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Abstract: Electricity consumption is an integral part of life on earth. Energy generation has become
a critical topic, addressing the need to fuel the energy demands of consumers. Energy storage
is an offshoot of the mainstream process, which is now becoming a prime topic of research and
development. Electrochemical energy storage is an attractive option, serving its purpose through fuel
cells, batteries and supercapacitors manipulating the properties of various materials, nanomaterials
and polymer substrates. The following review presents a comprehensive report on the use of carbon-
based polymer nanocomposites, specifically graphene and fullerene-based polymer nanocomposites,
towards electrochemical energy storage. The achievements in these areas, and the types of polymer
nanocomposites used are listed. The areas that lack of clarity and have a dearth of information are
highlighted. Directions for future research are presented and recommendations for fully utilizing the
benefits of the graphene/fullerene polymer nanocomposite system are proposed.

Keywords: energy storage; electrochemical; graphene; fullerenes; carbon

1. Introduction

Human society depends largely on electrical energy for its routine day-to-day activities.
A vast quantity of the available energy is procured from chemical energy stored in fossil
fuels. Coal and natural gas are used to generate electricity by combustion (thermal power).
In addition, heat energy generated during nuclear fission of uranium is also used for
generating electricity (nuclear power). These are non-renewable sources. Electrical energy
is also tapped from six major renewable resources: hydro, wind, photovoltaic, concentrating
solar, geothermal and biomass power. As humanity is close to exhausting the stored fossil
fuels that are non-eco-friendly, technological improvements to tap energy, especially from
alternative renewable resources such as hydroelectric, geothermal, solar and wind, have
led to a rapid increase of power generation across the globe. In the United States, a recent
report on renewable energy shows that it shares 11% and 17% of the total energy demand
and the total electricity generation, respectively, according to the U.S. Energy Information
Administration, 2017 [1]. Further, in China, out of its total power installations, 38.4% belong to
power generation from renewable energy sources, which contributed up to 26.7% in 2018 [2].
In India, 21% of the total installed power capacities belong to renewable energy sources, such
as small hydro, wind, biomass, WTE and solar power [3]. It was predicted that the total global
contribution of renewable energy to the primary energy supply (14% in 2015) and to the power
sector (25% in 2015) will have been raised to 63 and 85%, respectively, by 2050 [4]. Hydrogen
energy is an attractive alternative, which uses hydrogen and/or hydrogen-containing
compounds to generate energy. Its benefits include high energy-efficiency, environmental
and social benefits and economic competitiveness. The world is currently experimenting
with implementing hydrogen energy in various sectors, and hydrogen storage is, once
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again, the major challenge. Figure 1 lists the various storage methods that are available for
hydrogen storage.
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Although these renewable energy sources contribute to a considerable amount of
global energy production, storage is an important aspect. Therefore, much emphasis has
been given to the development of electrochemical energy storage devices, such as fuel cells,
batteries and super capacitors. Batteries are electrochemical cells which have the capacity
to deliver electrical current; the voltage of the batteries purely depends on the size and
number of electrochemical cells connected in a series [5]. Batteries are used in numerous
applications that require storage [5]. Batteries with conventional metal and inorganic
materials such as lead-acid batteries, lithium-ion (Li-ion) batteries, sodium-sulfur batteries
(NAS), flow batteries and Zn-air batteries, have been found to be suitable for commercial
applications [6]. Lithium-ion batteries and nickel-cadmium batteries are renowned for their
best storage capacities and widespread usage [7–9]. Though batteries are capable of better
energy storage, their thermal instability and inadequate cycle life are major limitations.
In addition, toxic leakages from batteries are hazards to the environment as well as to
the users and, therefore, batteries with environmentally friendly materials having high
energy-storage capacity, such as polymers (which predominantly are eco-friendly), have
been sought as an eco-friendly alternative.

Supercapacitors, otherwise called electrochemical double-layer capacitors (EDLC) are
yet another class of electrochemical devices that store electrochemical energy on porous
electrode surfaces under the influence of electrolytes [10]. EDLCs are otherwise known
as super capacitors or ultra-capacitors. EDLCs are electrochemical capacitors that employ
conducting polymers as electrodes. An EDLC enables large power effects up to 10 kW/kg
with 10 Wh/kg storage capacity short storage time of 30–60 s. A 1-m3. EDLC is expected to
yield 1–5 MW power pulse and weighs 100–500 kg [11]. The price is around 200–600 €/kWh
and 50–150 €/Wh, but within a decade, a reduced price of 10–15 €/Wh is predicted. The
most important limitation of EDLCs is their high cost [12]. Supercapacitors are far superior
to batteries when it comes to their charge/discharge cycles; however, their low energy
density limits their practical applications [13]. Therefore, their electrochemical storing
capacities are being further developed using carbon-based electrodes. Various carbon-
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based nanomaterials such as carbon nano tubes [14–18], graphene and fullerenes have been
used as supercapacitor materials for improved storage of electrical energy [11,12,19–21].

In the present review, we survey the progress achieved through the use of carbon
polymer nanocomposites for electrochemical energy storage. The use of graphene polymer
nanocomposites and fullerene polymer nanocomposites for electrochemical energy storage
are reviewed, and the various combinations of their respective nanocomposites and the
progress made in terms of energy storage are presented. The challenges and the lapses in
the existing knowledge are addressed and recommendations proposed.

2. Carbon Polymer Nanocomposites Used for Energy Storage

Recently, the topic of energy has inspired a great deal of interest and curiosity, as the
world’s primary energy sources are being increasingly depleted due to rising home and
industrial energy consumption. This has increased the demand for efficient, environmen-
tally friendly and economically viable energy sources. Devices for energy conversion and
storage that are affordable and efficient are in high demand due to the world’s expanding
population. Materials made of graphene or polymers have benefits including high specific
active surface areas, great electron transport capability and good capacitance. They are
frequently used as lithium-ion batteries, electrode materials for fuel cells, and other devices.
Lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, lithium-air batteries,
supercapacitors and other devices are examples of new energy storage technologies. The
electrochemical cells of batteries and supercapacitors store energy chemically. In order to
ensure appropriate and reliable devices that can store a sufficient amount of energy for
transportation, electronic devices, electric-powered carriers and various other purposes,
energy storage methods require uniquely authentic storage approaches. Supercapacitors,
a variety of batteries and fuel cells are all examples of electrochemical energy storage
devices [22]. Thermal, compressed air and flywheel energy storage are other forms of
energy storage [23–25].

