
A comprehensive constitutive law for waxy crude oil: A thixotropic

yield stress fluid

Christopher J. Dimitriou,a,b and Gareth H. McKinley∗a

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

Guided by a series of discriminating rheometric tests, we develop a new constitutive model that can quantitatively predict the

key rheological features of waxy crude oils. We first develop a series of model crude oils, which are characterized by a complex

thixotropic and yielding behavior that strongly depends on the shear history of the sample. We then outline the development

of an appropriate preparation protocol for carrying out rheological measurements, to ensure consistent and reproducible initial

conditions. We use RheoPIV measurements of the local kinematics within the fluid under imposed deformations in order to

validate the selection of a particular protocol. Velocimetric measurements are also used to document the presence of material

instabilities within the model crude oil under conditions of imposed steady shearing. These instabilities are a result of the

underlying non-monotonic steady flow curve of the material. Three distinct deformation histories are then used to probe the

material’s constitutive response. These deformations are steady shear, transient response to startup of steady shear with different

aging times, and large amplitude oscillatory shear (LAOS). The material response to these three different flows is used to motivate

the development of an appropriate constitutive model. This model (termed the IKH model) is based on a framework adopted

from plasticity theory and implements an additive strain decomposition into characteristic reversible (elastic) and irreversible

(plastic) contributions, coupled with the physical processes of isotropic and kinematic hardening. Comparisons of experimental

to simulated response for all three flows show good quantitative agreement, validating the chosen approach for developing

constitutive models for this class of materials.

1 Introduction

The term “yield stress fluid” is used to describe soft

rheologically-complex materials that behave like a solid at low

levels of imposed stress, yet flow when subjected to stresses

that exceed a critical value1,2. These types of materials are

ubiquitous in nature and in industrial applications, so predict-

ing their rheology with a constitutive model is an important

challenge. The term yield stress fluid is a rather broad clas-

sification for materials which exhibit this general behavior

of transitioning from solid to liquid, and these materials can

exhibit additional complexities in their rheological behavior.

Møller et al.3 proposed using thixotropy as a distinguishing

behavior that separates “ideal” yield stress fluids from “non-

ideal” yield stress fluids. Thixotropy describes the ability of a

material to exhibit a continuous and reversible time-dependent

change (usually a decrease) in viscosity at a particular con-

stant imposed shear rate.4–6. These time-dependent changes

in viscosity are due to a gradual change in the microstruc-

ture of the material resulting from the application of shear;
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this mechanism is commonly referred to as shear rejuvenation.

Thixotropic materials also exhibit aging, which describes the

ability of the material to reacquire its initial structure under the

absence of shear (hence the reversibility of the initial time-

dependent change). The aging phenomenon is commonly

the result of thermally activated Brownian motion causing a

sufficient rearrangement of the material’s microconstituents.

When this rearrangement occurs, the attractive forces between

these microconstituents can cause a reformation of the sample

spanning network in the material structure5,6.

The classification used by Møller et al. is a simplified view

of yield stress fluids. For example, Divoux et al.7,8 showed

that even Carbopol, widely considered to be an “ideal” yield

stress fluid3, can exhibit some non-idealities (e.g. shear band-

ing) that are associated with thixotropic yield stress fluids.

Given the ubiquity of thixotropic behavior in yield stress flu-

ids, it is important to have an appropriate constitutive frame-

work for modeling the rheology of these fluids. The develop-

ment of such a framework is a critical issue which remains to

be addressed6. There is a significant body of literature which

has strived towards this goal9–19. Many of the models in the

literature adopt a scalar structure parameter (frequently, but

not always, denoted as λ ) to describe some appropriate mea-

sure of the internal material structure. This material structure
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can build up or break down over time due to the application

of shear, and the evolution equation for the structure param-

eter therefore typically contains an aging term, and a shear

rejuvenation term. The structure parameter is then related to

macroscopic rheological parameters in the fluid, such as the

yield stress, shear viscosity, or elastic modulus.

Other models in the literature take a different approach by

modeling the underlying microstructural physics in these ma-

terials. Rather than prescribing a constitutive behavior based

on rheological measurements of the material, the constitutive

relations are formally derived by considering interactions be-

tween the material’s microstructural elements. Some of the

more prominent examples of such models include the Soft

Glassy Rheology (SGR) model13,20, the Shear Transformation

Zone (STZ) model14,21 and the Kinetic Elastoplastic (KEP)

model18,22. As a testament to the capability of these models,

several important experimental observations are predicted in-

cluding shear banding/nonlocal effects23,24, power law depen-

dency of LVE moduli on frequency and stress overshoots13.

Together with their generality and the added intuition devel-

oped from the microstructural approach, these models are

quite appealing. However considerable mathematical manip-

ulation is often required in order to express them in terms of

macroscopic variables such as stress or strain, and they have

not been as extensively fit to experimental data. On the other

hand, models such as those of Quemada15, Mujumdar et al.17

as well as many others, are explicitly written in terms of stress

and strain. This form facilitates the fitting and use of such

models in engineering applications.

The particular subclass of thixotropic yield stress fluids

studied here are model waxy crude oils. Wax is a commonly

encountered component of crude oils that can be present as

a solid precipitate at low temperatures. These solid precip-

itates have adverse effects on the rheology of the crude oil

during production scenarios25,26, so engineers and scientists

must be aware of the thixotropic nature of waxy crude oils4,27.

Detailed studies of the rheology of these fluids emphasized

the importance of sample preparation protocol (or benefici-

ation28) in order to ensure repeatable rheological data29–31.

However, one of the issues presented when measuring the rhe-

ology on these fluids is the variability in sample composition

across different crudes (asphaltene content, wax content32).

For these reasons, we utilize a model waxy crude oil in the

present study, the composition of which can be tightly con-

trolled by formulating the fluid in the laboratory.

The thixotropic behavior of these fluids also makes repro-

ducible rheological data difficult to obtain. Comprehensive,

quantitative comparisons with model predictions are there-

fore scarce. Many of the models employed in the litera-

ture are simplified inelastic models, e.g. the frequently used

Houska model9,33 does not account for material elasticity,

and the Pedersen model28,34 assumes a generalized Newto-

nian fluid with temperature dependency. A more complete and

experimentally-substantiated constitutive law would be useful

for developing flow assurance strategies35. The goal of flow

assurance is to ensure continuous flow of production fluids

(crude oils) under adverse scenarios, such as the presence of

precipitates or non-Newtonian behavior26. As an illustration,

we note that the pressure drop ∆P required to restart a gelled

pipeline typically scales with the material yield stress σy. In

the simplest case, a force balance on a gelled plug of wax gives

∆PπR2 ∼ σyπDL, where D is the diameter of the pipe and L is

the length. Designing a pipeline network with a fixed pumping

capacity ∆P therefore requires a priori knowledge of how the

yield stress σy varies in the gelled crude oil (especially when

aging processes and shear history cause large variations of σy

with time). This necessitates a constitutive law that can be

both fit to rheological data, and has predictive capabilities.

A more comprehensive approach to the rheology of elasto-

viscoplastic materials, both in terms of experiments and mod-

eling, is therefore required. Coussot et al.10 and Mujum-

dar et al.17 propose several different rheological experiments,

among them startup of steady shear and large amplitude os-

cillatory shear (LAOS) as methods to validate and discrimi-

nate between constitutive models. There have also been many

recent experimental studies which have combined bulk rheo-

logical measurements with velocimetry. These are important

experimental efforts, because thixotropic yield stress fluids of-

ten exhibit shear banding and other types of heterogeneities in

simple viscometric flows. This behavior is commonplace and

is observed in a number of specific materials, including sus-

pensions of star polymers36, Laponite gels37,38, emulsions24,

Carbopol micro gels7 and other colloidal gels39. Shear band-

ing or inhomogenous flow can significantly affect interpre-

tation of experimental data, so the use of velocimetric tech-

niques has become an important part of the experimentalist’s

toolbox.

Hence, combined with a detailed preparation protocol for

our model fluid (which is validated using direct measurements

of flow kinematics), we will use a suite of well-defined vis-

cometric flows to evaluate a constitutive model. The model

we develop will be verified across a wide range of data. Once

the model parameters are fixed, the constitutive equations are

solved for an additional independent test protocol in order to

explore the predictive capabilities of the model. This gives fur-

ther experimental validation to future numerical studies which

would utilize the model to predict pipeline restart.40,41

We endeavor to expand the approaches for describing

thixotropic materials by introducing ideas from plasticity that

have not been widely used in prior studies of such phenom-

ena. The term “yield stress fluid” generally describes a yield-

ing material with rate-dependent plastic flow above a critical

stress. This behavior is generic, and is even exhibited by met-

als at elevated temperatures42,43. The strengthening/softening
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processes that characterize thixotropy are similar to hardening

mechanisms that are used in plasticity, which also utilize an

internal microstructural variable of the form of the scalar pa-

rameter λ 42. These similarities suggest that there are underly-

ing links between the models employed to describe thixotropic

yield stress fluids, and the models used in plasticity44. Early

work hinted at the utility of employing concepts from plastic-

ity to model yield stress fluids45, but only recently have these

mechanisms been used to successfully predict the behavior of

a (non-thixotropic) yield stress fluid46. In the present contri-

bution, we show for the first time how a constitutive model

can quantitatively predict the rheology of waxy crude oil (a

specific thixotropic yield stress fluid) across a comprehensive

set of experimental data. The set of experimental data includes

steady and transient tests, as well as linear and nonlinear rhe-

ological measurements.

This is accomplished by utilizing detailed experiments on a

model crude oil to motivate the development of the model. In

the development of this model, we take an approach which

allows us to rapidly express our model in terms of macro-

scopic variables (stress and strain), which are the variables

that are of interest to the practicing engineer or scientist who

deals with flow of a real crude oil. While this approach will

not give as detailed an account of the microstructural yield-

ing and thixotropic mechanisms as other approaches13,14,18,

we will still take care to provide a general discussion of the

microstructural interpretation of these plasticity mechanisms.

We will also illustrate the links between this model, and other

models that have been employed to predict thixotropic behav-

ior. The constitutive framework can describe the material re-

sponse to a number of different rheometric test protocols, and

also has a general 3D continuum mechanics formulation. It

will therefore ultimately be useful for numerical simulations

of complex flows of waxy crude oils that can then be used to

guide flow assurance strategies.

2 Experimental

2.1 Model Fluids & Rheometry

The class of thixotropic yield stress fluids used here has been

characterized in detail in a previous study47. They are created

by combining a heavy mineral oil (Sigma Aldrich 330760)

with a paraffin wax (Sigma Aldrich 327212). The compo-

nents are combined together at a high temperature (≥ 60◦C)

and stirred continuously to fully dissolve the wax in the oil.

The model fluid behaves as a Newtonian liquid in this state,

and can be loaded into the rheometer and cooled in-situ.

Two different rheometers are used to probe the response

of this fluid to imposed deformations. A controlled strain

rheometer (ARES LS, TA Inst.) is used for large ampli-

tude oscillatory shear (LAOStrain) measurements. The ARES

rheometer is equipped with a lower Peltier plate for tempera-

ture control of the sample. The upper fixture is a cone with

a diameter of 50 mm and an angle of 2◦. The upper and

lower surfaces are also roughened (root mean squared rough-

ness Rq ≃ 30 µm) in order to suppress wall slip.

