetime. 

Scheduled contention-less protocols comprise those based on TDMA and slot reservation. On the 

one hand, they offer the advantage of avoiding collisions, with the consequent improvement in 

performance. On the other hand, they also have some drawbacks such as their lack of scalability and 

adaptability due to the difficulty of introducing new nodes in the layout as well as the need for strict 

synchronization in order to align slot boundaries; the particular layout of road deployments though, 

alleviates some of these restrictions. This is the main reason why it is possible to find different 

protocols specifically designed for ITS systems [12,76,84]. These protocols exploit the layout of roads, 

characterized by the presence of strings of road nodes with few neighbors, to assign (and reutilize) 

time slots to non-conflicting nodes in the road (i.e. distant nodes). Similarly they assume a hierarchical 

architecture with more powerful master nodes which manage the rest of nodes. PEDAMACS [84,85] 

in particular, used in [20,26,55], relies on a master node with a larger communication range which 

enables it to simultaneously transmit to all the managed nodes via one-hop communications with the 

purpose of scheduling communications and simultaneously achieving network synchronization; data 

transmissions from the managed nodes, conversely, occur in the opposite direction in a multi-hop 

manner in order to save energy. The protocol presented in [76], in turn, stands out for allocating some 

time slots exclusively for the communication between road nodes and vehicles. 

Another commonly used protocol is IEEE 802.15.4 [50], employed in different works such  

as [15,35,86], which allows low power communications and has a coverage range similar to other 

wireless technologies such as Wi-Fi and may be used both for contention based (CSMA) or 

contention-less (TDMA) communications. It should be remarked that this protocol was not designed 

with mobility in mind, therefore it is well suited for WSN road deployments but it has several problems 
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with mobile nodes related to association with 802.15.4 coordinators and synchronization [87], as a 

consequence its suitability for vehicle to roadside communication should be studied more in-depth. 

6.2. Routing 

Many routing protocols have been designed specifically for WSN where energy saving is the 

primary concern. The research about these protocols is reflected in different general purpose  

surveys [48,88,89], as well as in more specific ones, such as [90] which deals with real-time protocols. 

In general, the selection of a routing protocol is closely related to the network architecture of the 

system and the topology of its sensing subsystem. The former fact is reflected on [48], which proposes 

a protocol classification based on the underlying network structure, and which is quite similar to the 

one proposed in Section 3.5, differentiating between flat, hierarchical, and location-based routing 

protocols. 

Routing in VANET, on the contrary, has to deal with the mobility of vehicles which produces 

constant changes in the network topology. Surveys on this topic may be found in the literature  

in [91] and [92]. In the latter, the protocols are divided into: Unicast where a vehicle creates a  

source-to-destination routing path via wireless multi-hop transmission or carry-and-forward techniques; 

Multicast, where packets are delivered from a single source to a multicast group members by using 

multi-hop communication; Geocast, where a packet is transmitted to a specific geographic region, and 

finally, Broadcast, where a vehicle sends messages to all other vehicles in its coverage range. 

In an analogous way to the preceding section, the classification introduced in [48] (flat/hierarchical/ 

location-based) will be used to guide this subsection in order to explain the different contributions to 

routing done by the authors of the reviewed works.  

Routing in flat networks is totally dependent on the selected topology for the sensing subsystem. 

This also applies to intra-cluster routing in clustered networks. From the presented topologies in 

Section 3.1, only the mesh and the string topologies are able to perform multi-hop routing. The rest of 

topologies instead rely on direct point to point communications with a sink node. It is remarkable the 

considerable power savings that these topologies may achieve if they use unidirectional communications, 

i.e., the detector nodes merely detect events and notify the sink without receiving commands from it, 

given that detectors’ transceivers may be in sleep mode for extended periods of time, until the 

detection of an event. Mesh topologies, mostly used in smart parking applications, can be routed 

according to many different fashions and protocols which are out of the scope of this paper. However 

an important consideration must be made. The aforementioned disruption of communication links 

caused by vehicles parked over sensor nodes deployed in parking lots produces bursty packet losses, 

with high time correlation but low spatial correlation. As a consequence mechanisms based on 

acknowledgements and retransmissions are not appropriate for reliability. This is studied in [28], 

where authors instead propose the use of multi-path transmissions to assure that packets are correctly 

received by the sink, more specifically they use a selective flooding algorithm. Finally, string 

topologies support simple linear forwarding. In them a node just forwards either to the preceding node 

