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ABSTRACT

We present a Bayesian re-analysis of the sky-averaged 21-cm experimental data from SARAS2 using nested sampling
implemented with polychord, spectrally smooth foreground modelling implemented with maxsmooth, detailed systematic
modelling and rapid signal emulation with globalemu. Our analysis differs from previous analysis of the SARAS2 data through
the use of a full Bayesian framework and separate modelling of the foreground and non-smooth systematics. We use the most
up-to-date signal models including Lyman-𝛼 and CMB heating parameterised by astrophysical parameters such as star formation
efficiency, X-ray heating efficiency, minimal virial circular velocity of star forming galaxies, CMB optical depth and the low
energy cutoff of the X-ray spectral energy distribution. We consider models with an excess radio background above the CMB
produced via radio emission from early galaxies and parameterised by a radio production efficiency. A non-smooth systematic
is identified and modelled as both a frequency damped sinusoid introduced by the electronics and separately from the sky.
The latter is modulated by the total efficiency of the antenna and marginally favoured by the data. We consider three different
models for the noise in the data. The SARAS2 constraints on individual astrophysical parameters are extremely weak however
we identify classes of disfavoured signals. We weakly disfavour standard astrophysical models with high Lyman-𝛼 fluxes and
weak heating and more confidently disfavour exotic models with high Lyman-𝛼 fluxes, low X-ray efficiencies and high radio
production efficiencies in early galaxies.
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1 INTRODUCTION

The global (sky-averaged) 21-cm signal from Cosmic Dawn (CD)
and the Epoch of Reionization (EoR) is a theoretically observable
average deviation between the spin temperature, 𝑇s, of neutral hydro-
gen and the radio background,𝑇r (typically assumed to be the Cosmic
Microwave Background, CMB). The spectral structure of the signal,
characterised by an absorption feature and potential emission, can be
used to infer information about the large scale structure formation in
the early universe, star formation, as well as thermal and ionization
histories of the intergalactic medium (IGM, Furlanetto et al. 2006;
Pritchard & Loeb 2012; Barkana 2016).
Theoretical models of the global 21-cm signal (e.g. Visbal et al.

★ E-mail: htjb2@cam.ac.uk

2012; Mirocha 2014; Fialkov & Barkana 2014; Cohen et al. 2017;
Reis et al. 2021) use a set of astrophysical parameters to define
the structure of the signal such as the star formation efficiency, 𝑓∗,
the minimal virial circular velocity of star forming galaxies, 𝑉𝑐 ,
the X-ray efficiency of sources, 𝑓𝑋 , the slope of the X-ray spec-
tral energy distribution (SED), 𝛼, the low energy cutoff of the X-
ray SED, 𝐸min 1, the mean free path of ionizing photons, 𝑅mfp
and the CMB optical depth, 𝜏. The identification of a global sig-
nal and subsequent determination of these parameters is the sub-
ject of ongoing experimental work using a variety of different
techniques: SARAS3 (Shaped Antenna measurement of the back-
ground RAdio Spectrum, Girish et al. 2020; Nambissan T. et al.

1 This parameter has previously been referred to in the literature as amin. We
make the change in notation here to clarify that this is an energy.
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2021; Raghunathan et al. 2021), EDGES (Experiment to Detect
the Global Epoch of Reionization Signature, Bowman et al. 2018),
REACH (Radio Experiment for the Analysis of Cosmic Hydrogen,
de Lera Acedo 2019), PRIZM (Probing Radio Intensity at High-Z
fromMarion, Philip et al. 2019), LEDA (Large-aperture Experiment
to Detect the Dark Ages, Price et al. 2018), DAPPER (Dark Ages Po-
larimeter PathfindER, https://www.colorado.edu/project/
dark-ages-polarimeter-pathfinder/) and MIST (Mapper of
the IGM Spin Temperature, http://www.physics.mcgill.ca/
mist/) among others.
In 2018 the EDGES collaboration reported the detection of an

absorption trough at 78 MHz (Bowman et al. 2018). However, the
reported feature is approximately 3 times deeper2 than the current
standard theoretical predictions (Reis et al. 2021). While the excess
depth can be explained theoretically with an excess radio background
above the CMB (Bowman et al. 2018; Feng & Holder 2018; Ewall-
Wice et al. 2018; Jana et al. 2019; Mirocha & Furlanetto 2019;
Fialkov & Barkana 2019; Reis et al. 2020b) or interactions between
dark matter and baryons (Barkana 2018; Fialkov et al. 2018; Barkana
et al. 2018; Berlin et al. 2018; Kovetz et al. 2018; Muñoz & Loeb
2018; Slatyer & Wu 2018; Liu et al. 2019) there are concerns about
the data analysis and potential presence of systematics in the publicly
available EDGES data (Hills et al. 2018; Bradley et al. 2019; Singh
& Subrahmanyan 2019; Sims & Pober 2020; Bevins et al. 2021a).
Several experiments, both single antenna and interferometers, have

provided constraints on the parameter space of the 21-cm signal at
redshifts corresponding to the EoR: HERA (Abdurashidova et al.
2022), LOFAR (Ghara et al. 2020; Mondal et al. 2020; Greig et al.
2020b), MWA (Greig et al. 2020a; Ghara et al. 2021), EDGES
(Monsalve et al. 2017, 2018, 2019) and SARAS2 (Singh et al. 2017,
2018b). We note that the parameterisation and modelling of the
signals, as well as the prior ranges, are not always consistent across
the literature. However, in general the conclusions disfavour signals
with deep absorption features, within the band of each instrument,
from inefficient X-ray heating and a sharp reionization feature.
In this paper we present a re-analysis of the SARAS2 data, which

targeted theEoRat low redshifts (high frequencies). Previous analysis
of 63 hrs of nighttime observations, between October 2016 and July
2017, at the Timbaktu Collective in Southern India with the SARAS2
instrument concluded that scenarioswith rapid reionization andweak
X-ray heatingwere disfavoured by the data (Singh et al. 2017, 2018b).
In this analysis the authors used initially a Bayesian likelihood ratio
test to determine whether the presence of particular signal models,
from a simulated set of 264, were favoured in the data or not (Singh
et al. 2017). This was followed by a detailed frequentist approach
that ruled out a larger number of simulated signals from the same
set of models and using the same data (Singh et al. 2018b). Of the
tested scenarios 9 were disfavoured by the data in Singh et al. (2017)
and 20, of which 15 were rejected with a significance > 5𝜎, were
rejected in Singh et al. (2018b). There was no reported detection
from the analysis. In both cases high order polynomials were used to
model the foreground and systematics, in the belief that any present
in the data are smooth, in combination. A high level summary of
the differences between the analysis in this paper and the previous

2 Note that this value is often reported as 2 times deeper and is based on the
maximum predicted depth, ≈ 250 mK of the global signal from simulations
like those in Cohen et al. (2017). However, more recent simulations, including
Lyman-𝛼 andCMBheating, by Reis et al. (2021) report amaximumpredicted
depth of ≈ 165 mK approximately 3 times shallower than the reported ≈ 500
mK signal from EDGES (Bowman et al. 2018).

analysis of the SARAS2 data can be found in Tab. 1 and these are
futher discussed below.
Here, we determine parameter constraints over broad prior ranges

using the latest astrophysical models of the global 21-cm signal
(Reis et al. 2020b, 2021), representing an improved understanding
of the standard astrophysical picture, and the nested sampling al-
gorithm (Skilling 2004) polychord (Handley et al. 2015a,b). We
use models that include Lyman-𝛼 heating (Madau et al. 1997; Chen
& Miralda-Escudé 2004; Furlanetto & Pritchard 2006; Chuzhoy &
Shapiro 2007), CMB heating (Venumadhav et al. 2018) and multiple
scattering of Lyman-𝛼 photons (Semelin, B. et al. 2007; Naoz &
Barkana 2008; Baek, S. et al. 2009; Visbal & McQuinn 2018; Mo-
laro et al. 2019; Reis et al. 2020a). The effects on the global signal
of these physical processes have been understood for some time but
the magnitude of those effects over a larger parameter space were not
understood until recently (Villanueva-Domingo et al. 2020; Mittal &
Kulkarni 2020; Reis et al. 2021). Additionally, we study astrophys-
ical scenarios with a wide range of radio production efficiencies,
𝑓radio, for early galaxies. A subset of the latter models could explain
EDGES using an excess radio background. This is the first time that
a full Bayesian analysis of data from a global 21-cm experiment
has been performed with these specific astrophysical simulations.
We note, however, that the value of 𝑓radio has previously been con-
strained using the amplitude of the EDGES absorption feature (Reis
et al. 2020b)3 and more recently using upper limits on the power
spectrum from the Hydrogen Epoch of Reionization Array (HERA,
Abdurashidova et al. 2022).
In this work we use the recently developed emulator globalemu

(Bevins et al. 2021b) which we train on sets of signal models from
Reis et al. (2020b) and Reis et al. (2021). It has been shown that
global signal emulators such as 21cmGEM (Cohen et al. 2020) can
be used for quick interpolation of the signal across the astrophysical
parameter space (Monsalve et al. 2019). globalemu is a flexible
framework that can easily learn different simulations of the global
signal and has been shown to be faster and more accurate than the
previous state of the art (Cohen et al. 2020). We provide more details
on the accuracy of each trained instance of globalemu in section 3.4.
We illustrate the presence of a sinusoidal systematic in the data and

attempt to physically model the structure in a manner which is inde-
pendent of the foreground model. We use two separate models each
representing the introduction of a systematic at different points in the
SARAS2 experiment. The motivation for each model is explained in
section 3.3.
The identification of the systematic is driven by the application

of maxsmooth (Bevins 2020; Bevins et al. 2021a) to model the
foreground and smooth systematics in the data with a model that
has constrained derivatives and resultant smooth properties based
on Maximally Smooth Functions (MSFs, Sathyanarayana Rao et al.
2015, 2017). The motivation behind the use of maxsmooth is two-
fold. Firstly, the SARAS2 antenna is designed and has been shown
to have a maximally smooth reflection coefficient and efficiencies
(Singh et al. 2018a). Secondly, the dominant foregrounds in global
21-cm experiments from Galactic and extragalactic synchrotron and
free-free emitting sources are expected to be smooth power laws
(Sathyanarayana Rao et al. 2017; Bernardi et al. 2009; Niţu et al.
2021).