Carbon-based polymer nanocomposites (CPNCs) are used in a variety of indus-
tries, including aerospace, automobiles, packaging, energy storage and energy accumula-
tion [26,27]. Figure 2 presents the multifarious carbon nanomaterial applications. These
nanostructures possess unique properties, such as ease of processing, adaptability to con-
figurations, lightweightness and flexibility. These materials have found their use in the
making of the future of renewable energy, namely, fuel cells and supercapacitors for en-
ergy storage [28,29]. Novel nanocomposite materials for automotive and electric energy
storage applications have been discovered for inexpensive devices with high energy and
power densities. Insulating polymers loaded with high-aspect-ratio conductive nanofillers,
such as carbon nanotubes (CNT) and graphene nanoplatelets (GNP) [17,18,30,31], have
been demonstrated as potential dielectric materials [32,33]. Space charge polarization
significantly improved when nanocomposites were used in an insulating pattern [34–37].

Energy storage innovations from renewable energy sources are being sought to offset
the current energy-related issues that arise from the use of traditional energy sources. It is
urgently necessary to develop environmentally acceptable energy solutions; therefore, the
electrochemical storage of energy involving electrochemical capacitors, batteries and FCs
are gaining increasing popularity [38]. Nanocomposite materials with superior qualities
are now available, among which, carbon polymer nanocomposites offer a wide range
of opportunities [39].

CNTs are the most representative nanocarbons, which are known for their outstanding
electrical properties, strong mechanical strength, high chemical stability, high aspect ratios
and higher activated surface areas. The potential of CNTs as electrodes in Li-ion batteries
has been proposed and tested by many research groups as early as the 1990s [40–45].
Even though carbon materials possess lower ED because of their adsorption response,
the creation of EDLCs, carbon materials such as activated carbon (AC), carbon nanotubes
(CNTs) and graphene nanosheets (GN) have been extensively studied for their suitability
for supercapacitor applications.
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In contrast to batteries, which have yields that are limited by their sustained chemical
power, FCs are electrochemical processes that constantly produce electricity while the fuel
(for example, H2) appears to be an oxidant. Fuel cells are generally classified as phosphoric
acid fuel cells (PAFC), polymer electrolyte membrane fuel cells (PEMFC), alkaline fuel cells
(AFC), molten carbonate fuel cells (MCFC) and solid-oxide fuel cells (SOFC), based on
the type of electrolytes used. Fuel cells that use polymer electrolyte membranes (PEMs),
such as direct methanol fuel cells (DMFCs) and PEMFCs, for example, are the norm for
serving applicants with low-temperature performance. Typically, FCs are grouped based
on their construction, working conditions (such as temperature), and the FCs’ polymer
electrolytes’ properties [46]. A recent review by Chen et al., 2022, summarized the recent
developments in carbon-based nanocomposites for fuel cell applications [47]. In their
review, they elaborately explained the usage of several forms of carbon nanomaterials,
such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes and fullerenes,
in the development of hydrogen fuel cells. They also described the various principles,
reaction mechanisms and cyclic stability of the fuel cells, as well as new strategies and
future challenges related to the development of viable fuel cells. Among the traditional ED
techniques used for electrochemical energy storage, lithium-ion batteries are among the
most significant. Due to Li-ion batteries’ effectiveness and configuration flexibility, they
are widely used for electricity storage. Due to their special qualities, which include strong
electrical performance and good coulombic efficiency, carbon polymer nanocomposites
promote organic-inorganic composites for use in Li-ion batteries. This encourages the
periodic usage of batteries with mild deterioration in their construction. Polyaniline (PANI),
Poly(3,4-ethylenedioxythiophene) (PEDOT) and Polypyrrole (PPy) would ideally be the
polymers most integrated with carbon nanomaterials. Figure 3 gives the structures of the
polymers that are predominantly associated with carbon allotropes for energy applications.
When used as electrodes, carbon polymer nanocomposites (CPNCs) demonstrate a number
of advantages, including superior processability, reduced cost, tolerable molecular change
and lightweightness. Although CPNCs can be used as anodic or cathodic materials, Li-ion
batteries frequently use them as cathodes. Different CPNCs exhibit remarkably different
EDs, for instance, PPy-based probes have EDs of approximately 10–50 Wh kg−1 and PDs
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of about 5–25 kW kg−1, PANI-based probes produce EDs of about 50–200 Wh kg−1, and
PTh-based probes give EDs of 20–100 Wh kg−1, and PDs of 5–50 kW kg−1. The capability
and rate recitals of the Li-ion battery have recently been established using carbon-based
composite probes that use CNTs [48].

Polymers 2023, 15, x FOR PEER REVIEW  5  of  22 
 

 

their construction. Polyaniline  (PANI), Poly(3,4‐ethylenedioxythiophene)  (PEDOT) and 

Polypyrrole  (PPy) would  ideally  be  the  polymers most  integrated with  carbon  nano‐

materials. Figure 3 gives the structures of the polymers that are predominantly associated 

with carbon allotropes for energy applications. When used as electrodes, carbon polymer 

nanocomposites  (CPNCs)  demonstrate  a  number  of  advantages,  including  superior 

processability, reduced cost, tolerable molecular change and lightweightness. Although 

CPNCs can be used as anodic or cathodic materials, Li‐ion batteries frequently use them 

as cathodes. Different CPNCs exhibit remarkably different EDs, for instance, PPy‐based 

probes  have  EDs  of  approximately  10–50 Wh  kg−1  and  PDs  of  about  5–25  kW  kg−1, 

PANI‐based probes produce EDs of about 50–200 Wh kg−1, and PTh‐based probes give 

EDs of 20–100 Wh kg−1, and PDs of 5–50 kW kg−1. The capability and rate recitals of the 

Li‐ion battery have recently been established using carbon‐based composite probes that 

use CNTs [48].   

 

Figure 3. Structures of polymers that are commonly associates with carbon allotropes for energy 

applications. 

