
https://doi.org/10.1007/s10844-021-00646-9

A comprehensive Benchmark for fake news detection

Antonio Galli1 · Elio Masciari1 ·Vincenzo Moscato1 ·Giancarlo Sperlı́1

Received: 17 January 2021 / Revised: 12 May 2021 / Accepted: 13 May 2021

© The Author(s) 2022

Abstract
Nowadays, really huge volumes of fake news are continuously posted by malicious users
with fraudulent goals thus leading to very negative social effects on individuals and society
and causing continuous threats to democracy, justice, and public trust. This is particularly
relevant in social media platforms (e.g., Facebook, Twitter, Snapchat), due to their intrin-
sic uncontrolled publishing mechanisms. This problem has significantly driven the effort
of both academia and industries for developing more accurate fake news detection strate-
gies: early detection of fake news is crucial. Unfortunately, the availability of information
about news propagation is limited. In this paper, we provided a benchmark framework in
order to analyze and discuss the most widely used and promising machine/deep learning
techniques for fake news detection, also exploiting different features combinations w.r.t.
the ones proposed in the literature. Experiments conducted on well-known and widely used
real-world datasets show advantages and drawbacks in terms of accuracy and efficiency for
the considered approaches, even in the case of limited content information.

Keywords Fake news detection · Deep learning · Benchmarking

At the time of writing of this paper, the world is facing a great emergency due to COVID-19 virus and
fake news are creating a lot of social problems.

� Elio Masciari
elio.masciari@unina.it

Antonio Galli
antonio.galli@unina.it

Vincenzo Moscato
vincenzo.moscato@unina.it

Giancarlo Sperlı́
giancarlo.sperli@unina.it

1 Department of Electrical and Information Technology (DIETI), University of Naples,
Federico II via Claudio 21, 80125, Naples, Italy

Published online: 21 March 2022

Journal of Intelligent Information Systems (2022) 59:237–261

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-021-00646-9&domain=pdf
mailto: elio.masciari@unina.it
mailto: antonio.galli@unina.it
mailto: vincenzo.moscato@unina.it
mailto: giancarlo.sperli@unina.it


1 Introduction

In the last decade, with the disruptive diffusion of social media, people turned towards con-
suming news from journalistic websites to popular social media platforms (e.g., Facebook,
Twitter, Reddit) (Matsa & Shearer, 2018; Almoqbel et al., 2019; Corradini et al., 2021;
2020). As a result, we observed the diffusion of fake news on the Web, whose proliferation
is especially due to features and publishing mechanisms of Online Social Networks (OSNs).
More in detail, as social media are nowadays the main medium for large-scale informa-
tion sharing and communication and they can be considered the main drivers of the Big
Data revolution we observed in recent years (Agrawal et al. 2012), requiring more sophis-
ticated techniques for their analysis (Ianni et al., 2020; Masciari, 2012). The reasons for
this change in consumption behaviors are inherent to the characteristics of modern OSNs:
they are more convenient and less expensive compared with traditional news media (e.g.
television or newspapers); it is easier to share, comment on, and discuss the news with
friends and followers. Unfortunately, due to malicious user having fraudulent goals fake
news on social media are growing quickly both in volume and their potential influence thus
leading to very negative social effects. Thus, fake news detection on social media poses
peculiar challenges due to the inherent nature of social networks that requires both the anal-
ysis of their content (Potthast et al., 2017; Guo et al., 2019) and their social context(Shu
et al., 2019). In this respect, identifying and moderating fake news is a quite challenging
problem. Indeed, fighting fake news in order to stem their extremely negative effects on
individuals and society is crucial in many real life scenarios. Therefore, fake news detection
on social media has recently become an hot research topic both for academia and indus-
try despite many OSN websites are already adopting several techniques to stem fake news
spread.

Fake news detection dates back long time ago (Zhou et al., 2019) as journalist and scien-
tists fought against misinformation since the beginning of information sharing by traditional
media. Dealing with (modern) fake news is made even more complex since there is no sin-
gle accepted definition of such a concept. One the most diffused is reported in (Allcott &
Gentzkow, 2017):

“Fake news is a news article that is intentionally and verifiably false and could
mislead readers”.

We can observe how two key features clearly emerge from such a definition: fake news
includes false information that can be verified as such (authenticity) and it is created with
the dishonest intention to mislead consumers (intent) (Shu et al., 2017).

The content of fake news is usually heterogeneous in terms of topics, shape and media
platforms, and attempts to misrepresent truth with diverse linguistic styles while simulta-
neously mocking true news. Moreover, fake news is generally related to newly emerging,
time-critical events, which may not have been properly verified by existing knowledge bases
due to the lack of confirmed evidence or claims.

Furthermore, fake news detection on social media presents unique characteristics and
challenges:

– Fake news is designed and written on purpose to deceive readers to believe false infor-
mation, therefore detecting a fake news through the analysis only of the news content
is a difficult and nontrivial task.

238 Journal of Intelligent Information Systems (2022) 59:237–261



– It could be convenient to include auxiliary information, such as user social interaction
on social media, to help fake news detection. However, exploiting social auxiliary infor-
mation is a challenge because users social interaction with fake news produce data that
is big, noisy, unstructured and incomplete.

Actually, the influential power of fake news is explained by several psychological the-
ories. Fake news mainly targets people by exploiting their vulnerabilities. There are two
major factors which make consumers naturally vulnerable to fake news (Shu et al., 2017):

– Naive Realism: people tend to believe that their perceptions of reality are the only
accurate views, while others who disagree are regarded as uninformed or irrational;

– Confirmation Bias: people prefer to receive information that confirms their existing
views.

People are exposed to certain news owing to the way news feed appears on their
OSNs’ homepage, amplifying the psychological challenges to dispelling fake news identi-
fied above. People can trust in fake news due to different psychological factors (Shu et al.,
2017): i) social credibility, which means people are more likely to recognize a source as
believable if others recognize the source is believable, especially when there is not enough
information to access the truthfulness of the source; ii) frequency heuristic, which means
that people may obviously favour information they hear repeatedly, although it is fake news.

Based on these premise, the need for designing processes that automatically detect fake
news calls for machine learning techniques that showed promising performances due to
their ability to extract hidden information from data.

Our system in a nutshell Fake news detection problem can be formalized as a classifica-
tion task thus requiring features extraction and model construction. The detection phase is
a crucial task as it is devoted to guarantee users to receive authentic information. We will
focus on finding clues from news contents, adding multimedia analysis and making some
considerations about the dynamic component related to the diffusion of the news through
social media and the users who spread this news trying to understand if there exists some
common patterns. Our goal is to provide a benchmark of some existing approaches defined
so far when fake news is intentionally written to mislead users by mimicking true news.
More in detail, traditional approaches are based on verification by human editors and expert
journalists but do not scale to the volume of news content that is generated in online social
networks. As a matter of fact, the huge amount of data to be analyzed calls for the devel-
opment of new computational techniques. It is worth noticing that, such computational
techniques, even if the news is detected as fake, require some sort of expert verification
before being blocked. In our framework, we perform an accurate pre-processing of news
data and then we apply three different approaches. The first approach is based on classical
classification approaches such as logistic regression that resulted the most effective in our
framework as we implemented several approaches and we compared them as will be bet-
ter explained in next sections. We also implemented different deep learning approaches that
leverage neural network features for fake news detection. Finally, for the sake of complete-
ness we implemented some multimedia approaches in order to take into account misleading
images.

Plan of the paper The paper is organized as in the following. Section 2 outlines the state of
the art of techniques for fake news detection, showing the most diffused machine/deep learn-
ing methodologies. Section 3 details the proposed framework for supporting our benchmark

239Journal of Intelligent Information Systems (2022) 59:237–261



study. Section 4 describes the experimental setup, while Section 5 discusses the obtained
results in terms of accuracy and efficiency. Eventually, we discuss the findings of our anal-
ysis in Section 6 while Section 7 reports some conclusions and future directions for our
research.