3 For clarity, note that we assume the astrophysical scenario of enhanced
radio emission from galaxies (Reis et al. 2020b), and not the more exotic
scenario of an external radio background from the dark ages (Fialkov &
Barkana 2019).
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Singh et al. (2017) Singh et al. (2018b) This work
Analysis Type Likelihood ratios testing

preference of the data for
the presence or absence of
signals.

Frequentist approach based on that
used in Monsalve et al. (2017).

Bayesian nested sampling using polychord
(Handley et al. 2015a,b).

Foreground Modelling Unconstrained polynomials of varying orders (e.g. N = 4 -8 in (Singh
et al. 2018b)).

Smooth foreground models based on Max-
imally Smooth Functions and implemented
with maxsmooth (Bevins et al. 2021a).

Systematic Modelling Assumed to be smooth and modelled with foreground model. Identified through use of smooth foreground
model and separately modelled with physi-
cally motivated functions.

Noise Modelling Derived by accounting for
RFI, system temperature,
absolute calibration and
differences between adja-
cent channels.

Mock Gaussian distributed noise
based on system attributes.

A set of Gaussian models with constant, fre-
quency damped and relative weights based
amplitudes.

Signal Modelling A library of 264 standard astrophysical models with no additional radio
background above the CMB (Cohen et al. 2017).

Broader study sampling across large prior
ranges, for both standard astrophysical mod-
els (Reis et al. 2021) and exotic astrophysical
models with excess radio backgrounds (Reis
et al. 2020b), using the signal emulator glob-
alemu (Bevins et al. 2021b).

Table 1. A high level summary of the differences between the previous analysis of the SARAS2 data and the work performed in this paper. The differences are
expanded on primarily in section 3.

In section 2 we discuss briefly the SARAS2 experiment and the
data that we are analysing. This is followed by a more detailed de-
scription of the modelling that we perform in section 3, a discussion
about the sensitivity of the data to specific models in section 4 and
a summary of our results in section 5. We draw conclusions in sec-
tion 6.

2 THE SARAS2 DATA

One of the primary causes of systematics in global 21-cm exper-
iments is chromaticity in the typically very wide beam pattern of
the antenna. Further, sidelobes in the beam and complex reflection
coefficients can also introduce frequency dependent structures in the
data. The SARAS2 antenna is a short monopole designed to have an
achromatic response.
In principle, the foreground and systematics in the data from the

SARAS2 experiment should both be smooth in nature and signifi-
cant efforts were made to ensure that the efficiency and reflection
coefficients in the data were smooth functions (Singh et al. 2018a).
This has been explored further in Sathyanarayana Rao et al. (2017)
where it was shown that simulated observations with the SARAS2
antenna of the foregrounds (produced with the Global Model for the
Radio Sky Spectrum, Rao et al. 2016) in a global 21-cm experiment
are smooth in structure to within a few mK. This is also expected
generally, in the absence of ionospheric effects (Shen et al. 2021),
for an achromatic beam like SARAS2.
SARAS2 is deployed in the remote radio quiet TimbaktuCollective

in Southern India (lat = + 14.◦242328, long = 77.◦612606E). The
antenna is comprised of a sphere mounted on top of an inverted cone
resting on a circular aluminium disk. The components are smoothly
joined tangentially and placed above the receiver electronics at the
site. The electronics are battery powered and the site is flat and open.
An optical fiber is used to connect the receiver to a signal processing
unit situated 100 m away.
The beam pattern of the SARAS2 antenna is simulated, measured

and shown to be frequency independent (Singh et al. 2018a). The

pattern is omni-directional and constant in azimuth, with nulls at
zenith and horizon, a peak at 30 degrees in elevation and a half-
power beam width of 45 degrees in elevation. A 3D visualisation can
be found in Fig. 8 of Sathyanarayana Rao et al. (2017).
The antenna temperature, assuming the presence of a global 21-cm

signal 𝑇21, would correspond to

𝑇A = (𝑇21 + 𝑇gr + 𝑇fg)[𝑡 , (1)

where 𝑇fg accounts for the Galactic and extragalactic foregrounds
and [𝑡 corresponds to the total efficiency of the SARAS2 antenna.
𝑇gr refers to ground emission and for the analysis presented here
we assume that the ground emission is smooth or equivalently that
the ground under the antenna is homogeneous. As a result we can
subsume the ground emission term into our smooth foregroundmodel
and treat the antenna temperature as being given by

𝑇A = (𝑇21 + 𝑇fg)[𝑡 . (2)

Note that the assumption of a homogeneous ground under the antenna
may not hold and that this may cause the introduction of non-smooth
systematics into the data (see section 3.3). The sum 𝑇𝑊 = (𝑇21 +𝑇fg)
represents the beam-weighted sky power and [𝑡 is the product of the
radiation and reflection efficiency (Singh et al. 2018a). [𝑡 therefore
accounts for the loss due to an impedance mismatch between the
antenna and the transmission line to the receiver as well as the fre-
quency dependent coupling of the beam-weighted sky temperature to
the antenna. Estimates of [𝑡 are made using the GMOSS simulations
and measurements of the differential antenna temperature as the sky
passes through the beam. The calibration and RFI rejection are de-
tailed in section 6 of Singh et al. (2018a) and summarised in Singh
et al. (2017). We are assuming that the data has been calibrated to be
in Kelvin units of antenna temperature and that there is no residual
RFI.
The data can be seen in Singh et al. (2017, 2018b) and we discuss

the sensitivity of the data to the global 21-cm signal in section 4 after
introducing the signal models in the following section.

MNRAS 000, 1–18 (2022)
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Noise
Model

𝜎 Prior Prior Type

Constant 𝐴𝜎 𝐴𝜎 = 10−3−10−1mK Log Uniform
Frequency
Damped 𝐴𝜎

(
a
a0

)−𝛽𝜎 𝐴𝜎 = 10−4−10−1mK Log Uniform
𝛽𝜎 = 0 − 5 Uniform

Relative
Weights

𝐴𝜎 𝑊 (a) 𝐴𝜎 = 10−2−10−1mK Log Uniform

Table 2. The tested frequency dependent and independent standard deviation
models for the assumed Gaussian noise in the SARAS2 data. In the frequency
damped noise model a0 is the central frequency in the band. The origin of
the relative weights,𝑊 (a) , is discussed in section 3.1.

3 MODELLING

The bayesian nested sampling tool polychord (Handley et al.
2015a,b) is used to fit two different systematic models and two dif-
ferent parameterisations of the global signal to the SARAS2 data.
We model the foreground using the software maxsmooth (Bevins
2020; Bevins et al. 2021a) and emulate physical models of the global
signal with globalemu (Bevins et al. 2021b).
In practice we model the foreground as 𝑇∗

fg = 𝑇fg[𝑡 . Throughout
the rest of the paperwe generally assume, unless otherwise stated, that
when discussing the foreground we are including in that definition
[𝑡 and any additive smooth systematics. We consider the addition
of non-smooth systematics, 𝑇NS, into equation 2 in section 3.3. The
details of the different components of our model are given in the
following sub sections.
The Bayesian modelling techniques used here are increasingly

common practice in 21-cm cosmology (e.g. Monsalve et al. 2019;
Ghara et al. 2020; Mondal et al. 2020; Ghara et al. 2021; Chatterjee
et al. 2021) and form the basis of the data analysis pipeline for
REACH (see Anstey et al. 2021, Sims et al. (in prep.)). We briefly
discuss the nested sampling algorithm and the reproducibility of our
results in appendix A.

3.1 Noise Modelling

For all of the fits performed in this paper, we assume that the noise
in the data is Gaussian distributed and use a Gaussian log-likelihood
function

logL =
∑︁
𝑖

(
− 1
2
log(2𝜋𝜎2) − 1

2

(
𝑇A (a𝑖) − 𝑇M (a𝑖)

𝜎

)2)
, (3)

where 𝑇M stands for the sum of the model components described
below. Our assumption is supported by assessment of the noise,
which shows a Gaussian distribution, in data that has passed through
the SARAS2 radiometer using a series of different terminations mea-
sured in the lab (Singh et al. 2018a). Support is also given by previous
analysis of the data in which the residuals after foreground modelling
with a high order polynomial have been shown to be Gaussian dis-
tributed (see Singh et al. 2017, and appendix B).
Typically the noise is assumed to be frequency independent, how-

ever, in practice the noise is dependent on the system temperature
which is dominated by the sky temperature and is a function of fre-
quency. In this paper we consider three different approximations to
the standard deviation, 𝜎, of the assumed Gaussian noise each with
a different frequency dependence. The first is a constant value of 𝜎
and the second is given by a frequency damped amplitude. The latter
comes from the naive expectation that 𝜎 should be proportional to
𝑇𝑊 which means that the standard deviation should decrease with in-
creasing frequency following the trend of the dominant foregrounds.

Our third model uses the relative weights,𝑊 (a), for the data which
are dependent on the RFI excision, integration time and system tem-
perature (see Fig. 4 in Singh et al. 2018b). The noise models are
summarised in Tab. 2 and we discuss the results when fitting with
the proposed models in section 5.1. Previous analysis has indicated
that the standard deviation on the noise is likely to be constant across
the band in the calibrated and sky-averaged data (Singh et al. 2017,
2018b).
A detailed study of likelihood and noisemodelling in global 21-cm

experiments is in preparation by Scheutwinkel et al. (2022).

