
A Comprehensive Comparison of Multiparty Secure Additions
with Differential Privacy

Slawomir Goryczka and Li Xiong
Department of Mathematics & Computer Science, Emory University, Atlanta, GA, USA

Abstract

This paper considers the problem of secure data aggregation (mainly summation) in a distributed
setting, while ensuring differential privacy of the result. We study secure multiparty addition
protocols using well known security schemes: Shamir’s secret sharing, perturbation-based, and
various encryptions. We supplement our study with our new enhanced encryption scheme EFT,
which is efficient and fault tolerant. Differential privacy of the final result is achieved by either
distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated
differential privacy is achieved by diluted mechanisms. Distributed random noise is generated
collectively by all participants, which draw random variables from one of several distributions:
Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy
mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant
noise with efficiency. We compare complexity and security characteristics of the protocols with
different differential privacy mechanisms and security schemes. More importantly, we
implemented all protocols and present an experimental comparison on their performance and
scalability in a real distributed environment. Based on the evaluations, we identify our security
scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with
privacy.

Index Terms

Distributed differential privacy; decentralized noise generation; redundant noise; secure multiparty
computations

1 Introduction

Participatory sensing and data surveillance are gradually integrated into an inseparable part
of our society [8], [27]. In many applications a data aggregator may wish to collect personal
data from multiple individuals to study patterns or statistics over a population. Data privacy
and security issues arise frequently and increasingly in such surveillance systems [1], [35],
[42], [51]. An important challenge is how to protect the privacy of the data subjects, when
the data aggregator is untrusted or not present.

HHS Public Access
Author manuscript
IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017
September 14.

Published in final edited form as:
IEEE Trans Dependable Secure Comput. 2017 ; 14(5): 463–477. doi:10.1109/TDSC.2015.2484326.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example Applications—We provide a few application scenarios to motivate our
problem, including smart metering, syndromic surveillance, and intelligence data collection,
among others.

Smart meters measure and report electrical usage with granularity of minutes compared to
traditional meters, which are read once a month. The collection of information on electricity
demands for all household is useful in preventing blackouts, increasing efficiency of the
electrical grid, and reducing its impact on the environment, etc. The same information
reveals a lot about individual consumers and their habits. An electricity usage profile of a
single household may reveal information about electric appliances used in the household as
well as the number and routines of its inhabitants [14], [46]. These privacy concerns could
be significantly reduced, when such usage data are aggregated and anonymized before being
reported to the utility company. A group of neighboring houses that share the same
infrastructure could securely sum up their electrical usage, and apply privacy mechanisms to
preserve privacy of the individual consumers (Fig. 1).

Syndromic surveillance systems monitor population in the real time for early detection of
large-scale disease outbreaks and bioterrorism attacks [10], [54]. In a simple scenario, a
public health agency collects data from individual visitors who report their Influenza
symptoms (self surveillance). The number of detected cases can then be aggregated and
anonymized based on location of individuals and their demographics. The collected data can
be monitored and analyzed to detect seasonal epidemic outbreaks.

Intelligence data collection, in numerous situations, is performed in crowd settings both
non-deliberately by the general public and by principals, who are anonymously embedded in
the crowds. A canonical example is an uprising in a major city under hostile governmental
control – the general public uses smart devices to report on various field data (third party
surveillance [35]). In this case, the number of participants reporting data may change over
time, and it is important to protect security of the participants (data contributors) as there is
no trusted aggregator as well as privacy of data subjects.

System Settings—We consider a dynamic set of data contributors that contribute their
own data (self surveillance) or other data (third party surveillance) in a monitoring or
surveillance system. In our running example, contributors Di (1 ≤ i ≤ n) collect and
contribute data xi independently, the goal is to compute an aggregate function f(x1, . . ., xn)
of the data. In the self surveillance scenarios, the individuals represented in the collected
data (data subjects) are also data contributors. We assume that collected data are used by an
untrusted application or an application run by an untrusted party for analysis and modeling
(e.g. disease outbreak detection or intelligence analysis). Hence our security and privacy
goals are to guarantee: 1) the intermediate results are not revealed to each other during the
distributed aggregation besides the final result, 2) the final result (with a random noise R)
does not compromise the privacy of individuals represented in the data (Fig. 2).

Privacy of data subjects is defined by differential privacy, which is the state-of-the-art
privacy notion [21], [22], [36] that assures a strong and provable privacy guarantee for
aggregated data. It requires negligible change of computation results, when a single data

Goryczka and Xiong Page 2

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

subject had opted out of the data collection. Therefore, this assures an individual that any
computation results will not unveil the presence (or absence) of its record. A common way
of achieving differential privacy is perturbation of the aggregated statistics by calibrated
noise R (Fig. 2).

In a centralized model, a trusted aggregator (TA) (e.g. CDC offices in the syndromic
surveillance scenario) securely collects the data and outputs perturbed aggregates with
privacy guarantee. In such model, each data contributor maintains a secure communication
channel with the TA. Both security and privacy of computations are guaranteed by the TA,
but at the cost of making it a single point of failure for the entire system.

In a decentralized model without a TA (e.g. in the smart metering or intelligence collection
scenario), the data contributors perform aggregations and perturbations collaboratively
through protocols implemented in secure multiparty computation (SMC) schemes (Fig. 2).
Using SMC schemes only for data aggregation (without perturbation) would not guarantee
privacy of data subjects. Therefore, privacy mechanisms and security schemes need to be
employed together in our scenarios.

In the simplest and the most naïve approach, each data contributor perturbs its own data to
guarantee their differential privacy independently. In such an approach, the noise in the
aggregated result is superfluous, therefore our goal is to find distributed privacy
mechanisms, which ensure privacy and minimize any redundant noise. Each participant
contributes a partial noise such that the aggregated noise guarantees differential privacy for
the result (Fig. 2). In addition, the protocol shall remain secure, if a few participants faulted,
i.e., it should be fault tolerant.

Contributions—In this paper, we propose a new solution for the problem of secure data
aggregation (focusing on addition) with differential privacy. In addition, we present a
comparative study of existing solutions and compare them with our new approach. Among
all secure computation schemes, we evaluate three representative groups: secret sharing [9],
[49], homomorphic encryption [2], [33], [44], [50], and perturbation-based [16]. They
represent different approaches to ensuring security: splitting data into shares (secret sharing),
encrypting data (homomorphic encryption), and perturbing data with significant noise
(perturbation-based). Our goal is not to compare all security properties of these approaches,
but to present their computational characteristics in distributed computations that involve
differential privacy mechanisms. Among homomorphic encryption schemes, we evaluate
three of them: Paillier [44], Ács [2], and Shi [50]. We also introduce an enhanced scheme
EFT that bases on Ács and Shi schemes and inherits all their advantages like minimal
communication, collusion resistant, and fault tolerance with improved efficiency.

To ensure differential privacy in a distributed setting without a trusted aggregator, we
evaluate existing distributed noise perturbation (how to generate partial noise at each party)
mechanisms, which are named after distributions of partial noise they generate: Gamma [2],
Gauss [47], Geometric [29], and Diluted Geometric [50]. We also propose a new distributed
mechanism (Laplace DLPA) based on the Laplace distribution. Our mechanism is more

Goryczka and Xiong Page 3

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

efficient than other mechanisms and generates less redundant noise that is a side effect of
achieving collusion resistance.

We compare complexities and security characteristics of various protocols. We note that
while the security schemes fall into the same SMC framework, we may not be able to
directly compare the security properties of some of them. We will review the security
characteristics of each scheme and compare them as appropriate. Depending on users’
specific requirement, they may choose the schemes with similar security characteristics. We
will then focus on comparing their computational characteristics in distributed computations
that involve differential privacy mechanisms. More importantly, we implemented all
distributed protocols and present a comprehensive experimental comparison of their
performance and scalability.

2 Related Work

Secure Multiparty Computations—Secure two-party computations has been defined by
Yao, who presented a solution to the Millionaires’ Problem, where two millionaires want to
find out, who is richer without disclosing their actual wealth [55]. Yao’s protocol has been
extended to secure multiparty computations (SMC) in [31] and to scenarios with active
adversaries [38].

Protocols implemented in a general SMC scheme are computationally expensive. However,
many specialized and efficient protocols have been developed for different operations [16],
[39] such as secure sum, secure union, and secure scalar product. To compute secure sum,
we applied efficient techniques based on threshold homomorphic functions [17] and random
shares [52]. Paillier [44] presented an additively homomorphic cryptosystem that computes
the encrypted sum using only encrypted values. Its threshold variant has been introduced by
Damgård et al. [18] and used to implement an electronic voting system. Hazay et al.
presented a threshold Paillier scheme for two-party setting [33].

Pedersen et al. compared encryption-based and secret sharing schemes used in privacy
preserving data mining [45]. However, their comparison does not include performance
evaluations, and does not cover the latest security schemes and privacy mechanisms.

Chu et al. proposed a threshold security scheme to collect data in a wireless sensor network
[15]. In their scheme, encryption keys are symmetric and valid only for a requested period of
time. The scheme is not homomorphic, i.e., the data recipient needs to decrypt ciphertexts
before aggregating them, therefore it has to be trusted.

Brun and Medvidovic introduced a distributed secret sharing scheme using a concept of
“tiles” [7]. In their scheme, data are represented by tiles, which are distributed in an
untrusted network. Each tile discloses a single bit of data, but the scheme is generally secure
if at least half of them are not corrupted. Note that some statistical information is always
revealed with revealing each tile.

Distributed Differential Privacy—The notion of differential privacy was introduced in
[24], where it was achieved by perturbing results with Laplacian noise. Several works

Goryczka and Xiong Page 4

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

studied distributed data aggregation with differential privacy. For example, Dwork et al.
developed distributed algorithms of noise generation, in which random shares are drawn
from binomial and Poisson distributions [23].

Ács et al. applied privacy-preserving and secure data aggregation to the smart metering
system [2]. Their scheme was inspired by previous work on secure sensor data aggregation
in a wireless network [11], [12]. The scheme uses differential privacy model and
homomorphic properties of a modulo addition-based encryption scheme to ensure privacy of
results and security of computations. Differential privacy is achieved by adding Laplace
distributed noise to results. Noise is generated distributively, such that each meter generates
one share as a difference between two Gamma distributed random variables. We named such
mechanism Gamma DLPA and evaluated it.

In a similar scenario, individual users collect and aggregate time-series data. PASTE is the
system that implements that and ensures differential privacy of results [47]. Differential
privacy is achieved by perturbing the most significant coefficients of the discrete Fourier
transform of the query answers by a Distributed Laplace Perturbation Algorithm (DLPA).
Each participant generates partial noise as a tuple of four Gaussian random variables.
Security of computations is ensured by the threshold Paillier cryptosystem. We named such
mechanism Gauss DLPA and evaluated it.

Shi et al. also utilized a homomorphic encryption scheme, and minimized its communication
complexity by generating an encryption key from the current round number and the existing
key [50]. Their privacy mechanism is distributed and ensures approximate differential
privacy with noise drawn from the symmetric geometric distribution [29]. We named the
mechanism dGPA, generalized it to a diluted perturbation mechanism, and evaluated them.

Alhadidi et al. presented a secure two-party differentially-private data release algorithm for
horizontally partitioned data [4]. Differential privacy of released data has been achieved by
an exponential mechanism that samples existing records or items with an exponentially
distributed probability [41]. The mechanism is used in domains where noise perturbation is
not possible.

3 System Models and Requirements

In this section, we describe our adversary model, formally present security and privacy
models, and discuss reliability and performance requirements.

