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Abstract

Background: RNA-sequencing (RNA-seq) has emerged as one of the most sensitive tool for gene expression

analysis. Among the library preparation methods available, the standard poly(A) + enrichment provides a

comprehensive, detailed, and accurate view of polyadenylated RNAs. However, on samples of suboptimal quality

ribosomal RNA depletion and exon capture methods have recently been reported as better alternatives.

Methods: We compared for the first time three commercial Illumina library preparation kits (TruSeq Stranded

mRNA, TruSeq Ribo-Zero rRNA Removal, and TruSeq RNA Access) as representatives of these three different

approaches using well-established human reference RNA samples from the MAQC/SEQC consortium on a wide

range of input amounts (from 100 ng down to 1 ng) and degradation levels (intact, degraded, and highly

degraded).

Results: We assessed the accuracy of the generated expression values by comparison to gold standard TaqMan

qPCR measurements and gained unprecedented insight into the limits of applicability in terms of input quantity

and sample quality of each protocol. We found that each protocol generates highly reproducible results (R2 > 0.92)

on intact RNA samples down to input amounts of 10 ng. For degraded RNA samples, Ribo-Zero showed clear

performance advantages over the other two protocols as it generated more accurate and better reproducible gene

expression results even at very low input amounts such as 1 ng and 2 ng. For highly degraded RNA samples, RNA

Access performed best generating reliable data down to 5 ng input.

Conclusions: We found that the ribosomal RNA depletion protocol from Illumina works very well at amounts far

below recommendation and over a good range of intact and degraded material. We also infer that the exome-

capture protocol (RNA Access, Illumina) performs better than other methods on highly degraded and low amount

samples.
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Background
In recent years, high-throughput RNA sequencing (RNA-

seq) has become the method of choice to accurately probe

the transcriptome of any biological specimens [1–6]. This

method quantifies the expression levels of thousands of

RNA transcripts within a single assay, while simultaneously

allowing unbiased discovery of splicing variants [7], rare

and novel transcripts [8], non-coding RNAs [9–12], and

nucleotide changes [13]. In discovery settings RNA-seq re-

placed the use of microarrays [14, 15] to study human dis-

eases [16, 17] or to identify novel drug targets [18–20],

biomarkers [21], and compound mechanisms of action

[22]. More recently, RNA-seq is transitioning from a dis-

covery to a diagnostic tool with clinical utility in patient

stratification, diagnosis, and individualized treatment [23].

However, working with human tissue specimens available

from centralised biobanks, hospitals, research centres, or
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universities, can often result in poor quality and low yields

of RNA due to pre-analytical factors (e.g. sampling

methods, preservation conditions, storage conditions, and

time) that can ultimately affect gene expression analysis.

Several next generation sequencing protocols are cur-

rently available for the profiling of RNA samples, each

with its own strengths and weaknesses. These methods

use different strategies to reduce the representation of

abundant ribosomal RNAs (rRNA) in RNA-seq libraries

prior to sequencing. Poly(A) + enrichment using oligo-

dT coated beads is the most common approach to quan-

tify the polyadenylated RNA fraction of the transcrip-

tome including coding mRNAs. However, this method

fails at profiling other RNA populations (e.g. non-coding

RNAs) and suffers from biases when applied to low

quality or low quantity RNA samples [24–26]. Riboso-

mal RNA depletion methods are better suited for the se-

quencing of RNA samples with lower quality since they

reduce the highly abundant ribosomal RNAs from the

total RNA samples using capture probes and offer an at-

tractive option for the simultaneous detection of coding

and non-coding RNAs [27]. Finally, RNA capture is a

novel approach used to profile poor quality RNA sam-

ples like those extracted from formalin-fixed, paraffin-

embedded (FFPE) tissue samples [28]; this method uses

capture probes targeting known exons to enrich for cod-

ing RNAs. The “TruSeq” Stranded mRNA Kit, the “Ribo-

Zero” rRNA Removal Kit, and the “RNA Access” Library

Prep Kit represent respectively implementations of the

poly(A) + enrichment, ribosome depletion and exome-

capture approaches. These kits are commercial products

(Illumina) with standardized, reproducible and easy to im-

plement protocol steps and therefore suitable for any re-

search laboratories conducting gene expression studies.

Numerous recent studies have compared different

RNA-seq library preparation protocols. Some of these

focused on degraded input RNA [24, 25, 28, 29], some

others on low input RNA [10, 25, 30–32], or on general

characteristics of the protocols [27]. For low input

amounts (<100 ng), only protocols including a whole

transcriptome amplification (WTA) step, such as

NuGEN’s Ovation or Clonetech’s SMARTer [33], have

been investigated. These protocols rely on additional

PCR steps that are known to introduce amplification

biases in the gene expression data [25, 30, 31]. A simul-

taneous assessment of both low and degraded input has

been so far performed only by Adiconis et al. [25]; how-

ever, these authors considered samples with simultan-

eous low and degraded input only for one protocol and

a single input amount (NuGEN’s Ovation protocol at

1 ng) [31].