3.2 Foreground Modelling

Previously, the foreground in the SARAS2 data set has beenmodelled
in combination with systematics using a high order polynomial (𝑁 =

4−8, Singh et al. 2017, 2018b). However, while a polynomial will fit
out both the foregrounds and smooth systematics, it could equally fit
out part or all of any global signal and any non-smooth systematics
in the data.
We model the foreground and smooth systematics using a variant

of an MSF (Sathyanarayana Rao et al. 2015, 2017) called a Partially
Smooth Function (PSFs, Bevins et al. 2021a). An MSF has deriva-
tives of order greater than or equal to two constrained so that the
function does not have any inflection points or higher order non-
smooth structure (i.e. the constrained derivatives do not cross zero in
the band). PSFs are closely related to MSFs but more general in their
definition and can have an arbitrary set of constrained derivatives4.
The SARAS2 data has both a turning point and inflection point

that can be attributed to the foreground multiplied by [𝑡 (Singh
et al. 2017, 2018b). We, therefore, model the PSF foreground with
derivatives of order 𝑚 > 3 constrained according to

𝑑𝑚𝑇∗
fg

𝑑a𝑚
6 0 or

𝑑𝑚𝑇∗
fg

𝑑a𝑚
> 0, (4)

with the softwaremaxsmooth. This prevents the introduction of high
order non-smooth structure into the model but allows the foreground
model to fit for a turning point (with 𝑑𝑇∗

fg/𝑑a = 0 at some frequency,
a, in the band) and inflection point (with 𝑑2𝑇∗

fg/𝑑a
2 = 0).

We test the range of built-in maxsmooth foreground models (see
Bevins et al. 2021a) and find that

𝑇∗
fg =

𝑁−1∑︁
𝑘=0

𝑎𝑘 (a − a0)𝑘 , (5)

is the best fittingmodel with 𝑁 ≥ 10. Here a0 is the central frequency
across the bandwidth. Note that maxsmooth is not a Bayesian al-
gorithm and the model parameters 𝑎𝑘 for the foreground are not
fitted by polychord. Instead, we wrap maxsmooth inside the call to
polychord and at each sample pointmaxsmooth fits the foreground
parameters, 𝑎𝑘 , to 𝑇A − 𝑇21[𝑡 − 𝑇NS.
Fig. 1 shows the resultant residuals, in orange, when fitting the

data with the PSF model across the whole SARAS2 bandwidth.
The residuals are large in magnitude and show a sinusoidal structure
whichmay be the result of systematics in the data and/or of inaccurate
foreground modelling.
In the previous analysis of the SARAS2 data, in which parameter

4 For clarity, the F in PSF andMSF stands for "function" and elaborateMSFs
can be designed with exponential or trigonometric basis functions. However,
the models are typically polynomial with a finite number of derivatives. A
discussion of this is found in Section 2 of Bevins et al. (2021a).

MNRAS 000, 1–18 (2022)
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Figure 1. A comparison of the residuals when fitting the SARAS2 data with
a 10𝑡ℎ order Partially Smooth Function with derivatives of order 𝑚 > 3
constrained across the full SARAS2 band (orange) and a set of reduced
bandwidths.We achieve a significantly lower RMS in the reduced bandwidths
potentially improving the signal to noise ratio in the data. This indicates
either a poor foreground fit across the full bandwidth, which can introduce
non-smooth structure, or the presence of multiple non-smooth systematics
dominant at different frequencies. We proceed to perform our analysis in the
reduced bandwidth 110-180 MHz based on the results presented in previous
work (Singh et al. 2017, 2018a) and in order to retain asmuch data as possible.

constraints were determined from a discrete set of signal models,
the bandwidth used was optimised on a per-signal basis (Singh et al.
2017, 2018b). In that work it was frequently found that the bandwidth
110− 180MHz is the optimum to minimise the signal-to-noise ratio
for the 264 tested signal models
In this work, the turning point and inflection point may be signif-

icantly distorting the foreground model leading to the introduction
of spurious non-smooth structure in the residuals5, despite allowing
for their presence in the modelling, and so we attempt to fit with a
PSF in the reduced range a = 110 − 180 MHz effectively removing
the turning point. We achieve significantly smaller residuals when
fitting in this band as shown in purple in Fig. 1. The difference in
magnitude may suggest a better quality foreground fit in the band
110 − 180 MHz but it may also indicate the presence of multiple
non-smooth systematics in the data each of which may dominate to
a different degree at different frequencies.
A further reduction in the upper bound on the frequency range

leads to a further reduction in the RMS. However, we still see the
same sinusoidal structure at low frequencies. In practice we could

5 This is unlikely and it can actually be shown that Partially Smooth Functions
can be effectively used to recover the noise in data sets that feature inflection
points (see ‘Turning Points and Inflection Points’ in https://maxsmooth.
readthedocs.io/en/latest/maxsmooth.html).

reduce the band to 110 - 140 MHz, removing both the turning point
and inflection point, which approximates to one full cycle of the
sinusoidal structure in both sets of residuals in the two upper panels
of Fig. 1 and we would see a significantly lower RMS (≈ 12 mK
when fitting with the proposed PSF model as can be seen in the
bottom panel of Fig. 1). This is because the systematic structure in
the data in this frequency range covers one period of oscillation and
is therefore smooth to a sufficient level that it is removed by the
foreground model. Further, if we remove the inflection point in the
data and fit in the range 160−200MHz we see a sinusoidal structure
that is partially consistent with the purple residuals in Fig. 1.
Throughout the rest of the paper, in accordance with the previous

SARAS2 analysis, to simplify the modelling and to keep as much
data as possible, we use the reduced bandwidth 110− 180MHz. The
modelling of the non-smooth systematic structure is considered in
the following section.
We note that contributions from foreground polarization can gen-

erally be expected in the data. Modelling of the effects of polarization
is non-trivial, however, and the intensity of corresponding contribu-
tions is dependent on a number of factors (Spinelli et al. 2018). In
Spinelli et al. (2019) the authors show that contributions from polar-
isation have significant non-smooth structure and we would expect
that, if this was present and dominant in our data, it would be obvious
after modelling the foreground with a PSF. However, this is not the
case in our residuals. Further, to a first approximation we expect that
the polarized signal will be proportional to 1/a2 (Spinelli et al. 2018)
and larger at lower frequencies following the opposite trend to our
residuals. Therefore, any contribution from foreground polarization
in our data can be considered sub-dominant and subsumed in our
noise modelling.
In comparison to the predicted maximum depth of the global 21-

cm signal (≈ 165 mK for standard astrophysical signals in the band
110 − 180 MHz, Reis et al. 2021), the residual RMS, 19.8 mK,
appears small in magnitude. However, as highlighted above and in
Singh et al. (2017) and Singh et al. (2018b), any signal in the data will
be suppressed by the total efficiency of the antenna. This is discussed
further in section 3.4.

3.3 Systematic Modelling

Previous analysis has shown the potential presence of sinusoidal and
damped sinusoidal systematics in data from several global 21-cm
experiments using a variety of different radiometers and analysis
techniques. One such example, previously mentioned in the intro-
duction, is the EDGES data. Hills et al. (2018) used a foreground
model with spectral index characterised by a 6 term unconstrained
polynomial to identify a 60 mK sinusoidal structure in the EDGES
data. A subsequent re-analysis of the data in Singh & Subrahmanyan
(2019) and Bevins et al. (2021a), using MSFs to model the fore-
grounds, identified a similar sinusoidal structure. In Bevins et al.
(2021a) the authors also re-analysed data from LEDA and identified
the presence of a damped sinusoidal systematic structure usingMSFs.
This conclusion is supported by previous investigation of the LEDA
data in Price et al. (2018) where the authors used a log-polynomial
foreground model.
Currently, systematics and the ambiguity of their causes pose a

limiting factor in the detection and/or confidence of a detection in
global 21-cm experiments. We attempt to physically motivate our
model for the systematic structure in the SARAS2 data and, as a
consequence of detailed systematic modelling, derive astrophysical
parameter constraints on the global signal.
Specifically, we model the damped sinusoidal structure seen in the
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Figure 2. A simplified schematic of a global 21-cm experiment. The fig-
ure illustrates the two positions at which systematic power could be added
into 𝑇A; (A) prior to the antenna and (B) after the antenna in the receiver
electronics denoted by the time dependent gain,𝐺RX (𝑡 , a) . Note when mod-
elling the systematic in the SARAS2 data we are considering these scenarios
independently. The former systematic arrives with the signal from the sky,
𝑇sky (𝑡 , a,Ω) , and global signal, 𝑇21 (a) if present, and passes through the
antenna where it is weighted by the beam directivity, 𝐷 (a,Ω) . The angular
dependence is integrated out and the systematic is then multiplied by the total
efficiency of the antenna, [𝑡 (a) , giving 𝑇NS,2 as detailed in section 3.3. The
systematic introduced in the electronics corresponds to 𝑇NS,1 in section 3.3.
After passing through the electronics the time dependence is also integrated
out of the data leaving 𝑇𝐴. Figure modified from Fig.2 of Cumner et al.
(2022).

residuals after foreground subtraction with two different physically
motivated systematic models representing the introduction of power
at different points, (A) and (B), in the SARAS2 system as illustrated
in Fig. 2. Any non-smooth systematic model can be included in
equation 2 as an additive term

𝑇A = (𝑇21 + 𝑇fg)[𝑡 + 𝑇NS. (6)