Sarang  et  al.  [49]  investigated  the  n‐type  redox  reaction  with 

poly‐fluorene‐alt‐naphthalene  diimide  (PFNDI).  A  microwave‐assisted  solvothermal 

process was used at  liquid‐phase exfoliated GN  (LEGr)  to create  the GN@SnS2 hetero‐

junction nano molecule  [50]. After over 200 additional cycles with a 300 mA/g current 

density,  the storage capacity still was maintained at 664 mAh/g. Pseudocapacitors and 

EDLCs are the two types of SCs. In EDLCs, energy is conserved electrostatically on the 

probe and  conducting  solution edge  into  the double  layer, whilst  the pseudocapacitor 

charge  storage  occurs  through  rapid  redox  reactions  at  the  electrode  exterior.  Car‐

bon‐based materials, MOx/hydroxides,  and  CPNCs  are  the  three main  categories  of 

conductor materials for SCs in this context [51]. CPNCs have excellent PD and a long life 

cycle. 

The PPy/CNT combination has been used as a reliable pseudocapacitive cathode for 

non‐aqueous LIC applications. The inclusion of CNT greatly enhances electrical perfor‐

mance, while  the PPy  exhibits  strong pseudocapacitance due  to  the doping/undoping 

effect. In its current state, the composite outperforms porous carbon negatives found in 

current LICs  in  terms of  capacities  and  stability  (98.7 mAh g−1 on  0.1  ag−1, plus holds 

89.7% after runs on 3 ag−1 for 1000 cycles). Additionally, when connected to the Fe3O4@C 

Figure 3. Structures of polymers that are commonly associates with carbon allotropes for energy applications.

Sarang et al. [49] investigated the n-type redox reaction with poly-fluorene-alt-naphthalene
diimide (PFNDI). A microwave-assisted solvothermal process was used at liquid-phase
exfoliated GN (LEGr) to create the GN@SnS2 heterojunction nano molecule [50]. After
over 200 additional cycles with a 300 mA/g current density, the storage capacity still was
maintained at 664 mAh/g. Pseudocapacitors and EDLCs are the two types of SCs. In
EDLCs, energy is conserved electrostatically on the probe and conducting solution edge
into the double layer, whilst the pseudocapacitor charge storage occurs through rapid redox
reactions at the electrode exterior. Carbon-based materials, MOx/hydroxides, and CPNCs
are the three main categories of conductor materials for SCs in this context [51]. CPNCs
have excellent PD and a long life cycle.

The PPy/CNT combination has been used as a reliable pseudocapacitive cathode for
non-aqueous LIC applications. The inclusion of CNT greatly enhances electrical perfor-
mance, while the PPy exhibits strong pseudocapacitance due to the doping/undoping
effect. In its current state, the composite outperforms porous carbon negatives found
in current LICs in terms of capacities and stability (98.7 mAh g−1 on 0.1 ag−1, plus
holds 89.7% after runs on 3 ag−1 for 1000 cycles). Additionally, when connected to
the Fe3O4@C positive electrode, the as-developed LICs exhibit a higher ED of roughly
101.0 Wh kg−1, on 2709 Wh kg−1, while still maintaining 70 Wh kg−1 through an enhanced
PD of 17,186 W kg−1 [52].

Due to their good specific surface area and exceptional electrical and mechanical
properties, carbon nanocomposites—in particular, CNTs plus GN—have recently been
thoroughly investigated as active electrodes in SCs. According to recent research, high-
performance SCs can be outfitted with electrodes based on vertically aligned CNTs and GN
sheets constructed as 3D pillared GN-CNT systems. High electrical conductivities and high
doping-dedoping rates are provided by electroactive polymers (polyaniline, polypyrrole,
polythiophene and its derivatives) during charge–discharge operations. [12,53,54]. At
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operating voltages of about 3 V, these polymers exhibit high gravimetric and volumetric
pseudocapacitance in a variety of nonaqueous electrolytes. However, these electroactive
polymers normally exhibit poor mechanical stability. The electrode swells and contracts re-
sulting in degradation of the cell, which impairs the electrochemical performance. Low-cost
electroactive polymers typically have a limited life cycle when utilized as bulk materials for
electrodes [37]. Improved mechanical qualities are demonstrated by electrodes composed
of carbon polymer nanocomposite materials.

The effective synthesis of carbon polymer nanocomposites is an intriguing devel-
opment for the fabrication of a new generation of supercapacitors. An electrodeposited
polymer called polyaniline (PANI), a promising polymer for use as an electroactive mate-
rial, has been supported by the previously stated hierarchically porous carbon monolith
(HPCM). HPCM (surface area: 277 m2 g−1, pore volume: 0.47 cm3 g−1) was employed
as a high surface support for conducting polymers, as well as a current collector. In a
three-electrode cell experiment in 1 M H2SO4, a specific capacitance of about 2200 F g−1 (i.e.,
per gramme of PANI) was obtained at a current density of 0.67 A g1 in the potential range
of 0–0.7 V with a power density of 0.5 kW kg−1 and an energy density of 300 Wh kg−1. The
specific capacitance was still as high as 1270 F g−1, even at a very high current density
of 66.7 A g−1. These numbers are all surprisingly high [55]. PANI electrodeposited onto
a surface has a substantially lower specific energy density than PANI placed on HPCM.
PANI electrodeposited onto a nonporous carbon monolith displays a considerably lower
specific energy density than PANI placed on HPCM (abbreviated as NPCM). PANI and
HPCM work together synergistically to produce the improved characteristics [56]. Addi-
tionally, pellet electrodes made by simply pressing nanocomposite materials have been
claimed to be useful for supercapacitors, particularly when an asymmetric configuration
is achieved [55] For instance, the specific capacitance of an asymmetric capacitor with
polypyrrole/CNTs as the negative electrode and PANI/CNTs composite materials as the
positive electrode, can reach a value of up to 320 F g−1. Because they combine two relatively
inexpensive materials to acquire substantial pseudocapacitance, it appears that composites
of nanocarbons with conducting polymers could be more appealing. It is not possible to
directly compare the measured value of specific capacitance to that of a two-electrode cell.
In a three-electrode cell, for instance, high values up to 1100 F g−1 have been recorded for
a PANI/CNTs composite electrode. A substantially lower specific capacitance value of
360 F g−1 was measured using a two-electrode cell [55]. In the following sections, we will
review the specific milestones achieved through graphene and fullerene carbon allotrophs.