A stress controlled rheometer (AR-G2, TA Inst.) is also

used. This rheometer is utilized in two different configura-

tions. The first of these is the standard configuration, which

incorporates a lower Peltier plate for temperature control, and

an upper cone (diameter 60 mm and angle of 2◦). This config-

uration also utilizes roughened upper and lower surfaces, with

Rq ≃ 30 µm. The second configuration is a custom-designed

Rheo-PIV configuration, which allows in-situ measurements

of the flow field within the fluid to be extracted. This appara-

tus is described in detail in Sec. 2.2.

In Fig. 1, we illustrate one of the characteristic thermorhe-

ological features of these model waxy crude oils - the wax

appearance temperature, Twa. Fig. 1 presents measurements

of the viscosity of the heavy oil, and a 5% and 10% wax in oil

mixture over a range of temperatures (obtained using the stan-

dard AR-G2 configuration). In Fig. 1, a shear rate of γ̇ = 50

s−1 is imposed on the fluid, while lowering the temperature

at a rate of 1◦C/min from 55◦C to 25◦C. As seen in Fig. 1,

the mineral oil exhibits an Arrhenius-like exponential depen-

dence of viscosity on temperature. Both the 10% and 5% wax

in oil systems exhibit a similar Arrhenius-like variation of vis-

cosity on temperature for large values of T . However, they

rapidly diverge from this dependency at a temperature known

as the wax appearance temperature, Twa. This temperature

corresponds to the point at which wax crystals first begin to

precipitate in a sufficient amount to affect the viscosity of the

fluid. The morphology of these crystals is typically sheet-like

or needle like30,48, and the high aspect ratio of the crystallites

results in mechanical percolation and formation of a gel at low

concentrations of precipitated wax.49

2.2 Rheo-PIV configuration

A Rheo-PIV apparatus was used to obtain in-situ measure-

ments of the velocity/displacement field within the model flu-

ids as they are sheared in the rheometer. This Rheo-PIV ap-

paratus is based on a previous design47,50, and a schematic

diagram is shown in Fig. 2 (a). A laser light sheet (10mW,

635nm wavelength), created by a plano-concave lens, is di-

rected vertically downward into the sample at a location rl .

Displacements of illuminated tracer particles are then tracked

to extract the deformation field of suspended particles across

the gap between the upper plate and lower cone (with angle

φ ). The fluid is seeded with reflective TiO2 particles of av-

erage size 3 µm, at a volume fraction of 2×10−5 (this vol-

ume fraction is low enough not to affect the rheology of the

fluid being studied). Cross correlation PIV software (Digi-
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Fig. 1 Temperature sweep of viscosity for 3 different model fluids,

at an imposed shear rate of γ̇ = 50 s−1. Temperature is ramped at a

rate of 1◦C/min.

flow, Dalziel Research Partners, Cambridge UK) was used to

process sequences of images and obtain the 2-dimensional ve-

locity field within the fluid from a sequence of particle dis-

placements. The 2-dimensional field is averaged along the di-

rection of flow, providing a velocity profile of the form v(y).
In this case, y is the position between the lower cone and up-

per plate, with y = 0 at the lower cone, and y = H ≡ rl tanφ
at the upper plate. This configuration differs from the stan-

dard configuration of the AR-G2 by using a lower cone and

an upper plate. A stepped lower Peltier plate (TA Instruments

part #531052.901) is utilized that allows for interchangeable

lower geometries to be used. All measurements made using

the Rheo-PIV configuration use either a 4◦ or 2◦ lower ma-

chined aluminum cone. The cone is black anodized in order

to suppress reflection of the laser sheet from this surface. The

upper and lower geometries are smoother than the geometries

used in the standard configuration (Rq ∼ 0.1 µm) - a polished

upper geometry is necessary to provide a clear optical path for

the reflected light from the tracer particles.

The RheoPIV fixture shown in Fig. 2 has one important

alteration from previous versions - the upper rotating plate,

which is made from a transparent acrylic disc of diameter 50

mm, has a polished 45◦ bevel machined into the upper cor-

ner. This allows the laser-illuminated plane in the sample to

be imaged through the flat beveled surface, rather than through

the curved fluid meniscus at the edge of the geometry. The

fluid meniscus may change in shape over the course of an ex-

periment due to sample shrinkage (which waxy crude oils are

known to exhibit51), or edge instabilities52. The flat beveled

edge avoids local image distortion which arises from refrac-

tion of light across the irregularly shaped air-fluid meniscus.

The index of refraction of the acrylic and model oils (n = 1.49

and n = 1.47 respectively) is very close. This refractive index

matching, combined with the bevel, avoids optical aberrations

and systematic errors that could arise from the lens/camera
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Fig. 2 (a) Schematic diagram of the RheoPIV configuration

mounted on the AR-G2. (b) Calibration velocity profile for a

Newtonian mineral oil under an applied shear rate of γ̇ = 0.5 s−1.

axis not being positioned orthogonally to an interface between

two media with different values of refractive index n1 6= n2.

The apparatus shown in Fig. 2 (a) allows for the location of

the laser light sheet rl and the angle of the reflective mirror θm

to be adjusted and optimized. For the experiments presented in

this work, the value of rl was kept constant at 20 mm, while θm

was held constant at 45◦ (creating a vertical laser light sheet).

It is possible to decrease θm so that the plane of illuminated

particles is orthogonal to the camera’s imaging axis. However,

this was not necessary because the camera/lens assembly had

a high enough focal depth (> 2 mm), and all of the illuminated

particles across the gap were sufficiently in focus. The laser

light sheet is also very thin (approximately 50 µm), resulting

in radial variations in particle location having a negligible ef-

fect on the velocity profile. A velocity calibration profile of a

heavy mineral oil undergoing steady shear of γ̇ = 0.5 s−1 in

a 50 mm diameter, φ = 4◦ cone-plate geometry is shown in

Fig. 2 (b). The profile is averaged from 100 frames of video

taken over a course of 3 seconds. It shows excellent agreement

with the linear, theoretical profile predicted for a Newtonian

fluid with no wall slip at either fixture surface.

2.2.1 Spatially averaged vs. local stresses and shear

rates
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Throughout this work, we carefully distinguish between

spatially averaged measurements of stress and shear rate, and

the local values of the stress and shear rate within the fluid.

The model waxy crude oils here are known to exhibit wall slip

and other shear localization phenomena47. When these phe-

nomena are present in cone-plate geometries, the stress and

shear rate may no longer be uniform across the radial extent

of the geometry53,54. We will therefore define a spatially av-

eraged stress σ̂ and shear rate ˆ̇γ as follows:

σ̂ ≡
3T

2πR3
, (1)

ˆ̇γ ≡
Ω

φ
, (2)

where T is the torque that the rheometer imposes on the sam-

ple, Ω is the angular rotation rate of the geometry, R is the

radial size of the geometry, and φ is the cone angle. We also

define an average strain accumulated as γ̂ ≡
∫ t2

t1

Ω(t)
φ dt. Under

homogenous shearing with no wall slip, these average quanti-

ties reduce to the local true stress σ , the local true shear rate γ̇
and the local true strain γ . Due to the presence of wall slip and

other shear localization events in the fluids, we will reserve

the symbols σ and γ̇ to refer to the stress and shear rate under

homogenous deformations only.

2.3 Preparation methods of the model fluid - Slurry vs.

Strong Gel

In order to carry out reproducible bulk rheological measure-

ments on waxy crude oil, an appropriate sample preparation

protocol must be selected. Waxy crude oils are extremely sen-

sitive to variations in their thermal and shear history as they

are cooled to below their wax appearance temperature55. Here

we justify the selection of one particular preparation protocol

which minimizes the impacts of wall slip and material insta-

bilities. This provides reproducible rheometric data, which

can subsequently be used for the development of a constitu-

tive model.

We envision two distinct flow assurance scenarios under

which waxy crude oils are transported through pipelines. For

the first scenario, consider a length of pipeline containing

waxy crude at a temperature T > Twa, under quiescent (zero

flow-rate) conditions. If the temperature of this fluid slowly

and uniformly drops to below Twa, then a gel network forms

in the material due to the presence of solid wax precipitates.

The cooling of this fluid occurs under no flow conditions with

zero shear rate. The crystallite aggregates therefore grow to

large sizes and the percolated gel structure formed in the crude

oil will be stiff (high viscosity and modulus). Restarting the

flow in the pipeline after cooling will therefore require large

applied pressure drops, with the possibility that the fluid un-

dergoes an adhesive failure (or wall slip) at the pipe wall51.
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Fig. 3 Protocol used to prepare the model waxy crude oil to its

“slurry” state (black curve) and the “strong gel” state (blue curve).

The rate of cooling is the same in both cases, however the slurry is

formed under the application of a high shear rate (50 s−1).

The second scenario involves cooling the waxy crude oil

under non-quiescent (flowing) conditions. For these condi-

tions, the gel structure formed in the oil will be softer (lower

modulus and viscosity), due to the disruptive effect of shearing

the aggregates of wax crystals as they form. Smaller pressure

drops will be required in order to maintain the flow of the fluid

through the pipeline, and wall slip will be less likely.

We refer to the state of the crude oil in the first scenario

as a “strong gel” and the state of the material in the second

scenario as a “slurry”. The strong gel and slurry states of the

oil are reproduced in a laboratory scale setup by cooling the

model wax-oil mixture from a single phase mixture at T >
Twa in the rheometer either quiescently (under zero imposed

shear rate) or under a high shear rate ( ˆ̇γ = 50 s−1). In previous

work47 we focused on the behavior of the wax-oil system in

its strong gel state, which is dominated by wall slip and other

interfacial failure processes. Here, we restrict our focus to

the rheology of the material in its slurry state. In the slurry

state bulk rheological behavior is easier to interpret, due to the

absence of these failure processes.

Fig. 4 illustrates the critical differences between the re-

sponse of a 5% wax-oil mixture in the two different states to a

step in the shear rate to ˆ̇γ = 1.2 s−1. The response of the model

fluid in the slurry state is shown in Fig. 4 (a). The model fluid

is brought to this state by cooling the sample from 55◦C to

27◦C at a cooling rate of 1◦C/min, under an applied shear rate

of ˆ̇γ = 50 s−1. Once the fluid reaches the final temperature of

27◦C, the shear rate of ˆ̇γ = 50 s−1 is held for an additional 3

minutes, so that any thermal transients in the system die out.

After these 3 minutes, the shear rate is immediately reduced

to ˆ̇γ = 1.2 s−1. This sequence of steps is administered using

the AR-G2 in its RheoPIV configuration with a 2◦ lower cone

(discussed in Sec. 2.2). Both the spatially averaged values of
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Fig. 4 Illustrating the difference between the wax-oil system in its “slurry state” (a) and in its “strong gel” state (b). For each of the states, a

step in (spatially averaged) shear rate to ˆ̇γ = 1.2 s−1 is imposed at t = 0, and σ̂ is measured over the course of 300 seconds (iv). In (i), we

show spatiotemporal diagrams of the velocity field within the fluid for the first 10 seconds. Plots of the parameter Φ for the entire 5 minutes

are given in (iii), while in (ii) we give the average velocity field within the fluid over the 300 seconds. Error bars are equivalent to 2 standard

deviations of the velocity measurement at each height.
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σ̂ and ˆ̇γ , and the local flow field within the sample are mea-

sured.