2 Related work

The fake news meaning has evolved over the time assuming nowadays the sense of any arti-
cle or message propagated through media platforms carrying behind it false or misleading
information (Sharma et al., 2019). Some well known examples of fake news across history
are mentioned below:

– During the second and third centuries AD, false rumours were spread about Christians
claiming that they engaged in ritual cannibalism and incest;1

– In 1835 The New York Sun published articles about a real-life astronomer and a fake
colleague who, according to the hoax, had observed bizarre life on the moon;2

– More recently we can cite some news like, Paul Horner, was behind the widespread
hoax that he was the graffiti artist Banksy and had been arrested; a man has been hon-
ored for stopping a robbery in a diner by quoting Pulp Fiction; and finally the great
impact of fake news on the 2016 U.S. presidential election, according to CBS News.3

Thus, fake news deceive people by creating a false impression or conclusion (Lazer et al.,
2018) whose detection is made difficult by the use of heterogeneous topics and different
linguistic styles for their production (Shu et al., 2017). Rubin et al. (2015) organized the fake
news into three categories: serious fabrications, being prototypical form of fake news that
often become viral through social media, large scale hoaxes, representing false information
disguised as proper news, and humorous fakes, having the aim to amuse readers. These
fake news are spread on the network by an increasing number of malicious users, named
Spammer (Bindu et al., 2018), whose detection is a challenging task although different
approaches have been proposed (see Dewang and Singh 2018 for more details).

According to Bondielli and Marcelloni (2019), it is possible to classify approaches for
fake news detection on the basis of the exploited features into content and user-based tech-
niques. The former has the aim to classify news according to their inherent content (mainly
news text) (Castelo et al., 2019), whilst the latter aims to deal with dynamic propagation
of fake news according to user-based, text-based, propagation-based and temporal-based
features (Castillo et al., 2011; Ma et al., 2015).

The content-based approaches aim to classify news according to their inherent content
(mainly news text). Several machine learning models have been then proposed for analyzing
information content and performing the related classification. Nevertheless, it is frequent to
observe a performance slump because classical classifiers are not able to generalize and to
classify instances never seen before as, instead, it can happen for fake news.

The most effective content-based methods rely on the N -grams, i.e. sequences of N con-
tiguous words within a text (e.g., unigrams, bigrams, trigrams etc.). The first interesting

1https://en.wikipedia.org/wiki/Fakenews
2http://www.snelgraphix.net/the-snelgraphix-designing-minds-blog/tag/google+I%E2%80
%99m+feeling+stellar
3https://www.businessinsider.com/banksy-arrest-hoax-2013-2

240 Journal of Intelligent Information Systems (2022) 59:237–261

https://en.wikipedia.org/wiki/Fake news
http://www.snelgraphix.net/the-snelgraphix-designing-minds-blog/tag/google+I%E2%80%99m+feeling+stellar
http://www.snelgraphix.net/the-snelgraphix-designing-minds-blog/tag/google+I%E2%80%99m+feeling+stellar
https://www.businessinsider.com/banksy-arrest-hoax-2013-2


approach leveraging such kind of features has been proposed by Mihalcea and Strappar-
ava (2009) for lie detection using Naı̈ve Bayes and SVM classifiers in order to identify
people’s lies about their belief. More recently, Gilda (2017) analyzed 11,000 articles from
several sources applying term frequency-inverse document frequency (TF-IDF) of bi-grams
within a probabilistic context free grammar (PCFG) for fake news detection. The evalua-
tion has been performed using different classification methods as Support Vector Machines,
Stochastic Gradient Descent, Gradient Boosting, Bounded Decision Trees, and Random
Forests. A very useful work is that proposed by Khan et al. (2019), where they studied
the performances of different content-based approaches on various datasets, evaluating also
several features as well as lexical, sentiment and N -grams ones. In turn, Jain and Kasbe
(2018) proposed a specified method based on Naive Bayes classifiers with the aim to pre-
dict if a given post on Facebook is real or fake. Finally, in Kotteti et al. (2018) the authors
tried to handle the missing values problem in fake news datasets by using data imputation
for both categorical, with the most frequent values in the columns, and numerical features,
using the mean value of the related column. In addition, TF-IDF vectorization was applied
in feature extraction to unveil main features to use as input for a Multi-Layer Perceptron
(MLP) classifier.

In turn, user-based features are typically used for classifying users in genuine or fake (Hu
et al., 2014) that could be used as measure of the reliability of the shared information.
Other features concerns information about social circles and activities made in Online Social
Media, as well as number of posts, following/follower or their ratio (Zubiaga et al., 2016),
or account’s age and/or linking to external resources (Wu et al., 2015; Zubiaga et al., 2016).
Nevertheless, information about user’s activities on Online Social Networks cannot typi-
cally be gathered due to privacy constraints. According to Ma et al. (2017) different studies
rely on network-oriented features for analyzing diffusion patterns (Ma et al., 2015; Hamid-
ian & Diab, 2019) and modeling the temporal characteristics of propagation (Kwon et al.,
2013).

Finally, some approaches (Vosoughi et al., 2017; Wang & Terano, 2015; Wu et al., 2015;
Ma et al., 2015) have been proposed combining content and user based features for fake
news detection. As an example, Castillo et al. (2011) proposed a machine learning approach
based on decision tree model for classifying news as fake combining three different types
of features: user-based (e.g. registration age and number of followers), text-based (e.g. the
proportion of tweets that have a mention ‘@’), and propagation based (e.g. the depth of the
re-tweet tree). The FANG framework has been proposed by Nguyen et al. (2020) for fake
news detection by using social context through graph representation. Furthermore, Wang
et al. (2020) designed a weakly-supervised fake news detection framework by combining
news’ content and users’ report, that has been used in a reinforcement learning strategy for
improving the obtained results. A further analysis of fake news detection has been discussed
in Shu et al. (2019), in which the authors investigate the explainable detection of fake news
by developing a deep architecture for jointly capturing top-k-check-worthy sentences and
user comments.

Concerning benchmarks, different studies (Gravanis et al., 2019; Reis et al., 2019; Silva
et al., 2020) have been designed to compare proposed approaches for fake news detection
but they focused on small datasets and/or analyzed only some machine learning approaches.

For the paper aims, we have decided to focus on content-based techniques based both
on machine and deep learning algorithms because: i) it is present in the literature a more
systematic and wide study of such methods, ii) the adopted (and most diffused) datasets

241Journal of Intelligent Information Systems (2022) 59:237–261



available for benchmarking mainly contain textual features of fake news. In addition, a real-
time detection first of all has to consider news text before any other kind of user-based
analysis that needs to observe the news temporal spread over social networks. Furthermore,
we analyze some multimedia approaches in order to take into account misleading images
and how they can be exploited to improve the overall fake news detection performances.

Summarizing, our analysis is focused on the detection of fake news at early stage, that is
when it is published on a social media. For this reason, we only analyze news’ content with
the aim to identify fake news, as also made in Gravanis et al. (2019); Reis et al. (2019) and
Silva et al. (2020), without considering temporal and user-based features, that are typically
used for contextual fake news detection (Nguyen et al., 2020; Wang et al., 2020).

Finally, the novelties of the proposed benchmark concern:

– a different pre-processing strategy with respect to Gravanis et al. (2019), that is mainly
based on Natural Language Processing (NLP) pipeline;

– the analysis of a large number of machine and deep learning models with respect to Gra-
vanis et al. (2019); Reis et al. (2019) and Silva et al. (2020), that are only based on
well-known neural networks models;

– a deep analysis of an unbalanced large dataset (FakeNews) as well as two other smaller
ones, whilst (Gravanis et al., 2019; Reis et al., 2019; Silva et al., 2020) rely only on
small dataset (composed by 10,000 samples at maximum);

– a further analysis of some multimedia approaches in order to improve the overall fake
news detection performances, also considering misleading images.

3 Fake news detection: an experimental test bed framework

We define a Fake News Detection framework for experimental purposes, based on news
flow processing and data management, as depicted in Fig. 1. In particular, a preliminary
pre-processing stage executes filtering and aggregation operation over the news content, and
in addition filtered data are processed by two independent modules: the first one performs
natural language processing over data, while the second one performs a multimedia analysis.

More in details:

– Data Ingestion Module. This module takes care of data collection tasks. Data can be
highly heterogeneous as well as social network, multimedia and news data. We collect
the news text and eventual related contents and images.

Fig. 1 The overall process at a glance

242 Journal of Intelligent Information Systems (2022) 59:237–261



Fig. 2 A fake news detection framework

– Pre-processing Module. This component is devoted to the acquisition of the incoming
data flow. It performs filtering, data aggregation, data cleaning and some enrichment
operations.