3.1 Adversary Model

We assume that the main goal of an end user is to infer sensitive information about data
subjects using final results, and any publicly known data. We further assume that data
contributors are semi-honest, i.e., they follow a protocol correctly, but may passively observe
and use any intermediate results to infer sensitive information of other data contributors or
data subjects.

A group of contributors may also collude to increase their chances of a successful attack.
Collusion is an inherent element of distributed systems, because each data contributor

Goryczka and Xiong Page 5

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

already knows its own data. In general, any group of collaborating contributors share all
their data. In the worst-case scenario, all but one contributor are colluding.

3.2 Privacy Model

Privacy of data subjects is protected if any data recipient does not learn anything about them
including their participation in the data collection. Traditional approaches such as removing
identifying attributes, generalizing, or perturbing individual attribute values, are susceptible
to various attacks [26]. In our study, we use differential privacy (known earlier as
indistinguishability [23]), which is the state-of-the-art privacy model that gives a strong and
provable privacy guarantee [21], [22], [36]. Differential privacy assures an individual that its
participation in the data collection can be guessed only with negligible probability regardless
prior knowledge of an attacker. Informally, the attacker that knows all but one record and the
result of computations, is not able to find out, if the remaining record has been used in
computations or not. Formally, differential privacy is defined as follows.

Definition 3.1 (α-Differential Privacy [20])—A randomized mechanism satisfies α-
differential privacy, if for any neighboring databases D1 and D2, where D1 can be obtained
from D2 by either adding or removing one record, and any possible output set S,

Later the definition of α-differential privacy has been relaxed as follows.

Definition 3.2 (δ-Approximate α-Differential Privacy [23], [36])—A randomized
mechanism satisfies δ-approximate α-differential privacy, denoted also as (α, δ)-
differential privacy, if for any neighboring databases D1 and D2 and any possible output set
S,

Note that for δ ≥ 1 any mechanism is δ-approximate α-differentially private for any α. Thus,
we consider only scenarios with δ ∈ [0, 1).

A few types of privacy mechanisms achieve differential privacy. In this paper, we analyze
perturbation mechanisms, which add noise to their results. An example of non-perturbation
mechanism that also achieves differential privacy is the exponential mechanism [41], in
which privacy is achieved by sampling a dataset.

In distributed settings, any group of data contributors is equally likely to collude, hence no
contributor is more trusted than others. Thus, a distributed mechanism should be designed
such that participation of each contributor in perturbations is equal. Equal participation in
perturbing results means that every contributor generates the same level of noise, i.e., all
noise shares are independent and identically distributed (i.i.d.) random variables.

Goryczka and Xiong Page 6

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.3 Security Model

A secure distributed system ensures that data recipients and participating data contributors
learn only the final result and whatever can be derived from it.

We use the formal security notion to present the secure multiparty computation (SMC)
protocols [30], [39], [55]. In an SMC protocol, parties jointly compute a function of their
private data with security, which is defined as follows.

Definition 3.3 (Secure computation [30])—Let f be a function of n variables, and Π be
an n-party protocol for computing f. The view of the ith party during an execution of Π on X

= (x1, . . ., xn) is denoted , and for a group of parties with indices I ⊆ [n], we let

XI = {xi ∈ X : i ∈ I} and . We say that Π
securely computes f if there exists a probabilistic polynomial-time algorithm, denoted S,
such that for every I, it holds that

where OUTPUTΠ(X) denotes the output sequence of all parties during the execution

represented in .

Note that ≡ means that results of S are computationally indistinguishable from intermediate
and final results of the secure protocol, i.e., VIEW and OUTPUT. Thus, S simulates the
protocol and it can be differentiated from S based on their outputs only with negligible
probability.

Informally, an SMC protocol is secure, if all parties learn only what can be computed from
the final results, i.e., is simulated by S. Secure computations are vital in processing data with
privacy and confidentiality. Note that security of f does not guarantee privacy of f(X), i.e.,
f(X) may still disclose sensitive information. However, applying privacy mechanisms to
computations of f(X) preserves or limits disclosure of sensitive information.

3.4 Fault Tolerance

In distributed settings, data contributors can fault or can go off-line at any time. Ensuring
fault tolerance, is an additional challenge for every protocol.

A security scheme achieves fault tolerance at level w, if failure of any w contributors during
computations breach neither privacy of data nor security. In addition, after running a
recovery procedure the final result is correct, i.e., is the same as it would be returned by
active contributors running the protocol. If for n contributors a security scheme guarantees
fault tolerance at level n, then such scheme is fault tolerant. We analyze fault tolerance of all
protocols implementing the same computations in various schemes.

Goryczka and Xiong Page 7

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.5 Performance Requirements

In real life scenarios, computation and communication resources are often limited. For
example, contributors that collect data may have only mobile devices with minimal
computation power. A very important limitation of such devices is their battery life,
therefore protocols run by them shall have low energy consumption. Power consumption is
frequently correlated with computation and communication complexities, which we use to
evaluate both security schemes and privacy mechanisms.

In addition, communication channels among nodes may be heterogenous, and direct
communication between any two nodes may not be always possible or trusted. Thus,
ensuring security of these channels is an important requirement for a few presented
solutions.

4 Comparison of Secure Computation Schemes

In this section, we describe and analytically compare computational characteristics of
several different security schemes, which are used to implement secure aggregation
protocols for n data contributors. After that, we introduce a new enhanced scheme EFT,
which is fault tolerant and efficient. Experimental comparison is presented in Section 6.

4.1 Secret Sharing

Secret sharing schemes split a secret into multiple shares that are meaningless unless s of
them are collected and the secret is reconstructed. Any set of fewer than s shares discloses
nothing about the secret even for computationally unbounded adversary. The value of s
defines also the minimal number of colluding parties necessary to breach the security of
computations. After generation, shares are distributed, such that each contributor receives a
few (usually one) shares. They are then used in computations and combined to reveal the
final result.

As an example of secret sharing schemes, we describe the Shamir scheme [49]. In this
scheme, shares of different secret numbers can be summed up to get shares of their sum,
which can be then reconstructed. Other arithmetic and set operations are also possible and
implemented [9].

Shamir Scheme—Each participant implements and runs the same Shamir scheme
protocol outlined as follows. A participant i computes n shares of its local secret value xi, by
randomly generating a polynomial wi of order s, such that wi(0) = xi. For a set of selected,
and publicly known nonzero distinct points z1, . . ., zn, shares of xi are computed as values of
wi in these points, i.e., xi,j = wi(zj) for j = 1, . . ., n. Then, shares are distributed, such that
from all participants xi,j are sent to party j. After exchanging all shares, party j computes a
share of the result at zj, e.g., sums up received shares Σi xi,j. Finally, one party collects at
least s shares of the result, interpolates them to compute a polynomial w, and reconstructs
the result w(0).

Note that Shamir scheme was introduced only for integer numbers. Adapting the scheme to
floating point numbers requires implementing different arithmetic operation protocols [13]

Goryczka and Xiong Page 8

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

or encoding floating point numbers as integers, e.g., by multiplying them by the same power
of 10.

Security of Shamir scheme relies on the randomness of generated shares and security of
communication channels. Assuming that all communication channels are secure, Shamir
scheme is information-theoretically secure, i.e., is secure against computationally
unbounded attackers [5]. However, since efficient implementation of secure communication
channels relies on encryption (e.g. a Secure Sockets Layer), the scheme is, in fact,
computationally secure, i.e., an attacker that uses current computer technology and available
resources will not be able to breach security.

Since disclosing any set of less than s shares does not reveal the secret, the scheme is
immune to collusion of less than s parties. Fault of any party may require identifying its
shares by other parties and dropping them, if a faulted party was able to distribute less than s
of its shares. If enough shares were distributed before they faulted, the protocol is continued.
If decryption requires participation of more parties than those that are active, the protocol is
rerun.

Shamir scheme has low computation complexity, but since each participant sends at least (n
− 1) shares to others, the amount of communication is relatively high and equal to O(n2). An
example framework that implements secure operations of Shamir scheme is SEPIA [9].

4.2 Perturbation-Based Protocols

Perturbation-based protocols are an efficient alternative for other protocols, but often they
require certain topology of connections, e.g., a ring. Their main idea is to perturb input data
by adding some random noise, such that they become meaningless for any attacker, and then
perform computations on the noisy data. This approach achieves security by obfuscating all
intermediate results, but is vulnerable to collusion and is not fault tolerant. Fault of any party
requires rerunning the protocol by remaining active parties.

As an example of perturbation-based protocols, we consider the secure sum protocol [16]. In
this protocol, all parties are connected in a ring topology. Each party generates random
noise, which is added to its private input. The starting party, which is elected randomly,
sends its obfuscated value to its successor that adds its own obfuscated value and passes it
further. At the end, the starting party holds the sum of obfuscated values from all parties. In
the next phase, each party removes its noise from the obfuscated sum, which, at the end,
reveals the correct final sum.

Unfortunately, if two neighbors of the same party collude, they can easily discover both the
obfuscated value (the first phase) and the random noise (the second phase) generated by the
same party. With such information they can compromise the value participated by the party.
Many enhancements have been introduced to this protocol to increase its collusion
resistance, e.g., shuffling party positions in the ring, and dividing computations into multiple
rounds [16]. Although such enhancements may significantly increase communication
complexity of protocols, they are still very efficient.

Goryczka and Xiong Page 9

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.3 Homomorphic Encryption

An encryption scheme is homomorphic, if its computations can be carried out on ciphertext.
Formally, for a given homomorphic encryption function E with respect to a function f, the
encrypted result of f can be obtained by computing a function g over encrypted values of
x1, . . ., xn, i.e.,

(1)

Homomorphism of an encryption scheme is very useful in distributed settings. An outline of
computing a value of f over distributed input xi is defined as follows. First, each party
encrypts its local data xi and sends E(xi) to a single party. Then, such party computes the
function g on encrypted data. Due to homomorphism of the encryption scheme, the party
gets the encrypted value of function f, which can be used for further computations or
decryption.

Fully homomorphic schemes allow secure multiparty computation of any function f. The
price for such flexibility in choosing f is high complexity of computations [28], [53].
However, a few partially homomorphic schemes are efficient enough to achieve both
security and performance goals, e.g., multiplicatively homomorphic ElGamal [25] and RSA
[48] schemes. Our choice of the encryption scheme is determined by the aggregation
operation, which in our scenarios is addition. Examples of additively homomorphic schemes
are Paillier [44], Ács [2], and Shi [50].

Paillier Scheme—The Paillier scheme is a probabilistic public-key encryption scheme
[18], [33], [44], which works as follows. Initially, a single trusted third party (TTP)
generates a pair of public and private keys. A party i encrypts its local value xi using the
encryption function E and the public key. Then, all encrypted values are collected by any
participant or the TTP, which computes g(E(x1), . . ., E(xn)). The result can be decrypted or
used in further computations.

The original protocol has been enhanced to a threshold scheme, in which shares of a private
key are distributed, and any s out of n shares are sufficient to decrypt the ciphertext. In such
scheme, the TTP is not necessary to decrypt the final result. Any s participants can do so, by
partially decrypting it using their shares of the private key, and combining computed results.
Details of key generation, encryption and decryption algorithms can be found in [18], [33].
For settings where the TTP is not present, generation and distribution of public and private
keys can be also securely performed, by running a separate SMC protocol [19], [43], e.g.,
Diffie-Hellman key exchange protocol [2].