The sinusoidal structure may be introduced by a poor estimate of
[𝑡 . However, when fitting the total efficiency with a best fitting MSF
of the form given in equation 5 we find no sinusoidal structure in
the residuals. We also reiterate, for completeness, that the systematic
structure may be being introduced by poor foreground modelling.
However, the first systematic model, which we refer to as the

damped systematic model, corresponds to power introduced after the
antenna and in the electronics (e.g. see Fig. 2 in Singh et al. 2018a)

𝑇NS,1 (a) =
(
a

a0

)𝛼sys
𝐴 sin

(
2𝜋a
𝑃

+ 𝜙

)
, (7)

where 𝛼sys is a damping power, 𝐴 is the amplitude of the systematic,
𝑃 is the period, 𝜙 is the phase and a0 is the central frequency in the
band. We note that the prior range of 𝛼sys ranges from 0 − 10 (see
Tab. 3 for all of the systematic prior ranges) and as a result the model
can also account for sinusoidal systematics. The fitted parameters,
𝐴, 𝛼sys, 𝑃 and 𝜙 are constant across the band and the frequency
dependence comes from the damping factor, (a/a0)𝛼sys .
The second model, the efficiency systematic, is given by

𝑇NS,2 (a) = [𝑡

(
a

a0

)𝛼sys
𝐴 sin

(
2𝜋a
𝑃

+ 𝜙

)
. (8)

In this case, the systematic structure models power introduced prior
to the antenna and mediated by the total efficiency which provides
some damping. Such a systematic could be explained by activity
in the ionosphere over the observing period, RFI or a previously
unidentified non-smooth component of the foreground.
The non-smooth structure in the data could also, as highlighted

Parameter Prior Prior Type

Systematic

𝛼sys 0 − 10

Uniform𝐴 0 − 1 K
𝑃 10 − 70MHz
𝜙 0 − 2𝜋 rad

Signal

𝜏 0.026 − 0.1 (STA) /
0.035 − 0.077 (ERB) Uniform

𝛼 1.3 (STA only)
𝐸min 0.1 − 3 keV (STA only)
𝑅mfp 30 (STA) / 40 (ERB) Mpc
𝑓∗ 0.001 − 0.5

Log-Uniform𝑉𝑐 4.2 − 100 km/s
𝑓𝑋 0.0001 − 1000
𝑓radio 1 − 99500 (ERB only)

Table 3. The prior ranges and prior types used for the systematic and signal
parameters fitted by polychord. Note that for the signal parameters the prior
ranges are defined by the training data. For the excess radio background (ERB)
signals 𝑅rmfp is fixed at 40 Mpc and the X-ray SED is representative of that
from X-ray binaries. See section 3.4 for more details on each model compo-
nent, the training data and the difference between the standard astrophysical
(STA) and ERB models.

previously, be caused by emission from the ground if the assumption
that this is smooth does not hold. Specifically, structure or layering
in the ground at depths larger than the wavelengths of operation and
below the penetration depth computed for the soil properties could
introduce systematic structure. A discontinuity in the soil below the
antenna such as that between the loose top soil, caused by erosion
over time, and the rock of the Deccan Plateau or from a water table
could cause a damped sinusoidal structure to propagate through to
the receiver noise, total efficiency and antenna temperature.
Another possible origin of a damped sinusoidal systematic could

be a small clump of foliage or a root system, without significant
foliage above ground, close to the deployment sight. In principle
both this and the above ground emission are potential causes of
systematics that will be mitigated in the latest iteration of the SARAS
experiment, SARAS3, which has been deployed on a lake (Girish
et al. 2020; Nambissan T. et al. 2021; Raghunathan et al. 2021).
It is well-known that the directivity of vertical monopoles (Train-

otti & Figueroa 2010) naturally experiences a sinusoidal like fre-
quency response. Such behaviour would correspond to 𝑇NS,2. We
note, however, that the period of the sinusoidal-like structure visible
in the data is faster than what would be expected from a monopole.
The scale of the circular element of the antenna, 43.5 cm in radius,
was chosen such that any reflections from the edges of the disks
would have a period of ≈ 350 MHz and the observing band falls
within the first resonance at 260 MHz (Singh et al. 2017, 2018a).
Any reflections in the beam pattern from the edges of the disk would
thus be smooth across the reduced SARAS2 band and effectively
subsumed by our smooth foreground model detailed in the previous
subsection.
If we consider the systematic to be real and not a spurious sig-

nal introduced by an inaccurate foreground model, then our analysis
could help to identify a cause because we have two distinct models
representing systematics introduced at different points in the experi-
ment.We note that theremay be degeneracy between the two different
models but also that the efficiency is an inherent characteristic of the
experiment and unlikely to mimic generic systematic properties.
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3.4 Signal Modelling

The signal emulator globalemu provides a framework to train neural
networks on different sets of global 21-cm signals. We can therefore
use the latest simulations with the most up-to-date understanding
of the signal and we can analyse parameter constraints on different
astrophysical models.
The global 21-cm signal is determined by the contrast between the

spin temperature of neutral hydrogen, 𝑇𝑠 , and the radio background,
𝑇𝑟 , as a function of redshift

𝑇21 =
𝑇𝑠 − 𝑇𝑟

1 + 𝑧
(1 − 𝑒−𝜏21 ), (9)

where 𝜏21 is the 21-cm optical depth of the IGM (Mesinger 2019).
Calculated realisations of the global 21-cm signal are achieved by
using hybrid techniques and either averaging over large modelled
cosmological volumes (2D simulations e.g. Mesinger et al. 2011)
or directly approximating that average over redshift (1D simulations
e.g.Mirocha 2014). In this analysis we use the simulations detailed in
Visbal et al. (2012); Fialkov & Barkana (2014); Cohen et al. (2017);
Reis et al. (2020b, 2021) and specifically the sets of global 21-cm
signals presented inReis et al. (2020b) andReis et al. (2021). For each
set of signals, exotic models with an excess radio background and
standard astrophysics respectively, we train neural network emulators
with globalemu.More details about the two sets of signalmodels we
have used are given in the following sections with examples shown
in Fig. 3.

3.4.1 Standard astrophysical signals

In this paper, we use the recent simulations of the global signal with
Lyman-𝛼 heating, CMB heating and multiple scattering presented in
Reis et al. (2021). We refer to these standard astrophysical models in
the text as the STA (standard astrophysical) signals. As stars form in
the early universe and Lyman-𝛼 coupling between the spin tempera-
ture, 𝑇𝑠 , of the neutral hydrogen and kinetic temperature of the gas,
𝑇𝑘 , begins to influence the structure of global signal, Lyman-𝛼 and
CMB heating begin to counteract the cooling (Chuzhoy & Shapiro
2007; Venumadhav et al. 2018; Mittal & Kulkarni 2020; Reis et al.
2021). These heating mechanisms begin before the onset of X-ray
heating and they lead to a reduction in the theoretical maximum
potential depth of absorption from ≈ 250 mK (Cohen et al. 2020)
to ≈ 165 mK (Reis et al. 2021). Multiple scattering influences the
efficiency of Lyman-𝛼 coupling, has a weak affect on the maximum
depth of the signal and primarily influences the structure of the power
spectrum at 𝑧 > 20 (Reis et al. 2021) outside the SARAS2 band.
We train globalemu on a set of 5,137 realisations of the standard

astrophysical signals and test the quality of emulation with a set of
570 models. Each model spans the redshift range 𝑧 = 6 − 39 and the
redshift spacing is given by 𝛿𝑧 = 0.1. The structure of the signals is
determined by a set of seven astrophysical parameters (further details
can be found in Cohen et al. 2020; Reis et al. 2021; Bevins et al.
2021b);

• The star formation efficiency, 𝑓∗: Determines the fraction of gas
in darkmatter halos that is converted into stars. The value of 𝑓∗ drives
the Lyman-𝛼 flux and influences the onset of X-ray heating which
both determine the depth of the global signal absorption trough and
the ionizing efficiency of sources.

• The minimal circular velocity, 𝑉𝑐 : The threshold virial circu-
lar velocity is proportional to the cube root of the minimum halo
mass for star formation. Its value is determined by different cool-
ing channels (molecular and atomic hydrogen) and star-formation-

suppressing feedbackmechanisms. It influences the timing ofLyman-
𝛼 coupling, total X-ray luminosity of halos and reionization.
• The X-ray efficiency, 𝑓𝑋 : The value of 𝑓𝑋 affects the X-ray

luminosity per star formation rate, which in turn influences the depth
of the absorption trough and amplitude of any emission above the
radio background during reionization. Further, 𝑓𝑋 has a minor effect
on ionization at recent times.

• The slope of the X-ray spectral energy distribution (SED), 𝛼:
The dependence of the structure of the global signal on 𝛼 is expected
to be very weak (Monsalve et al. 2019) and its value plays a small
role at low redshifts.

• The low energy cutoff of the X-ray SED, 𝐸min: This parameter
regulates the fortness of the X-ray SED and thus has some influence
on the efficiency of X-ray heating at low redshifts covered by the
SARAS2 band. While it is not expected to affect the structure of the
signal significantly, in some cases, it can have more of an impact than
𝛼 or 𝑅mfp.
• CMB optical depth, 𝜏: The optical depth is directly related to

the ionizing efficiency of sources, Z and its value strongly influences
the redshift of reionization. The value of 𝜏 has been determined
by Planck Collaboration VI (2020) to be 0.055 ± 0.007 and Tab. 3
shows that this range is explored completely by the prior for the STA
models.

• The mean free path of ionizing photons, 𝑅mfp: The value of
𝑅mfp affects the rate of ionization of the neutral hydrogen gas corre-
sponding to the gradient of the signal at low redshifts. The effects of
varying 𝑅mfp are also not expected to influence the structure of the
global signal significantly (see e.g. Monsalve et al. 2019).