– NLP Processing Module. It performs the crucial task of generating a binary classifi-
cation of the news articles, i.e., whether they are fake or reliable news. It is split in two
sub-modules. The Machine Learning module performs classification using an ad-hoc
implemented algorithms after an extensive process of feature extraction and selection
TF-IDF based (in order to reduce the number of extracted features). The Deep Learn-
ing module classifies data by different engines, after a tuning phase on the vocabulary.
It also perform a binary transformation and eventual text padding in order to better
analyze the input data.

– Multimedia ProcessingModule. This module is tailored for Fake Image Classification
through Deep Learning algorithms, using ELA (Error Level Analysis) and CNN.

Due to space limitation, we discuss in the following only the details of the deep learning
module bases on Google B.E.R.T. framework(Devlin et al., 2019), and the obtained results.

3.1 Software architecture

The software implementation of the framework described above is shown in Fig. 2.
Herein: the data ingestion block is implemented by using several tools. As an example

for Twitter data we leverage Tweepy,4 a Python library to access the Twitter API. All tweets
are downloaded through this library. Filtering and aggregation is performed using Apache
Kafka5 which is able to build real-time data pipelines and streaming apps. It is scalable,
fault-tolerant and fast thus making our prototype well-suited for huge amount of data.

4https://www.tweepy.org/
5https://kafka.apache.org/

243Journal of Intelligent Information Systems (2022) 59:237–261

https://www.tweepy.org/
https://kafka.apache.org/


The data crawler uses the Newspaper Python library6 whose purpose is to extract and
curate articles. The analytical data archive stores pre-processed data that are used for issuing
queries by traditional analytical tools. We leverage Apache Cassandra7 as datastore because
it provides high scalability, high availability, fast writing and fault-tolerance on commod-
ity hardware or cloud infrastructure. The data analytics block retrieves news contents and
news images from Cassandra DB that are pre-processed by the Machine Learning module
using Scikit Learn library8 and by Deep Learning module using Keras library.9 Image con-
tent is processed by the Multimedia Deep Learning module using again Keras library. In the
following we will briefly describe how the overall process is executed. Requests to the Cas-
sandra DB are made through remote access. Each column in Cassandra refers to a specific
topic and contains all news belonging to that topic. Among all news, those having a valid
external link value are selected. In this way, the news content can be easily crawled. As the
link for each news is obtained, a check is performed in order to verify the current state of
the website. If the website is still running, we perform the article scraping. The algorithm
works by downloading and parsing the news article, then, for each article, title, text, authors,
top image link, news link data are extracted and saved as a JSON file in Cassandra DB.

Finally, three independent analysis are then performed by three ad-hoc Python modules
we implemented. The first two perform text classification, and the last one images classifi-
cation. Concerning the text analysis, the problem being solved is a binary classification one
where class 0 refers to reliable news and class 1 refers to fake ones.

3.2 The deep learningmodule in detail

The Deep Learning Module computes a binary classification on a text datasets of news
that will be labelled as 0 if a news is marked as Real, and as 1 if it is marked as Fake.
The Deep Learning Module classifies news content also exploiting a new language model
called B.E.R.T. (Bidirectional Encoder Representations from Transformers) developed and
released by Google. Prior to describing the algorithm features in detail, we briefly describe
the auxiliary tools being used, while in Section 4 we describe the experimental evaluation
that leads to our choice on B.E.R.T..

Colaboratory Colab10 is intended for machine learning education and research, it requires
no setup and runs entirely on the cloud. By using Colab it’s possible to write and execute
code, save and share analytics and it provides access to expensive and powerful computing
resources for free by a web interface.

More in detail, Colab’s hardware is powered by: Intel(R) Xeon(R) CPU @ 2.00GHz,
nVidia T4 16 GB GDDR6 @ 300 GB/sec, 15GB RAM and 350GB storage. This setting
is able to speed-up the learning task execution up to 35X and 16X faster in deep learning
training compared to a CPU-only server.

6https://newspaper.readthedocs.io/en/latest/
7http://cassandra.apache.org/
8https://scikit-learn.org/stable/
9https://keras.io/
10https://research.google.com/colaboratory

244 Journal of Intelligent Information Systems (2022) 59:237–261

https://newspaper.readthedocs.io/en/latest/
http://cassandra.apache.org/
https://scikit-learn.org/stable/
https://keras.io/
https://research.google.com/colaboratory


Tensor flow It is devoted to train and run neural networks for image recognition, word
embeddings, recurrent neural networks, and natural language processing. It is a cross-
platform tool and runs on CPUs, GPUs, even on mobile and embedded platforms. Tensor-
Flow(Abadi et al., 2016) uses dataflow graphs to represent the computation flow, i.e., these
structures describe the data flow through the processing nodes. Each node in the graph rep-
resents a mathematical operation, and each connection between nodes is a multidimensional
data array called tensor.

The TensorFlow Distributed Execution Engine abstracts from the supported devices and
provides a high performance core implemented in C++ for the TensorFlow platform. On
top there are Python and C++ front ends. The Layers API provides a simple interface for
most of the layers used in deep learning models. Finally, higher-level APIs, including Keras,
makes training and evaluating distributed models easier.

Keras It is a high-level neural network API,11 implemented in Python and capable of
running on top of TensorFlow. It allows for easy and fast prototyping through: 1) User
Friendliness as it offers consistent and simple APIs that minimizes the number of user
actions required for common use cases; 2) Modularity as neural layers, cost functions,
optimizers, initialization schemes, activation functions and regularization schemes are all
standalone modules that can be combined to create new models; 3) Extensibility as new
modules are simple to add as new classes and functions.

Google B.E.R.T. This tool has been developed in order to allow an easier implementation
of two crucial tasks for Natural Language Processing (NLP): Transfer Learning through
unsupervised pre-training and Transformer architecture. The idea behind Transfer Learning
is to train a model in a given domain on a large text corpus, and then leverage the gath-
ered knowledge to improve the model’s performance in a different domain. In this respect,
B.E.R.T.12 has been pre-trained on Wikipedia and BooksCorpus. On the opposite side, the
Transformer architecture processes all elements simultaneously by linking individual ele-
ments through a process known as attention. This mechanism allows a deep parallelization
and guarantee higher accuracy across a wide range of tasks.13 B.E.R.T. outperforms previ-
ous proposed approaches as it is the first unsupervised, fully bidirectional system for NLP
pre-training. Pre-trained representations can be:

– context-free: this representation generates a single word embedding representation for
each word in the vocabulary, so bank would have the same representation in bank
deposit and river bank;

– contextual: in this case a representation of each word that is based on the other words
in the sentence is generated.

B.E.R.T. was built based on recent work in pre-training contextual representations, such as
ELMo or ULMfit but these models are mainly unidirectional. This means that each word
is only contextualized using the words to its left (or right). For example, in the sentence “I
made a bank deposit” the unidirectional representation of “bank” is based either on “I made
a” piece of text or “deposit” piece of text. B.E.R.T. represents the term “bank” using both

11https://keras.io
12https://github.com/google-research/bert
13https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60
a16d86b5c1

245Journal of Intelligent Information Systems (2022) 59:237–261

https://keras.io
https://github.com/google-research/bert
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1
https://towardsdatascience.com/deconstructing-bert-part-2-visualizing-the-inner-workings-of-attention-60a16d86b5c1


its left and right context “I made a . . . deposit”. This feature allows the model to learn the
context of a word based on the whole sentence (left and right of the word).

B.E.R.T.’s model architecture is based on a multi-layer bidirectional Transformer
Encoder, an attention mechanism that learns contextual relations between words (or sub-
words) in a text. Transformer includes two different mechanisms — an encoder that reads
the input text and a decoder that produces a prediction for the task. Since B.E.R.T.’s goal is
to generate a language model, only the encoder mechanism has to be properly manipulated.

The Encoder’s input embedding depicted in Fig. 3 and it is composed by: i) token
embeddings: it represents the word vector. The first word is the CLS token that is used
as a delimiter. It can be used for classification tasks, on the contrary for non-classification
tasks, the CLS token can be ignored; ii) segmentation embeddings: it is used to distinguish
between two sentences as pre-training can be seen a classification task with two sentences
as input; iii) position embeddings: it encodes word ordering.