3. Graphene-Based Nanocomposites for Electrochemical Energy Storage

Recently, composites of polymers and nanofillers, such as graphene-based materi-
als, have been welcomed as probes for boosting the activity of SCs by using the high
synergistic impact. Due to their unique physical, morphological and structural charac-
teristics, graphene-based systems are crucial components for energy applications [57].
Polymer/graphene nanocomposites have attracted great interest as cathode materials since
polymers are sustainable, environmentally benign (“green” cathodes), have inherently
faster kinetics and an electrochemically stable backbone, and can be paired with electro-
chemically active functional groups [58–60]. In this section, we give a brief overview of
the various graphene-based nanocomposites that have been reported for electrochemical
energy storage. These were made possible thanks to innovative nanotechnology that al-
lowed for the creation of energy storage equipment using carbon-based nanomaterials
like graphene, carbon nanosheets, AC, CAGs, MOx, carbon polymers and polymer amal-
gams. SC applications make use of PANI nanocomposites and carbon-based electroactive
materials. By using CO2, GO (graphene oxide)/PANI-PANI nanoparticles with a high Cs
(425 F g−1) was achieved. The interaction between GO (having a high specific surface area)
and the nanosized PANI nanocomposites gives these materials their distinctive electro-
chemical capacitance and cycle durability [61].
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Researchers have focused on poly(anthraquinonyl sulfide) and polyimide composites
with graphene using in situ polymerization [62] A unique rGO/PANI/rGO double-decker
composition nanohybrid paper was created by Xiao et al. [63] and its potential as an SSC
probe was examined. The self-supporting GN paper was primarily created using the print
method and dazzling delamination process. It displayed superior mechanical properties,
good electrical performance (340 S cm2) and low weight. As a result, a sandwich-structured
GN/PANI/GN paper was created. It is interesting to note that the probe’s energy storage
capacity, rate execution and cycling durability were greatly enhanced. The as-achieved
SSC, therefore, displayed an exceptional capacitance of around 120 mF cm2, which was
confirmed at 62% after an increase of current density between 0.1 and 10 mA cm2, including
an ED of about 5.4 mW cm3.

In another study, using NaOH as a co-precipitate and GO proton-rich component,
a unique single-step approach was used to create a paired composite of GN integrating
iron oxide (rGO/MeFe2O4). The rGO/MnFe2O4 compound probe, with a sweep rate
of around 5 mV/s, showed a gravimetric capacitance of about 147 F g−1, including an
oxidative capacitance of about 232 mFcm2. The ternary GN/metal-doped iron oxide/PPy
(rGO/MnFe2O4/Ppy) compound probe displayed significantly higher gravimetric and
oxidative capacitances of around 232 F g−1 and 395 mFcm2, respectively, demonstrating
the combined effect of PPy [38]. By using 1 M NaCl media and integrating GN/PPy
composite material, Biswas et al. [64] demonstrated a gravimetric capacitance of about
165 F g−1. According to Parl et al. [65], graphite/PPy compound was applied on SC elec-
trodes with a gravimetric capacitance of 400 F g−1 [66] The gravimetric capacitance of the
synthesized ternary PPy/GO/ZnO SC electrodes, which are arranged with two probes,
was 94.6 F/g/Ag/g. Additionally, according to Lim et al. [67], a ternary PPy/GN/nano
MnOx complex’s gravimetric capacitance was 320.6 F g−1 on 1 mV s−1, which was signifi-
cantly higher than the gravimetric capacitances of straight PPy and PPy/GN, which were
255.1 F g−1 and 118.4 F g−1. Xiong and colleagues [68] calculated the gravimetric capaci-
tance of ternary cobalt ferrite/GN/PANI nanomaterials, which resulted in a gravimetric
capacitance of approximately 1133.3 F g−1 on the sweep rate at 1 mV s−1.

Gao et al. [69] examined the viability of using hybrid nanocomposites of graphene
quantum dots (GQD) and dyes based on phenoxazine as an effective sensitizer for dye-
sensitized solar cells (DSSC). According to Akhina et al. [70], plasticized poly (vinyl chlo-
ride) combined with rGO were employed to create flexible composites with high dielectric
permeability and low dielectric loss. After the addition of RGO, the dielectric constant
increased by 57% (vinyl chloride). This improvement could be due to the increased num-
ber of polymer and filler contacts. The vacuum filtration of GO and PANI dispersions
created supercapacitor devices based on graphene/PANI composite sheets, which display
significant electrochemical capacitance. Suneetha et al. [71] used an optimal quantity of
each component to create a nanocomposite of Zinc-doped Iron oxide, Graphene Oxide
and Chitosan. Cyclical voltammetry was used to analyze the composite’s electrochemical
properties, while impedance tests were used to analyze its capacitive behavior (EIS). These
electrochemical studies showed that the composite had high adhesion to the electrode
surface at pH 1, and they also showed greater electrochemical stability with clearly defined
redox peaks. The nanocomposite modified electrode displayed good capacitance with
a phase angle of 87◦, demonstrating its excellent suitability for supercapacitor applica-
tions. Chabi et al. [72] created 3D graphene foam (GF) with PPy functionalization that
displayed exceptional electrochemical performance. The resulting 3DPPY GF electrode was
employed directly as a working electrode without binder or carbon additions because it is
free-standing. Due to the special characteristics of the PPY-GF composites, such as their
highly conductible p-doped PPY and hierarchically flexible 3D network, the electrodes
made with these materials have enhanced pseudo-capacitive capabilities. For use in su-
percapacitor applications, Azizi et al. [73] created a novel reduced graphene oxide/poly
(1,5-dihydroxynaphthalene)/TiO2 (RGO/PDHN/TiO2) ternary nanocomposite conducting
polymer. The RGO/PDHN/TiO2 nanocomposite polymer film displays a high specific
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capacitance of 556 F g−1, which is much higher than the values obtained using RGO/PDHN
(432 F g−1) and PDHN (223 F g−1) at a current density of 2.4 A g−1. The substantial specific
capacitance of RGO/PDHN/TiO2 is the result of the simultaneous use of the electrical
double layer capacitance (EDLC) of RGO with the pseudocapacitive behavior of PDHN
and TiO2. After 1700 cycles, the RGO/PDHN/TiO2 nanocomposite preserves around 74%
of the initial capacitance values and exhibits longer self-stability than other polymers.