The response of the model fluid in its strong gel state is

shown in part (b) of Fig. 4. The fluid reaches this state by

undergoing the same protocol for the slurry state, however for

the cooling step and the subsequent 3 minute holding time, the

shear rate is held at ˆ̇γ = 0 s−1. This results in an essentially

unperturbed gel network before the startup of steady shear of
ˆ̇γ = 1.2 s−1 is imposed.

The RheoPIV configuration enables measurements of the

average stress σ̂ in the fluid, as well as measurements of the

local velocity field during the 300 second application of the

shear rate ˆ̇γ = 1.2 s−1. In the slurry state, the spatially aver-

age stress σ̂ shows a constant measured value of 0.4 Pa. The

strong gel state shows an initial peak in the stress, followed by

a slow decay in the measured value of σ̂ , occurring over the

course of several minutes. The velocity field within the fluid

in the two states (illustrated through the use of spatiotemporal

diagrams for the first 10 seconds, as well as the average ve-

locity profiles shown in (ii)) is markedly different for the two

cases. For the strong gel state, larger stresses are needed to

break the gel structure in the bulk of the fluid. The stiff mate-

rial therefore flows through the mechanism of wall slip at the

lower surface, and remains adhered to the upper surface. The

velocity profile in this state is plug-like, in contrast to what is

seen for the material in the slurry state. In the slurry state, a

velocity profile closer to linear is observed, with a non-zero

shear rate in the bulk

We quantify the long term evolution of the velocity pro-

files in these two states by utilizing a non-dimensional metric

Φ, defined in a previous study47. This dimensionless scalar

measures deviations from homogenous linear shear and varies

from 0, for a perfectly linear velocity profile with v(y) = ˆ̇γy,

to 1, for a plug-like profile with velocity v(y) =Vp. Φ is eval-

uated using the following equation:

Φ =
1

ˆ̇γH2/4

∫ H

0

∣
∣
∣
∣
[v(y)− ˆ̇γy]−

[∫ H

0
v(y)dy− ˆ̇γH/2

]∣
∣
∣
∣
dy .

(3)

A single value of Φ can be determined for each frame of

video, so measured values of Φ corresponding to each frame

of video are plotted for the first 10 seconds of the experiment.

Subsequently, values of Φ which have been averaged over 10

seconds of video are plotted at 30 second intervals (and the

time axis on the figure is expanded in this region). The mate-

rial in the slurry state shows constant values of Φ ≤ 0.25 over

the entire 300 second duration of the test. Measurements of

Φ = 0 are difficult to obtain for wax-oil fluids below Twa, due

to some residual wall slip, and due to the turbidity of the fluid.

This turbidity introduces errors in the velocity measurements

that always positively contribute towards Φ. However this be-

havior can still be compared to the behavior of the material in

the strong gel state. In the strong gel state, Φ ≃ 0.7 initially,

then subsequently decreases. This process has been observed

and documented previously in these fluids47 and is the result

of erosion37 whereby the wax crystal structure breaks down

into smaller aggregates and the gel weakens.

The measurements of σ̂ and Φ in Fig. 4 show that the strong

gel response to an imposed shear rate is dominated by lo-

calized failure events at the wall. This is followed by long

transients in the evolution of the heterogenous microstructure.

These circumstances are different from the uniform distribu-

tion of stress and shear rate typically assumed for a fluid being

deformed in a cone and plate rheometer. In order to avoid the

impact that these complicated yielding scenarios have on in-

terpreting bulk rheological data, we choose to utilize the slurry

preparation protocol for all experiments that follow. As is seen

in Fig. 4 (a), the 5% wax-oil system in its slurry state exhibits

significantly less wall slip. It also does not exhibit a prolonged

decay in the stress signal due to fluctuating stick-slip events

and erosion of the microstructure. Some deviations of the ve-

locity profile from the linear form for values of y/H < 0.4
are observed - these are due to the turbidity of the material

decreasing the precision of the velocity measurements deeper

into the fluid (and consequently the error bars are much larger

for these values of y/H < 0.4). Bulk rheological data for ma-

terial prepared in this slurry state is more congruent with a

continuum mechanics constitutive modeling framework (espe-

cially when roughened surfaces are used to eliminate residual

wall slip).

Fig. 5 Bright field microscopy images of the 5% wax-oil system in

(a) the slurry state and (b) the strong gel state. The white scale bar is

200 µm, both images are taken at 25◦C under quiescent conditions

(and at the same magnification).

Fig. 5 graphically illustrates the difference between the

“strong gel” and “slurry” states. The figure contains two

bright-field microscopy images of the wax crystal microstruc-

ture for a 5% wax-oil mixture at 25◦C in its slurry state (a),

and in the strong gel state (b). The wax crystals appear as

dark particles in a light background. These crystals are dis-

cotic, but appear needle-like when viewed edge-on in the two-

dimensional plane. The wax network formed in the slurry state

is looser with more vacant (light gray) regions where no pre-

cipitates are present. The strong gel state consists of fewer va-

1–29 | 7



cant regions with a more closely packed network of wax pre-

cipitates. The wax crystals in the strong gel are non-Brownian

in character, and form a sample-spanning jammed structure.

However in the slurry the discrete crystals (with typical sizes

10-50 µm) can be aligned by the shearing flow. This results in

strong shear thinning in the apparent viscosity observed in the

steady-state flow curve (see Fig. 6 below).

3 Experimental Results and Discussion

3.1 Rheology of Wax-Oil system in slurry state

We propose three different rheometric tests as canonical flows

to probe the material response of the wax-oil mixture, and pro-

vide a set of data for fitting to a constitutive model. In what

follows, we describe these three different test protocols, and

discuss implications of the experimental results for constitu-

tive modeling.

3.2 Steady state flowcurve.

For thixotropic systems, steady state flow curves (that is, plots

of viscosity vs. shear rate, or shear stress vs. shear rate) are

difficult to obtain5. The measured viscosity will depend on

the duration of the experiment, due to the thixotropic tran-

sients exhibited by the material. However, flowcurves are

commonly used in fitting of constitutive models to thixotropic

yielding materials.31,56 Souza Mendes and Thompson57 argue

that the steady state flowcurve describes the equilibrium locus

of the dynamic thixotropic system. For constitutive models

which incorporate an evolving internal structural parameter

(commonly denoted generically as λ (t)5), this implies that the

steady state flowcurve can be fit to the constitutive model pre-

dictions for the special case when λ̇ = 0. This significantly

simplifies the fitting procedure.

In Fig. 6 we plot the measured flowcurves for the heavy

mineral oil, and the 5% and 10% wax-oil systems in their

slurry state (T = 27◦C). These measured flowcurves are ob-

tained by using the AR-G2 in its standard configuration. The

measurements are carried out by shearing at a given globally

averaged rate ˆ̇γ , and are determined to have reached a steady

state by using a “steady state sensing” option on the rheome-

ter. Using this option we measure the temporally averaged

torque T over successive 30 second periods, and determine

that the measurement has reached a steady state when three

successive sampling periods are within 5% of the same value.

Each measurement point usually requires 5 minutes to reach

a steady state, and the measurement of the entire flow curve

requires 2-3 hours.

Several key features can be identified from the flowcurves

shown in Fig. 6. First, both the 5% and 10% model fluids

exhibit Newtonian-like behavior at high shear rates, with the

0.01

0.1

1

10

100

 A
v
e
ra

g
e
 S

tr
e
ss

, 
σ
 [

P
a
]

0.01 0.1 1 10 100

 Average shear rate, γ  [s
-1

]
^

^

A B

Fig. 6 Measured flow-curves of the various systems used in this

study using the standard configuration of the AR-G2 rheometer. (△)

Heavy mineral oil, (#) 10% wax in oil, and (2) 5% wax in oil.

Points A and B correspond to the shear rates imposed in Fig. 7.

average stress σ̂ being linearly proportional to average shear

rate ˆ̇γ . Second, the 10% system has a larger steady state vis-

cosity than the 5% system, due to the higher volume fraction

of solid precipitates. Third, the flowcurves of the model crude

oils exhibit a non-monotonicity, i.e. there is a region at lower

applied shear rates ( ˆ̇γ ≤ 0.1 s−1) where the average stress de-

creases as the shear rate is increased.

Non-monotonic flowcurves (NMFC’s) point towards the

presence of a material instability.58–61 Some shear banding

fluids, for example wormlike micellar solutions, exhibit an

underlying non-monotonic flowcurve.62 This non-monotonic

flowcurve cannot be measured, because at imposed shear rates

in the decreasing region of the flowcurve, the material bifur-

cates into two63 or more64 coexisting regions with different

local shear rates. We refer to this as a “standard shear banding

scenario”61.

There are several examples in the literature of measured

NMFC’s. Dijksman et al.65 measured NMFC’s in granular

media in a number of different geometries, while Michel et

al.66 measured non-monotonic flowcurves in microemulsions

of oil in water which form transient networks. In the latter, the

authors observe “wavy deformations of the sample surface”

and “progressive cavitation-like proliferation of bubbles in the

bulk”. These manifestations are indicative of an unstable flow

within the material, even though the imposed deformation is

steady. This differs from the standard shear banding scenario

envisioned for wormlike micellar solutions, in which a steady

(banded) velocity field is established in the material. The un-

derlying non-monotonic constitutive curve is then manifested

as a stress plateau with an approximately constant value of the

average stress σ̂ 61.

For our model crude oil, the data shown in Fig. 6 indicates
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that a NMFC of σ̂ vs. ˆ̇γ is measurable. We therefore empha-

size that the results shown in Fig. 6 correspond to temporally

converged values of average stress σ̂ in the material at an im-

posed global shear rate ˆ̇γ . However, as pointed out by Michel

et al.66, substantial temporal and spatial fluctuations in mi-

crostructure and local stress must persist.

3.2.1 Rheo-PIV in the non-monotonic region of the

flowcurve. The AR-G2 in its Rheo-PIV configuration was

used to provide experimental evidence for a material instabil-

ity associated with the NMFC. The 5% wax-oil system in its

slurry state at a temperature of T = 27◦C was utilized for this

(higher wax content systems are too turbid to provide discrim-

inating velocimetric data). The particular protocol that is used

is as follows: first; preshearing the material at ˆ̇γ = 50 s−1 for

5 minutes. Then, a sequence of three steps in shear rate is im-

posed. The first step is to ˆ̇γ = 0.02 s−1 (at a time denoted as

t = 0 s), followed by a step to ˆ̇γ = 1.2 s−1 at t = 1432 s, and

finally a step back to ˆ̇γ = 0.02 s−1 at t = 3232 s. The measured

stress and velocity profiles for this test are shown in Fig. 7.