The data flow through the Encoder Architecture is described in what follows: 1) The
model represents each token as a vector of emb dim size (dimension of the token embed-
dings). By assigning one embedding vector for each of the input tokens, we obtain a matrix
whose dimensions are input length and emb dim for each input sequence; 2) It then adds
positional information (positional encoding). The approach chosen is to add values between
[-1,1] using predetermined (non-learned) sinusoidal functions to the token embeddings.
Words will be represented slightly differently depending on their position (even for same
word). This step builds again a matrix having dimensions input length and emb dim. 3)
Data are elaborated by N encoder blocks. Each encoder block is Multi-Head Attention layer
that computes h different attention values by different weight matrices and then concate-
nates the results. This step allows the model leverage different representation sub-spaces for
different word positions and the use of different filters to create different features maps in a
single layer.

Its purpose is to find relationships between the input representations and encode them in
output. After this step, we obtain a vector of hidden size (768 in B.E.R.T. Base and 1024 in
B.E.R.T. Large). This vector is used as input on a single-layer neural network classifier to
obtain the final output.

After pre-elaboration B.E.R.T. works in two steps: pre-training, i.e., the model is trained
on unlabelled data over different tasks and fine-tuning, i.e., the B.E.R.T. model initialized
with the pre-trained parameters is fine-tuned using labelled data from the downstream tasks.
Each downstream task has separate fine-tuned models, even though they are initialized with
the same pre-trained parameters.

Fig. 3 The Econder input

246 Journal of Intelligent Information Systems (2022) 59:237–261



The B.E.R.T. pre-training phase consists of two unsupervised predictive tasks: 1) Masked
Language Model: 15% of the words in each sequence are replaced with a MASK token.
The model then attempts to predict the original value of the masked words, based on the
context provided by the other, non-masked, words in the sequence. For example, if the input
of the neural network is “I came to [MASK] and bought [MASK]”, it should show the
words “store” and “milk” in output; 2) Next Sentence Prediction: the model receives pairs of
sentences as input and learns to predict if the second sentence in the pair is the subsequent
sentence of the first one in the original document. During training, 50% of the inputs are
pairs having the second sentence as correct subsequent sentence in the original document,
while in the 50% are random sentences chosen from the corpus. The assumption is that the
random sentence will be unrelated from the first sentence. For example, given two sentences
“I went to the store.” and “And bought milk there.”, the neural network should answer that
this is a relaible consequent. On the contrary, if the second phrase is “Cruc’s sky Pluto” then
it should answer that this sentence is not related to the first. During the fine-tuning phase,
B.E.R.T. can be used for a wide variety of language processing task by implementing an
additional layer for the model. As and example, it is possible to perform classification tasks
such as sentiment analysis by adding a classification layer on top of the Transformer output
for the CLS token. Moreover, for Question Answering (QA) tasks (e.g. SQuAD v1.1), the
model is queried with a question regarding a text sequence and is required to mark the
correct answer in the sequence. Using B.E.R.T., a QA model can be trained by learning
two extra vectors that mark the beginning and the end of the answer. Finally, Named Entity
Recognition (NER) task aims to mark the entity types (e.g., Person, Organization, Date, and
so on) that appear in the text. Using B.E.R.T., a NER model can be trained by giving the
output vector of each token as input of a classification layer that predicts the NER label.

Furthermore, B.E.R.T. is able to build composite data representations to understand lan-
guage features by Attention mechanism. This task is performed by BertViz, an interactive
tool that visualizes attention pattern in B.E.R.T. from multiple perspectives, i.e., Attention-
Head View and Multi-Head Attention View. In Attention-Head View the visualization shows
the attention induced by a sample input text. This view visualizes attention as lines con-
necting the word being updated (left) with the word being attended to (right) as shown in
Fig. 4.

Fig. 4 B.E.R.T. attention-head view

247Journal of Intelligent Information Systems (2022) 59:237–261



Colours encode the attention weight: weights close to one are represented as darker lines,
while weights close to zero appear as almost invisible.

The example depicted in Fig. 4 is based on two sentences: “the rabbit quickly hopped”
and “the turtle slowly crawled”. The SEP symbols are special tokens used as sentence
delimiters, and CLS has the meaning described above. The visualization shows that atten-
tion is highest between words that do not cross a sentence boundary; the model seems
to understand that it should relate words to other words in the same sentence in order to
understand their context.

Multi-Head Attention in B.E.R.T. learns multiple attention mechanisms, called heads,
which operate in parallel enabling the model to capture a broader range of relationships
between words. As the attention heads do not share parameters, each head learns a unique
attention pattern.

3.2.1 The machine learningmodule

As mentioned above the goal of the Machine Learning Module is to produce a binary clas-
sification on a text dataset. Thus, a news article will be labelled as 0 if it is recognised as
Real, and as 1 if it is recognised as Fake. We devise a supervised approach since the dataset
we worked on is fully labelled. The Machine Learning implementation has been chosen by
comparing most of the available classifiers provided by the Scikit- Learn library.

It has been developed using a Python 3 kernel in Jupyter, that is a web-based interac-
tive development environment for code, and data. It is flexible, extensible, modular and
configurable to support a wide range of workflows in data science, scientific comput-
ing, and machine learning. We choose Python as it is interactive, interpreted, modular,
dynamic, object- oriented, portable and extensible thus offering an high flexibility for our
purposes.

More in detail, the following libraries have been used: i) Scikit- Learn: a simple and
efficient tool for data mining and data analysis; ii) Spacy: an open-source software library
for advanced Natural Language Processing, iii) Numpy: a library for Python programming
language that offer support for large, multi- dimensional arrays and matrices, along with
a large collection of high level mathematical functions to operate on these arrays, iv) Pan-
das: an open source, BSD-licensed library providing high-performance, easy-to-use data
structures and data analysis tools for the Python programming and v) Matplotlib: a plot-
ting library for the Python programming language and its numerical mathematics extension
NumPy.

3.3 Themultimediamodule

This module performs a Fake Image Classification by using a Deep Learning model based
on Error Level Analysis (ELA) and Convolutional Neural Networks (CNN), whose aim is
to find if an image has been manipulated or not Thus, an image related to a news article, will
first be submitted to an ELA and then will be labelled as 0 if it is recognised as Real, i.e., it
has been not manipulated, and as 1 if it is recognised as Fake, i.e., it has been manipulated.
The Multimedia Deep Learning Module has been developed using a Python 3 kernel in a
Jupyter. For the implementation, the above describes libraries have been used: Keras, Scikit
and Numpy. Moreover, we leveraged the modules described below.

Pandas It is an open source, BSD-licensed library providing high-performance, easy-to-use
data structures and data analysis tools for the Python programming.

248 Journal of Intelligent Information Systems (2022) 59:237–261



Pillow (PIL) It is the Python Imaging Library, a free library for the Python programming
language that adds support for accessing and manipulating several different image file
formats.

Numpy It is a library for Python programming language, tailored for large multi-
dimensional arrays and matrices manipulation by a huge collection of high-level mathemat-
ical functions.

Matplotlib It is a plotting library for the Python programming language and its numerical
mathematics extension NumPy.

3.3.1 Parameter setting

CNN are complex networks that require many hyper parameters to be set as their values
heavily affect the quality of the obtained results. As a matter of fact, the tuning phase
requires many tests to be conducted in order to find optimal parameter assignments. In our
framework, we manipulated the hyper parameters reported below:

– Architecture-Type and number of hidden layers: the number of hidden layers defines the
depth of the network. The depth of the proposed layers has been consistently increased
and in general performs better than a shallow network;

– Optimizers: the selected optimizers for investigation are Momentum, RMSProp and
Adam. After a deep experimental evaluation we choose Adam;

– Activation Function: the activation function used is ReLU. For binary-classification
Sigmoid and Softmax can be used for the last layer. In our framework we choose
Sigmoid;

– Dropout Regularization: a regularization technique which avoid overfitting during the
training;

– Convolution Layer: there are many parameters that can be changed, however, it is the
number of kernels applied to each layer, the height and width of each convolutional
kernel and padding;

– Dimensions of pooling matrix: the most commonly used size for pooling is 2x2, i.e.,
images are half down sampled. A larger pooling matrix size would increase the down
sampling rate;

– Number of Epochs: defines the number times that the learning algorithm will work on
the entire training dataset. We set this value to 10;

– Batch size: defines the number of samples used, before updating the internal model
parameters. Possible values are 16, 32, 64. We found in our experiments that the optimal
value is 32.

4 Experimental setup

This section aims to describe the experimental setup for the adopted benchmark system.

4.1 Dataset

We analyzed different Fake News datasets, publicly available, that differ in quantity, type
of news and sentence length. In particular, we focused our attention on: Liar, FakeNewsNet

249Journal of Intelligent Information Systems (2022) 59:237–261



and PHEME Datasets (Wang, 2017; Shu et al., 2018) that are described in details in what
follows.