Ács Scheme—The Ács scheme is a modulo addition-based encryption scheme [2], i.e.,
addition is the encryption function. Encryption keys are generated in pairs by two parties,
e.g., by running Diffie-Hellman key exchange protocol. Keys in each pair are inverse to each
other, i.e., they sum up to 0. Each party has r encryption keys, which inverses are held by r

Goryczka and Xiong Page 10

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

other parties. In the final result all encryption keys are summed up, they cancel out and no
decryption is necessary.

Any group of less than r colluding parties is not able to disclose local value of any other
party. However, bigger groups can do so with non-zero probability. In the original scheme
introduced by Ács et al., fault of any participant requires rerunning all computations from
the beginning. The original scheme can be extended by a recovery subprotocol that finalizes
computations and returns the correct result. We introduce and analyze such subprotocol as
part of our enhanced scheme described in Section 4.4.

Establishing r keys for each party before actual computations is inefficient and requires
running a key exchange protocol by pairs of parties. Unfortunately, reusing the same keys
leads to leaks in security especially when parties fault. The following scheme addresses this
requirement of using different keys, by generating them from setup keys.

Shi Scheme—In the Shi scheme, a separate decryption function is reduced to computing
the discrete logarithm of the output in order to get the final result [50]. If aggregated value is
used in further computations, decryption can be postponed until the final result is computed.
Similar to the Ács scheme, the method of generating encryption keys ensures that the final
result will be already decrypted. Although all parties need to participate to compute the
result, they do not need to communicate in order to establish encryption keys for the next run
of the protocol. For each run, an encryption key is computed from the initially established
key using a one-way function, e.g., a hashing function SHA-256. Such approach minimizes
communication among parties, but requires additional computations.

Since participation of all parties is necessary to finalize computations, fault of any party
during computations makes the result useless, and the protocol has to be rerun by active
parties. Communication complexity is minimal, but computation complexity is high due to
key generation.

4.4 An Enhanced Fault-Tolerant Scheme

Inspired by Ács and Shi schemes, we introduce an enhanced fault-tolerant scheme (EFT),
which is fault tolerant, immune to collusion of parties, and adds minimal communication
overhead. Our scheme is similar to the Ács scheme, but with a few crucial modifications.

In our scheme, an untrusted data aggregator, which is an independent entity or is simulated
by any data contributor, initiates all protocol runs (Algorithm 1). After aggregating values
from all parties N, it returns the final result (lines 1 to 8). If any data contributor faults, the
aggregator will detect it (line 5). In this case, the result will be decrypted only partially and
the aggregator will run the recovery subprotocol to compute the final result (lines 10 to 12).

Algorithm 1

Data aggregation and recovery of the EFT scheme, which is run by an untrusted party.

1: sum ← 0

Goryczka and Xiong Page 11

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2: Faulted ← ∅

3: for all j ∈ N do

4: sum ← sum+ GET_ENCRYPTED_VALUE_FROM(j, timeout)

5: if timeout happened or no connection with j then

6: Faulted ← Faulted ∪ {j}

7: if Faulted = ∅ then

8: return sum

9: // Recovery subprotocol.

10: for all j ∈ N do

11: sum ← sum + GET_RECOVERY_KEY_FROM(j, Faulted)

12: return sum

Data contributors participate in the aggregation by running Algorithm 2. In the setup phase,
a contributor i establishes random keys ki,j and initiates local timestamps ti,j with r randomly
chosen parties Ni (lines 1 to 6). After fixing ki,j no further setup is needed, and no
communication is generated. During encryption, each ki,j is hashed with the current
timestamp for a pair (i, j), ti,j, and the result is added to, or subtracted from, the contributed
value xi (lines 10 to 12). The result is sent back to the aggregator.

Note that only r collaborating neighbors Ni can breach security and reveal xi. Therefore,
when using a privacy mechanism with our scheme, the minimal number of noise shares
required to ensure privacy shall be at most r.

Algorithm 2

An encryption function run by a party i contributing xi at local time ti,j with encryption keys
exchanged with parties Ni.

1: if |Ni| < r then

2:

3:

 for all do

4: ki,j ← Diffie-Hellman_key_exchange(i, j)

5: ti,j ← 0

6:

7: ciphertext ← xi

8: for all j ∈ Ni do

9: if ID(i) > ID(j) then

10: ciphertext ← ciphertext+ Hash(ki,j, ti,j)

11: else

12: ciphertext ← ciphertext− Hash(ki,j, ti,j)

13: ti,j ← ti,j + 1

14: return ciphertext

Goryczka and Xiong Page 12

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In the recovery process (Algorithm 3), each party initiates its recovery key (eg. by setting it
to zero) and gets the set of all faulted parties (Faulted). For faulted neighbors each party
updates its recovery key, by adding inverses of aggregated encryption keys (lines 3 to 6),
dropping connection with them (line 7), and removing them from its set of neighbors Ni

(line 8). If all neighbors of a party i faulted, then sending the recovery key to the aggregator
would reveal the contributed value xi. Therefore, the party subtracts xi from the recovery
key, which will remove it from the aggregated result as well.

Security—Security proofs of our scheme are the same as presented in [2] and [50]. Here
we only describe a simulator S (Definition 3.3) of our protocol. Without loosing generality,
we use arithmetic modulo m for sufficiently large m. The simulator gets as input the
computed sum, the set of faulted parties Faulted, and the topology of connections among
parties, i.e. Ni for all i. Faulted and Ni can be determined by inspecting network traffic,
while the protocol is run. Assuming security of the Diffie-Hellman exchange key protocol
and given the oracle for the Hash function, we define a simulator S of this protocol. Note
that the Hash function outputs uniformly distributed values from [0, m), hence the ciphertext
corresponding to a data value is also uniformly distributed in the same domain. The domain
of secret values xi is equal to or a subset of [0, m).

Algorithm 3

A recovery protocol run by a party i contributing xi at local time ti,j with neighbors Ni and
Faulted parties failing.

1: recovery_key ← Init()

2: for all j ∈ Faulted ∩ Ni do

3: if ID(i) < ID(j) then

4: recovery_key ← recovery_key + Hash(ki,j, ti,j)

5: else

6: recovery_key ← recovery_key − Hash(ki,j, ti,j)

7: disconnect_from(j)

8: Ni ← Ni \ {j}

9: if Ni = ∅ then

10: recovery_key ← recovery_key − xi

11: return recovery_key

S simulates the protocol by assigning to each active party as secret , then
running Algorithm 2 with simulated GET_ENCRYPTED_VALUE_FROM (Algorithm 2)
and GET_RECOVERY_KEY_FROM (Algorithm 3) and with the oracle for the Hash
function. Algorithm 2 is simulated by running its last loop (lines 7 to 14). Algorithm 3 is
simulated by running it entirely without line 7. A ciphertext returned by running any of the
algorithm simulations will be uniformly distributed in [0, m) and indistinguishable from a
ciphertext returned by the same algorithm run in the protocol. Hence, intermediate and final
results of running S are also indistinguishable from results observed when running the
protocol.

Goryczka and Xiong Page 13

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Encrypted keys ki,j are computationally secure due to the hashing function used, e.g.,
SHA-256, and which cannot be reversed in a polynomial time. Note that the EFT scheme is
immune to collusion of less than r parties. Increasing r ∈ [1, n) will increase security of the
protocol, but will also reduce its scalability. The value of r should be established based on
probability of faults and should be greater than the maximal number of colluding parties.

Complexity—If all parties are active and run our protocol, then they generate 2n messages
in only two rounds –one to collect encrypted values by an untrusted aggregator and one to
broadcast the final result. When a few parties faulted, a recovery process would generate
additional 3n messages to broadcast Faulted, collect recovery keys, and broadcast the
recovered result. Computational complexity of the EFT protocol is slightly higher than
complexity of the Ács scheme, due to additional computations. However, since encryption
keys are not reestablished before each computation, the communication overhead is
significantly lower, while preserving fault-tolerance.

4.5 Comparison

Security schemes that are presented above belong to different groups of secure
computations, and cannot be directly compared. However, all of them can be employed to
ensure security of data aggregation and anonymization. As an example, we have
implemented a secure sum protocol in each scheme. We compare their characteristics in the
context of these computations, and leave the choice in hands of the reader, who knows her
security requirements. Experimental performance comparisons are presented in Section 6. A
summary of the comparison is presented in Table 1.

Setup—Communication and computation overhead caused by setting up secure
communication channels, encryption key, etc. is negligible for many rounds of
computations, hence they are not in Table 1. However, when there are only a few rounds of
computations, costs of the setup should be considered as well. Shamir scheme starts by
setting up C(n, 2) security communication channels. A perturbation based protocol
establishes from n up to C(n, 2) secure communication channels. For our settings, the
protocol sets n such channels. Paillier and Shi schemes require a TTP to generate C(n, 2)
and n encryption keys, respectively. Ács and EFT schemes do not need a TTP, but they run
Diffie-Hellman key exchange protocol times each for r ∈ [1, n).

Communication—Shamir scheme does not require significant computational resources
and its fault tolerance level depends on the number of parties required to reconstruct the
secret s. However, the high communication complexity is a major drawback that limits its
scalability.

Each perturbation-based protocol is suited for a specific computation and requires
participation of all parties. Thus, it is not fault tolerant and faults of any party requires
rerunning it. In addition, in the presence of colluding parties, the scheme does not ensure
security, which is its major weakness. However, such protocols are suitable for settings
where parties have limited resources, but are reliable.

Goryczka and Xiong Page 14

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Among homomorphic encryptions schemes, Paillier and Shi incur high computation
overheads due to their heavy encryptions. Therefore, these schemes may be suitable for
scenarios in which participants have more computational power, and high scalability is
required. The minimal amount of communication is generated by Shi and our EFT scheme.
Shi scheme is immune to (n − 2) colluding parties, but will not be able to recover after fault
of any party. Paillier, Ács, and our schemes are fault tolerant with the level of protection
against colluding parties defined as a parameter. However, after initial setup our scheme
does not require any more communication, while in Ács scheme all encryption keys need to
be regenerated, which causes exchanging 2rn additional messages. Reestablishing
encryption keys before each computation (n messages) and decryption of results (2n
messages) increase significantly the communication complexity of Paillier scheme. Among
encryption schemes, our EFT scheme is the most efficient in terms of communication and
computations, is also fault tolerant, and is flexible in adjusting its collusion level. None of
other schemes holds all these properties.

Fault Tolerance—All schemes can be partitioned by their fault tolerance level into three
groups. Perturbation-based and Shi schemes are not fault tolerant, i.e., if any party faults, the
currently run protocol is stopped and run again.

Schemes from the other group deal with faults silently (e.g. Shamir and Paillier), i.e., they
do not run any recovery protocol to retrieve final results, but continue computations.
However, if the number of active data contributors drops below s, then protocols
implemented in either of these schemes are stopped and have to be rerun with decreased
value of s. Note that s cannot be less than the maximal number of colluding data contributors
and the number of noise shares necessary to achieve differential privacy.

Remaining two schemes, i.e., Ács and our EFT scheme, finish computations and return
results regardless of any faulted participants. However, when a data contributor faults, all
remaining contributors shall run a recovery protocol, which we presented in Algorithm 3.

Collusion of Parties—Only Shi scheme remains secure after collusion of (n−2) parties,
which is the maximal number of colluding parties. Collusion of any two or more parties may
breach security of Perturbation-based scheme. Rearranging topology of connections among
parties and dividing computations into multiple stages may improve collusion resistance of
this scheme to certain extent. For remaining schemes the maximal number of allowed
colluding parties is less than the number of encryption key shares required to reconstruct the
result (Shamir, Paillier) or the number of keys exchanged by each party with others (Ács,
EFT).