Despite these comparative efforts and in the light of new

protocol developments, there are fundamental technical

questions that remain still unanswered. For instance, how

does the newly available RNA Access protocol perform on

degraded samples? And, does it provide any advantages

over ribosomal RNA depletion methods? Furthermore,

how does the performance of these different approaches

change when lowering the input RNA quantity even below

the recommended amounts? These questions become es-

pecially relevant in the clinical context where, for instance,

processing of human biopsies often results in low amount

and very heterogeneous quality RNA samples.

Here, we designed a study to evaluate the performance

of the TruSeq, Ribo-Zero, and RNA Access library prep-

aration kits on human reference RNA samples from the

Microarray/Sequencing Quality Control consortium

(MAQC/SEQC) [34] over a wide range of total RNA in-

put amounts (from 100 ng down to 1 ng) and across

three degradation stages (from intact to highly de-

graded). To our knowledge this is the first analysis which

compares the recently commercialized RNA Access with

the well-established TruSeq and Ribo-Zero protocols on

the largest sample set of low quantity and low quality

RNA samples ever investigated so far. Moreover, we

went beyond the recommended amounts of each proto-

col to determine the minimum RNA quantities that can

still deliver accurate gene expression results. Finally, we

took advantage of the TaqMan qPCR values of about 1000

genes available for the SEQC samples to compare the

three RNA-seq protocols to an orthogonal gold-standard.

Based on our results, we provide the scientific community

with a guidance on which protocol to use in relation to

the quantity and quality of their RNA samples.

Results

To evaluate the performance of RNA-seq methods in

profiling non-optimal samples, we conducted a technical

assessment of the three different RNA library prepar-

ation protocols mentioned above, namely TruSeq, Ribo-

Zero and RNA Access, on two human reference RNA

samples previously used in the MAQC/SEQC studies;

these samples are the Universal Human Reference RNA

(UHRR or SEQC-A) and the Human Brain Reference

RNA (HBRR or SEQC-B) [34]. Figure 1a shows a sche-

matic of the workflow and the different input choices

considered at each step.

Overall we prepared a total of 222 sequencing libraries

from 37 different combinations of degradation stage,

input amount, and library preparation protocol each of

which was applied to both samples in triplicate. Figure

1b gives an overview of the conditions selected in the

study. The RNA libraries were sequenced on an Illumina

HiSeq2500 in paired-end mode to a length of 76 bp ×2

generating a total of 3242 M reads. The sequencing

depth of the different libraries ranged from ~19 M to

~95 M reads with an average of 49 M for the RNA

Access samples, 39 M for the Ribo-Zero samples, and
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43 M for the TruSeq samples. We used this comprehen-

sive data set to benchmark the RNA-seq library prepar-

ation protocols on their efficiency to generate high-quality

reads and consistent alignment rates, their ability to cover

full-length annotated transcripts, their specificity in profil-

ing protein-coding and non-coding RNAs, their accuracy

in detecting gene expression changes by comparing them

to TaqMan data, and their reproducibility and similarity

by measuring the correlation of log fold changes within

the same protocol at different input amounts and degrad-

ation levels as well as between the different protocols.

Alignment statistics

We initially examined the overall alignment rates to the

human genome (Fig. 2 and Additional file 1: Figure S4).

Our results confirmed that the three library preparation

protocols perform equally well on intact input RNA at

the amounts recommended by the manufacturer (100 ng

for TruSeq and Ribo-Zero, and 10 ng of intact RNA or

20 ng of degraded RNA for RNA Access). This is indi-

cated by the high alignment rates ranging from ~96% to

~98.5% for all three approaches. However, the protocols

behaved differently when the input amount was reduced

or the sample quality decreased. For intact RNA, the

alignment rate of RNA Access remained largely constant

across all input amounts whereas we found a loss of

about 3–4% aligned reads for TruSeq and about 10–15%

aligned reads for Ribo-Zero with decreasing the input

amounts down to 1 ng. When we considered the sample

quality, the alignment results for degraded samples were

comparable to the results of the intact samples for all

three protocols. This is in agreement with previous stud-

ies [28]. However, for the highly degraded samples, the

picture changed considerably. Whereas with RNA

Access only a slight decrease of 2–4% aligned reads was

observed even at the lowest input amount (1 ng) for

SEQC-A (Fig. 2) and SEQC-B (Additional file 1: Fig. S4)

respectively, we found a substantial drop of mapped

reads (e.g. a decrease of 51% for SEQC-A and 72% for

SEQC-B) at input amounts of 10 ng and 20 ng of highly

degraded RNA input processed with the Ribo-Zero kit.