Liar dataset This dataset includes 12.8K human labelled short statements from fact-
checking website Politifact.com. Each statement is evaluated by a Politifact.com editor for
its truthfulness. The dataset has six fine-grained labels: pants-fire, false, barely-true, half-
true, mostly-true, and true. The distribution of labels is relatively well- balanced. For our
purposes the six fine-grained labels of the dataset have been collapsed in a binary classifica-
tion, i.e., label 1 for fake news and label 0 for reliable ones. This choice has been made for
comparison purposes due to binary Fake News Dataset feature. The dataset is partitioned
into three files: 1) Training Set: 5770 real news and 4497 fake news; 2) Test Set: 1382 real
news and 1169 fake news; 3) Validation Set: 1382 real news and 1169 fake news.

The three subsets are well balanced so there is no need to perform oversampling or
undersampling. The corresponding Wordclouds for fake news is reported in Fig. 5a. It is
easy to see that news are mainly related to United States. Fake news topics are collected
about Obama, Obamacare, Cicilline, Romney.

On the other side real news topics depicted in Fig. 5b refer to McCain, elections and
Obama.

The processed dataset has been uploaded in Google Drive and, then, loaded in Colab’s
Jupyter as a Pandas Dataframe. It has been added a new column with the number of words
for each article row. Using the command df .describe() on this column it is possible to print
the following statistical information: count 15389.000000, mean 17.962311, std 8.569879,
min 1.000000, 25% 12.000000, 50% 17.000000, 75% 22.000000, max 66.000000. These
statistics show that there are articles with only one word in the dataset, so it has been
decided to remove all rows with less than 10 words as they are considered poorly infor-
mative. The resulting dataset contains 1657 less rows than the original one. The updated
statistics are reported in what follows: count 13732.000000, mean 19.228663, std 8.192268,
min 10.000000, 25% 14.000000, 50% 18.000000, 75% 23.000000, max 66.000000. Finally,
the average number of words per article is 19.

FakeNewsNet This dataset has been built by gathering information from two fact-checking
websites to obtain news contents for fake news and real news such as PolitiFact and Gos-
sipCop. In PolitiFact, journalists and domain experts review the political news and provide
fact-checking evaluation results to claim news articles as fake or real. Instead, in Gossip-
Cop, entertainment stories, from various media outlets, are evaluated by a rating score on
the scale of 0 to 10 as the degree from fake to real. The dataset contains about 900 political
news and 20k gossip news and has only two labels: true and false [14].

Fig. 5 LIAR Fake (a) and Real (b) Wordclouds

250 Journal of Intelligent Information Systems (2022) 59:237–261



This dataset is publicly available using the functions provided by the FakeNewsNet team
and the Twitter API. As mentioned above, FakeNewsNet can be split in two subsets: Gos-
sipCop and Politifact.com. We decided to analyse only political news as they produce worse
consequences in real world than gossip ones. The dataset is well balanced and contains 434
real news and 367 fake news. Most of the news regards the US as it has been evaluated also
in LIAR. Fake news topics concern Obama, police, Clinton and Trump while real news top-
ics refer to Trump, Republicans and Obama. Such as the LIAR dataset, it has been added
a new column and used the command df .describe() to print out the following statistical
information: count 801, mean 1459.217228, std 3141.157565, min 3, 25% 114, 50% 351,
75% 893, max 17377.

The average number of words per articles in Politifact dataset is 1459, which is far longer
than the average sentence length in Liar Dataset that is 19 words per articles. Such a statistics
suggested us to compare the model performances on datasets with such different features.

Moreover, among the available columns we can access main − img that containis the
URL of to the main image in the article. The latter feature allows us to use this dataset also
for multimedia analysis. After a preliminary initial check relating to the validity of the URL
provided by the dataset, the image file has been downloaded and stored for multimedia
analysis.

PHEME Dataset Among the available labelled datasets containing both real and fake news
with related image, we used PHEME Dataset to train the classifier as it contains several
news categories from politics to general news. The original dataset is partitioned into nine
folders containing breaking news events. It is structured as follows: each event has a direc-
tory, with two subfolders, rumours and non-rumours. These two folders contain additional
folders named with a news ID and each of these contains two different file: annotation.json,
which contains information about veracity of the rumour and structure.json, which contains
information about structure of the conversation. In order to obtain a single dataset, all the
fake and real news articles regarding all 9 events, have been imported by Jupyter, loaded as
Pandas Dataframe and stored in a CSV file. The resulting dataset contains 15k news articles
with the main features linked to it along with the URLs of the corresponding files. Each of
them has a label which is 0 if the statement and, consequently the image, is Real, or Not
Manipulated, and 1 if the statement, and the image, is Fake, or Manipulated .

Finally, the dataset is partitioned as follows:

1. Training Set: 1779 real image and 2143 fake image;
2. Validation Set]: 771 real image and 895 fake image;
3. Test Set: 771 real image and 895 fake image.

Table 1 summarize the description of datasets in terms of number of samples chosen for
training, test and validation steps.

Table 1 Dataset characterization

Dataset Training Test Validation

Real False Real False Real False

Liar 5,770 4,497 691 584 691 584

FakeNews 249,387 112,208 83,129 37,403 83,129 37,403

PHEME 1779 2143 771 895 771 895

251Journal of Intelligent Information Systems (2022) 59:237–261



4.2 Pre-elaboration steps

The above mentioned datasets are available in CSV format and are composed of two
columns: text and label. The news text need to be pre-processed for our analysis. In
this respect, an ad-hoc Python function has been developed for unnecessary IP and URL
addresses removal, HTML tags checking and words spell-check. Due to neural features, we
decide to maintain some stop words in order to allow a proper context analysis. Thus, to
ameliorate the noise problem, we created a custom list of stop words. We leverage Keras
Tokenizer for preparing text documents for subsequent deep learning steps. More in detail,
we create a vocabulary index based on word frequency, e.g., given the sentence The cat sat
on the mat we create the following dictionary word index[the] = 1, word index[cat] = 2
so each word gets a unique integer value; the 0 value is reserved for padding. Lower integer
means more frequent word. After this encoding step, we obtain for each text a sequence of
integers. As B.E.R.T. needs a more elaborated input than other neural networks we need to
produce a tsv file, with four columns, and no header. The columns to be added to dataset
are: 1) guid , i.e., a row ID; 2)label, i.e., the label for the row (it should be an int); 3) alpha,
a dummy column containing the same letter for all rows, it is not used for classification but
it is needed for proper running of the algorithm and 4) text , i.e., the news content. The data
needs to be converted in InputFeature object to be compatible with Transformer Architec-
ture. The conversion process includes tokenization and converting all sentences to a given
sequence length (truncating longer sequences, and padding shorter sequences). Tokeniza-
tion is performed using WordPiece tokenization, where the vocabulary is initialized with all
the individual characters in the language, and then the most frequent/likely combinations of
the existing words in the vocabulary are iteratively added. Words that does not occur in the
vocabulary are broken down into sub-words in order to search for possible matches in the
collection.

4.2.1 Choosing and tuning the most suitable machine learning model

In order to choose the most suitable classification method, we performed an extensive tuning
phase by comparing several algorithms. The performances have been evaluated on sev-
eral test sets by comparing several accuracy measure like Accuracy, Precision, Recall, F1
measure, Area Under Curve (AUC) (Flach & Kull, 2015) (reported in Table 2) and execu-
tion times (reported in Table 5). Tables 3 and 4 summarize the obtained results on the two
different datasets.

As it is easy to see, the best model in terms of accuracy turns out to be Logistic Regres-
sion, so we decided to perform a parameter optimization for this algorithm as it exhibits the
best results on each efficiency and effectiveness measure. It is worth noticing that, classifiers
based on tree construction executes much slower because of the training step (Table 5).

We briefly recall here, that logistic regression is a statistical model that leverages the logit
function to model a binary dependent variable, i.e., a linear combination of the observed
features:

log
p

1 − p
= β0 + β1ẋ

Logistic Regression outputs the probabilities of a specific class that are then used for
class predictions. The logistic function exhibits two interesting properties for our purposes:
1) it has a regular “s” shape; 2) Its output is bounded between 0 and 1.