Polymer electrolyte membranes (PEM) are a crucial component of energy conver-
sion and storage devices such as fuel cells, electrolyzers and batteries. The development
of GO membranes, their interaction with the polymer matrix and their electrochemical
characteristics have made progress. By using GO, Si nanoparticles, polymer monomers
(acrylic amide) and networking agents (N,N′-methylene bisacrylamide) as the raw materials,
Pan et al. [74] prepared a 3D framework Si@N-doped C/reduced graphene oxide
(Si@NC/rGO) composite. As an anode electrode material for LIBs, the Si@NC/rGO com-
posite exhibits outstanding rate performance, strong cycle stability and a sizable reversible
specific capacity. After 200 cycles, the specific capacity remains at 867.4 and 479.1 mAh g−1

at 0.1 and 2 A g−1, respectively. Compared to commercial graphite anode materials, the
capacity is three to four times higher. The C structure, the high electrical conductivity of
graphene and N doping work together to provide the exceptional electrical properties. The
composite of Si@NC and rGO exhibits expansion potential as anode electrode materials for
LIBs. For the production of rGO/polyaniline (PANI)/Pt-Pd composite, Arukula et al. [75]
described a wet reflux technique. This composite was used as a potential anode catalyst
with increased methanol oxidation capability for direct methanol fuel cells (DMFCs).

Reduced graphene oxide (rGO)/poly(3,4-ethylenedioxythiophene): polystyrene sul-
fonate (PEDOT: PSS) nanocomposites exhibited higher anodic current density of 48 mA cm2,
as well as improved cyclic stability of 93% at 800th cycles. The change in shape of the
nanocomposite at the fluence of 3.3 1016 ions cm2 and the appearance of graphite-like clus-
ters were responsible for improved electrocatalytic activity. A non-precious anode catalyst
material PEDOT:PSS/MnO2/rGO ternary nanocomposite was created by Baruha et al. [76]
via a hydrothermal method and in situ oxidative polymerization. The heterogeneous
rate constant (ks) and anodic and cathodic electron transfer coefficients of the ternary
nanocomposite-coated electrode were determined to be 0.51, 0.45 and 0.055 s−1, respec-
tively. The excellent conductivity of rGO nanosheets and the porous nanostructure of
PEDOT: PSS coated MnO2 nanorods may work in concert to increase the electrocatalytic
activity of the ternary nanocomposite toward the oxidation of methanol, as measured by
its higher oxidation current density (56.38 mA/cm2) and lower onset potential (0.32 V).
The PEDT:PSS/MnO2/rGO ternary nanocomposite may be a suitable replacement for the
platinum-based anode catalyst in direct methanol fuel cells due to its long-term stability
retaining of current density 50 mA/cm2 up to 1 h and greater cyclic stability (current
retention factor 83%) up to 700th cycles.

To further enhance the performance of graphene-based electrodes for supercapacitors,
hybrid structures of graphene and electrically conducting polymers like polyaniline (PANi),
polypyrrole (PPy), poly(thiophene) (PTh), poly(hexylthiophene) (PHTh) and poly(3,4-
ethylenedioxythiophene) (PEDOT) are frequently used. Potential supercapacitor electrodes
made of graphene-PANi nanocomposites have been studied [77–79] and exhibit signifi-
cantly increased electrochemical performance. Graphene-PANi nanocomposites have good
rate capability of 581.6 F g−1 at 5 A g−1 and high specific capacitance of 863.6 F g−1 at
0.2 A g−1 [79]. Flexible graphene-PANi nanocomposites with a specific capacitance of
1126 F g−1 and capacitance retention of 84% after 1000 cycles could be produced via an
in situ polymerization-reduction/dedoping-redoping method [80]. By mixing 1D PANi
nanowires and 2D GO nanosheets, Xu et al. presented a simple technique to create hierar-
chical nanocomposites [81] The nano-composite has a remarkable cycle life and a specific
capacitance of more than 550 F g−1 at 0.2 A g−1 current density [81] Other hybrid materi-
als have also been considered as potential materials for supercapacitors, including flexi-
ble graphene-PANi nanofibers, graphene-PANi flakes, PANi-embedded holey graphene
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nanoribbons, hierarchical graphene@PANi@graphene sandwich containing hollow struc-
tures [82], 3D porous graphene/PANi [83], freestanding hierarchical CNF/GO/PANi [84].
Another conductive polymer utilized in supercapacitors along with graphene is PPy. At a
current density of 0.5 A g−1 in 1 m H2SO4, polymerized PPy with graphene displayed a
high specific capacitance of 482 F g−1. At a discharge rate of 0.5 A g−1, sulfonated graphene
(SG) and PPy composite films with 40 wt% of SG had a specific capacitance of 285 F g−1.
With 95% capacity retention after 1000 cycles at a scan rate of 100 mV s−1, hierarchical
graphene-PPy nanosheet nanocomposites provided a capacitance of 318.6 F g−1 at a scan
rate of 2 mV s−1. As an electrode for supercapacitors, composite films made of PPy and GO
were electrochemically created. The GO/PPy composite had a high specific capacitance of
424 F g−1 in 1 m H2SO4-based electrolytes at a current density of 1 A g−1 [85]. The 3D
framework of PPy wrapped on the graphene hydrogel nanocomposites demonstrated an
outstanding capacitance retention for more than 4000 cycles, as well as a high specific
capacitance of 375 F g−1. Recent supercapacitors with freestanding CNT/graphene/PPy
hybrid electrodes showed a specific capacitance of 453 F g−1 and extremely high energy and
power densities of 63 Wh kg−1 and 567 W kg−1, respectively, at a scan rate of 5 mV s−1 [86].
Nanowires, nanotubes and other hybrid graphene-PPy nanostructures, PPy/graphene film
have been used [87]. Using 3D cellulose/PPy composites [88], TiO2/graphene/PPy compos-
ites [89], electrodes for supercapacitors have also been identified as PPy/SG composites [89]
and PPy/rGO-CTAB composites [90]. As potential pseudocapacitor materials, graphene-
PTh nanocomposites [91,92] and their derivatives have also been reported [92,93] At a cur-
rent density of 0.1 A g−1, graphene-PEDOT and graphene-PHTh nanocomposites demon-
strated specific capacitances of 800–1100 F g−1 [90]. Even after 2000 cycles, the specific
capacitance of composite films made of PEDOT and rGO retains up to 90% of its initial value
and exhibits high specific capacitance retention [94] Though attractive, conductive polymers
have lower intrinsic conductivities than metals, which can result in slow electron/ion trans-
port characteristics and poor rates of charge/discharge. In graphene/conductive polymer
nanocomposites, the orientation of polymer chains can lead to increased electron transport
and boost charge/discharge rates in supercapacitors. The ability to construct a complicated
path for ions in the graphene composite structure that can result in irreversible specific
capacitance losses is another significant benefit of using graphene/polymer nanocompos-
ites in supercapacitors. Tables 1 and 2 list the Graphene polymer nanocomposites that
have been applied in batteries and supercapacitors. The predominant graphene polymer
nanocomposites that have contributed significantly towards supercapacitor applications in-
clude: Graphene aerogel (GA) functionalized with p-phenylenediamine/PANI, rGO/PANI,
Graphene (Gr)/poly (styrenesulfonic acid-graft polyaniline) (S-g-A), rGO/PANI fiber films,
3D multi-growth site graphene (MSG)/PANI, rGO/poly (3,4-ethylenedioxythiophene)
(PEDOT), Polymer-wrapped rGO/nickel cobalt ferrite, Polymer-wrapped rGO/nickel
cobalt ferrite and self-doped PANI/bonded graphene. Most of these systems employ rGO
combined with PANI polymers, indicating this combination to be a better nanocomposite
system for energy storage applications.