Based on this poor performance, no further libraries

were generated for lower input amounts and this

degradation level with Ribo-Zero.

In addition, the protocols showed marked differences

in the percent of reads aligned to exons, introns, and

intergenic regions. For RNA Access the percentages of

intronic and intergenic reads were both ~1% across all

input amounts and sample quality categories, thus indi-

cating high efficiency of the exome pull down by the

Fig. 1 Generation of sequencing libraries and experimental design. a Schematic representation of the workflow to generate the sequencing libraries. RNA

of the SEQC samples A and B is heat degraded to obtain three distinct RNA input qualities. Several input amounts between 1 ng and 100 ng are selected

from the degraded RNA in triplicate and used for the library preparation with one of the three protocols (TruSeq, Ribo-Zero, or RNA Access). b Overview of

the combinations of degradation stage, input amount, and library preparation protocol considered in this study. A green tick indicates a combination that

was sequenced, a blue cross indicates a combination for which we decided not to generate a library either because the input amount was higher than

the maximum recommended input amount (for RNA Access) or because previously published studies suggested inferior performance on degraded

samples (for TruSeq), and a red cross indicates a combination for which no library was generated because libraries with higher input amounts already

performed poorly
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capture approach. For TruSeq the percentage of intronic

reads decreased with the sample quality from ~6% for

intact samples to 2–3% for degraded samples, whereas

the percentage of intergenic reads increased from ~2–

3% for 100 ng input to ~6–10% for 20 ng and less. For

Ribo-Zero the proportion of reads aligned to exons was

considerably lower and dependent on the sample as

previously reported (10). As expected with a total RNA

sequencing approach, we observed between half to two

thirds of the reads mapping to exons while the rest

mapped to mostly intronic regions (30–34%) and to

some extent to intergenic regions in intact and degraded

samples. For highly degraded samples, the percentage of

reads mapping to exons, introns, or intergenic regions was

much more variable across technical replicates and input

amounts; for SEQC-A the percentage was similar to the

intact and degraded sample qualities but for SEQC-B up

to 80% of the reads were mapped to intergenic regions.

All together these results indicate a consistent map-

ping performance of the RNA Access approach through-

out all input amounts and degradation states, while the

Ribo-Zero approach performed less well on highly

degraded samples and at very low input amounts.

Transcript coverage

We next measured the variation in 5′ to 3′ coverage along

each transcript (Fig. 3). Overall we observed similar and

uniform transcript coverages for RNA Access and Ribo-

Zero, independent of the degradation stage of the sample.

In contrast, the TruSeq protocol had a marked difference

between intact and degraded RNA, where the latter showed

a strong 3′ bias; in other words, the proportion of se-

quences mapping to the 3′ regions of transcripts was

largely increased compared to the 5′ regions. This bias is

due to the 3′ oligo(dT)-dependent selection used in the

Poly(A) + approach and underlines the limited use of this

protocol on degraded RNA or in general on samples of het-

erogeneous quality. In contrast, the RNA Access method

showed a slight 5′ bias. The consistency of the coverage

profiles across the different degradation stages suggests that

the Ribo-Zero and RNA Access protocols are better suited

for the profiling of degraded or heterogeneous RNA sample

populations than the standard TruSeq method.

Gene level comparison

We first investigated which annotated genes are detected

by the three different protocols (Fig. 4), including

Fig. 2 Bargraph of the alignment statistics for the SEQC-A sample and all three protocols. Each bar represents the averaged values across the

three technical replicates per condition. The percentage of total aligned reads is represented by the height of the bar, and the percentage of

reads aligning to exons is in red, introns in blue, and intergenic regions in green. The alignment statistics graph for the SEQC-B sample can be

found in Additional file 1: Figure S4
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protein coding genes, non-coding RNAs, and pseudo-

genes. To this purpose, we considered an arbitrary cutoff

of 0.3 FPKM to call a gene ‘expressed’. Overall, RNA

Access detected the least number of gene with an aver-

age of 20,917 expressed genes, followed by TruSeq with

24,367, and Ribo-Zero with 29,074. The number of

detected genes was largely independent of the input

amount and the sample quality. RNA Access showed a

minor reduction in the number of detected genes at the

lowest input amount of 1 ng; similarly, Ribo-Zero also

showed a minor reduction at lower input amounts for

highly degraded samples. The overall differences were

reflecting the nature of the different protocols: Total

RNA sequencing with Ribo-Zero could detect the largest

Fig. 4 Bargraph of the number of detected genes across different protocols, degradation stages, and input amounts. The bar segments with the

number of detected genes are listed by simplified Ensembl “Gene type” categories and the average number of detected genes per protocol is

indicated by a black line. A gene is considered “expressed” if it has a FPKM value of at least 0.3 in one of the three technical replicates of at least

one of the two samples (SEQC-A or SEQC-B)