The primary reason 𝐸min, 𝛼 and 𝑅mfp, are explored in the simu-
lations is because the simulations are also used to determine models
of the power spectrum on which they have a greater influence. We
train globalemu using all seven astrophysical parameters and sub-
sequently perform fits with fixed values of 𝑅mfp = 30 Mpc and
𝛼 = 1.3 (as was done with the EDGES High Band data in Monsalve
et al. 2019, using the contemporary standard astrophysical models
and signal emulator). We repeat the analysis in appendix D allowing
polychord to fit for all seven parameters however we do not discuss
these results in the main text as we find the effect of including the
additional parameters is minimal. The ranges, equivalent to the pri-
ors, of all of the parameters sampled in the training and test data sets
are given in Tab. 3.
We assess the accuracy of the emulator across the band 110− 180

MHz (or equivalently 𝑧 ≈ 7−12).We use a pragmatic target accuracy
when emulating the signals of on average approximately 10% of the
expected noise from a global 21-cm experiment (Bevins et al. 2021b).
This varies based on the experiment with a value of 2.5 mK for
REACH, 2 mK for EDGES (Bowman et al. 2018) and approximately
1 mK for SARAS2. Therefore, when emulating the STA models we
assume a target accuracy of between 1 and 2.5 mK and use the RMSE
metric given by equation (7) in Bevins et al. (2021b). The mean, 95th
percentile and the worst RMSE values from the test data set of 570
models, with sampling resolution equivalent to 0.122 MHz, are 0.8,
1.9 and 6.8 mK respectively. We find that only 29 models have an
RMSE larger than ≈ 1.9 mK indicating a high degree of accuracy.
We use a fully connected network with 4 hidden layers of 16 nodes
each to emulate the STA models.
In practice a low RMSE in temperature does not necessarily corre-

spond to an accurate recovery of the astrophysical parameters. For the
analysis performed in this work this is not a significant issue because
the reported constraints are weak. We leave a detailed exploration of
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Figure 3. Top Row, left to right:A set of 50 example signals that include Lyman-𝛼 heating and CMB heating, the equivalent signals in the band 110−180MHz
and the signals multiplied by the total efficiency of the SARAS2 antenna. Bottom Row, left to right: 50 example signals with different levels of excess radio
background above the CMB, the same signals in the reduced SARAS2 band and finally the signals multiplied by the total efficiency of the SARAS2 antenna.

emulator accuracy and its affects on parameter recovery for future
work.

3.4.2 Excess radio background signals

Typically, 𝑇𝑟 in equation 9 is assumed to be equal to the CMB
temperature. However, one of the possible explanations for the larger
than expected absorption feature reported by EDGES (Bowman et al.
2018) is an excess radio background above the CMB. In addition,
a population of radio sources at high redshifts could naturally con-
tribute to𝑇𝑟 (e.g Feng &Holder 2018). While there is some evidence
for a larger than expected radio background fromARCADE2 (Fixsen
et al. 2011) andLWA(Dowell&Taylor 2018), there remain some con-
cerns about the Galactic modelling in these works (Subrahmanyan
& Cowsik 2013).
Reis et al. (2020b) investigated the introduction of an excess radio

background from high redshift radio galaxies and we use the models
presented there in this work in an attempt to constrain the parameter
𝑓radio with the SARAS2 data. 𝑓radio denotes the radio production
efficiency of early galaxies, a value of one corresponds to the present
day and the range of 𝑓radio in our training data set is given in Tab. 3.
We refer to these exotic astrophysical models throughout the rest of
the paper as the ERB (excess radio background) models.
The simulations use a similar parameter description of the global

signal presented in the previous subsection with the additional pa-
rameter 𝑓radio. The value of 𝑅mfp is fixed at 40 Mpc when running
the simulations. The X-ray SED is assumed to be fromX-ray binaries
(Fialkov et al. 2014) and the simulations are consequently indepen-
dent of 𝛼 and 𝐸min. The models also include the effects of Lyman-𝛼
heating, CMB heating and multiple scattering.
The data set contains 4,311 training models and 479 test models.

We train globalemuwith the five parameters as inputs; 𝑓∗,𝑉𝑐 , 𝑓𝑋 , 𝜏
and 𝑓radio. The mean, 95th percentile and the worst RMSE values are
7.3, 27.3 and 125.9 mK respectively. We use a network with 4 hidden
layers each with 16 nodes as was done with the STAmodels and note
that with this training data set the accuracy does not significantly
improve if we increase the size of the network. However, the mean
accuracy of emulation, 7.3 mK, is within an order of magnitude of

our target accuracy of 1−2.5mK. Themagnitudes of the signals, after
multiplication by [𝑡 , with the largest RMSE values are significant
in comparison to the expected noise and as fractional accuracies the
worst and 95th percentile results are reasonable.

4 SENSITIVITY OF THE SARAS2 DATA TO
ASTROPHYSICAL PARAMETERS

When considering the sensitivity of the SARAS2 data to the global
21-cm signal it is important to consider that any signal in the data will
be multiplied by the total efficiency of the antenna. As has previously
been discussed and shown in Fig. 3, this significantly reduces the
magnitude of the signals in the data and given the expected noise6 of
11mK results in a low signal to noise ratio. In turn, this would make
any signal in the data hard to recover.
Further, the observations cover a bandwidth expected to include

the EoR which has implications for the types of signals that we
expect to be able to constrain. The EoR window is sensitive to the
value of 𝜏 which affects the redshift of reionization and as a result the
maximum amplitude of the global signal. For example, a high value
of 𝜏 can lead to an earlier reionization. In the absence of efficient
X-ray heating and presence of a low Lyman-𝛼 flux the effect of 𝜏 is
less significant in the SARAS2 bandwidth.
Similarly, the value of 𝐸min has a more significant effect on the

structure of the global signal in the SARAS2 band if 𝑓𝑋 is high.
In this case the value of 𝐸min affects the depth of the signal and
the efficiency of X-ray heating. If we maintain the Lyman-𝛼 flux,
i.e. onset of Lyman-𝛼 coupling, and increase the value of 𝐸min we
reduce the efficiency of X-ray heating, move the minimum of the
signal to lower redshifts and can create a deep global signal inside
the SARAS2 band. A similar effect can occur if we decrease the
value of 𝑓𝑋 from high to low and this is more prominent than that
introduced by variation in 𝐸min. The analysis should therefore be
sensitive to models with low values of 𝑓𝑋 and high values of 𝐸min.

6 Specifically, this is the expected noise in the instrument plane without
correcting for the total efficiency of the antenna.
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In addition, if 𝑓𝑋 is high, and to a lesser extent if 𝐸min is low, then
we can expect that there will be significant excess radio background
which will produce a prominent and deep signal in the SARAS2 data
even after multiplication by the total efficiency of the antenna.
𝑉𝑐 and 𝑓∗ determine the strength of the Lyman-𝛼 flux, consequent

onset of Lyman-𝛼 coupling and position of the signalminimum.High
values of 𝑓∗ correspond to a high fraction of the gas in dark matter
halos being converted into stars which leads to a high Lyman-𝛼 flux.
The top panels of Fig. 4 show that the strongest signals in the SARAS2
band after multiplication by the total efficiency are those with low
Lyman-𝛼 fluxes (high 𝑉𝑐 and low 𝑓∗) whereas the weakest signals
are those with high Lyman-𝛼 fluxes (low 𝑉𝑐 and high 𝑓∗). Here we
have defined "high" and "low" values of the parameters with respect
to the middle of the log-prior ranges. Our analysis should therefore
be more sensitive to models with low Lyman-𝛼 fluxes.
Further dividing the two classes of signals in Fig. 4 based on their

value of 𝑓𝑋 we can see that we should also expect our analysis to be
sensitive to low values of 𝑓𝑋 , as expected from the discussion above.
We should also consider our sensitivity to models that have both

high or both low values of 𝑉𝑐 and 𝑓∗ in combinations that do not
meet the crude criteria for high and low Lyman-𝛼 fluxes defined
above. These models are shown in black in the bottom panel of
Fig. 4 against the backdrop of previously "classified" models in grey.
From the figure we can see that these models typically also have low
Lyman-𝛼 fluxes and have minima at more recent redshifts particu-
larly in comparison to the "high" Lyman-𝛼 flux signals discussed
previously. These signals therefore have dominant structures and rel-
atively large magnitudes in the SARAS2 band and indicate a more
general sensitivity to the values of 𝑓∗ and 𝑉𝑐 .
Finally, the data is expected to be sensitive to ERB signals with

very high values of 𝑓radio as these signals have deep absorption
troughs of a few hundred mK even after multiplication by the total
efficiency of the antenna. This is particularly true when there is also
a high Lyman-𝛼 flux and low X-ray efficiency which results in strong
variation of the signal within the SARAS2 band.