5 Comparison of Differential Privacy Mechanisms

In this section, we describe distributed privacy mechanisms that achieve differential privacy
(Definition 3.1). We also introduce two efficient distributed mechanisms that ensure
differential privacy. One is defined in the domain of real numbers and the other is defined in
the domain of integer numbers. Let D ∈ be a database, and Q be an aggregated query, e.g.,

Goryczka and Xiong Page 15

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a count query. In addition, let ℝ be real numbers, ℤ be integer numbers, ℕ be natural
numbers, and be a random variable (r.v.) representing noise.

All privacy mechanisms introduce perturbation to results of an aggregation query Q. Such
perturbation is carefully calibrated with respect to the global sensitivity of Q, which is
defined as follows.

Definition 5.1 (Global Sensitivity [24])—The sensitivity of any aggregate function Q :
 → ℝ, is equal to ΔQ = maxD1,D2 || Q(D1) − Q(D2)||1 for all D1, D2 differing in at most

one record.

5.1 Laplace Perturbation Algorithm

A common mechanism to achieve α-differential privacy is the Laplace perturbation
algorithm (LPA) [21]. LPA ensures that results of an aggregated query Q are α-differentially
private, by perturbing them with a r.v. ℒ, which is drawn from the Laplace probability
distribution function Lap(θ, α) with mean θ and scale α.

Definition 5.2 (Laplace Mechanism, LPA [24], [21])—For Q : → ℝk, the
mechanism Q that adds independently generated noise ℒ with distribution Lap(0, ΔQ/α)
to each of the k output terms enjoys α-differential privacy,

(2)

Note that ℒ can be also simulated by two exponential distributed random variables as
follows.

Lemma 5.1 ([37])—Let λ and λ be random variables with the exponential
distribution, i.e., Pr(λ = x) = Pr(λ = x) = λe−λx for x ≥ 0. Noise ℒ in the LPA with the
query sensitivity ΔQ and parameter α (Definition 5.2) can be simulated as

 for .

Laplace mechanism can be directly applied by the TA in a centralized model. In a
decentralized model, the TA is not present and has to be simulated by data contributors. In
such model, differential privacy is achieved by distributed perturbation Laplace algorithms
(DLPA). In DLPA each party generates partial noise, such that the aggregated noise follows
the Laplace distribution, which is enough to guarantee differential privacy.

Due to infinite divisibility of Laplace distribution [37], a r.v. with such distribution can be
computed by summing up n other random variables. We utilize this property and study a few
algorithms named after distributions they use to draw partial noise, i.e., Gamma, Gauss, and
Laplace. Gamma and Gauss have been already introduced in [47] and [2], respectively, while
Laplace is their alternative. We describe and compare all three DLPA mechanisms below.

Goryczka and Xiong Page 16

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gamma DLPA—This mechanism utilizes infinite divisibility of Laplace distribution and
generates partial noise by drawing it from the gamma distribution [2]. Formally, a Laplace
distributed random variable ℒ ~ Lap(θ, α) can be simulated by the sum of 2n random
variables as follows,

(3)

where i and ℋi are independent gamma distributed random variables with densities
following the formula (x ≥ 0),

(4)

Γ is the gamma function, such that .

Note that generating a r.v. with the gamma distribution requires drawing at least 2 random
variables [3]. Assuming uniform distribution of its parameter a, on average 2.54 uniformly
distributed random variables need to be drawn.

Gauss DLPA—A random variable ℒ ~ Lap(0, α) can be also simulated by 4 i.i.d. random
variables 1, 2, 3, 4, each is drawn from the normal distribution Gauss(0, α/2) with
variance (α/2) [37] and applied as follows,

(5)

Since infinite divisibility of the normal distribution is stable, drawing a single r.v. i ~
Gauss(0, α/2) (i = 1, 2, 3, 4) is simulated by the sum of n i.i.d. Gaussian random variables

 as follows,

(6)

The above formulas can be implemented in distributed settings, but secure computation of
squares of random variables is a challenge. An SMC protocol implementing such
computations has high complexity [47].

Goryczka and Xiong Page 17

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Generating a random variable from the Gaussian distribution requires, on average, drawing a
single uniformly distributed number [6]. Additional approaches that are more efficient on
average but slow in the worst-case scenario have been described in [40].

Laplace DLPA—Infinite divisibility of the Laplace distribution is stable [37]. Thus,
drawing a random variable ℒ ~ Lap(0, α) from the Laplace distribution can be simulated by
n i.i.d. random variables ℒi ~ Lap(0, α) and a ℬ ~ Beta(1, n − 1), as defined in the following
formula,

(7)

Note that ℬ is a single r.v., which is drawn with probability Pr(ℬ = x) = (n − 1)(1 − x)n−2 for
x ∈ (0, 1).

Drawing ℒi ~ Lap(θ, α) requires generating one uniformly distributed r.v. taken from the
range (−0.5, 0.5), which is applied to the following formula,

(8)

Similarly, drawing a r.v. ℬ requires generating only one uniformly distributed random
variable.

5.2 Geometric Perturbation Algorithm

The LPA (Definition 5.2) perturbs query results with noise drawn from the continuous
Laplace distribution. When returned results are expected to be integers, such mechanism
cannot be directly applied. To address this, Ghosh et al. introduced two privacy mechanisms
that ensure α-differential privacy by perturbing their results with integer noise and
truncating noisy values if needed [29]. Their mechanisms work only for queries with
sensitivity equal to one (e.g. count queries). We leave for future study finding a discrete
perturbation mechanism for different sensitivities.

Definition 5.3 (Geometric Mechanism, GPA [29])—For a function Q : → ℕ, a
parameter ε ∈ (0, 1), the ε-geometric mechanism is an oblivious mechanism with integer
range ℤ, defined as follows. When the true query result is Q(D), the mechanism outputs
Q(D) + ∈ ℤ, where is a random variable drew from the following discrete GM(ε)
distribution,

(9)

Goryczka and Xiong Page 18

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

If the result of the query Q is limited to natural numbers ℕm = {0, 1, . . . , m}, i.e., Q : →
ℕm, the perturbed output of the GPA is outside ℕm with non-zero probability. The truncated
geometric mechanism (tGPA) that has range ℕm avoids such inconsistencies by
“remapping” all negative outputs to 0 and all outputs greater than m to m.

The GPA is a discretized version of the LPA, in which noise is drawn from the Lap(ΔQ/α)
distribution (ε =exp(− α/ΔQ)) and ΔQ = 1 for both geometric mechanisms. Ghosh et al.
proved that both geometric mechanisms achieve α-differential privacy.

Decentralized GPA—Both geometric mechanisms are centralized, i.e., noise is generated
by a TA that perturbs the results. We propose a distributed geometric mechanism DGPA, in
which all participants contribute i.i.d. noise shares to simulate ε-geometric mechanism for ε
∈ (0, 1) and achieve α-differential privacy (α = − ΔQ ln(ε)). Note that the distributed
truncated GPA (DtGPA) is defined as DGPA with the same additional “remapping” as for
the tGPA.

In order to present the distributed GPA, we prove that noise generated by the GPA can be
simulated as a difference between two exponentially distributed random variables. Then, we
show that such variables can be generated as sums of i.i.d. Pólya distributed random
variables.

Lemma 5.2—Let and be geometrically distributed random variables with the
probability of success equal to (1 − ε), i.e., Pr(= x) = Pr(= x) = εx(1 − ε). Noise in
the ε-geometric mechanism GPA (Definition 5.3) can be simulated as = − .

Proof: We show that and (−) have the same distribution, i.e., they have the same
moment-generating functions M, M (t) = M − (t) for all valid t.

(10)

Recall also that for any two i.i.d. random variables and , M + (t) = M (t) · M (t).
In addition, for any constant a, Ma (t) = M (at) [34]. Note that the moment-generation
function for geometric distribution with the probability of success p is equal to p(1 − (1 −
p)et) −1 for t < −ln(p) [34].

(11)

Thus, M (t) = M − (t) and = − .

Note that truncation (“remapping”) is applied to generated noise, hence truncated (X − Y)
will simulate truncated N, and Lemma 5.2 holds for tGPA as well.

Goryczka and Xiong Page 19

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In order to define DGPA, we recall the Pólya distribution. Then, we prove that such
distributed random variables can be used to generate i.i.d. noise shares, such that the final
noise follows the GM(ε) distribution, and therefore the DGPA achieves α-differential
privacy (α = − ln(ε)).

Definition 5.4 (Polya Distribution [34])—Let be a random variable following the
discrete Pólya (r, p) distribution with parameters r ∈ ℝ and p ∈ (0, 1). The probability
distribution function is defined as follows,

If r ∈ ℕ, then the Pólya distribution is known as a negative binomial distribution NB(r, p). If
r = 1, then it is known as a geometric distribution with probability of success equal to (1−p).

Theorem 5.1—Let n be a number of data contributors and i, i be i.i.d. random variables
following the Pólya (1/n, ε) distribution for i = 1, 2, . . . , n. A random variable with the
distribution GM(ε) (Definition 5.3) can be simulated by the following sum,

Proof: Both NB and Pólya distributions are infinitely divisible [34]. Therefore, the sum of
i.i.d. random variables i ~ Pólya (ri, ε) follows the same distribution with parameters

 and ε.

If ri = 1/n, then both and follow Pólya (1, ε) distribution, i.e., are
geometrically distributed with probability of success equal to (1 − ε). Therefore, by Lemma
5.2 we conclude the proof.

To draw a r.v. i from Pólya (r, ε) distribution we utilize the Poisson-Gamma mixture [34].
First, we randomly draw λ from the Gamma(r, ε/(1−ε)) distribution. Then, we draw i from
the Poisson distribution with parameter λ.

5.3 Distributed Noise Approximation Mechanisms

Both LPA and GPA achieve δ-approximate α-differential privacy for all δ ≥ 0 (Definition
3.2). Using these mechanisms for relaxed settings (δ > 0) is not optimal, i.e., disturbance of
the result is superfluous. However, they can be modified to introduce less noise and still
ensure required level of approximated ε-differential privacy. One set of modifications is to
draw noise from an approximated distribution.

Goryczka and Xiong Page 20

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In [23], authors presented two methods of achieving (α, δ)-differential privacy for any
values of α and δ > 0. One method utilizes a Poisson process to generate random variables
that approximate exponentially distributed random variables. The other method ensures (α,
δ)-differential privacy by approximating Gaussian noise with binomially distributed random
variables. In both methods, random variables are drawn by tossing unbiased or biased coins,
which has been implemented in distributed settings, but with significant communication and
computation overheads [23]. Therefore, we skip these mechanisms in our study and consider
only diluted mechanisms that also achieve (α, δ)-differential privacy and are efficient.

5.4 Diluted Distributed Mechanisms

Diluted mechanisms (Definition 5.5) have been designed as mechanisms easily applicable in
distributed settings. In a diluted distributed perturbation mechanism (dDPA), each partial
noise i is drawn by each of n parties. All i are securely summed up and used as noise to
ensure approximated differential privacy. Note that dDPA required that the rate of non-
colluding parties is at least equal to γ, which is a parameter of dDPA.

A diluted geometric mechanism (dGPA) has been introduced in [50], as a mechanism that
achieves (α, δ)-differential privacy. We generalize dGPA to a privacy mechanism that uses a
perturbation algorithm (PA) and ensures approximate differential privacy.

Definition 5.5 (Diluted Mechanism, dPA)—Let PA be a data perturbation algorithm
used by an α-differential privacy mechanism, a parameter α ∈ (0, 1), and i (i = 1, . . . , n)
be i.i.d. random variables drawn by PA for given α. A diluted mechanism (dPA) ensures (α,
δ)-differential privacy, by adding up to n random variables i defined as follows,

(12)

where , and γn is the minimal number of generated random
variables i.