(upstream) or to the subsequent node (downstream), despite some works consider transmission to  

non-adjacent nodes (e.g., two hops away) in order to find a compromise between efficiency and 

robustness [65]. In addition it simplifies the development of protocols for neighbor discovery [36], and 
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therefore self-organization, or data fussion [22,35], which allows traffic control applications receiving 

more sporadic updates about the traffic state rather than continuous messages indicating the presence 

of a single vehicle, possibly reported several times by different nodes. 

As the size of the network grows hierarchical networks and routing protocols become necessary.  

In most cases routing is performed from multiple data sources to a single base station (bottom-up). 

This is also the case in WSN-based ITS applications in spite of the fact that there are many 

applications dealing with top-down or peer to peer routing [16,37] or considering them as future work, 

as will be explained later. This data propagation scheme allows for simple routing, either linear routing 

between Cluster Heads [37], possibly using cluster members as intermediary nodes [26], or constructing 

a routing tree between them [30,37] in which each node forwards every message to its parent. In both 

of the approaches data fusion tasks, if needed, are performed by the cluster heads. 

A top-down routing of information between a base station and other nodes is useful in order to issue 

commands to the latter ones (e.g., turning on warning systems, taking a photograph, etc.). Multicast is 

an easy option if a routing tree exists, making each parent transmit to all its child nodes. Transmission 

to specific nodes, in turn, has been handled according to different ways. For example in [37] it has 

been accomplished by means of a source routing scheme, which forces a more powerful base station to 

manage a routing path to each destination but avoids intermediary nodes such as cluster heads from 

managing routing tables. In S3 [16] a level based static addressing scheme has been used to simplify 

routing, which in addition enables peer to peer and table-less routing. It is based on the construction of 

a tree and the address allocation to each node according to its position in the tree. This is currently 

used in the S3 system in order to allow that sensor nodes measuring speed trigger the capture of a 

photograph by a nearby camera-equipped sensor node without the need of previously routing to the 

base station, since the address of the camera node provides all the required routing information. 

Other works focus on the auto-configuration of the network. For instance, DGS [15] uses dynamic 

addressing for this purpose, automatically assigning 16-bit network address during the construction of 

the routing tree. In [26], incremental growth of the network is provided by means of an auto-discovery 

mechanism based on local broadcasts. In this work nodes deployed at different roads may communicate 

thanks to a hierarchy of controllers/cluster heads which act as simple routers. The discovery takes 

place iteratively: each node, regardless of its level in the hierarchy, discovers its closest neighbors in 

both directions as well as its preceding controller in the hierarchy. The routing mechanism allows 

sending messages to other nodes on the same road or to the preceding controller if the destination is 

not on the same road. This controller may, in turn, route the message to its presiding, adjacent or 

subordinate controllers in order to reach the destination of the message. 

Finally, the last routing scheme covers the location-based routing protocols, which use position 

information to route data to the desired regions. This scheme is quite frequent in VANET by means of 

the so-called geocast protocols. To this regards there are WSN-based proposals that, rather than 

implementing geographical routing on the WSN side, add geographic information to the data they 

gather and rely on VANET to propagate them to the appropriate region [40]. Other proposals in which 

vehicles extract information from the WSN using a polling mechanism (e.g., street parking availability 

checking) rely on location-based protocols on the WSN side [31,93] since, due to the mobility of 

vehicles, the response may need to be delivered to a different location from the one where the data was 

originally requested. In these protocols once the requested data has been obtained by the WSN, the 
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response is routed according to the position, speed and direction of the vehicle. In [31] each node 

forwarding the response selects the next hop according to the current time and expected destination of 

the vehicle, which periodically updates its mobility information. In [93], in turn, the vehicle itself 

estimates its positions at different future times and communicates them to the WSN nodes when 

requesting data. 