Compared with other models, Logistic Regression offers the following advantages: 1)
it is easily interpretable; 2) Model training and prediction steps are quite fast; 3) Only

252 Journal of Intelligent Information Systems (2022) 59:237–261



Table 2 Classifier effectiveness comparison

Classifier Accuracy Precision Recall F1 TP FP TN FN AUC

SGD 0.06 0.03 0.738 0.678 1,020 605 564 362 0.610

Naive Bayes 0.02 0.004 0.871 0.704 1,205 833 336 177 0.580

Linear SVC 0.27 0.002 0.662 0.642 915 553 616 467 0.595

Random Forest 3.57 0.06 0.790 0.674 1,093 765 404 289 0.568

Logistic Regression 0.22 0.002 0.758 0.684 1,034 603 566 348 0.616

Nearest Neighbor 0.019 4.17 0.646 0.616 894 625 544 488 0.556

Decision Tree 9.18 0.009 0.616 0.604 852 585 584 530 0.558

Gradient Boost 22.7 0.02 0.860 0.701 1,189 818 351 193 0.580

Perceptron 0.08 0.05 0.749 0.638 1,088 770 399 294 0.571

Passive Aggressive 0.09 0.04 0.768 0.702 935 533 586 497 0.591

Table 3 Results on LIAR for Machine Learning with basic parameters

Classifier ACC PRE REC F1 AUC Training Time [s] Test Time [s]

SGD 62.0% 62.7% 73.8% 67.8% 61.0% 0.06 0.03

Naı̈ve Bayes 60.4% 59.1% 87.1% 70.4% 58.0% 0.02 0.004

Linear SVC 60.0% 62.3% 66.2% 64.2% 59.5% 0.27 0.002

Random Forest 58.6% 58.8% 79.0% 67.4% 56.8% 3.57 0.06

Logistic Regression 62.7% 63.1% 75.8% 68.4% 61.6% 0.22 0.002

Nearest Neighbor 56.3% 58.8% 64.6% 61.6% 55.6% 0.019 4.17

Decision Tree 56.2% 59.2% 61.6% 60.4% 55.8% 9.18 0.009

Gradient Boost 60.3% 59.2% 86.0% 70.1% 58.0% 22.7 0.02

Perceptron 57.8% 57.2% 74.9% 63.8% 57.1% 0.08 0.05

Passive Aggressive 59.3% 59.9% 76.8% 70.2% 59.1% 0.09 0.04

Table 4 Results on Polifact for Machine Learning with basic parameters

Classifier ACC PRE REC F1 AUC Training Time [s] Test Time [s]

SGD 58.3% 61.4% 72.2% 66.4% 59.9% 0.08 0.04

Naı̈ve Bayes 57.9% 57.6% 85.6% 68.9% 56.7% 0.03 0.006

Linear SVC 55.6% 61.0% 65.0% 62.9% 58.3% 0.31 0.004

Random Forest 55.1% 57.4% 77.7% 66.0% 55.3% 3.59 0.08

Logistic Regression 59.6% 62.3% 74.9% 68.0% 60.2% 0.25 0.005

Nearest Neighbor 53.3% 57.5% 63.3% 60.3% 54.5% 0.021 4.20

Decision Tree 54.1% 57.8% 60.2% 60.0% 54.5% 9.20 0.012

Gradient Boost 57.7% 57.7% 84.7% 68.6% 56.8% 22.9 0.05

Perceptron 53.9% 55.8% 73.2% 63.3% 55.7% 0.10 0.06

Passive Aggressive 55.2% 58.5% 75.5% 65.9% 58.0% 0.11 0.05

253Journal of Intelligent Information Systems (2022) 59:237–261



Table 5 Execution times
comparison Classifier Training Time Test Time

SGD 0.06 0.03

Naive Bayes 0.02 0.004

Linear SVC 0.27 0.002

Random Forest 3.57 0.06

Logistic Regression 0.22 0.002

Nearest Neighbor 0.019 4.17

Decision Tree 9.18 0.009

Gradient Boost 22.7 0.02

Perceptron 0.08 0.05

Passive Aggressive 0.09 0.04

few parameters has to be tuned (the regularization parameter); 4) It outputs well-calibrated
predicted probabilities.

In order to tune the algorithm we leveraged the functionalities offered by SciKit.

4.2.2 B.E.R.T. parameter tuning

In Table 6, we show the basic parameter assignment that is widely used for training.
After a fine tuning of the B.E.R.T. parameters on Liar and FakeNews datasets, we found

the best setting for running the experiments that are reported in Table 7.

4.2.3 Multimedia neural network parameter tuning

In Table 8 we report an excerpt of our setting steps on PHEME dataset (similar results have
been obtained on the other datasets). We fixed the following parameter for CNN1: Number
of Epoch = 10; Batch size = 32; Learning Rate = 0.001; Pooling matrix = 2x2; Dropout= 0.5;
Input Shape = (128,128) and Activation Function= ReLU. We compared the performances
on well-established evaluation measure like: Accuracy, Precision, Recall, F1 measure, Area
Under Curve (AUC) (Flach & Kull, 2015) and the values reported in the obtained confusion
matrices for each algorithm, i.e., True Positive (TP), False Positive (FP), True Negative (TN)
and False Negative (FN).

In order to try to improve the accuracy we changed for CNN2 the learning rate to 0.001
and the activation function as sigmoid. The results showed a 20% improvement in accuracy.
The latter is due to the new optimizer value, which combines the heuristics of both Momen-
tum and RMSProp, and the different function used for the last layer, which performs better
in binary-classification. To further improve the results, we implemented CNN3 by adding
two additional layers that caused a further accuracy increase. Finally, we used a (3x3) kernel

Table 6 Basic parameter setting
for deep learning networks Parameter Value

Number of Epoch 10

Batch size 32

Input Length 100

Validation Split 0.2

254 Journal of Intelligent Information Systems (2022) 59:237–261



Table 7 Model settings B.E.R.T.
optimization Parameter Value

Model GoogleBERT

Feature Transformer Word Embeddings

Stop Words Partially Removed

Batch size 32

Learning Rate 2e−5

Max Sequence Length 160

Warm up 0.1

Tune Cell 0

sizes that results in a lower number of weights and higher number of layers that turns out to
be a more computationally efficient choice. Hence, we can conclude that 3x3 convolution
filters will be a better choice.

5 Experimental results

5.1 Machine learning approach evaluation

In this section we reported the results of machine learning, deep learning and multimedia
tailored approaches implemented in our benchmark.

First, we performed a parameter optimization for the choosen Logistic Regression
Algorithm, obtaining the results reported in Table 9.

For the sake of completeness, we report in Fig. 6a and b the detailed confusion matrices
obtained for LIAR and Polifact datasets.

We hypothesize that our results are quite better due to the fine feature selection task we
performed, a better pre-processing step and the proper text transformation and loading.

5.2 Deep learning evaluation

As mentioned above, the deep neural networks evaluation has been initially performed by
training the models using the basic parameters in Table 6. The performances evaluated on
Liar and PolitiFact datasets are shown in Tables 10 and 11.

As easy to note, Google B.E.R.T. obtained the overall best results both on Liar Test and
PolitiFact Tests. Nevertheless, as mentioned in previous section, we performed a parameter

Table 8 Parameter tuning for pheme dataset

CNN Accuracy Precision Recall F1 TP FP TN FN AUC

CNN #1 0.512 0.482 0.437 0.458 302 324 651 389 0.501

CNN #2 0.623 0.568 0.597 0.582 549 418 329 370 0.662

CNN #3 0.745 0.719 0.676 0.697 571 223 598 274 0.741

CNN #4 0.758 0.740 0.770 0.755 598 210 680 178 0.753

255Journal of Intelligent Information Systems (2022) 59:237–261



Table 9 Results of optimized
logistic regression on politifact
and LIAR datasets

DATASET ACC PRE REC F1 AUC

LIAR 63.5% 62.9% 79.6% 70.2% 62.1%

POLIFACT 62.1% 61.7% 79.2% 69.4% 60.6%

Fig. 6 Confusion Matrix for LIAR (a) and Polifact (b) datasets

Table 10 Results on LIAR for deep learning with basic parameters

Neural Network ACC PRE REC F1 AUC Training Time Test Time

B.E.R.T. 61.9% 58.3% 59.6% 62.8% 61.7% 525.15s 8s

C-HAN 55.7% 51.4% 62.8% 56.5% 57.4% 600.64s 11.85s

BI-LSTM 58.6% 55.4% 49.5% 52.3% 60.7% 483.24s 7.48s

CNN 53.6% 48.9% 27.5% 35.2% 53.9% 11.98s 0.28s

Table 11 Results on PoliFact for deep learning with basic parameters

Neural Network ACC PRE REC F1 AUC Test Time

B.E.R.T. 58.8% 56.5% 44.9% 62.8% 57.8% 8s

C-HAN 44.8% 44.3% 79.5% 56.9% 43.6% 11.85s

BI-LSTM 51.1% 46.6% 45.5% 46.0% 53.2% 7.48s

CNN 54.0% 49.8% 40.5% 44.7% 52.0% 0.28s

Table 12 Results of Deep
Learning B.E.R.T. on Polifact
and LIAR datasets

DATASET ACC PRE REC F1 AUC

LIAR 63.0% 59.5% 60.6% 62.8% 62.8%

POLIFACT 62.7% 61.3% 50.6% 62.8% 61.8%

256 Journal of Intelligent Information Systems (2022) 59:237–261



Fig. 7 Confusion Matrix for LIAR (a) and Polifact (b) datasets

optimization of B.E.R.T. network (reported in Table 7) for analyzing the (eventual) per-
formance improvement. More in details, Table 12 shows that the performances increase in
terms of accuracy, precision and AUC