Table 1. Graphene polymer nanocomposites for batteries.

Energy Storage Device Carbon Materials Polymer Composite Electrochemical Performance References

Lithium ion Batteries Graphene sheets poly(anthraquinonyl sulfide) and
polyimide,

Ultrafast-Charge and
-Discharge Cathodes [60]

Li-ion/Na-ion batteries Reduced
Graphene oxide

radical polymer poly(2,2,6,6-
tetramethylpiperidin-1-oxyl-4-yl

methacrylate) (PTMA)

cathodes for Li-ion/Na-ion
batteries with high energy

storage
[95]

Na-ion batteries Graphene sheets polyimide nanorod
composites(PInd)

superior capacity of
101.3 mAh g–1 at 500 mA g−1

after 1000 cycles.
[96]

Zinc-Ion Batteries Reduced
Graphene oxide Polyethyleneimine + Quinone crystal superior cyclability of

charge/discharge cycle [97]
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Table 1. Cont.

Energy Storage Device Carbon Materials Polymer Composite Electrochemical Performance References

Li-ion batteries Reduced
Graphene oxide mesoporous polydopamine (mPDA), superior cyclability of

charge/discharge cycles [98]

Li-ion/Na-ion batteries Three-dimensional (3D)
graphene framework poly(anthraquinonyl sufide) (PAQS) highest cathode charging and

discharging capacity. [99]

lithium-ion battery Graphene oxide

polymer electrolytes
(1) branched graft copolymer (BCP),
poly(ethylene glycol) methyl ether

methacrylate (PEGMA)
(2) 3-(3,5,7,9,11,13,15-

heptaisobutylpentacyclo-
[9.5.1.13,9.15,15.17,13]octasiloxane-1-
yl)propyl methacrylate (MA-POSS)

(3) poly(ethylene glycol)-grafted
graphene oxide (PGO)

Batteries with improved
thermal and mechanical

stabilities with PGO graphene
nano hybrid.

[100]

Table 2. Supercapacitor milestones of graphene polymer nanocomposites.

Nanocomposites Specific Capacitance
(F g−1)

Current Density
(A g−1)

Cycling Performances

ReferenceCapacity
Retention (%) Cycle Number

Graphene oxide (GO)/pristine
graphene (PG)/polyaniline (PANI) 793.7 1.0 83.8 1000 [101]

Graphene (Gr)/poly (styrenesulfonic
acid-graft polyaniline) (S-g-A) 767 0.5 92 5000 [102]

Graphene aerogel (GA) functionalized
with p-phenylenediamine/PANI 810 1.0 83.2 10,000 [103]

rGO/PANI film 763 0.34 76.5 2000 [104]
Flower-like PANI/graphene 1510 1.0 89 1500 [105]

Reduced graphene oxide (rGO)/PANI 952 1.0 88 1000 [106]
rGO/PANI 850 1.0 93.2 10,000 [107]

PANI/GO-vanadium (V)-ammonium
persulfate (APS) 712 0.5 83 6000 [108]

rGO/PANI fiber films 1180 1.0 99 10,000 [109]
Graphene/PANI 311.3 0.4 88.6 1000 [110]

Graphene/PANI hydrogels 865.6 1.0 82 1000 [111]
3D multi-growth site graphene

(MSG)/PANI 912 1.0 89.5 10,000 [112]

N-doped graphene/PANI hydrogels 514.3 1.0 84.7 1000 [113]
Unidirectional graphene aerogel

(UGA)/PANI 538 1.0 74 1000 [114]

rGO/poly
(3,4-ethylenedioxythiophene)

(PEDOT)
202.7 1.0 90 9000 [114]

Holey nitrogen-doped graphene oxide
(H-NGO)/PANI-10 746 1.0 97 2000 [115]

PANI/rGO-HT 420 0.2 80 6000 [116]
PANI/GO/copper (Cu) 557.9 1.0 88 1000 [117]

N, S-co-doped graphene hydrogel
(N/SGH)/PANI 236.5 0.5 95.1 1000 [118]

Nitrogen-doped graphene/PANI-35% 620 0.5 87.4 5000 [119]
Graphene/PANI copolymer 1701.1 0.34 94.9 5000 [120]
3D porous graphene/PANI 542 1.14 82 3000 [121]

Polymer-wrapped rGO/nickel cobalt
ferrite 1286 0.5 95 6000 [122]

Self-doped PANI/bonded graphene 642.6 1.0 100 5000 [123]
PANI/ /reduced crumbled GO 299 0.5 88.5 2000 [124]
GO/polypyrrole (PPy)/PANI 131 8.0 91 2000 [125]