7. Conclusions and Open Issues 

This paper presents a survey of application of WSNs to ITS. As it has been shown, WSN is a 

technology which may have a relevant role to ITS, enabling cost-effective and accurate solutions with 

a wide variety of applications in driving safety and traffic control as well as in parking management. 

Its contribution is not merely about sensing the environment but about making advanced collaborative 

ITS applications possible. In this respect, in addition to processing data in centralized TMCs, WSNs 

can be used to process information in situ, reducing data distribution costs and offering a fast response 

to critical events. 

The plethora of innovative possibilities that WSNs confer can be further extended if they are 

complemented with the joint use of other technologies such as VANET or WAN networks, allowing 

different data dissemination schemes. Therefore, WSNs may take part in heterogeneous ITS in which 

every adopted technology is used for the purpose it best serves. In spite of this heterogeneity, the 

design of WSNs for ITS is driven by the same basic premises that any efficient WSN application must 

satisfy. This is achieved by finding a balance between, on the one hand, low power operation and 

processing complexity, and, on the other hand, QoS assurance, which is typically accomplished by 

applying effective duty cycling schemes and task assignment among the nodes. However, these 

applications differ from other WSNs applications in the additional restrictions that ITS systems impose 

and in the opportunities they offer. This is mainly due to the mobility of vehicles, subject to relatively 

high speeds and motion bound by roads. This affects a great number of issues including the detection 

and estimation of significant features from vehicles, the placement of nodes and the design of routing 

algorithms, the latter implying a simplification in the development of collaborative applications.  

In addition, since vehicles pass by sensor nodes in a sequential way, it is possible to develop  

predictive and adaptive applications as well which correspondingly may learn about the arrival of a 

vehicle in advance or adapt their action prior to the arrival, thus allowing both power savings and 

accurate operation. 

There are however, some concerns and opportunities in the ITS scenario which either have not been 

addressed yet or have been only partially tackled. One such example is security, which is only rarely 

included in WSN-based ITS works, and for which there are really few specific research works [17]. 

Currently, the adoption of existing ITS tailored security mechanisms poses an important increase in 

energy consumption which makes them unfeasible, thus requiring some improvement. In addition, 

there is a focus on securing the information originated by roadside WSN nodes, not considering the 

case where these nodes obtain information from vehicles. In this respect there is a wide range of 

potentially vulnerable situations not well covered which can be inferred from security works in 

VANETs [94]. 
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Synchronization is another issue to be considered. In spite of the existence of a great number of 

works which consider synchronization, there are few specific solutions for the WSN-based ITS  

case [85]. Nevertheless, vehicular scenarios enable interesting possibilities involving moving vehicles. 

A very common problem found in synchronization is the cumulative error introduced in each hop 

when nodes try to synchronize along a multi-hop path. However, in vehicular scenarios, one can take 

advantage of the moving vehicles to synchronize a whole string of roadside sensor nodes, one by one, 

using simpler mechanisms and obtaining more accurate results. 

Multi-purpose systems, in turn, remain as preliminary proposals in several works but without being 

extensively addressed yet. These systems use a same deployment in order to perform different goals, 

e.g., traffic safety and traffic control, thus making them more flexible and valuable. This implies 

obtaining and dealing with different kind of information for every purpose (safety warnings, traffic 

load, hotspots’ pictures, etc.), though it is possible to deduce some of this information (such as traffic 

load) from the interchange of previous messages, thus reducing communications overhead. In addition, 

this may require the establishment of priorities for the different types of network information flows.  

Several works consider the use of the WSN-oriented 802.15.4 standard for the Vehicle to 

Infrastructure communication (and vice versa). As it was mentioned, this standard is not suited for 

mobility. Only a preliminary evaluation of the effect of the vehicle speed on the link quality has been 

conducted [14], stating that up to 70 Km/h there are packet losses but these are not important. 