In dGPA results are perturbed by at most n random variables χi, which are drawn from the
discrete two-sided geometric distribution GM(exp(−α/ΔQ)) (Definition 5.3). Each r.v. χi

~GM(exp(−α/ΔQ)) can be simulated by a difference of two geometrically distributed random
variables (Lemma 5.2). Therefore, drawing i by this mechanism requires generation of at
most three uniformly distributed random variables. The first r.v. is used to decide, if χi

should be drawn. The second r.v., which is drawn from the uniform distribution, establishes
the sign of χi, and the third one, which is drawn from the geometric distribution, sets the
value of χi. On average for n tries, the χi will be drawn βn times, and the overall number of

drawn random variables is equal to ().

Any differentially private mechanism may be applied to the dPA to achieve (α, δ)-
differential privacy. For example, the diluted Laplace mechanism (dLPA) calls the LPA to

Goryczka and Xiong Page 21

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

draw χi with the same β(δ, γ) probability (Definition 5.5). Proving that such diluted
mechanism achieves (α, δ)-differential privacy requires repeating proofs from [50], with a
substitution of the noise generation function.

5.5 Comparison

All DLPA and DGPA mechanisms guarantee the same level of differential privacy, while
diluted and noise approximation mechanisms guarantee approximated differential privacy.
Drawing a noise share by each mechanism has different computation cost and noise shares
have different statistical characteristics.

To compare complexities of noise generation, we consider the number of random variables
that each party generates per method. For the Laplace DLPA mechanism, each party
generates a single random variable, and one party generates 2 random variables, i.e., 1+1/n
random variables per party, which makes it the most efficient mechanism. The
implementation of a gamma random number generator has an indeterministic number of
steps, and requires generating at least 2 (on average 2.54) uniformly distributed random
variables [3]. The Gauss mechanism requires each party to generate 4 different Gaussian
distributed random variables.

Each diluted mechanism requires every party to generate from one to two (LPA) or three
(GPA) uniform random variables. Let γ be the minimal rate of non-colluding contributing
parties and δ be a parameter of approximated differential privacy. Then, on average each

party of dDLPA draws () random variables and each party of dDGPA draws

() random variables.

Redundant Noise—Distributed settings introduce additional challenges for privacy
mechanisms like collusion of participants. Since each provider knows its own data and also
data from colluding parties, we need to guarantee that results computed using data provided
by non-colluding parties achieve privacy. Let the rate of colluding parties in one group is
less than γ, hence partial noise generated by γn parties is enough to ensure required privacy,
and noise from the remaining (1 − γ)n parties is redundant. Although all parties generate
i.i.d. partial noise, hence its mean and its variance are the same, experiments confirm that the
amount of redundant noise indeed differs for each mechanism (Section 6.2).

If a privacy mechanism is implemented using a security scheme, then its parameters affect
the value of γ and vice versa (Table 1). In order to protect privacy of data subjects, no fewer
than γn parties should be able to reconstruct (Shamir) or decrypt (Paillier) the final result,
therefore γ ≤ s/n. Similarly, since the maximal number of colluding parties is smaller than r
for Ács and EFT schemes, noise of remaining parties should be able to guarantee privacy,

therefore . For all schemes the value of γ limits fault tolerance levels. If there are
less than γn active parties, then computations are terminated, because their results would not
be differentially private. Thus, the fault tolerance levels for all protocols are always less than
(1 − γ)n.

Goryczka and Xiong Page 22

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fault Tolerance—When a few parties faulted, the partial noise generated by active parties
are not sufficient to achieve the same level of differential privacy, and need to be
regenerated. The EFT does so by initializing the recovery key in the recovery protocol
(Algorithm 3) as follows. All noise previously added by a party is subtracted from a new
partial noise that is drawn randomly. Algorithm 2 (lines 8 to 14) is run over the computed
value in order to encrypt it and protect data provided by parties, whose neighbors did not
fault. The ciphertext is used to initiate the recovery key (Algorithm 3, line 1).

6 Experiments

In this section, we present experimental evaluations of various privacy mechanisms and
security schemes used to implement a distributed secure sum protocol. Since the security
and privacy levels of schemes have been formally analyzed above, we mainly focus on their
performance. The questions we attempt to answer are: 1) How do the different distributed
noise generation algorithms and privacy mechanisms compare with each other in terms of
efficiency and redundant noise? 2) How do the different secure computation scheme
protocols perform in various settings, and how do they scale, and compare with each other in
terms of computation and communication cost?

6.1 Experiment Setup

All experiments have been run using JVM 1.6. We evaluated local computations including
partial noise generation, and data preparation on three different platforms: 1) a cluster of 64
HP Z210 nodes with 2 quad-core CPUs, 8 GB of RAM each, running Linux Ubuntu system,
2) a laptop with Intel Core 2 Duo T5500 and 2 GB of memory running Windows XP, and 3)
a shared server Sun Microsystems SunFire V880, with 8 CPUs and 16 GB of memory
running SunOS 5.10. Note that the sever assigns only limited amount of resources to our
applications. All protocols are evaluated in a distributed environment using the cluster of
nodes, which are connected by the 100Mbit network. All reported results are averaged from
1 000 runs for security scheme and 1 000 000 tries for privacy mechanism experiments.

Our main software framework is built on top of SEPIA [9], which uses Shamir secret
sharing scheme for secure distributed computations. We extended SEPIA and implemented
other SMC schemes and differential privacy mechanisms. We chose implementation of the
Paillier scheme from the UTD Paillier Threshold Encryption Toolbox1. Additionally, we
used random number generators implemented in the HPC library Colt2. All remaining
schemes and mechanisms have been implemented by authors. Default values of experiment
parameters are listed in Table 2.

6.2 Privacy

The main goal of this experiment is to evaluate the overhead of the following mechanisms
(Section 5):

• distributed LPA (DLPA): Laplace, Gamma, Gauss,

1http://www.utdallas.edu/~mxk093120/paillier
2http://acs.lbl.gov/software/colt

Goryczka and Xiong Page 23

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.utdallas.edu/~mxk093120/paillier
http://acs.lbl.gov/software/colt

• distributed GPA (DGPA),

• diluted: Laplace (dLPA), geometric (dGPA).

DLPA and DGPA guarantee differential privacy of the final result, while diluted mechanisms
ensure approximated differential privacy. For all DLPA mechanisms the final result achieves
the same level of differential privacy, i.e., its final noise is drawn from the same distribution.
Therefore, we compare the local computation time of the three DLPA and the DGPA
geometric mechanisms, as well as their impact on the overall protocol performance.

Noise share generation—In order to ensure that enough noise is added to the final
result, each node adds its share of noise. The average generation time of such shares for
different mechanisms is shown in Fig. 3.

Generating a single noise share by the Laplace DLPA is more efficient than by other
mechanisms, which confirms our expectations (Section 5.5). Drawing a uniformly
distributed r.v. and a few arithmetic operations are enough to generate a noise share in
Laplace DLPA mechanism with efficiency. Note that Laplace DLPA requires also a r.v.
drawn from the beta distribution, which is generated and broadcasted to all parties as part of
the setup message for each run, therefore it is not considered here. Geometric mechanism
requires drawing two r.v., one from Poisson and one from gamma distributions, which makes
it slower than most DLPA mechanisms. Gauss requires generating 4 normally distributed
r.v., while gamma, on average, requires slightly over 5 uniformly distributed r.v. [3].

For default parameter values (Table 2), diluted privacy mechanisms, which achieve δ-
approximate α-differential privacy, are very efficient. Performance of noise generation for
diluted mechanisms depends on β(δ, γ, n), i.e., probability of generating noise (Definition
5.5), which, for default values of parameters, is approximately equal to 41.52%.

Fig. 4 shows the average runtimes of noise generations for dLPA and dGPA with different δ
and γ on the server. As expected, relaxing the approximate differential privacy constraint
(Definition 3.2), i.e., increasing the value of δ, decreases both the probability of noise
generation β and the runtime. Similarly, increasing the fraction of non-colluding parties γ
also decreases β and the runtime. Since generating Laplacian noise is more efficient than
generating geometric noise, the dLPA is also more efficient than dGPA, which is confirmed
in our experiments.

Redundant Noise—To protect privacy of data subjects against colluding data providers,
we run privacy mechanisms requesting that shares of γn participants (γn = 10) are enough
to achieve privacy. Thus, our final results have some additional noise, which varies for
different mechanisms. In this experiment, we compare redundant noise generated by all
privacy mechanisms (Fig. 5).

Laplace, Gamma, and Geometric mechanisms generate similar amount of redundant noise.
Among them the Laplace mechanism generates slightly less noise than other two
mechanisms for γ ≤ 0.6 and slightly more for γ > 0.6. All three mechanisms generate
significantly less redundant noise than the Gauss mechanism for any γ and α.

Goryczka and Xiong Page 24

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For given settings redundant noise magnitudes of dLPA and dGPA are almost the same,
therefore we represent them as a single dashed line in Fig. 5. DLPA and DGPA mechanisms
cannot be compared with diluted mechanisms, in which redundant noise depends on β(γ, δ)
(Definition 3.2). However, we can compare characteristics of their redundant noise. Since β
is independent of α, redundant noise for diluted and other mechanisms will decrease at the
same rate as α is increasing. Requiring participation of more non-colluding parties to
achieve privacy (increasing γ) reduces redundant noise for diluted mechanisms slower than
for DLPA (except Gauss) and DGPA.

6.3 Security

In this group of experiments, we evaluate performance of the distributed sum protocol for
different security schemes. Security levels guaranteed by each scheme have been already
discussed (Section 4).

Performance of Homomorphic Encryption Schemes—In this set of experiments,
we evaluate homomorphic encryption schemes. In the setup phase, encryption keys of size k
are generated and distributed. To ensure maximal security of the Paillier and the Ács
schemes in each round new keys are used. If we lower security requirements, the same
encryption key could be reused a few times. Therefore, we set up the Paillier scheme to be
run in two settings named new key (maximal security) and reuse key (lower security). We
note that the values of k used here are indeed not cryptographically secure nowadays, but our
goal was to show the impact of varying k for different security schemes.

Fig. 6 shows the average runtime of a single round for encryption keys of different sizes and
different amounts of participants. Since results of Ács, Shi, and EFT schemes are very
similar, we represent them as a single line, when evaluating schemes against different
encryption key sizes. Generating and distributing a set of encryption keys in the Paillier
scheme is a very time consuming process. Increasing the key size k significantly increases
computation time for the new key scenario, and have a negligible overhead when one key is
used all the time in the reuse key scenario.

Despite the encryption overhead, the homomorphic encryption schemes scale well. Adding
new nodes, while keeping the same encryption key size, increases the average runtime of all
homomorphic encryption schemes linearly.

Performance of Fault Tolerance Schemes—The goal of this experiment is to compare
performance characteristics of fault tolerant schemes, i.e., Shamir, Paillier, Ács, and our
EFT, with one data contributor faulting. Note that we extended the original Ács scheme with
the same recovery subprotocol as used in the EFT scheme. Remaining schemes will rerun
the protocol, if any participant drops. We set r = s = γn = 3.

Fig. 7 shows trends of average runtimes for fault tolerant protocols when a single data
contributor faulted. In such scenario, the runtime of a protocol implemented in either Paillier
or Shamir schemes is reduced due to less communication and computation that is performed.
At the same time, Ács and our scheme needed more time to run a recovery protocol and

Goryczka and Xiong Page 25

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

retrieve the final result. Characteristics of runtimes for all schemes are preserved, i.e., they
change in a similar way as for the settings without faults.