From Fig. 7 (a) it is apparent that the rheometer imposes an

apparent shear rate in the two cases which differs by a factor

of 60, however the steady state value of the average stress σ̂ is

roughly equal (within ±12%) for both values of ˆ̇γ . This is in-

dicative of the extreme shear thinning exhibited by the model

waxy crude oil, and is consistent with the non-monotonicity in

the measured flowcurve of Fig. 6. Transient responses are also

exhibited in the response of the material to the steps in shear

rate. At t = 1432 s, when the shear rate is stepped to ˆ̇γ = 1.2
s−1, an instantaneous increase in the stress occurs, followed

by a subsequent decrease with the stress reaching a minimum

at approximately t = 1452 s. Then, there is a gradual increase

(from t = 1452− 2800 s) in the stress towards a steady value

of σ̂ = 0.71± 0.01 Pa. At t = 3232 s, when the shear rate

is suddenly dropped back to ˆ̇γ = 0.02 s−1, the stress instan-

taneously decreases, followed by a subsequent increase in the

stress reaching a maximum (and steady value) at t = 3280 s.

These long transient responses are consistent with a

thixotropic material undergoing cycles of structuring and de-

structuring67. In particular, from t = 1432 s to t = 1452 s,

the material evolves from a structured state (due to the low

value of the shear rate imposed for t ≤ 1432 s) to a destruc-

tured state. The high shear rate after the jump results in a sud-

den increase in the stress, which subsequently breaks the wax

structure. The structure breaks down completely and the stress

reaches a minimum at t = 1452 s . From t = 3232 s to t = 3280

s when the shear rate is decreased, the material starts from a

destructured state due to the high value of the shear rate im-

posed previously. A smaller stress is required to drive the flow,

but this stress progressively increases due to a build up in the

structure at the lower imposed shear rates. From t = 1452 s to

t = 2800 s we also observe the additional effect of a long-time

structuring which results in an increase in the measured or ap-

parent viscosity within the fluid η̂(t)≡ σ̂(t)/ ˆ̇γ . This presence

of multiple timescales for restructuring of the fluid is to be ex-

pected. Fig. 5 (a) indicates that for the material in the slurry

state, there is a distribution of characteristic sizes of the wax

precipitates and aggregates. The characteristic rotary diffu-

sion time for rearrangement of the discotic microstructure is a

strong function of the size of these crystals and aggregates5.

The evolution of the bulk fluid rheology should therefore re-

flect this distribution of timescales.

The measurements of σ̂ in Fig. 7 (a) provide clear evidence

that the model waxy crude oil is highly thixotropic. The larger

temporal fluctuations in the average stress σ̂(t) at lower shear

rates is also notable. However, Fig. 7 (a) provides no indica-

tion whether the flow field within the material is heterogenous

or shear-banded. Rheo-PIV evidence supporting a material in-

stability is given in Figs. 7 (b) and (c). In these two sub-figures

we contrast the measured velocity field within the fluid as two

different values of ˆ̇γ are imposed. At the lower imposed shear

rate of ˆ̇γ = 0.02 s−1, we observe stochastic fluctuations in the

average shear rate across the gap, in the slip velocity at the

upper plate, and in the general form of the velocity profile.

From t = 0− 100 s, the velocity profile indicates a region of

higher shear rate near the center of the gap. This is reminis-

cent of the 3-banded velocity profiles which have been ob-

served in wormlike micellar solutions under imposed steady

shear in cone-plate geometries.50,64,68 However, this structure

in the velocity profile is ephemeral. The velocity profiles at

later times (e.g. t = 1150 s and t = 1300 s plotted in Fig. 7

(b) (ii)) show a more uniform shear rate across the gap with

larger slip velocities at the upper and lower plates. The veloc-

ity profile plotted for t = 1300 s is nearly plug-like (Φ = 0.73)

with scaled slip velocities of (1−v(y)/Vw) = 0.48 at the upper

surface and (v(y)/Vw) = 0.28 at the lower surface.

We quantify these fluctuations by considering a Reynolds

decomposition of the velocity field v(y, t) such that:

v(y, t) = v̄(y)+ v′(y, t) , (4)

where v̄(y) is the average part of the velocity defined as fol-

lows:

v̄(y)≡
1

t2 − t1

∫ t2

t1

v(y, t)dt (5)

and v′(y, t) is the fluctuating part of the velocity. We define

a temporally and spatially averaged dimensionless shear rate

measured across the gap as follows:

〈γ̇〉 ≡
1

ˆ̇γH(t2 − t1)

∫ t2

t1

∫ H

0

dv(y, t)

dy
dy dt =

v̄(H)− v̄(0)

Vw

, (6)

where v̄(H) and v̄(0) are the temporally-averaged velocities

of the upper and lower walls. To quantify the effect that the
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fluctuating part of the velocity v′(y) has on the shear rate, we

define a standard deviation of the shear rate as follows:

Σγ̇ ≡

√

1

t2 − t1

∫ t2

t1

(

〈γ̇〉−
v(H)− v(0)

Vw

)2

dt (7)

=

√

1

t2 − t1

∫ t2

t1

(
v′(H)− v′(0)

Vw

)2

dt. (8)

For the velocity data in Fig. 7 (b), the average shear rate mea-

sured across the gap is 〈γ̇〉± 2Σγ̇ , where the ± represents the

95% confidence bound in this average over time, and is in-

dicative of the extent of the fluctuations in the local shear

rate γ̇ over time. For Fig. 7 (b), we compute 〈γ̇〉 = 0.59 and

Σγ̇ = 0.13.

In Fig. 7 (c), we show measured profiles for the case when
ˆ̇γ = 1.2 s−1. At this higher shear rate, images are acquired at

a higher frame rate due to the increased velocity of the tracer

particles. Due to limited digital storage space, sampling of

the velocity field is limited to several smaller intervals in time.

The velocity field is therefore sampled for 5 different 10 sec-

ond intervals from t = 1670 s to t = 2040 s, which coincides

with the region of increasing measured stress. The velocity is

also sampled for 30 seconds at t = 3030 s, where the spatially

averaged stress σ̂ has approached and remains at a constant

value. In these regions, the average shear rate across the gap

fluctuates considerably less, with 〈γ̇〉 = 0.66 and Σγ̇ = 0.068.

The 95% confidence bounds for the velocity profiles have been

reduced by a factor of 2 compared to the lower shear rate. The

velocity field also appears linear for all times, with some wall

slip still occurring at both the upper ((1− v̄(H)/Vw) = 0.14)

and lower ((v̄(0)/Vw) = 0.21) surfaces. The fluctuations in

shear rate and slip velocity that are observed in Fig. 7 (b) are

therefore markedly reduced when compared to Fig. 7 (b).

Fig. 7 (b) (ii) and (c) (ii) also include envelopes which rep-

resent the magnitude of the fluctuations in the velocity v′(y).
These envelopes are defined as v̄(y)± 2Σv(y), where Σv(y) is

the standard deviation of the velocity as a function of position

across the gap, and is defined as follows:

Σv(y)≡

√

1

t2 − t1

∫ t2

t1

(v′(y))2
dt . (9)

We find that Σv(y)| ˆ̇γ=1.2 < Σv(y)| ˆ̇γ=0.02 for all values of y,

indicating that there are more fluctuations in the velocity when

the applied shear rate is ˆ̇γ = 0.02 s−1. The difference in the

magnitude of these fluctuations is highest near the upper sur-

face (y = H), where fluctuations are 4.8 times larger for the

case when ˆ̇γ = 0.02 s−1. Incidentally, at y = H the velocity

measurements are most accurate due to diminished effects of

sample turbidity. The RheoPIV data and associated statistical

analysis presented in Fig 7 provides strong evidence of spa-

tiotemporal fluctuations in the velocity field associated with

a material instability in the wax-oil mixture. This unstable

flow is most pronounced at low shear rates (which lie in the

decreasing region of the NMFC).

3.2.2 Stress overshoots - Startup of steady shear.

The second rheometric test that we utilize to characterize

thixotropy is the measurement of overshoots in the average

stress σ̂ under startup of steady shear. These tests probe the

effect of the “aging time” that elapses between sample prepa-

ration, and imposing the step in shear rate. The initial sample

preparation is typically carried out by shearing (or rejuvenat-

ing) the material at a high and constant deformation rate (well

within the stable region of the flowcurves shown in Fig. 6) for

an extended period of time. Then, during the period of ag-

ing, the sample is left unperturbed in the rheometer so that

the material microstructure starts to build up. When the step

in shear rate is subsequently imposed, the gelled and struc-

tured material will go through a yielding transition which de-

pends on the initial structure, which in turn depends on the

aging time. These tests have been used previously to quan-

tify the effect that internal microstructure has on the rheol-

ogy of a thixotropic system, and to quantify the characteristic

time scales which may be associated with the formation of this

structure69.

The tests presented here are carried out on the 10% model

waxy crude oil prepared to its slurry state at a temperature of

27◦C. The AR-G2 in its standard configuration is used, which

utilizes roughened cone-plate surfaces to eliminate wall slip.

We adopt the nomenclature of Fielding et al.70 and denote the

aging/waiting time as tw. After the sample is prepared, an ini-

tial waiting time of tw = 2 s is applied, and then a step in shear

rate to ˆ̇γ = 2 s−1 is imposed for 10 minutes. Following this

step, the material is left unperturbed for a waiting time tw = 5

s, and an applied steady shear rate of ˆ̇γ = 2 s−1 is imposed for

10 minutes. In total, seven startup tests of steady shear are im-

posed successively, with the waiting time between these steps

being incremented in a logarithmic fashion up to a maximum

value of tw = 200 s. For each value of tw, measurements of

the stress σ̂ are obtained for the 10 minute step in shear rate.

For consistency, the measurements of stress and strain rate in

this section will be indicated as averages (σ̂ and ˆ̇γ). However,

the average strain rate ˆ̇γ here is high enough, and wall slip is

suppressed by the roughened geometry, so deviations of the

average values from the local shear rate γ̇ and local stress σ
will be small.

In Fig. 8 we plot the measured response of the average stress

σ̂ as a function of the imposed strain γ̂ , for seven different

values of tw. An overshoot is seen at applied deformations of

approximately γ̂ = ˆ̇γ∆t ≃ 0.3 dimensionless strain units. The

magnitude of this overshoot increases with tw, however it ap-
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Fig. 8 Stress overshoots for different waiting times tw in the 10%

model waxy crude oil system. Fluid is prepared to its slurry state at

27◦ C. The applied shear rate is ˆ̇γ = 2 s−1.

pears to saturate for tw ≥ 20 s. The overshoot is clearly the re-

sult of structuring within the fluid that occurs over the course

of the aging time tw. There is also a gradual monotonic in-

crease in the long time steady state value of σ̂ which occurs

over much longer time scales, and over multiple steps in the

shear rate. This slower increase in σ̂ is a manifestation of the

same slow aging process that is observed in Fig. 7 (a) - even

at a (stable) applied shear rate of 1.2 s−1 it takes a long time

(on the order of tens of minutes) for the value of σ̂(t) (and

hence η̂(t)) to stabilize. This slow structuring occurs on time

constants that are much larger than the waiting time of tw = 20

s which is approximately required for the peak stress to satu-

rate. This is additional experimental evidence of a distribution

of processes and time scales associated with the internal ma-

terial structuring.