Functionalized rGO/PANI 421 0.6 84.6 800 [126]

4. Fullerene-Based Polymer Nanocomposites for Energy Storage

Table 3 shows the comparative physical properties of graphene versus fullerenes.
Supercapacitors have been touted as effective energy storage options for cutting-edge elec-
tronic gadgets [127,128]. Supercapacitors are among the energy storage technologies that
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have high specific capacitance, power density and charged-discharge performance [129].
The three primary types of supercapacitors are double-layer capacitors with electrostatic
charge storage, pseudocapacitors with electrochemical charge storage and hybrid capaci-
tors with both electrochemical and electrostatic charge storage. Supercapacitors are among
the energy storage technologies with the widest range of energy and power densities [130].
Supercapacitors with a higher energy density than batteries will be preferred in the future.
The electron conduction characteristics of the polymer/fullerene nanomaterials are directly
correlated with their specific capacitance. As a result, increasing the electrical conductivity
of the nanocomposites is very important. The properties of electron conductivity and
capacitance may be reduced by fullerene aggregation. The electrical conductivity was,
thus, significantly improved using the fullerene/polymer nanocomposite systems, leading
to fruitful interactions between polymer and fullerene nanofiller, providing upgraded at-
tributes for high performance supercapacitors. The application of phase transition materials
as energy storage materials is a promising direction [123]. High performance fullerene-
based energy storage devices may be produced, particularly when environmentally friendly
or bio-based components are used [131,132].

Table 3. Comparative listing of physical properties of Graphene and Fullerenes.

Physical Properties Graphene Fullerenes

Charge carrier mobility ~200,000 cm2/V·s ~1.2 × 10−5 cm2/V·s
Thermal conductivity ~5000 W/m·K 0.4 W/m·K

Transparency ~97.4% ~85%
Specific surface area ~2630 m2/g ~300 m2/g

Young’s modulus ~1 TPa 14 × 109 Pa
Tensile strength ~1100 GPa <100 GPa

Band gap Zero ~1.4–3.5

Between capacitors, batteries and fuel cells, supercapacitors have been proven to per-
form best [133,134]. The present demand for energy storage devices is seen in the modern
electronics and automotive industries [46,135,136]. Electrochemical supercapacitors or
pseudocapacitors have been considered as capable energy storage technologies [137,138],
having low cost and large power storage [139,140]. When compared to conventional storage
devices, these devices have been noted for their high resilience, high energy density and
high power density [141–143], and are now being used with success in robotics, electronics
and other fields [144–146].

Conjugated polymers like polyaniline, polypyrrole, polythiophene and poly(3,4-
ethylenedioxythiophene) (PEDOT), have found usage in supercapacitors [146–148]. These
conjugated polymers have excellent specific capacitance and electron conduction [149,150].
The low charge discharge, stability and reversibility of conducting polymers, however, may
be a downside of their use in supercapacitors. As a result, nanoparticles including graphene,
graphite and inorganic nanoparticles have been added to the conjugated polymers [151–153].
Due to their naturally high surface area and electrical conductivity, fullerenes have been
investigated as potential materials for supercapacitor devices [154,155]. Supercapacitor de-
signs have made use of fullerene polymeric nanocomposites [135,156]. Polyaniline emeral-
dine base (PANIEB) and polyaniline emeraldine base/fullerene C60 whisker (PANI-EB/FW)
nanocomposites were created by Wang et al. [154]. The electrode for the supercapacitor
was made of PANI-EB/FW. The specific capacitance of PANI-EB/FW was found to be sig-
nificantly greater than the native PANI-EB (248 F g−1), and the nanocomposite electrode’s
capacitance retention was 85.2% after 1500 cycles. The synergistic interactions between
the polymer and fullerene nanoparticles were responsible for the remarkable performance.
Additionally, PANI-EB and fullerene C60-based supercapacitor electrodes were created by
Xiong et al. [157]. Para-phenylenediamine (PPD) and C60 were integrated to create a useful
fullerene. Then, the in situ polymerization of aniline monomer incorporated the PPD func-
tional C60, yielding a higher specific capacitance of 776 F g−1 after 50 cycles in comparison
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to the clean PANI-EB (492 F g−1). After 500 cycles, 96.5% and 94.9%, respectively, of the ca-
pacitance retention of the fullerene-based nanocomposite and nativePANI-EB were detected.
The conjugated polymer’s conductivity and capacitance properties were improved by the
C60’s electron retreating efficiency [158,159]. The PANI/PCBM nanocomposite was created
by Ramadan et al. [160] using polyaniline (PANI) and phenyl-C60-butyric acid methyl ester
(PCBM), the clean polyaniline’s specific capacitance was 1110 F g−1. With wt.% nanofiller,
the capacitance was significantly increased to 2201 F g−1. Over 1000 cycles, 96% capacitance
retention was noted. Due to the superior fusion of PANI and PCBM and the superior charge
transport capabilities, such high values of specific capacitance were found. Supercapacitors
have also benefited from poly(3-hexylthiophene) (P3HT) and PCBM-derived P3HT:PCBM
nanocomposites [161,162]. Kausar (2022) has very recently published an elaborate review
on fullerene applications in supercapacitors [163]. With respect to fullerenes, polyaniline
emeraldine base/C60 nanocomposites were the most successful polymer nanocomposites
for electrochemical energy storage applications (supercapacitor applications).

Conducting polymers with high electrical conductivity and capacitance, such as PANI,
PTH, P3HT and PEDOT, can be used as supercapacitor electrodes [152,164]. The per-
formance of the conjugated polymers in the supercapacitors was improved by blending
with fullerene molecules. There is no doubt that fullerenes, when combined with poly-
mer composites, could show enhanced properties. Although, the reports in this direction
are not abundant, with the current inputs, we see that what lies ahead is definitely irre-
sistible. Fullerenes- and Graphene-based polymer nanocomposites, compared to carbon
nanomaterial-based polymers, are uniquely advanced, since both fullerenes and graphene
are the most evolved forms of carbon nanomaterials. With their 2D, 3D structure, they do
have a clear edge over the other carbon nanomaterials. More conclusive studies are needed
to reveal the actual advantages when using fullerenes and graphene with respect to elec-
trochemical energy storage applications. Since, as of now, there is insufficient information
available to comment on this aspect.