Fig. 3 Normalized transcript coverage plot. Plot of the normalized average coverage of the 1000 most expressed transcripts for each sample

condition as created by Picard
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transcript population, TruSeq identified most of the

polyadenylated transcripts (including mRNAs and some

non-coding RNAs) and RNA Access captured RNAs that

are targeted by the design of its probes. Protein coding

genes are clinically the most relevant and most studied

category. Among protein coding genes, RNA Access de-

tected an average of about 16.2 k genes which represents

97% of the 16.7 k protein coding genes detected by

Ribo-Zero. The number of detected genes for TruSeq is

in between with an average of 16.5 k. In all the other

categories, the unbiased Ribo-Zero approach was more

sensitive than the targeted protocols TruSeq and RNA

Access. For example, a higher number of pseudogenes

was detected with Ribo-Zero with an average of 4.7 k

genes over 3.0 k for RNA Access and 2.8 k for TruSeq;

Ribo-Zero is by far the best protocol to profile long non-

coding RNAs (lncRNAs) as reflected by the high number

of detected transcripts: on average 6.3 k lncRNAs for

Ribo-Zero, 1.1 k for RNA Access and 4.6 k for TruSeq.

These three categories covered over 95% of all detected

genes for all three protocols. For the remaining categor-

ies, Ribo-Zero could detect 41% and 63% more small

RNAs than RNA Access and TruSeq respectively, as well

as an average of 506 miscRNAs against 113 for TruSeq

and 44 for RNA Access.

We further investigated the overlap of detected genes

between the different protocols. Due to the very hetero-

geneous characteristics of the different protocols on

other gene categories, we focused this comparison on

the protein coding genes and compared them with the

recommend input amounts for intact RNA (10 ng of in-

tact RNA for RNA Access and 100 ng for Ribo-Zero and

TruSeq, Fig. 5). The vast majority of the protein coding

genes (90.7%) was detected by all three protocols, while

a small percentage of protein coding genes (0.9–1.5%)

was specific to each protocol. In addition, the exclusive

overlap between TruSeq and Ribo-Zero (3.5%) was

slightly larger than the exclusive overlap between RNA

Access and TruSeq (0.7%) or RNA Access and Ribo-

Zero (1.7%). When we considered degraded samples

with the same input amounts, we observed a very similar

distribution of the overlap of detected genes between the

different protocols (Additional file 1: Figure S5).

Comparison to TaqMan qPCR data

To assess the accuracy of each protocol in detecting dif-

ferential expression, we used publicly available qPCR

data obtained for 1000 genes on SEQC-A and SEQC-B

samples and generated by the MAQC consortium (12)

as a gold standard reference. To this purpose, we com-

pared the log fold-change values of the SEQC samples

generated with the three RNA-seq methods to the Taq-

Man log fold changes since fold changes – as opposed

to the direct comparison of absolute expression values –

are a crucial parameter in the analysis of differentially

expressed genes. In a differential expression analysis fold

changes are usually accompanied by a measure of sig-

nificance, such as a p-value, to capture the biological

variability. However, in this study we did not include

p-values in our assessment since the SEQC RNA-seq

data consist only of technical replicates with no

biological variability.

We performed pairwise comparisons of log fold

changes between the individual technical replicates

and the TaqMan qPCR fold change values (Fig. 6). At

recommended RNA input levels and on intact sam-

ples, TruSeq correlated better with the TaqMan qPCR

data than the other two protocols (mean R2 value of

0.9 vs 0.89 for RNA Access and 0.88 for Ribo-Zero).

The concordance with qPCR fold changes decreased

consistently with lower input amounts for all three

protocols on intact samples. The log fold change cor-

relation for the RNA Access protocol remained stable

until the low input amount of 5 ng and then dropped

considerably at 2 ng (from 0.88 to 0.82). A similar

behaviour was observed for TruSeq where the log

fold change correlation was high at input amounts of

100 ng and 20 ng (0.89–0.9) and then dropped to

0.87 at 5 ng and to 0.84 at 1 ng. Instead, Ribo-Zero

showed only a slight decrease in the correlation of

log fold changes down to the lowest input amount of

intact RNA (R2 = 0.86 at 1 ng).

Fig. 5 Venn diagram of the protein coding genes detected by each

of the three protocols. Venn diagram of the protein coding genes

detected by each of the three protocols on intact samples at the

recommended input amounts (10 ng for RNA Access and 100 ng for

Ribo-Zero and TruSeq). A gene is considered “expressed” if it has a

FPKM value of at least 0.3 in one of the three technical replicates of

at least one of the two samples (SEQC-A or SEQC-B)
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The correlation profiles for degraded sample inputs

were similar to the intact RNA profiles (Fig. 6). TruSeq

had the highest agreement with TaqMan at the recom-

mended input amount (100 ng for TruSeq and Ribo-

Zero and 20 ng of degraded RNA for RNA Access); R2

values for the RNA Access protocol again declined

sharply at inputs of 2 ng and 1 ng, while similar to intact

sample inputs the R2 values for Ribo-Zero went down

gradually with decreasing input amount, being the

best performing protocol at the lowest input amount

(R2 = 0.85 at 1 ng).