We hypothesize that our results are quite better due to the fine hyper parameter tuning we
performed, a better pre-processing step and the proper transformation we leverage. For the
sake of completeness, we report in Fig. 7a and b the detailed confusion matrices obtained
for LIAR and Polifact datasets.

5.3 Multimedia approach evaluation

After the tuning phase described in previous section, we performed our experiments on
PHEME dataset by leveraging CNN4 whose results are reported in Fig. 8a.

We hypothesize again, that our results are quite better due to a fine hyper parameter tun-
ing we performed, a better pre-processing step and the proper transformation. For the sake

Fig. 8 Confusion Matrix for PHEME (a) and Polifact (b) datasets

257Journal of Intelligent Information Systems (2022) 59:237–261



Table 13 Evaluation measures for polifact dataset

CNN Accuracy Precision Recall F1 TP FP TN FN AUC

CNN #4 0.765 0.679 0.705 0.692 220 104 201 92 0.751

of completeness, we report in Table 13 and Fig. 8b the accuracy measures and confusion
matrix obtained by CNN4 on Polifact datasets.

6 Discussions

In this paper we designed a benchmark framework in order to analyze and discuss the most
widely used and promising machine/deeplearning techniques for fake news detection, also
combining different features. More in details, our analysis is focused on the detection of
fake news at early stage, that is when it is published on a social media. For this reason, we
only analyze news’ content with the aim to identify fake news, as also made in Gravanis
et al. (2019); Reis et al. (2019) and Silva et al. (2020), without considering temporal and
user-based features, that are typically used for contextual fake news detection (Nguyen et al.,
2020; Wang et al., 2020).

We performed our analysis on three dataset (an unbalanced large dataset (FakeNews) as
well as two other smaller ones (PHEME and LIAR)). Firstly, a comparison among different
machine learning models (i.e. Random Forest, Decision Tree, SVC and Logistic Regression)
is performed, which highlighted Logistic Regression as the best model in terms of efficiency
and efficacy measures. Compared with other models, Logistic Regression offers different
advantages such as interpretability, fast execution time and few parameters to be tuned.
Successively, deep learning models (i.e. Convolutional Neural Networks and BERT) are
compared. As easy to note in Tables 10 and 11, Google B.E.R.T obtained the overall best
results because it performs word-level embedding on the basis of their context although it is
complex to train. Finally, a multimodal strategy has been further investigated by combining
content and multimedia analysis in order to perform a fake image classification. As can be
seen in Table 13, this approach achieves the best results in terms of accuracy, precision,
recall and F1 leveraging multimedia data.

7 Conclusion

Fake news is a challenging task even though several techniques have been developed over
time to mitigate their negative effects.

In this work, a benchmark analysis of fake news detection using classical Machine Learn-
ing and Deep Learning approaches (both for texts and images) has been discussed. As shown
in Section 5 traditional machine learning classifiers have still advantages and some draw-
backs. First, these methods are very fast both during training and test steps for supporting
real time analysis. On the other hand, these methods are not still able to detect words seman-
tic meaning and context of the word picked up from a sentence obtaining low accuracy
values.

In turn, deep learning classifiers can automatically extract textual features and analyze
semantic meaning of the words based on sentence context and images. Nevertheless, these
neural networks are still slower in training time than traditional machine learning thus

258 Journal of Intelligent Information Systems (2022) 59:237–261



requiring a very powerful hardware to be able to work properly at social network scale.
Thus, although hardware limitations, results obtained are very promising and there is still
further improvement to achieve.

We are planning to consider in the future more different data sets composed by a growing
number of samples and various topics; eventually, we are also planning to analyze various
architectural design for Real-time fake news detection, and related methods.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.

Data Availability statement Three different dataset have been investigated in the proposed analysis: Liar,14

FakeNews15 and PHEME16

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P. A., Vasude-
van, V., Warden, P., . . . Zheng, X. (2016). Tensorflow: A system for large-scale machine learning. In K.
Keeton, & T. Roscoe (Eds.) 12th USENIX symposium on operating systems design and implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016 (pp. 265–283). USENIX Association. https://
www.usenix.org/conference/osdi16.

Agrawal, D. et al. (2012). Challenges and opportunities with big data. A community white paper developed
by leading researchers across the United States. Tech. rep., Purdue University.

Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic
Perspectives, 31(2), 211–36.

Almoqbel, M. Y., Wohn, D. Y., Hayes, R. A., & Cha, M. (2019). Understanding facebook news post comment
reading and reacting behavior through political extremism and cultural orientation. Computers in Human
Behavior, 100, 118–126.

Bindu, P., Mishra, R., & Thilagam, P.S. (2018). Discovering spammer communities in twitter. Journal of
Intelligent Information Systems, 51(3), 503–527. https://doi.org/10.1007/s10844-017-0494-z.

Bondielli, A., & Marcelloni, F. (2019). A survey on fake news and rumour detection techniques. Information
Sciences, 497, 38–55.

Castelo, S., Almeida, T., Elghafari, A., Santos, A., Pham, K., Nakamura, E., & Freire, J. (2019). A topic-
agnostic approach for identifying fake news pages. In Companion proceedings of the 2019 world wide
web conference (pp. 975–980).

14https://www.cs.ucsb.edu/∼william/data/liar dataset.zip
15https://github.com/KaiDMML/FakeNewsNet
16https://github.com/swkasica/pheme-rnr-knowledge-discovery

259Journal of Intelligent Information Systems (2022) 59:237–261

http://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16
https://doi.org/10.1007/s10844-017-0494-z
https://www.cs.ucsb.edu/~william/data/liar_dataset.zip
https://github.com/KaiDMML/FakeNewsNet
https://github.com/swkasica/pheme-rnr-knowledge-discovery


Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. In Proceedings of the
20th international conference on world wide web (pp. 675–684). ACM.

Corradini, E., Nocera, A., Ursino, D., & Virgili, L. (2020). Defining and detecting k-bridges in a social
network: the yelp case, and more. Knowledge-Based Systems, 195, 105721. https://doi.org/10.1016/j.
knosys.2020.105721.

Corradini, E., Nocera, A., Ursino, D., & Virgili, L. (2021). Investigating the phenomenon of nsfw posts in
reddit. Information Sciences, 566, 140–164. https://doi.org/10.1016/j.ins.2021.01.062.

Culpepper, J. S., Moffat, A., Bennett, P. N., & Lerman, K. (eds.) (2019). Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC, Australia,
February 11-15, 2019. ACM. https://doi.org/10.1145/3289600.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training Of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: human language technologies, volume 1 (long
and short papers) (pp. 4171–4186). Minneapolis, Minnesota: Association for Computational Linguistics.
https://doi.org/10.18653/v1/N19-1423.

Dewang, R. K., & Singh, A. K. (2018). State-of-art approaches for review spammer detection: a survey.
Journal of Intelligent Information Systems, 50(2), 231–264. https://doi.org/10.1007/s10844-017-0454-7.

Flach, P. A., & Kull, M. (2015). Precision-recall-gain curves: PR analysis done right. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.) Advances in neural information processing
systems 28: annual conference on neural information processing systems 2015, december 7-12, 2015,
Montreal, Quebec, Canada (pp. 838–846).