5 RESULTS

Fig. 5 summarises the different combinations of signal, systematic
and noise models that were fitted to the SARAS2 data. For com-
pleteness, we report fits without signals and/or systematics. The four
highest evidence fits are approximately equivalent (within errorbars)
and the relative weights based noise model is comparatively poor
compared to the two alternatives considered when we include a sys-
tematic model in the fit. These points are further discussed in the
following sections.
The evidence, 𝑍 , is a marginal likelihood integrated over all of

the fitted parameters. It quantifies the probability that the data is
described by the chosen model components and is the normalising
factor in Bayes theorem. A higher log(𝑍) indicates a preference for
thatmodel or hypothesis as a description for the data over alternatives.
It is often used to determine the presence or absence of signals in
data sets by comparing its value for fits with and without the relevant
model components. An example of this, beyond the results presented
in this paper, can be found in Bevins et al. (2021a) in which the
authors fit the EDGES data set with signal and systematic models
using the evidence to determine which models are preferred by the
data. A further brief discussion of the evidence and Bayes theorem
can be found in appendix A.
Of the tested combinations ofmodel componentswe find thatmod-

elling with a STA signal and no systematic leads to only a marginal

increase in evidence in comparison to a foreground only fit as can be
seen in the bottom panel of Fig. 5. The increase in evidence is larger
when we model an ERB signal but this is to be expected as these sig-
nals can have significantly deeper absorption features than the STA
signals and as a result they are better able to fit out the larger sys-
tematic structure. Fits with systematic modelling have significantly
higher evidences, regardless of whether we include a STA, ERB or
no global signal model, than those without systematic modelling,
Δ log(𝑍) ≈ 200 − 300. The data, therefore, favours the presence of
a systematic model but there is no strong indication for the presence
of a signal in the data.
Appendix B shows the residuals found when fitting the data with

the PSF foreground model, the efficiency systematic and the con-
stant noise model (fit number 4) compared with the residuals from a
high order polynomial fit. The consistency between the two sets of
residuals suggests that the complexity of the modelling used here is
sufficient to describe the data. Although a signal may still be present
with an absolute maximum magnitude less than the noise after mul-
tiplication by the total efficiency of the antenna.
In the following sectionswe discuss inmore detail the results found

when modelling with the different components outlined in section 3.

5.1 Noise

We would expect that the relative weights based noise model would
provide the best representation of the noise in the data as it has
been derived from system parameters. In the absence of systematic
modelling this noise model performs comparatively well because the
residuals after foreground modelling are larger at higher frequencies
following the trend of the weights. However, from the top panel of
Fig. 5 it is clear that the log-evidence for fits with this noisemodel and
a systematic is much lower than for fits with the two alternatives. This
is likely due to some degeneracy, that would be hard to disentangle,
between the systematic model and the weights based noise model
which follow the same trend in the data (increasing with frequency).
However, the systematic model, particularly the damped systematic,
is designed to allow for no damping (i.e 𝛼sys = 0 in equation 8 and
equation 7) and we find that some damping is typically favoured in
our fits as is the presence of a systematic model.
For some combinations of signal and systematic, we find that

the log-evidence is comparable between the fits with constant and
frequency damped standard deviation. However, in the majority of
cases the constant noise modelling gives a higher evidence. In the
one case where this is not true, fitting with a STA signal and the
efficiency systematic, the evidences are comparable indicating that
neither noise model is favoured over the other.
For the fit with the efficiency systematic and STA signals we

find, with the frequency damped noise, log(𝑍) = 1684.5 ± 0.2.
In comparison, when modelling the noise with a constant standard
deviation, we find log(𝑍) = 1684.4 ± 0.2. For these two fits, we can
look in more detail at the maximum likelihood noise models and the
posteriors for the noise model parameters are shown in Fig. 6. For
the frequency damped model the maximum likelihood parameters
are 𝐴𝜎 = 10.9 mK and 𝛽𝜎 = 0.45 and for the constant noise model
the maximum likelihood amplitude is 𝐴𝜎 = 11.0mK. In the former,
the damping power is weak, recalling that the prior range for this
parameter is 0 − 5, and the maximum likelihood amplitude for both
models is near identical with a similar posterior distribution. The
weak damping is a consistent feature across all of the fits with the
damped model as is the similarity in the amplitude of the noise.
To summarise, when comparing the two best noise models, con-

stant and frequency damped, we find an equality in log-evidence or
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Figure 4. The figure shows 243 STA signals from the training data coloured based on the values of 𝑓∗, 𝑉𝑐 and 𝑓𝑋 . The left column shows the signals as they are
in the training and testing data and the right panel shows the signals in the SARAS2 band, indicated on the left by the dashed lines, after multiplication by the
total efficiency of the antenna. In the top panels we show the set of signals split based on the type of Lyman-𝛼 flux that they correspond to. A high Lyman-𝛼
flux is produced by a high 𝑓∗ and low 𝑉𝑐 where we judge "low" and "high" with respect to the middle of the log-prior range for each parameter. In the middle
panels we further split the models based on their values of 𝑓𝑋 . From the graph we can see that, after multiplying by the total efficiency of the SARAS2 antenna,
the signals with a low Lyman-𝛼 flux and low value of 𝑓𝑋 have the largest absolute magnitudes and so our analysis should be most sensitive to these models. The
bottom panel shows the previously classified 243 STA signals in grey in comparison to a further 257 signals in black that do not meet our crude classification of
"low" and "high" Lyman-𝛼 fluxes and with neither high 𝑓∗ and low 𝑉𝑐 or low 𝑓∗ and high 𝑉𝑐 . These models have prominent structures in the SARAS2 band
indicating a more general sensitivity to the values of 𝑓∗ and 𝑉𝑐 .

preference for the former model, a consistent weak damping in the
later and similarity in amplitude. This supports the expectation from
the literature that the noise should be uniform across the band in the
SARAS2 data (Singh et al. 2017, 2018b).

5.2 Systematics

As discussed, we see a large increase in log-evidence, Δ log(𝑍) ≈
300, when joint fits with a PSF foreground and the efficiency or
damped systematic models are performed as shown in Fig. 5. Com-
paring like for like fits with different systematic models we con-
sistently find that the efficiency systematic model is favoured over
the alternative by the data. Regardless of noise modelling, the five
highest evidence models are all fits with the efficiency systematic.
Both systematics rely on the same parameterisation and so a direct

comparison can be made between fits with the same noise and signal
modelling but different systematic models. The posterior distribu-
tions for each parameter are typically well constrained Gaussian-
like distributions. 𝛼sys is generally centered around 0 for the effi-

ciency systematic in comparison to a value of approximately 3 for
the damped systematic. This indicates that, in the case of the effi-
ciency systematic, the data favours a sinusoidal systematic structure
that is damped predominantly by the total efficiency of the radiome-
ter, [𝑡 (i.e. the term (a/a0)𝛼sys ≈ 1 in equation 8).
For both systematic models the period, 𝑃, and phase, 𝜙, have

similar distributions suggesting that any systematic in the data has
a period of approximately 32.5 MHz and phase of approximately
0 rad. This is true generally, regardless of noise and signal model,
since the systematic dominates the residuals. The systematics also
have similar amplitudes but, while in the efficiency systematic this
is mainly determined by 𝐴, in the damped systematic it is mainly
determined by the term (a/a0)𝛼sys in equation 7.
From the log-evidences we can conclude that the data marginally

favours a sinusoidal systematic damped by the total efficiency of the
antenna. However, as with the noise modelling, the differences in
log-evidence between like for like fits with different systematics are
small and all of the fits with the different systematic models contain
potential information about the astrophysical parameter space. We
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Figure 5. A graphical summary of the different fits performed in this analysis which demonstrates that the highest evidence fits from all of those performed are
fits of equal quality. The signal type can be found on the right-hand y-axis, the fit number on the left-hand axis and the noise and systematic types in the legends.
The fit numbers are used for referencing through out the text. The top panel shows fits that include a systematic model and the bottom panel shows fits without a
systematic model. We divide the two classes of fits into separate graphs because those with a systematic have a much higher evidence, Δ log(𝑍 ) ≈ 200 − 300,
than those without. Note that a difference of Δ log(𝑍 ) ≈ 10 corresponds to a difference of exp(10) ≈ 22000 or betting odds of 22000:1 in favour of the higher
evidence model.

can, therefore, use all of the samples from the different fits, weighted
by their evidences, in a combined analysis. This approach effectively
marginalises over the systematic and noise model parameters and is
detailed in the following section.

5.3 Disfavoured 21-cm signals from combined samples

We can use anesthetic (Handley 2019) to combine the posterior
samples from polychord, weighted by the fit evidence, from the
various nested sampling runs to determine the types of global 21-
cm signals disfavoured in our analysis. This is advantageous since
it provides a method to deal with uncertainty in the modelling of
the standard deviation on the noise and the systematic and should be
considered a conservative view of any constraints on the parameter
space from the SARAS2 data.
While we note that the fits in Fig. 5 do not indicate a preference

for the presence of a signal, we can still use the data to determine
constraints on the parameter space of the global 21-cm signal as has
previously been done with data from EDGES (Monsalve et al. 2019).
In the previous two sections we have made the argument that the

amplitude of the noise is best described by a constant standard devia-
tion and the systematic is best modelled by the efficiency systematic.

While these statements are true to an extent the range in log-evidence
between the corresponding fits with different model components is
not significant. In fact, the former is largely motivated by the fact
that the constant noise model is simpler than the frequency damped
model and thus favourable. In practice the data does not tell us which
noise model is preferred.
Since the 2D and 1D posteriors for the astrophysical parame-

ters by definition marginalise over the systematic and noise parame-
ters we can confidently combine the samples and draw conclusions
from the corresponding posteriors. As alluded to the posterior sam-
ples, 𝑃(\ |𝐷, 𝑀), when combined using anesthetic are weighted by
weights, 𝑤, that are directly proportional to the fit evidence, 𝑍

𝑃combined (\ |𝐷, 𝑀) =
∑︁
𝑖

𝑤𝑖𝑃𝑖 (\ |𝐷, 𝑀), (10)

where the weights 𝑤𝑖 = 𝑍𝑖/
∑

𝑗 𝑍 𝑗 , \ is a vector of parameters
associated with the fit components for fit 𝑖, 𝐷 is the data and 𝑀 is the
analytical model. In appendix C we show the values of 𝑤𝑖 for each of
the different fits performed in this analysis separated by their signal
type.
In the following subsections we therefore discuss posteriors from

combined samples for all of the fits containing STA signals (see
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Figure 6. The posteriors for the noise parameters when fitting the SARAS2
data with STA signals and the efficiency systematic. The posteriors for the am-
plitude of the noise are near identical for the frequency damped (purple) and
constant noise models (orange). In addition, the frequency damping power is
approximately 0.5 which corresponds to very weak damping. In combination
these two facts indicate a similarity between the two noise models. All of the
corner plots presented in this paper were produced using anesthetic (Han-
dley 2019) and the contour lines here represent 68% and 95% confidence
intervals.

appendix D for results with variable values of 𝑅mfp and 𝛼) and fits
containing ERB signals.
We briefly compare our results with those previously reported in

Singh et al. (2017, 2018b) and with the recent results from HERA in
section 5.3.3.