Finally, when considering highly degraded RNA input,

we observed a marked difference between the RNA Ac-

cess and the Ribo-Zero protocols where the latter dis-

played a very high variability and lower median R2 values

at all tested inputs (down to 10 ng). The RNA Access

approach, in comparison, performed much better on the

highly degraded material. While the median R2 values

decreased from 0.87 for 20 ng down to 0.85 for 5 ng and

dropped further at 2 ng and 1 ng to an R2 value of 0.79,

we found much less variability among the value distribu-

tion as compared to the Ribo-Zero method.

Overall our data suggest that all three protocols are

robust and comparable on intact RNA samples and

down to 10 ng of input. Going further down with the

amounts, Ribo-Zero outperforms the other two proto-

cols at 1 ng. In addition Ribo-Zero performs equally well

on degraded RNA, closely followed by the RNA Access

method. On severely degraded samples, where the RNA

fragments are shorter than 200 nucleotides, Ribo-Zero

reaches its limits and becomes much less reproducible.

Here the RNA Access approach represents the best

choice, still generating reliable data down to 5 ng input.

Agreement between protocols

To assess the similarity between the three protocols we

computed the coefficients of determination (R2 values)

of the log fold changes of the SEQC samples for every

combination of protocol, sample quality, and input

amount (Fig. 7). For each condition, we first calculated

the log fold changes and the corresponding R2 values of

each of three technical replicates separately. We then

averaged the individual R2 values of the three

technical replicates to calculate the mean R2 values

reported in Fig. 7.

Overall we found that the similarity between samples

increases with the input amount, and independently of

the protocol and the sample quality. We then assessed

Fig. 6 Boxplot of the coefficients of determination (R2 values) of the RNA-seq log fold change values vs TaqMan qPCR measurements. The boxes

are coloured by protocol: red for RNA Access, green for Ribo-Zero, and blue for TruSeq. Darker shades indicate boxes for samples to which a more

severe degradation protocol was applied
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the sample similarity within each protocol separately.

For RNA Access the results on intact samples for

20 ng, 10 ng and 5 ng are highly similar (with R2

values ranging from 0.97 to 0.9) whereas the similar-

ity drops significantly at 2 ng (0.68) and 1 ng (0.61).

These results are similar to those observed for the

correlation with the TaqMan qPCR data. There was

almost no difference between the intact and degraded

samples resulting in R2 values from 0.92 to 0.97 (for

input amounts of at least 5 ng) – independent of

which combinations were considered; however, there

was a significant drop for the highly degraded sam-

ples with R2 values ranging from 0.79 to 0.89 (again

for input amounts of at least 5 ng).

Among Ribo-Zero samples the similarity values were

also very high (with R2 values above 0.91) for input

amounts of at least 5 ng but the decrease in self-

similarity to 2 ng (0.83) and 1 ng (0.76) was not as dras-

tic as for RNA Access. Again, the R2 values of the intact

and degraded samples were essentially interchangeable

with respect to other Ribo-Zero samples as well as other

protocols. But for the highly degraded samples only the

log fold changes of the input amount 100 ng showed

some agreement with the higher input amounts (100 ng

and 20 ng) of the intact and degraded Ribo-Zero samples

(with R2 values ranging from 0.77 to 0.8). In terms of

self-similarity the achieved R2 values (0.41 for 10 ng,

0.53 for 20 ng, and 0.69 for 100 ng) were comparable to

Fig. 7 Heat map of the coefficients of determination (R2 values) of the log fold change values of the pairwise comparison of all protocols. Each

colored box represents the coefficient of determination (R2 value) between two conditions which are given by the labels on the x and y axes.

The R
2 value is color-coded on a scale where blue represents the lowest, grey the median, and red the highest observed value
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the self-similarity R2 values of the RNA Access protocols

for input amounts that were an order of magnitude

lower (0.46 for 1 ng, 0.59 for 2 ng, and 0.79 for 5 ng).

For TruSeq we found a very good agreement of the

log fold change values for input amounts of 100 ng

down to 10 ng (with R2 values between 0.98 and 0.92)

and then a significant drop for 5 ng and lower with self-

similarity R2 values from 0.82 down 0.61. Similar to the

comparison with the TaqMan qPCR data, we again

found an excellent agreement between the degraded and

the intact samples despite the 3′ enrichment that we ob-

served for the degraded sample.