Overall Protocol Performance—In this experiment, we compare the overall
performance of all security schemes for different numbers of nodes. Since all privacy
mechanisms have little impact on the overall performance, in all runs we used Laplace
LDPA. Fig. 8 shows runtimes of the distributed sum protocol implemented in different
security schemes.

Note that for security, all parties in both Paillier and Ács schemes reestablish their
encryption keys in each round. As the number of nodes increases, both Perturbation-based
and Shamir schemes do not scale well as the increasing communication cost becomes the
dominant overhead. Communication in the Perturbation-based scheme grows linearly with
number of participants (Table 1), but is synchronized, which impacts scalability, i.e., each
party (except the one initiating computations) sends a message after receiving it from the
previous party in the ring. Communication in the Shamir scheme grows quadratically with
number of parties (Table 1), which is confirmed in our experiments.

On the other hand, all homomorphic encryption schemes scale well due to their low
communication costs. However, the Paillier scheme has a significant computation overhead
comparing to others, which limits its scalability. Among encryption schemes our scheme has
the most linear characteristic of the runtime, because in each round encryption keys are not
regenerated and the encryption function has low time complexity.

7 Conclusions and Future Work

In this paper, we described and compared different ways of distributed data aggregation with
security and privacy. Inspired by existing schemes we introduced and evaluated a new,
efficient, and fault tolerant scheme (EFT). Our scheme guarantees computational security
and minimal communication together with a high reliability of the system.

All evaluated privacy mechanisms ensure differential privacy, but with different overhead.
We proposed a new efficient Laplace DLPA mechanism, which introduces a small amount of
redundant noise. Often the choice of a privacy mechanism does not impact performance
significantly, but is crucial to preserve utility of final results. In addition, when using devices
with limited power and computation resources, e.g., mobile devices, choosing the most
efficient privacy mechanism extends the battery life of the device.

In future, we plan to evaluate security schemes and privacy mechanisms on devices with
limited resources.

Acknowledgments

The authors would like to thank Prof. Vaidy Sunderam for his insights and time spent on many extensive
discussions. This research is supported by the AFOSR DDDAS program under grant FA9550-12-1-0240.

Goryczka and Xiong Page 26

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Biographies

Slawomir Goryczka holds a Ph.D. in Computer Science and Informatics from Emory
University and M.S. degrees in both Computer Science and Applied Mathematics from AGH
University of Science and Technology in Kraków, Poland. After M.S. graduation he worked
as an Operation Research Analyst/Developer for 2 years. His research interests cover data
privacy and security in distributed settings, distributed data management, and privacy
preserving data mining.

Li Xiong is an Associate Professor of Mathematics and Computer Science at Emory
University where she directs the Assured Information Management and Sharing (AIMS)
research group. She holds a Ph.D. from Georgia Institute of Technology, an M.S. from Johns
Hopkins University, and a B.S. from University of Science and Technology of China, all in
Computer Science. Her areas of research are in data privacy and security, distributed and
spatio-temporal data management, and biomedical informatics. She is a recent recipient of
the Career Enhancement Fellowship by Woodrow Wilson Foundation. Her research is
supported by NSF, AFOSR, NIH, PCORI, and research awards from Cisco and IBM.

References

1. Report of the August 2010 Multi-Agency Workshop on InfoSymbiotics/DDDAS, The Power of
Dynamic Data Driven Applications Systems. Air Force Office of Scientific Research and National
Science Foundation;

2. Ács, G., Castelluccia, C. I have a DREAM!: differentially private smart metering. Proc. of the 13th
Intl Conf. on Information Hiding, IH; 2011. p. 118-132.

3. Ahrens J, Dieter U. Computer methods for sampling from gamma, beta, Poisson and bionomial
distributions. Computing. 1974; 12:223–246.

4. Alhadidi D, Mohammed N, Fung BCM, Debbabi M. Secure distributed framework for achieving ε-
differential privacy. PETS. 2012:120–139.

5. Ben-Or M, Goldwasser S, Wigderson A. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. STOC. 1988:1–10.

6. Box GEP, Muller ME. A note on the generation of random normal deviates. Ann Math Stat. 1958;
29(2):610–611.

Goryczka and Xiong Page 27

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7. Brun Y, Medvidović N. Entrusting private computation and data to untrusted networks. IEEE T
Depend Secure. 2013 PrePrints.

8. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, MB.
Participatory sensing. Workshop on World-Sensor-Web (WSW): Mobile Device Centric Sensor
Networks and Applications; 2006;

9. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X. SEPIA: Privacy-preserving aggregation of
multi-domain network events and statistics. 19th USENIX Security Symposium; Aug. 2010;

10. Cakici B, Hebing K, Grünewald M, Saretok P, Hulth A. CASE: a framework for computer
supported outbreak detection. BMC Medical Informatics and Decision Making. 2010; 10(14)

11. Castelluccia C, Chan ACF, Mykletun E, Tsudik G. Efficient and provably secure aggregation of
encrypted data in wireless sensor networks. ACM Trans Sen Netw. Jun; 2009 5(3):20:1–20:36.

12. Castelluccia C, Mykletun E, Tsudik G. Efficient aggregation of encrypted data in wireless sensor
networks. MOBIQUITOUS. 2005:109–117.

13. Catrina, O., Saxena, A. Secure computation with fixed-point numbers. Proc. of the 14th Intl Conf.
on Financial Cryptography and Data Security, FC; 2010. p. 35-50.

14. Cavoukian A, Polonetsky J, Wolf C. Smartprivacy for the smart grid: embedding privacy into the
design of electricity conservation. Identity in the Information Society. 2010; 3(2):275–294.

15. Chu C-K, Zhu WT, MChow SS, Zhou J, Deng RH. Secure mobile subscription of sensor-encrypted
data. ASIACCS ’11. 2011:228–237.

16. Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY. Tools for privacy preserving distributed data
mining. SIGKDD Explor Newsl. 2002; 4:28–34.

17. Cramer R, Damgård I, Nielsen JB. Multiparty computation from threshold homomorphic
encryption. EUROCRYPT. 2001:280–299.

18. Damgård, I., Jurik, M. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. Proc. of the 4th Intl Workshop on Practice and Theory in Public
Key Cryptography: Public Key Cryptography, PKC; 2001. p. 119-136.

19. Damgård, I., Mikkelsen, G. Efficient, robust and constant-round distributed rsa key generation. In:
Micciancio, D., editor. Theory of Cryptography, volume 5978 of Lecture Notes in Computer
Science. 2010. p. 183-200.

20. Dwork, C. Differential privacy. Proc. of the 33rd Intl Conf. on Automata, Languages and
Programming – Volume Part II, ICALP; 2006. p. 1-12.

21. Dwork, C. Differential privacy: a survey of results. Proc. of the 5th Intl Conf. on Theory and
Applications of Models of Computation, TAMC; 2008. p. 1-19.

22. Dwork C. A firm foundation for private data analysis. CACM. 2011; 54(1):86–95.

23. Dwork C, Kenthapadi K, McSherry F, Mironov I, Naor M. Our data, ourselves: privacy via
distributed noise generation. EUROCRYPT. 2006:486–503.

24. Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise to sensitivity in private data analysis.
TCC. 2006:265–284.

25. El Gamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms.
Proc. of CRYPTO 84 on Advances in Cryptology; 1985. p. 10-18.

26. Fung BCM, Wang K, Chen R, Yu PS. Privacy-preserving data publishing: A survey of recent
developments. ACM Comput Surv. 2010; 42(4):14:1–14:53.

27. Garfinkel SL, Smith MD. Guest editors’ introduction: Data surveillance. IEEE Security & Privacy.
2006; 4(6)

28. Gentry C. Fully homomorphic encryption using ideal lattices. STOC. 2009:169–178.

29. Ghosh A, Roughgarden T, Sundararajan M. Universally utility-maximizing privacy mechanisms.
STOC. 2009:351–360.

30. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University
Press; 2004.

31. Goldreich O, Micali S, Wigderson A. How to play ANY mental game. STOC. 1987:218–229.

32. Goryczka, S., Xiong, L., Sunderam, V. Secure multiparty aggregation with differential privacy: A
comparative study. Proc. of the 6th Intl Workshop on Privacy and Anonymity in the Information
Society (PAIS); 2013;

Goryczka and Xiong Page 28

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

33. Hazay C, Mikkelsen GL, Rabin T, Toft T. Efficient RSA key generation and threshold Paillier in
the two-party setting. CT-RSA. 2012:313–331.

34. Johnson, N., Kemp, A., Kotz, S. Wiley Series in Probability and Statistics. Wiley; 2005. Univariate
Discrete Distributions.

35. Kang J, Shilton K, Estrin D, Burke J, Hansen M. Self-surveillance privacy. Iowa Law Review.
2012:97.

36. Kifer D, Machanavajjhala A. No free lunch in data privacy. SIGMOD. :193–204.2011

37. Kotz S, Kozubowski T, Podgórski K. The Laplace Distribution and Generalizations: A Revisit with
Applications to Communications, Economics, Engineering, and Finance. Progress in Mathematics
Series. 2001

38. Lindell Y, Pinkas B. An efficient protocol for secure two-party computation in the presence of
malicious adversaries. EUROCRYPT. 2007:52–78.

39. Lindell Y, Pinkas B. Secure multiparty computation for privacy-preserving data mining. IACR
Cryptology ePrint Archive. 2008:197.

40. Marsaglia G, Tsang WW. The Ziggurat method for generating random variables. J Stat Softw.
2000; 5(8):1–7. 10.

41. McSherry F, Talwar K. Mechanism design via differential privacy. FOCS. 2007:94–103.

42. Mun M, Reddy S, Shilton K, Yau N, Burke J, Estrin D, Hansen M, Howard E, West R, Boda P.
PEIR, the personal environmental impact report, as a platform for participatory sensing systems
research. MobiSys. 2009

43. Nishide, T., Sakurai, K. Distributed Paillier cryptosystem without trusted dealer. In: Chung, Y.,
Yung, M., editors. Information Security Applications, volume 6513 of Lecture Notes in Computer
Science. 2011. p. 44-60.

44. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. EUROCRYPT.
1999:223–238.

45. Pedersen TB, Saygin Y, Savaş E. Secret Sharing vs. Encryption-based Techniques For Privacy
Preserving Data Mining. UNECE/EuroSTAT Work Session on SDC. 2007

46. Quinn EL. Privacy and the new energy infrastructure. SSRN. 2009

47. Rastogi V, Nath S. Differentially private aggregation of distributed time-series with transformation
and encryption. SIGMOD. 2010:735–746.

48. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and public-key
cryptosystems. CACM. 1978; 21(2):120–126.

49. Shamir A. How to share a secret. CACM. 1979; 22(11):612–613.

50. Shi E, Chan T-HH, Rieffel EG, Chow R, Song D. Privacy-preserving aggregation of time-series
data. NDSS. 2011

51. Shilton K. Four billion little brothers?: privacy, mobile phones, and ubiquitous data collection.
CACM. 2009; 52:48–53.

52. Vaidya J, Clifton C. Privacy-preserving data mining: Why, how, and when. IEEE Security &
Privacy. 2004; 2(6):19–27.

53. van Dijk M, Gentry C, Halevi S, Vaikuntanathan V. Fully homomorphic encryption over the
integers. EUROCRYPT. 2010:24–43.

54. Wagner, MM.Moore, AW., Aryel, RM., editors. Handbook of biosurveillance. 2006.

55. Yao, AC. SFCS. IEEE; 1986. How to generate and exchange secrets; p. 162-167.

Goryczka and Xiong Page 29

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1.