Our constitutive model will primarily focus on predicting

the transient yield peak in the stress σ̂(t) at intermediate

strains γ̂ ≃ 0.3. This is frequently of greater relevance to

flow assurance than the very long time response of the mate-

rial stress. These initial yield peaks observed in Fig. 8 would

be responsible for relatively large additional pressure drops

being required to restart a pipeline where flow has ceased

for a short period of time. Several other constitutive mod-

els have had success in predicting these types of overshoots

(e.g. see the SGR model13, or the thixo-elastic Maxwell

model15, among any others). In the present work, we de-

velop a model capable of predicting these overshoots by in-

corporating mechanisms from plasticity theory. The model

will quantitatively predict these stress overshoots, as well as

several other key experimental observations. Although lack-

ing the more detailed microstructural physics interpretation of

some other models13,14,18, the model introduced here will be
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Fig. 9 Thixotropic evolution in the stress overshoot ∆σ0 as a

function of waiting time tw extracted from the startup experiments

presented in Fig. 8.

written in terms of a set of evolution equations in macroscopic

variables, rather than in integral form. This differential form

is more suitable for implementation in common Eulerian flow

solvers. Furthermore, the mechanisms utilized in this model

are rooted in a robust continuum mechanics framework, so the

model can also be generalized to tensorial form in a straight-

forward manner (see the table in the supplemental informa-

tion).

To quantify the magnitude of the yield peak, which will in

turn assist in the fitting of the constitutive model, we define our

stress overshoot ∆σ0 as the difference between the peak stress

during each test and the measured stress 10 seconds (i.e. 20

strain units) after the step in shear rate is imposed. At this level

of imposed strain it is clear that the initial transients associated

with the thixotropic yield peak have died out. The measured

value of ∆σ0 is plotted as a function of tw in Fig. 9.In this

figure, the magnitude of the yield peak saturates with ∆σ0 ap-

proaching a value close to 1 Pa, or approximately 40 % of the

final flow stress. Some further increases at longer times (be-

tween 100-200 s) are also evident, and these smaller increases

are evidence of the same long time restructuring behavior that

was discussed in Sec. 3.2.1.

3.2.3 Large Amplitude Oscillatory Shear. The third

rheometric test utilized here to probe the time-varying non-

linear constitutive response of the material is large amplitude

oscillatory shear (LAOS). LAOStrain, is generally carried out

by imposing an oscillatory deformation on the material of the

following form:

γ(t) = γ0 sinωt . (10)

For the measurements presented here an oscillatory aver-
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age strain will be imposed on the material, γ̂ = γ0 sinωt. Even

though we suppress wall slip, we will utilize the averaged

quantities σ̂ , γ̂ and ˆ̇γ to represent the measured rheological

data. This is to account for the possibility of small fluctua-

tions in the local variables σ , γ and γ̇ .

Two independent test parameters can be modified in LAOS;

the oscillation frequency ω and the strain amplitude γ0. When

the strain amplitude is small enough, the stress in the material

σ(t) is linear in strain and can be decomposed into in phase

and out of phase components as follows:

σ(t) = γ0

{
G′(ω)sinωt +G′′(ω)cosωt

}
, (11)

where the storage and loss moduli G′ and G′′ are both func-

tions of the frequency ω . When strains are large, most materi-

als exhibit a nonlinear response with a periodic stress that can

be expressed in terms of a Fourier series as follows:

σ(t;γ0,ω) = ∑
n odd

γ0

{
G′

n(ω,γ0)sinnωt +G′′
n(ω,γ0)cosnωt

}
,

(12)

where G′
n(ω,γ0) and G′′

n(ω,γ0) are higher harmonic mod-

uli that now depend on both the frequency of oscillation and

the strain amplitude. This approach, using Fourier transform

rheology,71 is the basis for many techniques which analyze

the response of a material to LAOS deformations72. We do

not analyze our LAOS data using the Fourier transform repre-

sentation, because this decomposition can only be applied to

periodic stress waveforms. Because of the thixotropic nature

of the model crude oil, the material response to a sinusoidal

shearing deformation will contain prolonged stress transients

due to the aging and shear rejuvenation of the fluid that can

occur over multiple periods of oscillation. Our goal is to quan-

tify these transients and then develop a constitutive model that

predicts them. Any measures based on Fourier transform rhe-

ology cannot be applied to these transients. Instead, an instan-

taneous approach such as that introduced by Rogers73 would

be required.

The LAOStrain measurements presented here will be used

primarily as a fitting tool in order to guide the development of

a suitable elasto-viscoplastic model, and then to compare the

model response to the response of the real fluid. One bene-

fit of using LAOS tests to fit constitutive models is that sev-

eral key aspects of the rheological behavior of the fluid are

revealed under LAOS forcing. At low values of γ0, the lin-

ear viscoelastic behavior of the fluid is probed. Larger values

of γ0 can then probe the plastic yielding transition of the test

material. It is also possible to observe transients in the LAOS

response which result from the thixotropic behavior of these

fluids. These transients are represented clearly in the Lissajous

curves as decays towards a periodic attractor. Hence, if a con-

stitutive model can predict the response of a material to LAOS,

then it is likely to predict other time- and strain-varying re-

sponses that occur over a wide range of deformations.

Several researchers have used cyclic stress-strain loading

curves, or Lissajous-Bowditch curves, as signatures that are

used to fit material responses to a constitutive model.17,46,74

We represent the response of our model crude oil to LAOS

through the use of these Lissajous-Bowditch curves (with

strain as the abscissa and stress as the ordinate). A series of

these curves can be plotted for a number of different strain am-

plitudes γ0 and frequencies ω . We carry out a series of LAOS

tests on the 10% model crude oil fluid in its slurry state at

a temperature of 27◦C. These measurements are done on the

ARES rheometer, with a roughened cone-plate geometry con-

figuration. A series of measurements at progressively larger

strain amplitudes γ0 and at a single fixed frequency of ω = 1

rad/s is shown in Fig. 10. Between each measurement, a wait-

ing time of tw = 100 s is applied so that the structure associated

with the transient yield peaks shown in Fig. 8 has enough time

to build up. For each measurement at a given strain amplitude,

four complete oscillation periods are applied.

In Fig. 10 (b) we represent the Lissajous curves as 3D tra-

jectories with the measured stress σ̂ plotted against the sinu-

soidally varying strain γ̂ , and the strain rate ˆ̇γ which varies

in quadrature. We are primarily interested in the stress-strain

projection of these 3D curves, as shown in Fig. 10 (a), because

this reveals the elastoviscoplastic character of the material re-

sponse. The curves in Fig. 10 (a) and (b) are only shown for

their stable limit cycle or “alternance state”75. This alternance

state is reached after multiple cycles of oscillation. In Fig. 10

(c), we illustrate the transients which occur before reaching

the alternance state by plotting these Lissajous curves on in-

dependent (rescaled) axes for each strain amplitude γ0. The

magnitude of the maximum stress σm and strain at each strain

amplitude is shown by each figure. In Fig. 10 (c), overshoots

and prolonged transients are clearly evident in the response of

the material.

From Fig. 10 (c) we can see that at low values of γ0 the

material response is that of a linear viscoelastic solid, with

G′ > G′′. This can be distinguished from the elliptical shape

of the loading curve, which implies a linear response. As γ0

is progressively increased, the maximum stress σm also in-

creases. However σm then saturates at moderate strain am-

plitudes, a behavior typically associated with a yield-like re-

sponse. For moderate strain amplitudes between 5% and 50%

the characteristic shape of the cyclic loading curves changes

and indicates yielding. At these values of γ0 the material un-

dergoes a sequence of processes which involve elastic load-

ing, followed by saturation of the stress and subsequent vis-

coplastic flow, before elastically unloading when the direc-

tion of straining is reversed. This sequence of events occurs

within each cycle (i.e. it occurs on an intra-cycle basis), and

is responsible for the transition from elliptical to rhomboidal
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Fig. 10 Lissajous figures showing LAOS tests on the 10% model crude oil in its slurry state at 27◦C. The tests are carried out at a frequency

of ω = 1 rad/s, with increasing strain amplitude γ0. Waiting time between successive tests is held constant at tw = 100 s. The full 3D

trajectory of the periodic alternance state is shown in (b), with the 2D stress-strain projection in (a). In (c) the evolution in the shape of the

cyclic loading curves and the transients associated with the startup of oscillatory shear flow are shown for a large range of increasing γ0.
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shaped loading curves76,77.

There is additional valuable information contained in the

material’s inter-cycle response, i.e. in the prolonged tran-

sients exhibited, especially for intermediate strain amplitudes

of 20% ≤ γ0 ≤ 100%. These transients are manifested in the

form of an initial stress overshoot which occurs as the mate-

rial is first strained. This stress overshoot is evidence of the

same transient yield peak that was documented in Sec. 3.2.2

for the startup of steady experiments. Several cycles are re-

quired (spanning a time period on the order of 10 seconds) for

the stress to settle into its steady alternance state.

Several key features of Fig. 10 can be used to guide the de-

velopment of our constitutive model (the detailed formulation

of which will be given in Sec. 4). First, there is no observable

inter-cycle change in the linear viscoelastic behavior between

each cycle of loading. This implies that G′ and G′′ remain

constant with time for the material. If both G′ and G′′ are

to be non-constant functions of some microstructure parame-

ter λ , which in turn depends on tw, then deformations in the

linear regime cannot cause a change in the microstructural pa-

rameter λ . This will be accounted for by specifying a plastic

strain as being responsible for changing the structure param-

eter λ , and this plastic strain is only allowed to accumulate

when the material yields at larger stresses and strains. Thus, a

central component of our modeling approach will be to addi-

tively decompose the total strain into plastic and viscoelastic

contributions, with plastic strain only accumulating when the

shear stress in the sample exceeds some critical value. As a

mechanical analog representation, this model can be visual-

ized as a viscoelastic element in series with a nonlinear plastic

yielding element. The yielding element will then utilize two

important concepts from plasticity theory – isotropic harden-

ing and kinematic hardening – in order to capture both the

nonlinear intra-cycle behavior of the material, as well as the

transient inter-cycle behavior (i.e. stress overshoots) which is

exhibited under LAOS.