When comparing the different protocols between each

other, Ribo-Zero and TruSeq were more similar to each

other than to RNA Access with the R2 values ranging

from 0.85 to 0.88 for intact samples and input amounts

of 10 ng and above. For the same input amounts, RNA

Access achieved only R2 values of 0.8 to 0.82 with Ribo-

Zero and 0.74 to 0.76 for TruSeq.

Overall the reproducibility of the three protocols was

very good even for small input amounts down to 5 ng

but the gene expression values exhibited considerable

protocol specific biases leading to a reduced agreement

between the different protocols. In general, the expres-

sion values generated by TruSeq and Ribo-Zero were

more similar to each other than they were to those from

RNA Access.

Discussion

With the substantial reduction in the cost of sequencing,

RNA-seq has fast become more affordable and gained

popularity as major tool for research and potential clin-

ical applications in medicine [23, 35]. While many stud-

ies have demonstrated its applicability for the discovery

of disease-specific markers and therapeutic targets (16–

22), new efforts are underway to expand this technology

into clinical practice towards the establishment of RNA-

seq-based clinical gene tests in regulated environments

[23]. The wealth of valuable gene expression knowledge

that can be gained with RNA-seq is however critically

dependent on the quality and amount of the samples

employed in the study.

When planning a gene expression profiling study by

RNA-seq, the investigator is usually confronted with sev-

eral decisions about the experimental design including

the choice of the sequencing protocol. Several commer-

cial protocols can be used depending on the quantity

and quality of the RNA samples. In some cases, for in-

stance when working with precious patient samples, it

may be difficult to obtain enough RNA amount or ma-

terial of sufficient quality to meet the vendor criteria for

using standard kits such as the Illumina poly(A)-based

TruSeq Stranded mRNA Kit (TruSeq) or the Illumina

Ribo-Zero rRNA Removal Kit (Ribo-Zero). If the RNA

quantity available for the experiment is significantly

below the recommended starting amount of these kits

(100 ng total RNA), amplification methods like the

NuGEN Ovation or the Clontech SMARTer can be ap-

plied to picogram amounts of the RNA samples. This

extra amplification, however, invariably incorporates

additional biases to those normally introduced by the li-

brary construction and sequencing procedures, and

hence should be avoided if possible. On the other hand,

if the RNA quality is low, the Ribo-Zero kit and the new

Illumina RNA Access Kit (RNA Access) may represent

valid options for the study but have not been compre-

hensively evaluated for accuracy and performance on

low quantity and low quality RNA thus far.

In this study, we performed a comprehensive and sys-

tematic assessment of two of the most commonly used

commercial sequencing kits TruSeq and Ribo-Zero as

well as the relatively new RNA Access kit covering a

wide range of input amounts from 100 ng down to 1 ng

and three sample quality stages from intact to highly-

degraded. This input range is one of the most difficult to

work with since the RNA amount is mostly below the

sample requirements of the TruSeq and Ribo-Zero pro-

tocols, but still in an area where it would be ideal to

avoid RNA amplification. We further aimed at under-

standing how the performance of these three protocols

changes when the quality of the samples is not optimal

or even heterogeneous across the RNA sample popula-

tion. A summary of the results of the protocol assess-

ment is presented in Table 1.

As already noted in previous studies [25, 27, 30], in

the ideal situation with enough input material and good

sample quality, the choice of the sequencing protocol

depends largely on the questions addressed by the study.

For the input amounts recommended by the manufac-

turer, if the focus of the analysis is mainly on protein

coding genes, then TruSeq is the protocol of choice due

to its high alignment rate against exons (Fig. 2 and

Additional file 1: Figure S4) and slightly better concord-

ance with TaqMan qPCR data (Fig. 6). If other RNA spe-

cies are also of interest, then Ribo-Zero is preferable as

it can detect the largest transcript population capturing

all coding and non-coding RNAs (Fig. 4). However, the

Ribo-Zero protocol requires a higher sequencing depth

as about 30% of the reads align against introns (Fig. 2

and Additional file 1: Figure S4) and are, thus, non-

informative for the quantification of gene expression.

This may have a small or large impact on the cost of the

sequencing experiment depending on the sample size of

the study. For low quantity inputs and down to 5 ng, all

three tested library preparation protocols performed

similarly well on intact RNA, despite being at much

lower input quantities than the recommended amounts.

At very low input amounts such as 1 ng and 2 ng, Ribo-

Schuierer et al. BMC Genomics  (2017) 18:442 Page 9 of 13



Zero showed clear performance advantages over the

other two protocols and still provides accurate gene ex-

pression change levels (Fig. 6).