However, the association process of mobile devices to static coordinators at the roadside is not 

considered, which is required by the standard. The main goal of the association is searching for the 

radio channel in which the network is operating prior to joining it. This process may take up to several 

minutes, being therefore unacceptable in most ITS scenarios [87]. A straightforward solution is to 

force all sensor nodes to operate in a predefined channel and modify the protocol operation to 

automatically select that channel without performing any search. However, this prevents from 

selecting between different channels in order to avoid interferences from, for instance, nearby Wi-Fi 

networks. Consequently, there is a need to investigate effective methods for the channel selection.  

This has been done in other scenarios considering mobility [95], but efforts are still required to find 

proper solutions in the vehicular scenario. 

A reasonable alternative though is the use of appropriate VANET standards for Vehicle to 

Infrastructure communications, in spite of being less power efficient. Nevertheless, the development of 

vehicular applications has been affected until now by the unavailability in the market of devices 

capable of doing this. With the recent publication of the IEEE 802.11p standard, this is no longer a 

major concern, leading to a massive appearance of compliant devices which may act as OBUs and 

RSUs [96]. In addition, this equipment fosters the integration with other wireless technologies by 

means of pluggable interfaces, which may support WSN standards such as IEEE 802.15.4. 

Similarly, there are other existing pieces of hardware which may solve some of the problems that 

have been presented throughout the paper and whose use has not been reported yet. One of these 

problems is the relatively limited transmission range of 802.15.4 in comparison with standards such as 

802.11p. In this case, there are 802.15.4 compliant devices such as Xbee Pro [97] which could be used 

in order to extend the transmission range to distances greater than 3 Km, thus enabling either a higher 

separation between nodes or more time to alert vehicles. In case of using these devices, it should be 

noted that the design constraints change since, instead of minimizing the duty cycle, the main goal 
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would be minimizing the number of packets transmitted as they consume 3 to 4 times more energy 

than their reception mode. Something similar happens when trying to solve the ground effect found 

when sensors are placed on the road surface or in small holes in it. For the latter case however, instead 

of more powerful devices, arrays of antennas could be considered in order to modify the radiation 

pattern to provide its maximum in the plane parallel to the road. 

Finally, another open issue regards the sensors and methods employed for the detection of vehicles. 

In this respect, in currently WSN-based employed systems, the CPU has an important implication in 

detection, managing the operation of the other components. This increases power consumption, since 

the CPU must be turned on for every data sampling. A less consuming alternative implies the use of 

autonomous low-power vehicle detectors, which rather than being activated by other subsystems, are 

in charge of taking them out from the lowest power operation modes only when a vehicle arrives. 

However, to the authors’ knowledge, this has not been successfully implemented yet in current ITS 

systems. On the other hand, apart from the need for reducing power consumption of individual sensor 

nodes, it is also a necessary to increase its functionality. Such achievement may require the use of new 

sensors different than the popular AMR magnetic ones. A clear example is the use of accelerometers, 

which are expected to allow a single sensor node to perform complex functions such as classification 

and re-identification, as well as others which previously involved several sensor nodes, such as speed 

and lane position estimation. 
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Appendix 

Table 1. Functional description of selected WSN-based ITS traffic safety and law 

enforcement applications. 

System Main Purpose * Data Source 
Strategy Upon Data/ 

Danger Detection ** 

Strategy Upon Vehicle 

Detection ** 

Data Consumer  

(Acts or Warn Driver)

iRoad [11] 
Overtaking 

assistance* 

Roadside 

WSN 

2. Warn upstream nodes of 

presence of vehicles 

3. Send to WAN/IMS 

1. Activation of 

downstream nodes 

(upon start of 

overtaking move) 

Smartphones running 

iRide app, leds on the 

road 

Work by 

Qin et al. 

[12] 

Traffic safety 

(presence of 

deers, ice...) 