5.3.1 Excess Radio Background Signals

We can analyse combined samples from fit numbers 1, 5, 10, 12,
14 and 16, those containing ERB signals, as shown in Fig. 7. The
recovered 1D histograms are generally flat and do not show any
significant constraints. Although regions of high 𝑓radio (& 407 and
& 707) in combination, separately, with low 𝑓𝑋 (. 0.21) and high
𝑓∗ (& 0.03) are disfavoured at 68% confidence. We also disfavour
high values of 𝜏 above approximately & 0.06 in combination with
𝑓𝑋 & 0.50 at 68% confidence.
We use histograms to illustrate the samples in the parameter space

rather than plotting posteriors, with confidence regions, derived using
Kernel Density Estimation (KDE) as was done in Fig. 6. This is
done because the application of a KDE to the samples can, in the
case of flat distributions, lead to misleading features that suggest
specific areas of the parameter space are more favourable than others.
Binning the raw samples across the parameter space gives a clearer
impression of regions of the parameter space that the nested sampling
algorithm explored in greater detail (i.e. thosewith higher likelihoods
and combinations of parameters that are favoured by the data). For
example in Fig. 7 favoured regions of the parameter space would be
sampled in greater detail and the corresponding bins in the 2D plots
would be shaded in a lighter yellow.
To quantify the strength of 2D constraints across the parameter

space the authors of Abdurashidova et al. (2022) assess the ratio of
the minimum and maximum posterior probability (∝ height of the

histogram bins) across the 2D space. A ratio of 1 would indicate a
perfectly flat posterior and a low value indicates a non-uniform distri-
bution. The metric is limited in that it does not indicate the direction
of any non-uniformity and is insensitive to any pseudo-random scat-
ter across the parameter space that may result from a fine binning of
a relatively flat distribution7. However, in combination with a visual
inspection of a constrained parameter space it can be useful metric
to determine the magnitude of any directional non-uniformity. For
example, the ratio between the minimum and maximum posterior
probability for 𝑓radio − 𝑓𝑋 in Fig. 7 is 0.10. In comparison the maxi-
mum ratio for Fig. 7 is 0.20 for 𝑉𝑐 − 𝑓radio and the minimum ratio is
0.08 for 𝑓𝑋 − 𝜏.
Further, the deepest signals have high Lyman-𝛼 fluxes (high 𝑓∗

and low 𝑉𝑐), low X-ray efficiencies, 𝑓𝑋 , and high values of 𝑓radio.
After multiplication by the total efficiency of the antenna these sig-
nals typically have magnitudes larger than the expected noise and
consequently we would expect to exclude these with the SARAS2
data. This can be seen clearly in Fig. 8 in which we plot the functional
posterior samples on top of the prior using the tool fgivenx (Han-
dley 2018). The tool allows us to visualize the combined posterior
samples shown in Fig. 9 as a set of contours in the𝑇21− 𝑧 space. Note
that although the priors on our parameters are uniform this does not
necessarily translate to a uniform prior in the global 21-cm signal.

5.3.2 Standard Astrophysical Signals

Histograms produced from the combined samples for the astrophys-
ical parameters from fit numbers 2, 3, 9, 11, 13, and 18 from Fig. 5,
those with STA signals, are shown in Fig. 9. The histograms are flat
indicating that we do not significantly constrain the parameter space
and further indicating that there is no preference for a signal in the
data.
Fig. 10 shows the functional posterior (in red) along with the

equivalent for samples taken from the prior (in blue). There is some
indication that the data disfavours (lighter shaded red regions) signals
with absorption features at high redshift. For example, the preferred
region (darker red and blue with significance < 1𝜎) around the
absorption minimum, where the sampling is highest, is larger and
shifted to lower redshifts in the posterior than in the prior. How-
ever, the contraction from the prior to the posterior is minimal as
would be expected from the flat nature of the distributions in Fig. 9.
Therefore any conclusions wemake about constraints on the standard
astrophysical priors are by definition weak.
The contraction from prior to posterior can be quanitified with the

Kullback-Leibler Divergence and Bayesian Dimensionality (Handley
& Lemos 2019). However, we are only interested in the contraction
from specifically the astrophysical prior to the astrophysical posterior
and we do not want to include contributions to the statistics from nui-
sance parameters, like the systematic parameters, in our calculations.
This requirement makes quantifying the contraction for the analysis
performed here non-trivial. We therefore leave a detailed discussion
of these marginal Bayesian statistics to future work (Bevins et al. in
prep).

7 The metric is also dependent on the number of bins into which the samples
are separated and so comparison across experiments is difficult without fixing
the number of bins in each set of analysis.
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5.3.3 Results in the context of the previous SARAS2 analysis and
the HERA results

As discussed in section 1, previous analysis of the SARAS2 data,
with standard astrophysical signal models, led to the conclusion that
a set of specific astrophysical models with rapid reionization and
weak X-ray heating (low values of 𝑓𝑋 ) were disfavoured. We find
that we weakly disfavour standard astrophysical signals with high
Lyman-𝛼 fluxes and weak heating and this can be seen in Fig. 10.
Our constraints are stronger on the ERB signals in which we also
find that we disfavour signals with weak X-ray heating, in particular,
although these signals were not explored in the previous SARAS2
analysis. It is important to note that the simulations used in this paper
have different parameterizations of the X-ray SEDs and the original
SARAS2 analysis was confined to the study of a limited sample of
264 models.
Further, the signals used in each study have significantly different

dependence on the Lyman-𝛼 flux with the introduction of Lyman-
𝛼 heating in the simulations used in this work. Additional heating
from the CMB is also included here which will influence the con-
clusions we make about the strength of the X-ray heating and makes
comparison between the two sets of analysis difficult.
The additional heating mechanisms influence the position of the

minima of the global signal with a higher heating shifting the minima
to higher redshifts outside the SARAS2 band and consequently re-

ducing the magnitude of the signal at low redshift. This in turn leads
to a lower signal to noise ratio in the data and makes signals with
high heating hard to rule out. In contrast signals with weak heating
have minima at lower redshifts, have larger absolute magnitudes in
the SARAS2 band and higher signal to noise ratios making them
easier to rule out.
Lyman-𝛼 and CMB heating, as discussed in section 3.4, actually

reduce the maximum allowed depth of the global signal to approxi-
mately ≈ 165mK in comparison to the predictions from the previous
state of the art simulations, used in the original SARAS2 analysis,
which could reach depths of 250mK (Cohen et al. 2017). It is this dif-
ference in the maximum absolute magnitude between the two sets of
signals used in each set of analysis which explains why the previous
analysis is able to rule out a set of signals with such high confidence
(> 5𝜎 in some cases) and in this paper we are unable to make any
significant conclusions for standard astrophysical signals. The ma-
jority of the signals ruled out in the previous work have amplitudes
& 125mK and so if present in the SARAS2 data would have a higher
signal to noise ratio than the majority of the models analysed in this
paper with amplitudes . 165 mK making them easier to identify or
rule out.
Comparison with results from other experiments in the literature

is generally difficult because the analysis often uses contemporary
parameterizations of the global signal that are subsequently super-
seded by more astrophysically accurate models. However, the recent
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Figure 10. The figure shows the contraction from the prior (blue) to the combined posterior samples (red) in the 5D astrophysical parameter space (i.e. 𝑇21 − 𝑧)
for the STA signals. The graph indicates that the data weakly disfavours (lighter shaded red regions) standard astrophysical signals with absorption features at
high redshift. However, we note that the contraction from the prior to the posterior is minimal. Again the figure was produced using fgivenx (Handley 2018)
and we have added gridlines to make the differences between the two distributions clearer.

upper limits on the 21-cm power spectrum at 𝑧 ≈ 8 and 10 by the
HERA (Hydrogen Epoch of Reionization Array) collaboration have
been used to derive parameter constraints on an excess radio back-
ground from high redshift radio galaxies using the same parameteri-
zation used in this paper across the band 𝑧 ≈ 7 − 12 (Abdurashidova
et al. 2022).
As discussed, SARAS2 data ismost sensitive to and able to exclude

the ERB signals with the largest radio backgrounds because their
magnitudeswithin the SARAS2band are larger than the experimental
noise. In a similar way, the authors in Abdurashidova et al. (2022)
are able to exclude models with high radio backgrounds because the
corresponding power spectra are larger than the upper limits provided
by HERA.
The authors perform parameter constraints using the likelihood

function described in their section (3), theMCMCEnsemble sampler
emcee (Foreman-Mackey et al. 2013) and a neural network emulator
of the power spectrum detailed in their appendix A.When investigat-
ing the parameter constraints on the ERBmodels the authors rule out,
with a higher significance, a similar region of the 𝑓radio− 𝑓𝑋

8 param-
eter space as is done in this paper with the SARAS2 data. Specifically
the authors rule out values of 𝑓𝑋 < 0.33 and 𝑓radio > 391 in com-
parison to our values of 0.21 and 407 respectively.

6 CONCLUSIONS

In this paper we have reported constraints on the EoR using data from
the SARAS2 experiment, the nested sampling algorithm polychord,

8 Note that 𝑓radio is referred to by 𝑓𝑟 in Abdurashidova et al. (2022).

the derivative constrained function fitting code maxsmooth and the
global signal emulator globalemu.
We have fitted, to data from a global 21-cm experiment for the first

time, standard astrophysical signals with Lyman-𝛼 and CMB heating
and exotic astrophysical models with an excess radio background
produced from high redshift galaxies. General conclusions from our
analysis are summarised below;

• We have found no conclusive evidence for the presence of a sig-
nal in the data and fits performed with and without signal modelling
have comparable evidences.