4 Constitutive Model

4.1 Formulation of the Isotropic-Kinematic Hardening

Model (IKH Model)

In this section we outline the development of a constitutive

model that quantitatively predicts the salient features of the

model crude oil’s rheological response. As noted above, a cen-

tral component of our approach is to additively decompose the

total shear strain in our material into linear viscoelastic (γve)

and plastic (γ p) components, such that

γ = γve + γ p . (13)

Irreversible plastic strain accumulates in the material when

the applied stress is above a certain critical value, so for low

stresses γ = γve and the response of the material is linear and

viscoelastic. This decomposition differs slightly from classi-

cal descriptions of viscosplasticity, where strain is additively

decomposed into plastic and purely elastic components. Here

we rename our elastic strain a viscoelastic strain in order to

account for some linear viscoelastic effects that are present in

our material below the yielding point. This linear viscoelastic

response can specified further by decomposing the viscoelas-

tic strain γve into elastic and viscous components, such that

γve = γv+γe. This would correspond to specifying a Maxwell-

like linear viscoelastic behavior below the yield stress, with

γe = σ/G and γ̇v = σ/η . Alternatively, a Kelvin-Voigt vis-

coelastic behavior can be specified. In fact any LVE-type be-

havior can be specified within this general constitutive frame-

work, depending on the characteristics of the soft gel and the

desired fidelity of the model prediction. We show three canon-

ical forms in Fig. 11 in the form of corresponding mechanical

analog elements. Because the flows of interest are nonlinear,

we will predominantly focus on prescribing the correct behav-

ior of the nonlinear yielding element that is characterized by

the plastic strain γ p. As a result, we will not discuss fitting

of linear viscoelastic behavior in detail. Interested readers can

consult any of the classical textbooks on linear viscoelastic-

ity78–80 and replace the simple linear viscoelastic elements

shown in Fig. 11 with the elements of their choice (and this

will not significantly affect the large strain nonlinear behav-

ior).

For most of the calculations below, the simplest canonical

form of LVE behavior is considered, i.e. a linear Maxwell-

like behavior as shown in Fig. 11 (a) with elastic modulus G

and damping η . Incidentally, this MIKH form of the model is

compatible with the classical description of yielding materials

with γ = γe + γ p, since the plastic strain can be redefined to

include the linear dampling element with viscosity η . In addi-

tion to this, two assumptions are made about the nature of the

linear viscoelastic behavior. First, we observed in Sec. 3.2.3

that under small amplitude oscillatory shear, G′ and G′′ re-

main constant in time - i.e. imposed deformations in the linear

regime do not affect material structure. Therefore, only the

plastic accumulated strain γ p can drive a thixotropic restruc-

turing of the fluid. The second, stronger assumption is based

on measurements of G′ and G′′ as a function of tw. These mea-

surements show that both G′ and G′′ are in fact at most weak

functions of waiting time tw, with G′ only varying by 20% and

G′′ varying by even less as tw is changed (see supplementary

information). For this data, the LVE parameters G and η are

therefore assumed to be constant, and do not vary significantly

with changes in material structure. This assumption has been

discussed by Quemada15, and is utilized here to reduce the

number of constitutive parameters associated with this model.

However, the IKH model will still quantitatively capture the

three nonlinear flows discussed in Sec. 3.
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Fig. 11 Three possible forms of the general IKH model. (a) Maxwell IKH model (MIKH) (b) Kelvin IKH model (KIKH) and (c) Elastic IKH

model (EIKH). Decomposition of individual contributions to the total stress in the nonlinear element is shown on the far right.

4.1.1 Specifying the plastic strain γ p. Having dis-

cussed the linear viscoelastic behavior, the form of the plastic

shear strain γ p must now be specified. A common first order

assumption4,6,81 is to prescribe a Bingham-like behavior, in

which plastic flow only occurs above a critical stress σy:

γ̇ p =







0 if |σ |< σy

np

(
|σ |−σy

µp

)

if |σ | ≥ σy
, (14)

where np = σ/|σ | is the direction of the applied stress - this

is the codirectionality hypothesis42, which ensures that plastic

deformations always occur in the same direction as the applied

stress. The parameter µp is the plastic viscosity.

The simple Bingham equation given in Eq. 14 captures

some of the basic features of the flowcurve in Fig. 6, how-

ever it lacks the ability to predict the transient behavior and

nonlinear stress overshoots that were documented in Sec. 3.

To predict these transients, the flow rule in Eq. 14 must be

modified to account for the constitutive processes of kinematic

hardening and isotropic hardening/softening42. We have used

the concept of kinematic hardening in previous work to model

the response of simple (non-thixotropic) yield stress fluids46,

Kinematic hardening accounts for a movement of the center of

the yield surface in stress space. Isotropic hardening, on the

other hand, accounts for an expansion or contraction of the

yield surface, and is frequently used to model the strengthen-

ing of polycrystalline metals under imposed deformations43.

These hardening mechanisms are abundantly used in the

plasticity literature, and full three-dimensional versions of

models with combined isotropic and kinematic hardening have

been developed82,83 that are both frame invariant and thermo-

dynamically consistent. For simplicity, we only describe here

a one-dimensional version of the model. To capture these two

additional microstructural mechanisms, the Bingham equation

given in Eq. 14 is modified as follows:

γ̇ p =







0 if |σeff|< σy(λ )

np

(
|σeff|−σy(λ )

µp

)

if |σeff| ≥ σy(λ )
, (15)

where the total stress σ has been replaced by the effective

stress, σeff, which is defined as follows:

σeff = σ −σback . (16)

Here σback is the back stress in the material, which effectively

tracks the location of the center of the yield surface. The yield

surface refers to a surface defined in the three-dimensional

“stress space” formed by the principal stress axes. Many

different definitions of yield surfaces exist, e.g. von Mises,

Tresca. However, we deal with a one-dimensional form of the

IKH model, so our stress space consists of a single axis (σ ),

and our yield surface is thus defined by three points. The first

is the back stress, σback, which is the center of the yield sur-

face, and the other two are the yield limits in the positive and

negative directions of stress, σback +σy(λ ) and σback −σy(λ ),
respectively. In this model, plastic flow only occurs when the

applied stress σ lies outside of the yield surface defined by

these three points. The presence of both the back stress and

yield stress in the material can be more thoroughly illustrated

in Fig. 11 by decomposing the stress σ acting on the nonlinear

yielding element into individual stress branches.

In addition to the presence of the back stress in Eqn. 15, the

yield stress σy is now a function of a single internal structure

parameter λ . Furthermore, the direction of plastic strain np is

now codirectional with the effective stress, so that:

np =
σeff

|σeff|
. (17)

With the formulation in Eqn. 15-17, the center of the yield sur-

face can change through the variation of the back stress σback
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with the imposed plastic strain (kinematic hardening) and the

yield surface itself can contract/expand through the variation

of σy with microstructure (isotropic hardening). The incorpo-

ration of two yield parameters (center of yield surface σback and

size of yield surface σy) bears some similarity to the Houska

model used by Sestak et al.84 and Cawkwell and Charles9, in

which the yield stress is decomposed into two components (a

constant term and a varying component). This model is com-

monly used to predict the rheology of crude oils, however as

an inelastic model, it cannot capture the full behavior of waxy

crude oils, especially in large amplitude oscillatory flows.

The variation of the back stress σback and the yield stress σy

for a given deformation must be specified. The back stress is

related to an internal structural variable A which was utilized

in previous work to model ideal (non-thixotropic) yield stress

fluids46:

σback =CA . (18)

The linear relationship between σback and A results from tak-

ing the derivative with respect to A of a quadratic form of a

defect energy in the material that accumulates with the plas-

tic strain γ p 46,83,85. This is analogous to an additional elastic

free energy for the defects, so C can be thought of as the back

stress modulus, and has units of stress85. The internal variable

A can be physically interpreted as a dimensionless strain-like

variable, or a back strain. The defect energy accumulates be-

cause of a rearrangement of the material microstructure, which

in our case consists of the interlocking wax crystal network.

For three-dimensional versions of constitutive models that in-

clude kinematic hardening, the variable A necessarily takes on

a tensorial form.83

The back strain A follows an evolution equation that is a

more general form of the Armstrong-Frederick equation86 dis-

cussed by Jiang and Kurath87 that can be used to capture the

Bauschinger effect88,

Ȧ = γ̇ p − f (A)|γ̇ p| . (19)

The Bauschinger effect essentially refers to a decrease in the

yield strength of a material upon reversal of the direction of

stress42. In the above equation, when f (A) = qA (with q

a dimensionless material constant) the classical Armstrong-

Frederick equation is recovered, which is typically used to de-

scribe cyclic loading in metals, but was more recently used to

describe the LAOS behavior of soft Carbopol microgels.46 To

more accurately capture the intra-cycle behavior under LAOS

model waxy crude oil over a wide range of imposed strain am-

plitudes γ0, a power law function of f (A) is specified:

f (A) = (q|A|)m
sign(A) , (20)

where both m and q are material constants. In the fitting which

will follow in Sec. 4.2, Eq. 19 is always evaluated with an ini-

tial condition of A = 0. This is the approach taken in previous

work - it presupposes that the material is initially in a “virgin

state82 with no directional preference for yielding (i.e. a back

stress of zero). It also follows from the assumption that the de-

formation is beginning from a state where the stress and shear

rate in the material is zero. Under such conditions, the back

stress and back strain typically relax back to their zero values.

When the plastic strain rate γ̇ p is zero, the back strain A will

initially increase in the direction of the plastic strain γ p. This

results in an increase in the back stress, or a “hardening” of

the material in the direction of flow. However, the back strain

A eventually saturates due to the second term in Eq. 19. The

saturation value of A is ±1/q, with the back stress therefore

saturating at ±C/q (with the sign depending on the direction

of the plastic straining γ̇ p). The value C/q therefore corre-

sponds to the center of the yield surface under steady flowing

conditions (γ̇ p 6= 0) and for the case of a material with σy = 0,

then C/q would also correspond to the steady state yield stress

of the material as the flow curve is ramped to zero.

Finally, the variation of the additional contribution to the

yield stress σy(λ ) is specified. Here we select the simplest

linear relationship between the yield stress σy and the dimen-

sionless microstructural variable λ

σy = k3λ , (21)

where the parameter k3 is a material constant with units of

stress, and λ is an additional evolving internal variable that

characterizes the material microstructure.

A differential equation which determines how λ evolves

over time is then specified. The following canonical form,

which is frequently encountered in thixotropic material mod-

els, will be used here5,17,89

dλ

dt
= k1 (1−λ )− k2λ |γ̇ p| . (22)

The change in λ is therefore determined by the competition

between a mictrostructural build up term (first term in Eq. 22)

and a breakdown term (second term of Eq. 22). The buildup

term is assumed to be the result of Brownian motion or other

internal aging processes causing a rearrangement in the local

wax microstructure which increases the stiffness of the gel.

The breakdown term results from the irreversible plastic shear-

ing of this microstructure. The two new material constants in

Eq. 22 are the rate constant k1 (with units s−1) and the co-

efficient k2 which is dimensionless. The constant k1 sets the

scale for the waiting time tw ∼ 1/k1 required for a build up of

the wax microstructure, while the constant k2 determines the

rate at which the wax microstructure breaks down for a given

shear rate. An important distinction of the evolution equation

proposed in Eq. 22 compared to other proposed models is that

only the plastic strain rate, and not the total strain rate, is re-

sponsible for destroying the material structure. This reflects
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the fact that only large and irreversible strains should cause

a significant change in the material microstructure. Further-

more, small strains which result in primarily elastic behavior

should not perturb the material microstructure, and should not

have an effect on the microstructural parameter λ or on the

back strain A. This distinction is frequently made in the plas-

ticity literature42, but is less common in thixotropic rheologi-

cal models.