Roadside 

WSN 

2. Warning upstream nodes, 

propagation by WSN & 

VANET 

1. Activation of 

downstream nodes 
Equipped vehicles 

SNMS [38] Traffic safety 
Roadside 

WSN 
1. Store in local node 

2. Forward: † 

(a) VANET 

(b) mobile WLAN 

Equipped vehicles 

Work by 

Weingärtner 

et al. [14] 

Monitoring road 

condition 

Roadway 

WSN 

1. Store (dangerous) road 

conditions in neighbor WSN 

nodes 

2. Forwarding to 

incoming vehicles, 

VANET dissemination 

to distant vehicles & 

WSN nodes 

Equipped vehicles 

Work by 

Tripp et al. 

[33] 

Traffic safety 
equipped 

vehicles 

1. Vehicles store 

information of the road 

(e.g., photograph of next 

intersection) 

2. WSN detect vehicles, 

triggering information 

interchange with RSU 

Equipped vehicles 

SNTISS [34] General purpose 
Roadside 

WSN 

(a) Static monitoring: report to remote server.  

(b) Dynamic monitoring (e.g., tracking):  

share with neighbors for collaboration 

Remote Server 

Work by 

Sung et al. 

[37] 

Collision warning

Roadside/ 

Roadway 

WSN 

− 

1. Collaborative vehicle 

speed measurement and 

routing to Base Station 

Display near base 

station warn vehicles 

moving in the 

opposite direction 

DGS [15] 
Speed, weather 

monitoring 

Roadside 

WSN 

2a. Speed: warn/photo 

1b. Weather: Report via 

WAN 

1a. Calculate speed 

Speed: VMS, camera

Weather: Remote 

Server 

S3 [16] 
Illegal parking & 

speed control 

2 Roadway 

WSN: speed 

& parking 

− 

Speed: Collaborative 

speed measurement 

Parking: Notify positive 

detections of vehicles in 

forbidden area 

Loudspeaker/VMS, 

camera, 

infraction reporting 

to server 

Work by 

Festag et al. 

[40] 

Safety (road 

conditions),  

post-accident 

investigation 

Roadside 

WSN 

1. Store dangerous road 

conditions in WSN 

2. Notification of danger 

to vehicles, VANET 

dissemination (only to 

vehicles) 

Equipped vehicles, 

forensic team with 

tinyPEDS [98] client

* Main purpose of the system considered or the one detailed in the paper, use for other purposes may be 

feasible. **: Order of execution denoted by preceding numbers. † Alternative options considered in the 

paper. 
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Table 2. Functional description of selected WSN-based ITS traffic control & smart parking 

applications. 

System Main Purpose Data Source Strategy for Vehicle Monitoring Data Consumer 

Work by Yousef 

et al. [21] 
Traffic light control multi-lane WSN 

Count vehicle arrivals and 

departures 

Traffic control Box 

connected to sink 

WITS [35] 
Traffic control at 

intersections 

roadside WSN, 

Equipped vehicles 

WSN propagate speed, location 

provided by vehicles to 

intersection nodes 

Traffic control 

equipment Connected to 

intersection nodes 

Work by 

Tubaishat  

et al. [20] 

Traffic light control Multi-lane WSN 
WSN transmits number of 

incoming vehicles to intersection 

Intersection node decides 

traffic policy and inform 

nodes at lights 

SPARK [29] Smart parking 
Sensor nodes at 

parking spaces 

Periodic monitoring of parking 

spaces and direct forwarding to 

unique WSN sink 

Guidance & status 

displays, Remote clients 

Work by Benson 

et al. [28] 
Smart parking 

Sensor nodes at 

parking spaces 

Periodic monitoring of parking 

spaces and routing to base station 
Remote client 

PGS [30] Parking lot guidance 
Sensor nodes at 

parking spaces 

Periodic monitoring of parking 

spaces and routing to base station 
VMS 

Work by Tacconi 

et al. [31] 

Street  

parking/parking lot 

Sensor nodes at 

parking spaces 

Check parking availability upon 

vehicle request 
Equipped vehicle 

 

Table 3. Structural description of selected WSN-based ITS applications. 