• The data generally favours the presence of noise with a constant
standard deviation across the SARAS2 band over the two alternatives
tested in this paper.

• We have illustrated the presence of a damped sinusoidal system-
atic in the data using the smooth foregroundmodel implementedwith
maxsmooth. Our analysis suggests that this systematic is best mod-
elled as a sinusoidal function that has been damped by the total effi-
ciency of the antenna. This implies that the systematic is introduced
as power external to the radiometer rather than via the electronics
in the receiver chain and back-end. However, we note that the log-
evidence difference between the fits performed with the two different
systematic models is marginal and that the non-smooth structure may
have been introduced by a poor foreground model. If real, the sys-
tematic could be caused by discontinuities in the soil surrounding
the antenna or shrubbery and root systems in close proximity both of
which are issues that will be alleviated by the deployment of SARAS3
on a lake.

• While we do not constrain individual parameters, for the ERB
signals, we disfavour combinations of high 𝑓∗ (& 0.03 and high 𝑓radio
(& 707) and low 𝑓𝑋 (.0.21) and high 𝑓radio (& 407) which produce
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the deepest absorption troughs as can be seen in Fig. 7 and Fig. 8.
In addition, when fitting the ERB signals we weakly disfavour high
values of 𝜏 and the combination of low 𝜏 and low 𝑓𝑋 .

• For standard astrophysical models we weakly disfavour signals
with high Lyman-𝛼 fluxes (high 𝑓∗ and low 𝑉𝑐) and weak heating
that have deep absorption features at early times as can be seen in
Fig. 10 (with the aid of the gridlines).

• Both sets of analysis with STA and ERB signals disfavour mod-
els with weak heating, particularly X-ray heating in latter case, in
agreement with the SARAS2 data analysis in Singh et al. (2017) and
Singh et al. (2018b).

• We disfavour a similar combination of low 𝑓𝑋 and high 𝑓radio
for the ERB models as was recently done using the power spectrum
upper limits from HERA with an identically parameterized model of
the EoR (Abdurashidova et al. 2022).

The analysis presented here serves to highlight that non-smooth
systematics, if effectively identified with tools like maxsmooth and
modelled, do not prevent the derivation of constraints on the astro-
physics of the early universe.
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APPENDIX A: REPRODUCABILITY OF RESULTS

The nested sampling algorithm used in this work is designed to
numerically approximate the integral

𝑃(𝐷 |𝑀) =
∫

𝑃(𝐷 |\, 𝑀)𝑃(\ |𝑀)𝑑\, (A1)

or equivalently

𝑍 =

∫
L(\)𝜋(\)𝑑\, (A2)

where 𝑍 = 𝑃(𝐷 |𝑀) is known as the evidence, L(\) = 𝑃(𝐷 |\, 𝑀)
is the likelihood and 𝜋(\) = 𝑃(\ |𝑀) is the prior probability. The
evidence can be used to determine whether one model is a better
description of the data than another (i.e. model selection) as is done
in the main text in this paper. The prior represents our knowledge of
the parameters in our model and typically is taken to be a uniform or
log-uniform probability distribution between a minimum and maxi-
mum value. Finally, the likelihood represents the probability that we
observe the data, 𝐷, given the choice of parameters and model or
hypothesis, 𝑀 , to describe the data. A complete discussion of the
algorithm can be found in Skilling (2004).

Equation A1 can be derived from Bayes’ theorem

𝑃(\ |𝐷, 𝑀) = L(\)𝜋(\)
𝑍

, (A3)

where 𝑃(\ |𝐷, 𝑀) is the posterior probability used to determine con-
straints in the parameters \, and the requirement that the posterior
should integrate to 1. The posterior is therefore a byproduct of the
nested sampling algorithm and its accuracy is determined by the
accuracy of approximation of the integral in equation A1.
The accuracy of the integral, in turn, is determined by the number

of likelihood samples taken when running the algorithm with tools
like polychord. The sampling rate in polychord is driven by the
parameter 𝑛live and a poor sampling leads to poor reproducibility of
the posteriors on repeated runs.
For the analysis in this paper we use 𝑛live = 500 which equates to

approximately 50 live points per dimension.We demonstrate that this
leads to reproducible sample distributions in Fig. A1 which shows
histograms of the distributions for fit number 3 (STA signal, effi-
ciency systematic and constant noise) and a corresponding repeated
run. In both cases the recovered 1D histograms are flat with only
minor differences.
We can quantify the difference using the two sample Kolmogorov-

Smirnov (KS) statistic which returns the maximum difference be-
tween two empirical cumulative distribution functions. The largest
KS statistic for the 1D distributions in Fig. A1 is 0.073 for log( 𝑓𝑋 ).
For all other parameters the KS statistic is smaller. For a given pa-
rameter a low KS statistic, which ranges in value between 0 and 1,
indicates that the two 1D distributions are likely drawn from the same
sample and consequently the results are reproducible.

APPENDIX B: MODEL COMPLEXITY AND THE
EXPECTED NOISE

Fig. B1 shows the residuals (top left) after fitting and subtracting the
PSF foreground model and the efficiency systematic model from the
SARAS2 data compared with the residuals (bottom left) from a high
order polynomial fit given by

𝑇 = 𝑇0

9∑︁
𝑖=0

𝑝𝑖

(
a

a0

) 𝑖
(B1)

where a0 ≈ 110MHz, 𝑇0 = 𝑇𝐴(a0) and 𝑝𝑖 are the fitted coefficients.
In the right hand panel we show a histogram of the two sets of
residuals with corresponding Gaussian fits. The standard deviation
from both fits are equivalent.
The high order unconstrained polynomial is expected to fit out

any non-smooth structure in the data and as a result the residuals
are expected to be representative of the noise. The graph therefore
shows two things. Firstly, that our assumption that the noise in the
data is Gaussian distributed holds. Secondly, that the complexity
of our model (foreground plus systematic) is sufficient to describe
the SARAS2 data. Any signal in the data will have a maximum
absolute magnitude less than the noise after multiplication by the
total efficiency of the antenna and as a result the noise floor allows
us to apply the constraints detailed in the text.

APPENDIX C: SAMPLE WEIGHTING

Using equation 10 we are able to combine the samples with common
astrophysical signals in order to marginalise out our uncertainty in
the modelling of the noise and the systematic. To take account for the
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Figure A1. The sample distribution for fit number 3 in Fig. 5 (STA signal, efficiency systematic and constant noise) and a corresponding repeated run
demonstrating that the posterior sampling is high enough to lead to reproducible results. The consistency between repeated runs shown here is typical for all of
the fits performed in this paper.

different levels of confidence in the differentmodels, where themodel
refers to the combination of foreground, signal and noise model, we
weight the samples by their Bayesian evidence. Theweights are given
by 𝑍𝑖/

∑
𝑗 𝑍 𝑗 and in Fig. C1we show the weights for each signal type.

From the figure it is evident, regardless of signal modelling, that
fits with the Efficiency systematic model have a higher weighting
than fits with the Damped systematic indicating a preference for the
former. Additionally, the figure shows that the samples from fits with
the Relative Weights based noise are down weighted significantly
so that they do not contribute to the calculation of the combined
posteriors. We can see that this is the case by looking at the betting
odds between two of the ERB fits both with the Efficiency systematic
but with Constant and Relative Weights based noises. The difference
in evidence for these two fits is given by exp(1684.5−1678.6) ≈ 365
which corresponds to betting odds of 365:1 in favour of the fit with
a constant standard deviation on the noise.

APPENDIX D: DISFAVOURED REGIONS WHEN FITTING
WITH STANDARD ASTROPHYSICAL SIGNALS AND
VARIABLE 𝑅MFP AND 𝛼

For completeness we can assess combined samples frommodel num-
bers D.1, D.2, D.3, D.4, D.5 and D.6 in Fig. D1, those that contain
STA signals with variable 𝑅mfp and 𝛼. Fig. D2 shows the 1D his-

tograms from the combined samples and, aswith the results presented
in the main text, we do not see any significant constraints.
However, the evidences presented in Fig. D1 show a similar pref-

erence for different model components as that presented in the main
text. Specifically, the preference for the efficiency systematic and
for the frequency damped/constant noise models over the relative
weights based noise.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B1. The figure shows the residuals found when fitting the SARAS2 data, 𝑇𝐴, with the PSF foreground, the efficiency systematic model and a constant
noise model compared to the residuals from a high order polynomial fit. The unconstrained polynomial fit is expected to model out all non-smooth structure
in the data including any systematics and signals revealing the noise in the data. The consistency between the two sets of residuals, which can be seen in the
accompanying histogram, suggests that the complexity of our modelling (foreground, systematic and noise) is sufficient to describe the data. The graph also
shows that the noise in the data is Gaussian distributed.
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Figure C1. The figure shows the relative weights applied to each set of samples when combining the posterior distributions using equation 10. The figure
illustrates that the weights, which are based on the relative evidences of the fits, are significantly higher for fits performed with the Efficiency systematic and fits
performed with the Constant or Frequency Damped noise model over the alternatives. By combining the samples to draw conclusions about the astrophysical
parameter space we effectively account for any uncertainty in the systematic and noise modelling.
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Figure D1. The evidence for fits containing STA signals when fitting for 𝑅mfp and 𝛼 rather than holding them constant. Allowing these parameters to vary has
little effect on the overall patterns seen in preference for specific model components.
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Figure D2. The 1D and 2D histograms for the combined nested samples of all fits to the SARAS2 data containing STA signals when fitting for 𝑅mfp and 𝛼.
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