The evolution equation for λ , also requires specifying an

initial condition. The initial value of λ will depend on how

long the material has been aging at rest for (λ can build up

under the absence of any type of deformation). Typically an

initial condition of λ = 0 is used when a deformation begins

immediately after a long history of preshearing at a high shear

rate. If a deformation begins immediately after a long aging

time, then an initial condition of λ = 1 is used.

Eq. 22 allows for both isotropic hardening and softening.

The isotropic hardening only results from a build up in struc-

ture in the material which occurs even when the shear rate is

zero. This contrasts to some of the hardening equations that

are used in the plasticity literature, where shear can cause an

increase in the yield stress of the material82,85. For our model

crude oil, shear only results in a nonzero softening term (i.e.

the second term in Eq. 22) which causes the yield stress σy(λ )
to decrease.

4.1.1.1 Physical interpretation of the internal parameters

In most thixotropic models, a single variable λ is frequently

used to characterize the material structure5. The model intro-

duced here bears more similarities to the approach taken in

plasticity82, due to the introduction of two variables, λ and A.

Here we discuss the significance of these two variables with

respect to the material microstructure.

Mujumdar et al.17 argued that the scalar parameter λ quan-

tifies the ratio of the number of links in a transient network

at a particular level of structure, to the number of links in the

network when it is fully structured. For the wax microstruc-

ture, we envision λ as being representative of the total number

of links per unit volume between the wax particles that form

aggregates. Assuming that the force required to break such

links is always the same, then the yield stress σy can be ap-

proximated as a linear function of λ . Because the variable λ
quantifies the number of links, it will necessarily be a posi-

tive scalar parameter, even in a 3-dimensional version of the

model. Furthermore, this scalar parameter can only be used to

quantify an isotropic resistance to deformations (i.e. a resis-

tance which is the same in all directions of loading).

However, an additional parameter is necessarily required

to characterize anisotropy in the local material microstructure

and the resulting non-isotropic resistance, i.e. a stiffening of

the material along the direction of imposed deformation. Non-

isotropic resistance to deformation is most important when

considering oscillatory loading, where the direction of defor-

mation changes (e.g. LAOS), or more complex 3-dimensional

deformations. Capturing this non-isotropic resistance is the

purpose of the back strain A and the resulting back stress σback,

which are allowed to take on both negative and positive val-

ues for the one-dimensional case of this model (unlike λ and

σy which are always positive scalar quantities). Furthermore,

a fully three-dimensional version of this model would gener-

alize A to a tensor valued quantity (A), and the back stress

σback to a tensor valued quantity (Tback)
46. Thus, in contrast to

the scalar variable λ which only measures the total number of

links between wax particles, this tensor valued internal vari-

able A additionally characterizes the orientation of the wax

microstructure. This aspect of the microstructure will be af-

fected by the orientation of the wax sheets observed in Fig. 5 (a

property which cannot be described by a simple scalar), which

will in turn play a role in determining how these particles resist

deformation along a certain direction. The inclusion of both

of these internal variables therefore provides a more complete

picture of the material microstructure.

4.1.2 Summary of the IKH model equations. Here we

sumarize the constitutive model in a concise form, and provide

a list of the material constants required for fitting. The de-

composition of shear strain into linear viscoelastic strain and

nonlinear plastic strain is as follows:

γ = γve + γ p . (23)

The linear viscoelastic strain is specified through the intro-

duction of an appropriate LVE constitutive element (Maxwell,

Kelvin-Voigt, or simple elastic solid as shown in Fig. 11),

while the rate of change of the plastic strain is given by the

following:

γ̇ p =







0 if |σ −CA|< k3λ
σ −CA

|σ −CA|

(
|σ −CA|− k3λ

µp

)

if |σ −CA| ≥ k3λ
,

(24)

where A and λ are the internal variables that vary through the

following differential equations:

Ȧ = γ̇ p − (q|A|)m
sign(A)|γ̇ p| (25)

λ̇ = k1(1−λ )− k2λ |γ̇ p| . (26)

With the Maxwell model specified as the LVE behavior shown

in Fig. 11 (a), this model has 9 fitting parameters, which are:

G, η , µp, k1, k2, k3, C, q, m. This is one additional parameter

compared to the Houska model, which is commonly used to

describe the rheology of crude oils.27.

For the reader interested in more general tensorial forms of

this model, the additive strain decomposition for the case of

the EIKH model shown in Fig. 11 (c) can be generalized to
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a multiplicative Kroner Decomposition90 of the deformation

gradient F such that

F = FeFp , (27)

where Fe is the elastic part of the deformation gradient, and

Fp is the plastic part of the deformation gradient. Anand et

al.82, Henann and Anand83 and Ames et al.85 all give exam-

ples of frame invariant forms of constitutive models with both

isotropic and kinematic hardening (although their evolution

equations for the internal variables differ).

4.2 Quantitative predictions

The IKH model can be used to predict the model crude oil rhe-

ological response in the three canonical flows given in Sec. 3.

We use data sets for the 10% model waxy crude system in

its slurry state at a temperature of 27◦C. First the steady state

flow curve given in Fig. 6 is considered. Under steady flowing

conditions, the IKH model reduces to the limiting case where

λ̇ = 0 and Ȧ = 0. The relationship between the magnitude of

the plastic flow rate |γ̇ p| and the magnitude of the stress |σ | in

Eq. 15 simplifies to the following:

|σ |= µp|γ̇
p|+

C

q
+

k3k1

k1 + k2|γ̇ p|
︸ ︷︷ ︸

k3λs

. (28)

In the case where the KIKH or EIKH variants of the model

are used, γ̇ p is the only contribution towards the strain rate.

Eqn 28 therefore gives a functional form of the IKH model

which can be fitted to steady state flowcurves such as that in

Fig. 6. In Fig. 12 we show such a fit, and it correctly predicts

the important features of the flowcurve. It predicts a Newto-

nian limit at high shear rates, as well as locally nonmonotonic

decreasing region of the flowcurve at the intermediate shear

rates. As the shear rate approaches zero, the EIKH and KIKH

variants predict a constant stress |σ | = C/q+ k3. The MIKH

variant however will predict a high viscosity Newtonian re-

gion at lower shear rates with σ ≃ ηγ̇ (which our model crude

oil does not appear to exhibit). These types of high viscos-

ity, Newtonian regions at very low imposed shear rates often

appear for thixotropic yield stress fluids1, but are difficult to

measure precisely. Tuning the LVE element in the IKH model

allows for flexibility in the model in capturing this type of be-

havior.

The values of the model parameters used in Fig. 12 are

C/q = 0.85 Pa, µp = 0.42 Pa.s, k3=1.5 Pa, k1/k2 = 0.033 s−1

and η = 500 Pa.s. The fitting to the steady state flowcurve

only depends on the ratios k1/k2 and C/q, and not the specific

values of the individual constants. The fitting also does not

depend on the modulus G or the softening exponent m (or the

viscosity η in the case of the MIKH and KIKH variants). It is
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Fig. 12 Fitting of the IKH model to the flowcurve of Fig. 6. Values

of model constants are C/q = 0.85 Pa, µp = 0.42 Pa.s, k3=1.5 Pa,

k1/k2 = 0.033 s−1 and η = 500 Pa.s

therefore necessary to fit the model to additional deformation

histories in order to determine the values of these parameters.

Although the simple equation given in Eq. 28 predicts a

non-monotonic dependency of stress σ on shear rate γ̇ , it does

so assuming the case of homogenous shear, i.e. a spatially

and temporally uniform shear rate within the material. Such

a nonmonotonic response can also lead to shear banding91.

In Sec. 3.2.1 we indicated experimentally that for shear rates

where we observe a decrease in the average stress σ̂ as the

average shear rate ˆ̇γ is increased, unstable flow occurs within

the material and the local shear rate is not homogenous across

the gap. Therefore, Eqn. 28 should only be viewed as a first

order approximation of what the local stress is within the ma-

terial as a function of the globally applied shear rate. A more

complete prediction for the stress in Fig. 12 would account for

these heterogeneities and material instabilities in the flow. In

Sec. 4.3 we briefly discuss possible avenues for predicting this

complex flow behavior using the IKH model.

The stress overshoots that were measured in Sec. 3.2.2 can

also be quantitatively predicted by the IKH model using the

same values of the model parameters used in Fig. 12. Values

of G = 250 Pa, k1 = 0.1 s−1, C = 70 Pa and m = 0.25 are

specified (and the Maxwell variant of the model illustrated in

Fig. 11 is used). Initial conditions for the internal variables

are A(t = 0) = 0 and λ (t = 0) = λ (tw). Fig. 13 (a) shows

that the IKH model does indeed capture the key features of

the response of the 10% wax oil system to startup of steady

shear. Stress overshoots are predicted, and these increase as

a function of waiting time tw due to the magnitude of the mi-

crostructure parameter λ increasing during the waiting time as

a result of rheological aging. The value of the stress overshoot

also saturates beyond waiting times of tw ∼ 1/k1 = 10 s, in

accordance with our experimental observations.
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Fig. 13 Prediction of stress overshoots under startup of steady shear

for the IKH model. In (a), the imposed shear rate is ˆ̇γ = 2 s−1. In

(b), we plot the predicted stress overshoot (red line) from the IKH

model simulated in (a) vs the experimental data from Fig. 9 (circles).

The model parameters are the same for (a) and (b), and are as

follows: C/q = 0.85 Pa, µp = 0.42 Pa.s, k3=1.5 Pa, k1/k2 = 0.033

s−1, G = 250 Pa, η = 500 Pa.s, k1 = 0.1 s−1, C = 70 Pa, m = 0.25.

Fig. 13 (b) gives a quantitative comparison between the

predicted value of the stress overshoot ∆σ0 ≡ σm −σss with

its measured value. At a shear rate of 2 s−1, which is far

from the unyielded state, the steady state stress is approxi-

mately σss ≃ C/q+ µpγ̇ . The maximum in the stress scales

as σm ∼ (C/q+ k3 + µpγ̇), so the stress overshoot will scale

as ∆σ0 ∼ k3. The IKH model correctly predicts the overshoot

saturating at approximately 1 Pa, and it predicts the critical

waiting time tw ∼ 1/k1 required for this overshoot to saturate.

One aspect of the material response that the IKH model

does not predict is the long term increase in the steady mea-

sured stress σ̂(t) which is observed in Fig. 8. This slow tran-

sient aging in σ̂(t) can be attributed to the presence of addi-

tional longer time scales for restructuring in the wax. The IKH

model can be readily modified to account for this behavior

by introducing a third internal variable, and making the high

shear rate plastic viscosity µp a function of this variable (sim-

ilar dependencies are also adopted for some isotropic harden-

ing models83). An evolution equation for this third variable

that is similar to Eq. 22 could be specified. However the as-

sociated parameters determining time scales (e.g. the aging

rate k1) would have to be modified in order to reflect this slow

restructuring. This would result in the introduction of sev-

eral new material parameters, making the model significantly

more complex. For the sake of simplicity and compactness,

we choose to focus on predicting the relative stress overshoot

∆σ0 (which is more important for flow assurance restart pro-

cedures), and therefore avoid introducing a third internal vari-

able. The introduction of a third internal variable also requires

a subtle distinction in the microstructural interpretation for the

λ variable used here. This can be justified by considering

rearrangement of the individual wax crystals vs. rearrange-

ment of flocs of crystals. Due to the difference in size, the

flocs rearrange much slower than the individual crystals, and

have different impacts on the fluid rheology (e.g. the slow floc

rearrangement will impact long term changes in steady state

viscosity whereas the local rapid rotary diffusion of the wax

crystals will affect initial yielding transients).