A smart metering scenario: an electric grid (solid lines) for houses that are grouped (dashed
polygons) and report their aggregated and anonymized usage data (dashed arrows).

Goryczka and Xiong Page 30

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.

System settings with data contributors Di, which contribute their values xi and noise shares
Ri to securely compute f and ensure differential privacy of data subjects.

Goryczka and Xiong Page 31

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.

The average noise share generation times in microseconds for different mechanisms and
platforms.

Goryczka and Xiong Page 32

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.

The average noise share generation times in microseconds for different δ and γ, run on the
server.

Goryczka and Xiong Page 33

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.

The average magnitude of redundant noise for different rate of required noise shares γ (α =
0.1), and privacy budgets α (γ = 10/32).

Goryczka and Xiong Page 34

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.

The average runtimes of a protocol for different encryption key sizes k (n = 32) and different
number of participants n (k = 128).

Goryczka and Xiong Page 35

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.

The average runtimes for different numbers of participants and fault tolerant security
schemes.

Goryczka and Xiong Page 36

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.

The average runtimes for different numbers of parties and security schemes.

Goryczka and Xiong Page 37

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Goryczka and Xiong Page 38

TABLE 1

Comparison of complexity, fault tolerance level, and max. allowed collusion for SMC schemes with n parties.

Scheme Communication complexity Fault tolerance level Max. collusion (max. n − 2)

Shamir (s,n) n(n + 1) n − s s − 1

Perturbation-based (n) 3n 0 1

Paillier (s,n) 5n n − s s − 1

Ács (r,n) 2n + 2rn n r − 1

Shi (n) 2n 0 n − 2

EFT (r,n) 2n n r − 1

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Goryczka and Xiong Page 39

TABLE 2

Default values of experiment parameters.

Name Description Default Value

n Number of running nodes. 32

k Size of encryption keys in bits. 128

r The number of encryption keys exchanged with neighboring parties for Ács and EFT schemes. 3

s The minimal number of parties required to decrypt or reconstruct results in a security scheme. 3

γn The minimal number of noise shares to achieve privacy for privacy mechanism experiments, and the minimal
number of non-colluding parties.

8

δ A parameter of approximated differential privacy 0.1

The key size (in bits) of the AES encryption with RSA for SSL communication channels. 128

IEEE Trans Dependable Secure Comput. Author manuscript; available in PMC 2017 September 14.

	Abstract
	1 Introduction
	Participatory sensing and data surveillance are gradually integrated into an inseparable part of our society [8], [27]. In many applications a data aggregator may wish to collect personal data from multiple individuals to study patterns or statistics over a population. Data privacy and security issues arise frequently and increasingly in such surveillance systems [1], [35], [42], [51]. An important challenge is how to protect the privacy of the data subjects, when the data aggregator is untrusted or not present.Example Applications—We provide a few application scenarios to motivate our problem, including smart metering, syndromic surveillance, and intelligence data collection, among others.Smart meters measure and report electrical usage with granularity of minutes compared to traditional meters, which are read once a month. The collection of information on electricity demands for all household is useful in preventing blackouts, increasing efficiency of the electrical grid, and reducing its impact on the environment, etc. The same information reveals a lot about individual consumers and their habits. An electricity usage profile of a single household may reveal information about electric appliances used in the household as well as the number and routines of its inhabitants [14], [46]. These privacy concerns could be significantly reduced, when such usage data are aggregated and anonymized before being reported to the utility company. A group of neighboring houses that share the same infrastructure could securely sum up their electrical usage, and apply privacy mechanisms to preserve privacy of the individual consumers (Fig. 1).Syndromic surveillance systems monitor population in the real time for early detection of large-scale disease outbreaks and bioterrorism attacks [10], [54]. In a simple scenario, a public health agency collects data from individual visitors who report their Influenza symptoms (self surveillance). The number of detected cases can then be aggregated and anonymized based on location of individuals and their demographics. The collected data can be monitored and analyzed to detect seasonal epidemic outbreaks.Intelligence data collection, in numerous situations, is performed in crowd settings both non-deliberately by the general public and by principals, who are anonymously embedded in the crowds. A canonical example is an uprising in a major city under hostile governmental control – the general public uses smart devices to report on various field data (third party surveillance [35]). In this case, the number of participants reporting data may change over time, and it is important to protect security of the participants (data contributors) as there is no trusted aggregator as well as privacy of data subjects.System Settings—We consider a dynamic set of data contributors that contribute their own data (self surveillance) or other data (third party surveillance) in a monitoring or surveillance system. In our running example, contributors Di (1 ≤ i ≤ n) collect and contribute data xi independently, the goal is to compute an aggregate function f(x1, . . ., xn) of the data. In the self surveillance scenarios, the individuals represented in the collected data (data subjects) are also data contributors. We assume that collected data are used by an untrusted application or an application run by an untrusted party for analysis and modeling (e.g. disease outbreak detection or intelligence analysis). Hence our security and privacy goals are to guarantee: 1) the intermediate results are not revealed to each other during the distributed aggregation besides the final result, 2) the final result (with a random noise R) does not compromise the privacy of individuals represented in the data (Fig. 2).Privacy of data subjects is defined by differential privacy, which is the state-of-the-art privacy notion [21], [22], [36] that assures a strong and provable privacy guarantee for aggregated data. It requires negligible change of computation results, when a single data subject had opted out of the data collection. Therefore, this assures an individual that any computation results will not unveil the presence (or absence) of its record. A common way of achieving differential privacy is perturbation of the aggregated statistics by calibrated noise R (Fig. 2).In a centralized model, a trusted aggregator (TA) (e.g. CDC offices in the syndromic surveillance scenario) securely collects the data and outputs perturbed aggregates with privacy guarantee. In such model, each data contributor maintains a secure communication channel with the TA. Both security and privacy of computations are guaranteed by the TA, but at the cost of making it a single point of failure for the entire system.In a decentralized model without a TA (e.g. in the smart metering or intelligence collection scenario), the data contributors perform aggregations and perturbations collaboratively through protocols implemented in secure multiparty computation (SMC) schemes (Fig. 2). Using SMC schemes only for data aggregation (without perturbation) would not guarantee privacy of data subjects. Therefore, privacy mechanisms and security schemes need to be employed together in our scenarios.In the simplest and the most naïve approach, each data contributor perturbs its own data to guarantee their differential privacy independently. In such an approach, the noise in the aggregated result is superfluous, therefore our goal is to find distributed privacy mechanisms, which ensure privacy and minimize any redundant noise. Each participant contributes a partial noise such that the aggregated noise guarantees differential privacy for the result (Fig. 2). In addition, the protocol shall remain secure, if a few participants faulted, i.e., it should be fault tolerant.Contributions—In this paper, we propose a new solution for the problem of secure data aggregation (focusing on addition) with differential privacy. In addition, we present a comparative study of existing solutions and compare them with our new approach. Among all secure computation schemes, we evaluate three representative groups: secret sharing [9], [49], homomorphic encryption [2], [33], [44], [50], and perturbation-based [16]. They represent different approaches to ensuring security: splitting data into shares (secret sharing), encrypting data (homomorphic encryption), and perturbing data with significant noise (perturbation-based). Our goal is not to compare all security properties of these approaches, but to present their computational characteristics in distributed computations that involve differential privacy mechanisms. Among homomorphic encryption schemes, we evaluate three of them: Paillier [44], Ács [2], and Shi [50]. We also introduce an enhanced scheme EFT that bases on Ács and Shi schemes and inherits all their advantages like minimal communication, collusion resistant, and fault tolerance with improved efficiency.To ensure differential privacy in a distributed setting without a trusted aggregator, we evaluate existing distributed noise perturbation (how to generate partial noise at each party) mechanisms, which are named after distributions of partial noise they generate: Gamma [2], Gauss [47], Geometric [29], and Diluted Geometric [50]. We also propose a new distributed mechanism (Laplace DLPA) based on the Laplace distribution. Our mechanism is more efficient than other mechanisms and generates less redundant noise that is a side effect of achieving collusion resistance.We compare complexities and security characteristics of various protocols. We note that while the security schemes fall into the same SMC framework, we may not be able to directly compare the security properties of some of them. We will review the security characteristics of each scheme and compare them as appropriate. Depending on users’ specific requirement, they may choose the schemes with similar security characteristics. We will then focus on comparing their computational characteristics in distributed computations that involve differential privacy mechanisms. More importantly, we implemented all distributed protocols and present a comprehensive experimental comparison of their performance and scalability.
	Example Applications
	System Settings
	Contributions

	2 Related Work
	Secure Multiparty Computations—Secure two-party computations has been defined by Yao, who presented a solution to the Millionaires’ Problem, where two millionaires want to find out, who is richer without disclosing their actual wealth [55]. Yao’s protocol has been extended to secure multiparty computations (SMC) in [31] and to scenarios with active adversaries [38].Protocols implemented in a general SMC scheme are computationally expensive. However, many specialized and efficient protocols have been developed for different operations [16], [39] such as secure sum, secure union, and secure scalar product. To compute secure sum, we applied efficient techniques based on threshold homomorphic functions [17] and random shares [52]. Paillier [44] presented an additively homomorphic cryptosystem that computes the encrypted sum using only encrypted values. Its threshold variant has been introduced by Damgård et al. [18] and used to implement an electronic voting system. Hazay et al. presented a threshold Paillier scheme for two-party setting [33].Pedersen et al. compared encryption-based and secret sharing schemes used in privacy preserving data mining [45]. However, their comparison does not include performance evaluations, and does not cover the latest security schemes and privacy mechanisms.Chu et al. proposed a threshold security scheme to collect data in a wireless sensor network [15]. In their scheme, encryption keys are symmetric and valid only for a requested period of time. The scheme is not homomorphic, i.e., the data recipient needs to decrypt ciphertexts before aggregating them, therefore it has to be trusted.Brun and Medvidovic introduced a distributed secret sharing scheme using a concept of “tiles” [7]. In their scheme, data are represented by tiles, which are distributed in an untrusted network. Each tile discloses a single bit of data, but the scheme is generally secure if at least half of them are not corrupted. Note that some statistical information is always revealed with revealing each tile.Distributed Differential Privacy—The notion of differential privacy was introduced in [24], where it was achieved by perturbing results with Laplacian noise. Several works studied distributed data aggregation with differential privacy. For example, Dwork et al. developed distributed algorithms of noise generation, in which random shares are drawn from binomial and Poisson distributions [23].Ács et al. applied privacy-preserving and secure data aggregation to the smart metering system [2]. Their scheme was inspired by previous work on secure sensor data aggregation in a wireless network [11], [12]. The scheme uses differential privacy model and homomorphic properties of a modulo addition-based encryption scheme to ensure privacy of results and security of computations. Differential privacy is achieved by adding Laplace distributed noise to results. Noise is generated distributively, such that each meter generates one share as a difference between two Gamma distributed random variables. We named such mechanism Gamma DLPA and evaluated it.In a similar scenario, individual users collect and aggregate time-series data. PASTE is the system that implements that and ensures differential privacy of results [47]. Differential privacy is achieved by perturbing the most significant coefficients of the discrete Fourier transform of the query answers by a Distributed Laplace Perturbation Algorithm (DLPA). Each participant generates partial noise as a tuple of four Gaussian random variables. Security of computations is ensured by the threshold Paillier cryptosystem. We named such mechanism Gauss DLPA and evaluated it.Shi et al. also utilized a homomorphic encryption scheme, and minimized its communication complexity by generating an encryption key from the current round number and the existing key [50]. Their privacy mechanism is distributed and ensures approximate differential privacy with noise drawn from the symmetric geometric distribution [29]. We named the mechanism dGPA, generalized it to a diluted perturbation mechanism, and evaluated them.Alhadidi et al. presented a secure two-party differentially-private data release algorithm for horizontally partitioned data [4]. Differential privacy of released data has been achieved by an exponential mechanism that samples existing records or items with an exponentially distributed probability [41]. The mechanism is used in domains where noise perturbation is not possible.
	Secure Multiparty Computations
	Distributed Differential Privacy