If we consider degraded samples, then according to

Adiconis et al. [25], the best RNA sequencing protocol

for degraded samples was RNAse H in 2013. This proto-

col is a custom solution and not necessarily suitable for

all laboratories or clinical centres. The commercial Illu-

mina Ribo-Zero approach performed almost as well as

RNAse H on degraded samples in their hands. We

herein confirm that the Illumina Ribo-Zero ribosomal

RNA depletion kit is a robust approach that worked well

on very low input amounts down to 1 ng as well as on

degraded samples (Fig. 6). However this approach did

not perform well on highly degraded samples where the

mean size of the library fragments is shorter than 200

nucleotides (Fig. 6). These short degraded RNA frag-

ments tend to be removed during the library preparation

steps, introducing a bias for accurate quantification.

The capture based approach of the RNA Access kit,

which enriches for reads mapping to exons performed very

well even on severely degraded samples and at medium to

low input amounts down to 5 ng (Fig. 6). Moreover, this kit

showed the most consistent mapping rates across the wide

range of input amounts and quality levels tested (Fig. 2 and

Additional file 1: Figure S4). Because of the RNA exome

enrichment step, this protocol requires lower sequencing

depth per sample than Ribo-Zero to generate high-quality

data in high-value content regions. It therefore represents a

more cost-effective solution if the cost of the enrichment

kit is distributed across a large sample set.

Conclusions

In summary, we conclude that RNA Access represents

an attractive alternative for those studies in which the

sample quality is severely compromised. For its broad

application across the entire sample set, this protocol is

also suited for the profiling of very heterogeneous RNA

sample populations covering a wider range of low quan-

tity and extremely low quality samples thus ensuring

high accuracy and comparability of the results within

the study.

Methods

Samples

SEQC samples A and B were prepared by adding ERCC

[36] spike-in to two reference RNAs and as described in

the Sequencing Quality Control study (SEQC) [34]. In

brief, Universal Human Reference RNA (UHRR,

#740000, Agilent Technologies) at 1 μg/μl was supple-

mented with 2% of ERCC ExFold RNA Spike-in Control

Mix (ERCC1, #4456739, Life Technologies) to give Sam-

ple A. Human Brain Reference RNA (HBRR, # AM6050,

Life TEchnologies) at 1 μg/μl was supplemented with 2%

of ERCC ExFold RNA Spike-in Control mix 2 (ERCC2,

#4456739, Life Technologies) to give Sample B. Bioana-

lyzer profiles of the intact SEQC samples are shown in

Additional file 1: Figure S1.

To obtain degraded RNA, aliquots of SEQC samples A

and B were incubated at 94 °C for 30 min (degraded

samples-size peak at ~800 bp) and for either 60 min

(highly degraded Sample A-size peak ~200 bp) or

210 min (highly degraded Sample B-size peak <200 bp).

Bioanalyzer profiles of the samples before and after deg-

radation are shown in Additional file 1: Figures S2 and

S3. Intact RNA displays the characteristic fragment size

peaks for 18S and 28S rRNA whereas these peaks vanish

for degraded and highly degraded RNA.

Sequencing libraries

Poly-A enriched strand-specific libraries were generated

with the TruSeq mRNA V2 sample preparation kit (#RS-

Table 1 Summary of the assessment of the three protocols for different input amounts and sample degradation stages

RNA seq Protocol RNA Input 1 ng 2 ng 5 ng 10 ng 20 ng 100 ng Conclusion

TruSeq stranded mRNA Intact = + ++ +++ +++ +++ +Works well at low amounts down to 5 ng
-Captures polyadenylated RNAs only
-Not suited for degraded or highly degraded samples

Degraded * * * * * ++

Highly deg. * * * * * *

RiboZero stranded RNA Intact + + ++ ++ ++ ++ +Works well over all input amounts
+Captures all RNAs (coding & non coding)
+Compares well to mRNA protocol
+Well suited for degraded samples
-Requires higher sequencing depth
-Not suited for highly degraded samples

Degraded + + ++ ++ ++ ++

Highly deg. * * * −− − −

RNA access Intact − = ++ ++ ++ * +Performs well on all samples down to 5 ng
+Requires less sequencing depth
+Suited for degraded and highlydegraded samples
-Captures only preselected RNAs and is only available
for human samples
-Less similar to the other two protocols

Degraded − = ++ ++ ++ *

Highly deg. −− − = + + *

A +, ++, or +++ indicates that the protocol performed (very) well on the input, = indicates borderline performance, and a – or – – indicates an unsatisfactory

performance. The symbol * is used to indicate input conditions that were not tested
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122-2001, Illumina), ribosomal RNA depleted strand-

specific RNA libraries with the TruSeq Stranded Total

RNA LT sample preparation kit with Ribo-Zero Gold

(#RS-122-2301and (#RS-122-2302, Illumina), and tran-

scriptome capture based libraries with the TruSeq RNA

Access Library Prep Kit (#RS-301-2001, Illumina). All

protocols were performed following the manufacturer’s

instructions. Recommended amounts of starting material

were as follows: 100 ng of input RNA for TruSeq,

100 ng for Ribo-Zero, and 10 ng of intact RNA or 20 ng

of degraded RNA for RNA access.