5. Future Recommendations and Conclusions

The current scenario of the milestones achieved in electrochemical energy storage har-
nessing the technology made available through carbon polymer nanocomposites, graphene
polymer nanocomposites and fullerene polymer nanocomposites was reviewed. The up-
to-date list of various graphene/fullerene polymer nanocomposites was listed. Most of
the published work in this area revolved around polymers such as polyaniline (PANi),
polypyrrole (PPy), poly(thiophene) (PTh), poly(hexylthiophene) (PHTh) and poly(3,4-
ethylenedioxythiophene) (PEDOT), where PANi, PPy and PEDOT happened to predom-
inate. We see that graphene/fullerene polymer nanocomposites were predominantly
applied for supercapacitors, relatively less for batteries and even lesser for fuel cell applica-
tions. In all these applications, the inputs from the involvement of polymers show clear
advantages. Yet, we note only scattered reports, supported by a handful of investigations.
We recommend further exploration of this integrated field of graphene/fullerene/polymers.
Moreover, the limitations of fullerenes, which include their susceptibility to breakdown in
the presence of visible light and oxygen as well as their hydrophobic nature (leading to
spontaneous agglomeration and limited solubility) have not been adequately addressed.
These are definitive concerns and ought to be addressed. It is also known that most
fullerene-based battery performance improvements are minimal; this should be looked
into as well. Additionally, possible combinations with binary trinary composite systems to
break these limitations faced by the standalone fullerene system should be tested.

Figure 4 represents the results from our PubMed search using the search terms ‘graphene
and energy storage’ (Figure 4A), which made 4006 hits, while the search on ‘graphene polymer
nanocomposites and energy storage’ yielded only 102 results (Figure 4B). This clearly indicates
the low enthusiasm for graphene polymer nanocomposite applications for energy storage.
We emphasize the need for increased application of the graphene polymer nanocomposites
in the area of energy storage. To summarize, given that the inclusion of polymers into
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graphene and fullerenes has proven beneficial, what needs to be done is to promote
and work out various permutation combinations of these composites to break down the
limitations and barriers in H2 storage. These binary, ternary systems can offer more than
the stand-alone graphene system alone.
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This review emphasizes the need for involving more such polymers, particularly
natural polymers such as chitin, cellulose and the like, for energy storage applications.
Natural polymers such as chitosan, cellulose and their associated nanocomposites have
been widely reported for various applications [165–171], yet have been sparsely reported for
their ability to be used in energy storage. This is one area worth focusing on, given the fact
they are naturally available, environmentally friendly, biocompatible and highly economical
alternatives. Recent findings confirmed that cellulose, which is a highly abundant, versatile,
sustainable and inexpensive material, can be used in the preparation of very stable and
flexible electrochemical energy storage devices with high energy and power densities by
using electrodes with high mass loadings, composed of conducting composites with high
surface areas and thin layers of electroactive material, as well as cellulose-based current
collectors and functional separators. There is definitely more to delve and much to harness
from these as well as other natural polymers. There will no doubt be much more to hitch
when these natural polymers are integrated with graphene/fullerene components to give
rise to nanocomposites. This aspect deserves extensive research focus, which as on date, this
review finds lacking. In addition to this, there are options from many graphene associates
such as graphite, graphene oxide, graphane and the like. Additionally, C60 fullerene has
been solely addressed, while other fullerene variants such as C70, C80 and C180 have not
been attempted. These are some gaps that have been identified during the course of the
review, which need to be reinforced and bridged-in with authentic research contributions.

Through the course of the review, we also found that there were no comparative studies
that compared the efficiency of various graphene/fullerene polymer nanocomposites.
Such a comparison would help determine which polymer nanocomposite system was the
most efficient for electrochemical energy storage. Until the graphene/fullerene polymer
systems are compared on a common platform, the optimized nanopolymer system cannot
be identified. This is a key direction for future studies. Much has been done in terms
of independent investigations involving CNT, graphene and fullerene, yet these need
to be tested and their efficiencies and deficiencies compared and analyzed to arrive at
conclusive statements.

Moreover, to date, not many of these published carbon-based polymer nanocomposites
have been practically implemented. There is a gap in the transfer of this acquired research



Polymers 2023, 15, 701 14 of 21

knowledge to real-time applications. The fact that compared to polymer nanocomposites,
carbon polymer nanocomposites were relatively less reported, and graphene/fullerene
polymer nanocomposites even lesser reported, was evident during the review process.
More studies, investigations and combinations need to be conducted in order to reach
authoritative conclusions. These staggering ends in this area of research were identified
during the review and highlighted here to draw the attention of the research community to
bridge these gaps and make the most of this technology. Another relatively interesting area,
which is yet to be extensively researched, is the area of biopolymers-based nanocomposites.
Ramkumar and Minakshi’s research group has come up with a number of biopolymers
for supercapacitor applications [172–175]. Combining biopolymer nanocomposites with
graphene/fullerene nanomaterial is recommended as a future direction, which could
prove beneficial.

One of the major issues with polymer-based electrodes is that they are prone to
structural degradation due to swelling and shrinking of conducting polymers during long
term cycling, resulting in fading of electrochemical performance. A few reports suggest
that this limitation can be overcome by nano structurization of conducting polymers [48]
or blending with carbon-based materials, as carbon polymer nanocomposites [49–51] can
significantly enhance the cycling stability. Although this has been explored, more conclusive
studies are needed to work out the exact role of carbon nanomaterial in breaking this major
limitation of conducting polymers. This will be a highly resourceful addition to the existing
knowledge. Fundamental mechanistic studies are recommended in the future.

This review surveyed the status quo of graphene/fullerene nanocomposites for
electrochemical energy storage options. The review identified that rather than the na-
tive graphene/fullerene nanomaterial, the polymer nanocomposite-integrated graphene/
fullerenes were more suitable for hydrogen storage purposes. Polymer nanocomposites
involving a combination of two or more entities invariably hold an added advantage of
being able to overcome the limitations of the individual entities [176]. The potentials and
possibilities from these nanocomposites were highlighted and the need to expand has
been emphasized.
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