System Architecture 
Sensing 

Topology 

Sensing 

Technology 

WSN Comm. 

Protocols  

(MAC, routing) 

Gateway 

Vehicle 

/Road 

Distribution 

iRoad [11] 
Heterogeneous, 

clustered 
String 

AMR, 

accelerom. 

SMAC, linear 

forwarding 
None WSN, 3G 

Work by Qin  

et al. [12] 

Heterogeneous, 

clustered 
String PIR (WiEye) 

TDMA-based, linear

forwarding 
802.15.4 

WSN (to CH), 

VANET 

SNMS [38] Heterogeneous 
Disconnected 

nodes 
− − Bluetooth 

VANET/mobile 

WLAN 

Work by 

Weingärtner  

et al. [14] 

Heterogeneous, 

clustered 
String 

road condition 

sensors & 

Active vehicle 

detection 

802.15.4 

802.15.4, 

dynamic 

assignment 

of GW/CH 

Short range: 

WSN 

Long range: 

VANET 

Work by Tripp  

et al. [33] 
Heterogeneous Barrier 

Vehicular 

sensors 
− 802.11b VANET 

SNTISS [34] Clustered 

Application 

dependent: 

(a) Star 

(b) Mesh 

multi-sensor 

Intra-cluster: 916 

MHz 

CH to Server: 

802.15.4 

None WSN 
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Table 3. Cont. 

System Architecture 
Sensing 

Topology 

Sensing 

Technology 

WSN Comm. 

Protocols  

(MAC, routing) 

Gateway 

Vehicle 

/Road 

Distribution 

Work by Sung  

et al. [37] 
Clustered 

Star/Barrier 

(x2) according 

to number of 

lanes 

AMR 

(HMC1021) 

Unspecified MAC, 

routing to BS:  

tree-based 

routing from BS: 

source routing 

None WSN 

DGS [15] 
Heterogeneous, 

clustered 
Star 

AMR, Weather 

Station 

802.15.4, dynamic 

addressing/routing 
None Cellular network

S3 [16] Hierarchical Star AMR 

802.15.4,  

multi-level (tree) 

routing based on 

static addressing 

None 
Internet (form 

WSN to Server) 

Work by 

Festag  

et al. [40] 

Heterogeneous, 

clustered 

Any 

(unspecified) 

Environmental 

sensors (temp, 

humidity, light)

B-MAC, 

tinyLUNAR 

B-MAC 

(proposed 

802.11p 

alternative) 

VANET 

Work by 

Yousef  

et al. [21] 

Hierarchical Barrier (x2) 
COTS 

(unespecified) 

TDMA-based, 

Point-to-Point 
None None 

WITS [35] Hierarchical String 
Vehicular, 

Active detection

802.15.4, linear 

forwarding with 

data fusion 

802.15.4 WSN 

Work by 

Tubaishat  

et al. [20] 

Hierarchical Barrier (x2) 
AMR 

(HMC1051Z) 
PEDAMACS None WSN 

System Architecture 
Sensing 

Topology 

Sensing 

Technology 

WSN Comm. 

protocols  

(MAC, routing) 

Gateway 

vehicle 

/Road 

Distribution 

SPARK [29] Flat Star 

Light (included 

in MTS310 

sensorboard) 

unspecified MAC, 

Point-to-Point 
None 

WiFi/BT/Ethernet 

(DMS to other 

subsystems) 

Work by 

Benson  

et al. [28] 

Flat Mesh 
Magnetic 

(Speake FGM-3)

Framelets, selective 

flooding 
None WSN 

PGS [30] Clustered Star AMR 
802.15.4,  

tree-based routing 
None WSN 

Work by 

Tacconi  

et al. [31] 

Hierarchical 

Mesh with 

designated 

roadside GWs

Unspecified 

(simulation) 

A-MAC, geographic 

routing (to estimated 

interception GW) 

A-MAC WSN 
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