Libraries were generated for different input amounts

of total RNA (1 ng, 2 ng, 5 ng, 10 ng, 20 ng and 100 ng)

in triplicates. Ribosomal RNA depleted RNA was frag-

mented for 8 min (intact and degraded samples) or

2 min (highly degraded samples), different fragmentation

times. qPCR was performed on unamplified libraries to

evaluate the appropriate amplification cycles number of

the large-scale PCR step in library preparation. The

quality and yield of the prepared libraries was assessed

using an Agilent 2100 Bioanalyzer (Agilent Technolo-

gies, Santa Clara, CA, USA).

Sequencing

Sequencing was performed on a HiSeq2500 Instrument

(Illumina) with 2 × 76 cycles, using either the Illumina

TruSeq v3 or TruSeq Rapid SBS sequencing chemistry

and following the manufacturer’s instructions. Images

from the instrument were processed using the manufac-

turer’s software to generate FASTQ sequence files. Read

quality was assessed by running FastQC (version 0.10)

on the FASTQ files. Raw RNA-sequencing reads were

deposited in the NCBI Short Read Archive under the

accession number SRP097611.

Alignment and quantification

We used the Exon Quantification Pipeline 2.0 [37] to

align the reads against the human genome reference files

from Ensembl version 76 [38] and quantify gene expres-

sion. For computing the 5′ to 3′ coverage along tran-

scripts we used the Picard tool CollectRnaSeqMetrics

version 1.86 [39]. For each sample, gene counts were di-

vided by the total number of mapped reads and multi-

plied by one million to obtain Counts Per Million

(CPMs) to account for varying library sizes. Fragments

per kilobase per million mapped reads (FPKM) were cal-

culated by dividing the CPM values by the gene lengths.

For the computation of fold changes (FC) of CPM

values a pseudo count of 0.5 CPM was added to both

values. The computation of the number of expressed

genes was based on a FPKM cut-off of 0.3 [40] and the set

of genes detected in both samples (SEQC-A and SEQC-B)

were combined. Gene categories were based on the

Ensembl “Gene Type” field for which we aggregated

different subcategories to obtain a more coarse-grained

better interpretable result (Additional file 1: Table S1).

For the computation of the coefficients of determin-

ation (R2) of the log fold change values, we first calcu-

lated the log fold changes and the corresponding R2

values of each of three technical replicates separately.

We then averaged the individual R2 values of the three

technical replicates to calculate the mean R2 values for

each specific combination of input amount, degradation

stage, and protocol.

TaqMan data

The TaqMan qRT-PCR data for the SEQC-A and B sam-

ples were downloaded from Gene Expression Omnibus

under the accession number GSE5350.

Additional file

Additional file 1: Figure S1. Bioanalyzer profile of the fragment size

distribution for the intact SEQC-A and SEQC-B samples. The curve for

SEQC-A is shown in red and the curve for SEQC-B in blue. The two peaks

represent the intact 18S and 28S ribosomal RNA profiles. Figure S2.

Bioanalyzer profile of the fragment size distribution for the degraded

SEQC-A and SEQC-B samples. The curve for SEQC-A is shown in red and

the curve for SEQC-B in blue. The peaks for the 18S and 28S ribosomal

RNAs are now following a unimodal distribution with a much wider peak

around a fragment size of 850 nt, reflecting the level of degradation.

Figure S3. Bioanalyzer profile of the fragment size distribution for the

highly-degraded SEQC-A and SEQC-B samples. The curve for SEQC-A is

shown in red and the curve for SEQC-B in blue. The peaks for the 18S

and 28S ribosomal RNAs are now following a unimodal distribution with

a much wider peak around a fragment size of 150–200 nt, reflecting a

high level of degradation. Figure S4. Bargraph of the alignment statistics

for the SEQC-B sample and all three protocols. Each bar represents the

averaged values across the three technical replicates per condition. The

percentage of total aligned reads is represented by the height of the bar,

and the percentage of reads aligning to exons is in red, introns in blue,

and intergenic regions in green. Figure S5. Venn diagram of the protein

coding genes detected by each of the three protocols. Venn diagram of the

protein coding genes detected by each of the three protocols on degraded

samples at the input amounts 10 ng for RNA Access and 100 ng for Ribo-Zero

and TruSeq. A gene is considered “expressed” if it has a FPKM value of at least

0.3 in one of the three technical replicates of at least one of the two samples

(SEQC-A or SEQC-B). Table S1. Simplified Ensembl gene type mapping. The

original Ensembl (v76) gene type category is contained in the left column and

the simplified category is contained in the right column. (PDF 661 kb)
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