Gilda, S. (2017). Evaluating machine learning algorithms for fake news detection. In 2017 IEEE 15Th student
conference on research and development (SCORed) (pp. 110–115). IEEE.

Gravanis, G., Vakali, A., Diamantaras, K., & Karadais, P. (2019). Behind the cues: a benchmarking study for
fake news detection. Expert Systems with Applications, 128, 201–213.

Guo, C., Cao, J., Zhang, X., Shu, K., & Yu, M. (2019). Exploiting emotions for fake news detection on social
media. arXiv:1903.01728.

Hamidian, S., & Diab, M. T. (2019). Rumor detection and classification for twitter data. arXiv:1912.08926.
Hu, X., Tang, J., & Liu, H. (2014). Online social spammer detection. In Twenty-eighth AAAI conference on

artificial intelligence.
Ianni, M., Masciari, E., Mazzeo, G. M., Mezzanzanica, M., & Zaniolo, C. (2020). Fast and effective big data

exploration by clustering. Future Generation Computer Systems, 102, 84–94. https://doi.org/10.1016/j.
future.2019.07.077.

Jain, A., & Kasbe, A. (2018). Fake news detection. In 2018 IEEE International students’ conference on
electrical, electronics and computer science (SCEECS) (pp. 1–5). IEEE.

Khan, J. Y., Khondaker, M., Islam, T., Iqbal, A., & Afroz, S. (2019). A benchmark study on machine learning
methods for fake news detection. arXiv:1905.04749.

Kotteti, C. M. M., Dong, X., Li, N., & Qian, L. (2018). Fake news detection enhancement with data
imputation. In 2018 IEEE 16Th intl conf on dependable, autonomic and secure computing, 16th intl
conf on pervasive intelligence and computing, 4th intl conf on big data intelligence and comput-
ing and cyber science and technology congress(DASC/picom/datacom/cyberscitech) (pp. 187–192).
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00042.

Kwon, S., Cha, M., Jung, K., Chen, W., & Wang, Y. (2013). Prominent features of rumor propagation in
online social media. In 2013 IEEE 13Th international conference on data mining (pp. 1103–1108). IEEE.

Lazer, D. M., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., Metzger, M. J.,
Nyhan, B., Pennycook, G., Rothschild, D., & et al. (2018). The science of fake news. Science, 359(6380),
1094–1096.

Ma, J., Gao, W., Wei, Z., Lu, Y., & Wong, K.F. (2015). Detect rumors using time series of social context
information on microblogging websites. In Proceedings of the 24th ACM international on conference on
information and knowledge management (pp. 1751–1754). ACM.

Ma, J., Gao, W., & Wong, K.F. (2017). Detect rumors in microblog posts using propagation structure via
kernel learning. Association for Computational Linguistics.

Masciari, E. (2012). SMART: stream monitoring enterprise activities by RFID tags. Information Sciences,
195, 25–44. https://doi.org/10.1016/j.ins.2012.01.041.

Matsa, K. E., & Shearer, E. (2018). News use across social media platforms 2018. Pew Research Center 10.
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/.

Mihalcea, R., & Strapparava, C. (2009). The lie detector: Explorations in the automatic recognition of
deceptive language. In Proceedings of the ACL-IJCNLP 2009 conference short papers (pp. 309–312).
Association for Computational Linguistics.

260 Journal of Intelligent Information Systems (2022) 59:237–261

https://doi.org/10.1016/j.knosys.2020.105721
https://doi.org/10.1016/j.knosys.2020.105721
https://doi.org/10.1016/j.ins.2021.01.062
https://doi.org/10.1145/3289600
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/s10844-017-0454-7
http://arxiv.org/abs/1903.01728
http://arxiv.org/abs/1912.08926
https://doi.org/10.1016/j.future.2019.07.077
https://doi.org/10.1016/j.future.2019.07.077
http://arxiv.org/abs/1905.04749
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00042
https://doi.org/10.1016/j.ins.2012.01.041
https://www.pewresearch.org/journalism/2018/09/10/news-use-across-social-media-platforms-2018/


Nguyen, V. H., Sugiyama, K., Nakov, P., & Kan, M.Y. (2020). Fang: Leveraging social context for fake
news detection using graph representation. In Proceedings of the 29th ACM international conference on
information & knowledge management (pp. 1165–1174).

Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2017). A stylometric inquiry into
hyperpartisan and fake news. arXiv:1702.05638.

Reis, J. C., Correia, A., Murai, F., Veloso, A., Benevenuto, F., & Cambria, E. (2019). Supervised learning for
fake news detection. IEEE Intelligent Systems, 34(2), 76–81.

Rubin, V. L., Chen, Y., & Conroy, N.J. (2015). Deception detection for news: three types of fakes.
Proceedings of the Association for Information Science and Technology, 52(1), 1–4.

Sharma, K., Qian, F., Jiang, H., Ruchansky, N., Zhang, M., & Liu, Y. (2019). Combating fake news: a survey
on identification and mitigation techniques. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(3), 21.

Shu, K., Cui, L., Wang, S., Lee, D., & Liu, H. (2019). defend: Explainable fake news detection. In Pro-
ceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining
(pp. 395–405).

Shu, K., Mahudeswaran, D., Wang, S., Lee, D., & Liu, H. (2018). Fakenewsnet: A data repository
with news content, social context and dynamic information for studying fake news on social media.
arXiv:1809.01286.

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2017). Fake news detection on social media: a data mining
perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22–36.

Shu, K., Wang, S., & Liu, H. (2019). Beyond news contents: The role of social context for fake news
detection. In Culpepper et al. (2019) (pp. 312–320). https://doi.org/10.1145/3289600.3290994.

Silva, R. M., Santos, R. L., Almeida, T. A., & Pardo, T.A. (2020). Towards automatically filtering fake news
in Portuguese. Expert Systems with Applications, 146, 113199.

Vosoughi, S., Mohsenvand, M. N., & Roy, D. (2017). Rumor gauge: Predicting the veracity of rumors on
twitter. ACM Transactions on Knowledge Discovery from Data (TKDD), 11(4), 1–36.

Wang, S., & Terano, T. (2015). Detecting rumor patterns in streaming social media. In 2015 IEEE
international conference on big data (big data) (pp. 2709–2715). IEEE.

Wang, W. Y. (2017). “liar, liar pants on fire”:, A new benchmark dataset for fake news detection.
arXiv:1705.00648.

Wang, Y., Yang, W., Ma, F., Xu, J., Zhong, B., Deng, Q., & Gao, J. (2020). Weak supervision for fake news
detection via reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
(Vol. 34 pp. 516–523).

Wu, K., Yang, S., & Zhu, K.Q. (2015). False rumors detection on sina weibo by propagation structures. In
2015 IEEE 31St international conference on data engineering (pp. 651–662). IEEE.

Zhou, X., Zafarani, R., Shu, K., & Liu, H. (2019). Fake news: Fundamental theories, detection strategies and
challenges. In Culpepper et al. (2019) (pp. 836–837). https://doi.org/10.1145/3289600.3291382.

Zubiaga, A., Liakata, M., & Procter, R. (2016). Learning reporting dynamics during breaking news for
rumour detection in social media. arXiv:1610.07363.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

261Journal of Intelligent Information Systems (2022) 59:237–261

http://arxiv.org/abs/1702.05638
http://arxiv.org/abs/1809.01286
https://doi.org/10.1145/3289600.3290994
http://arxiv.org/abs/1705.00648
https://doi.org/10.1145/3289600.3291382
http://arxiv.org/abs/1610.07363

	A comprehensive Benchmark for fake news detection
	Abstract
	Introduction
	Our system in a nutshell
	Plan of the paper


	Related work
	Fake news detection: an experimental test bed framework
	Software architecture
	The deep learning module in detail
	Colaboratory
	Tensor flow
	Keras
	Google B.E.R.T.

	The machine learning module

	The multimedia module
	Pandas
	Pillow (PIL)
	Numpy
	Matplotlib

	Parameter setting


	Experimental setup
	Dataset
	Liar dataset
	FakeNewsNet
	PHEME Dataset


	Pre-elaboration steps
	Choosing and tuning the most suitable machine learning model
	B.E.R.T. parameter tuning
	Multimedia neural network parameter tuning


	Experimental results
	Machine learning approach evaluation
	Deep learning evaluation
	Multimedia approach evaluation

	Discussions
	Conclusion
	References