	3 System Models and Requirements
	3.1 Adversary Model
	3.2 Privacy Model
	Definition 3.1 (α-Differential Privacy [20])
	Definition 3.2 (δ-Approximate α-Differential Privacy [23], [36])

	3.3 Security Model
	Definition 3.3 (Secure computation [30])

	3.4 Fault Tolerance
	3.5 Performance Requirements

	4 Comparison of Secure Computation Schemes
	4.1 Secret Sharing
	Shamir Scheme

	4.2 Perturbation-Based Protocols
	4.3 Homomorphic Encryption
	Paillier Scheme
	Ács Scheme
	Shi Scheme

	4.4 An Enhanced Fault-Tolerant Scheme

	Algorithm 1
	Algorithm 2
	Algorithm 3
	4.5 Comparison
	Setup
	Communication
	Fault Tolerance
	Collusion of Parties

	5 Comparison of Differential Privacy Mechanisms
	In this section, we describe distributed privacy mechanisms that achieve differential privacy (Definition 3.1). We also introduce two efficient distributed mechanisms that ensure differential privacy. One is defined in the domain of real numbers and the other is defined in the domain of integer numbers. Let D ∈
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
 be a database, and Q be an aggregated query, e.g., a count query. In addition, let ℝ be real numbers, ℤ be integer numbers, ℕ be natural numbers, and
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.977px" height="9.756px" viewBox="4.688 -1.531 13.977 9.756" enable-background="new 4.688 -1.531 13.977 9.756"
xml:space="preserve">
<path d="M18.664-1.298c-1.241,0.774-2.492,2.164-3.753,4.17c-0.604,0.963-1.196,1.961-1.776,2.995
c-0.548,0.986-0.951,1.772-1.211,2.357l-0.262-0.128c0.165-0.49,0.247-0.965,0.247-1.423c0-0.302,0.005-0.756,0.015-1.362
c0.009-0.607,0.014-1.061,0.014-1.363c0-0.67,0.106-1.39,0.318-2.159c0.081-0.27,0.183-0.675,0.305-1.218l-1.366,2.364
c-2.021,3.507-3.76,5.261-5.218,5.261c-0.359,0-0.656-0.083-0.893-0.248C4.821,7.76,4.688,7.495,4.688,7.156
c0-0.235,0.064-0.438,0.191-0.608c0.146-0.185,0.333-0.276,0.56-0.276c0.312,0,0.467,0.144,0.467,0.432
c0,0.303-0.137,0.453-0.41,0.453c-0.123,0-0.248-0.035-0.376-0.105C5.054,7.054,5.021,7.114,5.021,7.227
c0,0.472,0.323,0.708,0.97,0.708c1.289,0,2.88-1.619,4.772-4.857l2.697-4.609l0.198,0.127c-0.302,0.552-0.496,1.263-0.58,2.131
c-0.048,0.746-0.095,1.492-0.143,2.237c-0.137,1.431-0.354,2.73-0.65,3.901c0.68-1.279,1.283-2.36,1.813-3.243
c1.59-2.671,3.07-4.375,4.438-5.112L18.664-1.298z"/>
</svg>
 be a random variable (r.v.) representing noise.All privacy mechanisms introduce perturbation to results of an aggregation query Q. Such perturbation is carefully calibrated with respect to the global sensitivity of Q, which is defined as follows.Definition 5.1 (Global Sensitivity [24])—The sensitivity of any aggregate function Q :
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="9.646px" height="9.268px" viewBox="4.084 -1.072 9.646 9.268" enable-background="new 4.084 -1.072 9.646 9.268"
xml:space="preserve">
<path d="M13.73,3.591c0,1.586-0.564,2.777-1.694,3.57C11.056,7.852,9.74,8.197,8.087,8.197H4.084v-9.268h3.892
c1.698,0,3.042,0.341,4.032,1.022C13.156,0.744,13.73,1.957,13.73,3.591z M5.623,7.637v-8.19H4.644v8.19H5.623z M12.203,3.605
c0-1.325-0.401-2.357-1.204-3.094c-0.783-0.709-1.843-1.064-3.178-1.064c-0.336,0-0.546,0.033-0.63,0.098
C7.079-0.371,7.024-0.166,7.024,0.16v6.776c0,0.467,0.331,0.7,0.994,0.7c1.288,0,2.308-0.353,3.059-1.058
C11.827,5.875,12.203,4.884,12.203,3.605z"/>
</svg>
 → ℝ, is equal to ΔQ = maxD1,D2 ||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.188px" height="10.188px" viewBox="3.36 -1.741 13.188 10.188" enable-background="new 3.36 -1.741 13.188 10.188"
xml:space="preserve">
<path d="M16.144-1.114c0,0.038-1.581,2.879-4.744,8.524c0.236,0.033,0.439,0.05,0.609,0.05c0.543,0,1.036-0.238,1.479-0.715
c0.062-0.066,0.108-0.1,0.142-0.1c0.062,0,0.092,0.033,0.092,0.1c0,0.104-0.132,0.255-0.396,0.453
C12.877,7.533,12.337,7.7,11.704,7.7c-0.108,0-0.26-0.009-0.453-0.027l-0.185,0.318L9.793,8.197l0.347-0.595
C9.526,7.465,8.959,7.203,8.441,6.816C7.478,7.793,6.592,8.281,5.785,8.281c-0.868,0-1.303-0.342-1.303-1.026
c0-0.25,0.066-0.458,0.198-0.623c0.142-0.185,0.333-0.276,0.573-0.276c0.298,0,0.446,0.14,0.446,0.418
c0,0.302-0.135,0.453-0.403,0.453c-0.071,0-0.151-0.021-0.241-0.061s-0.13-0.06-0.12-0.06c-0.09,0-0.135,0.068-0.135,0.205
c0,0.222,0.111,0.401,0.333,0.538C5.327,7.963,5.54,8.02,5.772,8.02c0.793,0,1.609-0.477,2.449-1.431
c-0.76-0.793-1.14-1.63-1.14-2.513c0-0.51,0.15-0.951,0.453-1.324C7.86,2.36,8.273,2.164,8.774,2.164
c0.858,0,1.526,0.47,2.003,1.409c0.562-0.68,1.124-1.357,1.686-2.032c0.67-0.765,1.298-1.378,1.883-1.841
c0.774-0.618,1.31-0.928,1.607-0.928C16.08-1.227,16.144-1.189,16.144-1.114z M10.586,3.8C10.19,3.04,9.677,2.66,9.049,2.66
c-0.458,0-0.84,0.175-1.146,0.524C7.615,3.514,7.471,3.913,7.471,4.38c0,0.68,0.323,1.357,0.97,2.032L10.586,3.8z M10.905,5.371
c0-0.477-0.066-0.882-0.198-1.218L8.646,6.575c0.458,0.387,1.018,0.646,1.678,0.778C10.711,6.665,10.905,6.004,10.905,5.371z
M15.747-0.894c-0.713,0.288-1.589,0.994-2.627,2.117c-0.52,0.571-1.248,1.456-2.188,2.655c0.146,0.562,0.22,1.034,0.22,1.417
c0,0.32-0.053,0.655-0.156,1.005L15.747-0.894z"/>
</svg>
Q(D1) −
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="13.188px" height="10.188px" viewBox="3.36 -1.741 13.188 10.188" enable-background="new 3.36 -1.741 13.188 10.188"
xml:space="preserve">
<path d="M16.144-1.114c0,0.038-1.581,2.879-4.744,8.524c0.236,0.033,0.439,0.05,0.609,0.05c0.543,0,1.036-0.238,1.479-0.715
c0.062-0.066,0.108-0.1,0.142-0.1c0.062,0,0.092,0.033,0.092,0.1c0,0.104-0.132,0.255-0.396,0.453
C12.877,7.533,12.337,7.7,11.704,7.7c-0.108,0-0.26-0.009-0.453-0.027l-0.185,0.318L9.793,8.197l0.347-0.595
C9.526,7.465,8.959,7.203,8.441,6.816C7.478,7.793,6.592,8.281,5.785,8.281c-0.868,0-1.303-0.342-1.303-1.026
c0-0.25,0.066-0.458,0.198-0.623c0.142-0.185,0.333-0.276,0.573-0.276c0.298,0,0.446,0.14,0.446,0.418
c0,0.302-0.135,0.453-0.403,0.453c-0.071,0-0.151-0.021-0.241-0.061s-0.13-0.06-0.12-0.06c-0.09,0-0.135,0.068-0.135,0.205
c0,0.222,0.111,0.401,0.333,0.538C5.327,7.963,5.54,8.02,5.772,8.02c0.793,0,1.609-0.477,2.449-1.431
c-0.76-0.793-1.14-1.63-1.14-2.513c0-0.51,0.15-0.951,0.453-1.324C7.86,2.36,8.273,2.164,8.774,2.164
c0.858,0,1.526,0.47,2.003,1.409c0.562-0.68,1.124-1.357,1.686-2.032c0.67-0.765,1.298-1.378,1.883-1.841
c0.774-0.618,1.31-0.928,1.607-0.928C16.08-1.227,16.144-1.189,16.144-1.114z M10.586,3.8C10.19,3.04,9.677,2.66,9.049,2.66
c-0.458,0-0.84,0.175-1.146,0.524C7.615,3.514,7.471,3.913,7.471,4.38c0,0.68,0.323,1.357,0.97,2.032L10.586,3.8z M10.905,5.371
c0-0.477-0.066-0.882-0.198-1.218L8.646,6.575c0.458,0.387,1.018,0.646,1.678,0.778C10.711,6.665,10.905,6.004,10.905,5.371z
M15.747-0.894c-0.713,0.288-1.589,0.994-2.627,2.117c-0.52,0.571-1.248,1.456-2.188,2.655c0.146,0.562,0.22,1.034,0.22,1.417
c0,0.32-0.053,0.655-0.156,1.005L15.747-0.894z"/>
</svg>
Q(D2)||1 for all D1, D2 differing in at most one record.
	Definition 5.1 (Global Sensitivity [24])

	5.1 Laplace Perturbation Algorithm
	Definition 5.2 (Laplace Mechanism, LPA [24], [21])
	Lemma 5.1 ([37])
	Gamma DLPA
	Gauss DLPA
	Laplace DLPA

	5.2 Geometric Perturbation Algorithm
	Definition 5.3 (Geometric Mechanism, GPA [29])
	Decentralized GPA
	Lemma 5.2
	Proof

	Definition 5.4 (Polya Distribution [34])
	Theorem 5.1
	Proof

	5.3 Distributed Noise Approximation Mechanisms
	5.4 Diluted Distributed Mechanisms
	Definition 5.5 (Diluted Mechanism, dPA)

	5.5 Comparison
	Redundant Noise
	Fault Tolerance

	6 Experiments
	6.1 Experiment Setup
	6.2 Privacy
	Noise share generation
	Redundant Noise

	6.3 Security
	Performance of Homomorphic Encryption Schemes
	Performance of Fault Tolerance Schemes
	Overall Protocol Performance

	7 Conclusions and Future Work
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	TABLE 1
	TABLE 2