We also assess the predictive capabilities of the IKH model

with respect to the measured LAOS response of the waxy

crude oil presented in Fig. 10. For the LAOS response, the

values of the model parameters used for the fits in Figs. 13 and

12 are kept constant, other than k3 and C/q which are both set

to 0.7 Pa (while keeping C constant at 70 Pa). With a value

of k3 = 1.5 Pa, the general features under LAOS are still cap-

tured (see supplemental information), however a lower value

of k3 more accurately predicts the absolute value of σm under

LAOS. In Fig. 14 (a), the fit of the MIKH variant to the LAOS

response is shown for the 10% wax oil system in its slurry state

at 27◦ C. The simulated LAOS response of the IKH model al-

ways uses the initial conditions of A = 0 and λ = 1. For visual

clarity Fig. 14 only illustrates the limit cycle, or alternance

state of these LAOS tests.

There is good agreement between the experimental data and

the IKH model for the limit cycles observed under LAOS.

Both material and model exhibit a transition from linear

viscoelastic behavior (corresponding to elliptical Lissajous

curves) to nonlinear behavior at strain amplitudes of approx-

imately γ0 = 0.2%. This very small linear range of strains

implies that at moderate strain amplitudes (1% - 10%), the

IKH response is dominated by the behavior of the nonlinear

yielding element with strain γ p.

In Fig. 14 (b) we compare the values of the maximum stress

σm determined from the experimental data and from the IKH

model. The maximum stress σm is defined as the maximum

stress over all cycles of oscillation, so it includes the initial

transients (overshoots) that are not included in the alternance

plots of Fig. 14 (a) (but are shown below in Fig. 15). Fig. 14
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Fig. 14 Modeling of the alternance state in (a) of LAOS tests shown in Fig. 10 (ω = 1 rad/s). Model parameters are C/q = 0.7 Pa, µp = 0.42

Pa.s, k3=0.7 Pa, k1/k2 = 0.033 s−1, G = 250 Pa, η = 500 Pa.s, k1 = 0.1 s−1, C = 70 Pa, m = 0.25. The red line is the IKH model, the black

line shows data for a 10% model crude oil. In (b) the prediction of the maximum stress σm from the IKH model is compared to the
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line) are also shown. Fig. 14 (c) illustrates the key features of the rhomboidal Lissajous curve for the IKH model, when γ0 = 1%.
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(b) includes the predicted values of σm for a Maxwell LVE

element (with η = 500 Pa.s and G = 250 Pa), and a Bingham

model (with µp = 0.42 Pa.s and σy = 1.4 Pa). The MIKH

model reduces to the LVE model for small strains, and to the

Bingham model for large strains, while also maintaining the

ability to predict the behavior at intermediate strains.

Fig. 14 (c) decomposes the “sequence of physical pro-

cesses”77 that the IKH model undergoes as the stress and

strain vary under LAOS at moderate strain amplitudes. Start-

ing from the lower left point of the curve, the material under-

goes an initial (primarily) elastic loading, characterized by a

slope/modulus of G = 250 Pa. When the stress has increased

by a value of 2k3, the material yields in the forward direc-

tion. As soon as yielding starts, there is an onset of kine-

matic hardening (relative to a perfect yield plateau), leading

to an increase in the stress with dσ
dγ ≃ C initially. The recov-

ery term in the evolution equation for A (Eq. 19) causes this

initial slope to decrease as the imposed deformation contin-

ues to increase. A rhomboidal shape in the curve arises, and

this is indicative of the presence of the Bauschinger effect42.

For low shear rates (i.e. µpωγ0 ≪ (k3 +C/q)), the maximum

stress σm never exceeds the value of k3 +C/q, correspond-

ing to the limiting value of static yield stress in Fig. 12 at

low shear rates. For larger strain amplitudes (and hence larger

shear rates), the plastic viscosity contribution to the stress µpγ̇
becomes more prominent, resulting in Lissajous curves with a

diminished rhomboidal shape and increasing convexity.

The IKH model is also capable of predicting the initial tran-

sient response of the material as it undergoes large amplitude

deformations. Before each test is carried out at a given am-

plitude γ0, a waiting time tw = 100 s is applied, resulting in

the material being fully structured before the oscillatory de-

formation is imposed. For this reason, the IKH simulation

begins with the initial condition λ = 1, and over the course

of several oscillations λ will decrease as a result of a nonzero

plastic strain rate γ̇ p, resulting in a decrease in the size of the

Lissajous orbits.

Fig. 15 shows two representative transient Lissajous curves

of the material undergoing an initial three cycles of deforma-

tion at two different amplitudes, γ0 = 0.1% and γ0 = 20%. For

the small amplitude case in Fig. 15 (a), the material requires

one half of a cycle of oscillation before the behavior settles

into a steady state. Furthermore, no overshoots are observed

in the stress when the oscillatory deformation is initialized.

This behavior is consistent with a standard linear viscoelastic

response, where no thixotropy is present. The IKH model pre-

dicts this behavior, validating our argument that only the plas-

tic contribution to the strain γ p should appear in the evolution

equation of λ in Eqn. 22. Thixotropic effects only become

apparent at larger strain amplitudes when γ p is no longer zero.

These thixotropic effects are apparent in the LAOS measure-

ments at a higher strain amplitude in Fig. 15 (b). An initial
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Fig. 15 Transient LAOS data for the IKH model (red line) and the

10% model crude oil (points) at two strain amplitudes; (a)

γ0 = 0.1% and (b) γ0 = 20%. Frequency is ω = 1 rad/s in both cases

The same model coefficients as in Fig. 14 are used.

stress overshoot is observed, and multiple cycles of oscillation

are required for the material to settle into an alternance state.

The IKH model quantitatively predicts the magnitude of this

overshoot, and also predicts the slow contraction of the Lis-

sajous orbits towards the ultimate limit cycle. At a given fre-

quency, the ratio of parameters k2/k1 = 30 s controls the rate

of the contraction; as k2/k1 increases the orbits will contract

more rapidly.

The LAOS tests in Fig. 14 only show the dependency of

the material response on the imposed strain amplitude γ0. The

oscillation frequency ω was also varied at a moderate strain

amplitude (γ0 = 2%) to further illustrate the nature of the ma-

terial’s response in the nonlinear regime of deformations. The

specific strain amplitude of 2% was chosen because it lies

in the intermediate regime of Fig. 14 (b) between linear vis-

coelastic (LVE) behavior and Bingham-plastic behavior. In

each of these limiting regimes, the effect of varying ω is well

understood. In the LVE regime, varying ω enables the appro-
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priate viscoelastic mechanical model for the material proper-

ties below yield to be probed. In the Bingham-plastic regime,

the dependency on ω is dominated by the plastic viscosity µp,

since the instantaneous shear rates are high leading to increas-

ing circular trajectories (as shown in Fig. 14 (a)).

However, in the intermediate regime where strains are be-

tween 1%-20%, the material exhibits a rate-independent be-

havior. Fig. 16 (a) illustrates this by showing the cyclic Lis-

sajous curves of the first 3 cycles of oscillation for the material

undergoing LAOS at 4 frequencies spanning an order of mag-

nitude (ω = 0.5 rad/s to ω = 5 rad/s). At this moderate strain

amplitude, the material response is clearly nonlinear, with a

small amount of thixotropic contraction occurring in the or-

bits over multiple cycles. However, there is little dependency

of the material response on the frequency ω . This is indicative

of a deformation rate-independent response at moderate strain

amplitudes. The predicted model response shown in Fig. 16

(b) captures this type of behavior. This is because of the rate-

independent nature of the kinematic hardening behavior pre-

scribed in Eq. 19. This equation can be rewritten in terms of

increments in A and γ p as follows:

dA = dγ p − f (A)|dγ p| . (29)

The back strain A therefore evolves independently of the

rate of plastic strain γ̇ p. For the strain amplitude shown in

Fig. 16, σm ≃ 1 Pa, so γve ∼ (σm/G + σm/(ηω)) ≃ 0.006

when ω = 1 rad/s. A large proportion of the total imposed

strain, γ0 = 0.02, is therefore taken up by the plastic strain

γ p = γ − γve. As a result, the behavior at this strain amplitude

is primarily rate independent. The other internal variable, λ ,

evolves in a rate-dependent fashion set by the ration k2/k1, but

on a time scale longer than the period of a single orbit 2π/ω .

Hence, the overall response of the material at this range of fre-

quencies is characterized by rate-independent kinematic hard-

ening - a behavior which is most appropriately described by

equations of the Armstrong-Frederick type86 used in Eq. 29.

The IKH model predicts all of the important features of the

material response to the three canonical rheological flows out-

lined in Sec. 3. To end this subsection, we will discuss one

additional flow, and compare it to the predicted response of

the IKH model.

In Fig. 6, the particular experimental protocol that was used

to measure the flowcurve of the material controlled the ap-

plied global (or spatially averaged) deformation rate ˆ̇γ on the

material. An alternative way to control the flow in the material

would be to ramp the applied average stress σ̂ on the material

at a very slow rate, and measure the corresponding average

shear rate at subsequent points in time. This “stress ramp”

test was conducted with the 10% wax-oil system in its slurry

state at 27◦C using the AR-G2 in its standard configuration.

The material is initially brought to its fully structured state

by applying a wait time of tw = 300s, and then a stress ramp
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Fig. 16 Frequency dependent behavior under LAOS at moderate

strain amplitudes (γ0 = 2%) for both the 10% model crude oil (a)

and the IKH model (b). The IKH model model coefficients are the

same as in Figs. 14 and 15.

from 0.1 Pa to 5 Pa is imposed over the course of 2 hours (this

results in a constant value of dσ̂/dt = 0.00136 Pa/s). Once

the stress reaches the maximum value of 5 Pa, the ramp is

immediately reversed and brought down to 0.1 Pa at a rate of

dσ̂/dt =−0.00136 Pa. The average shear rate within the fluid

(as measured by the rate of rotation of the conical fixture) is

sampled at regular intervals over the course of the increasing

and decreasing ramps in stress.

In Fig. 17, we show the experimental results of this stress

test, as well as the predicted response of the IKH model to

such a stress ramp using the same model parameters that were

determined from Fig. 12 and 13. For comparison with the

average shear rate measurements, the flowcurve obtained in

Fig. 6 is also included on this figure. The non-monotonicity
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Fig. 17 Rheological measurements for an imposed stress ramp shown in (a), and measured (points) and simulated (lines) shear rates in (b).

The different static and dynamic yield stresses are also annotated. The resulting flowcurves of the model crude oil (red data points) and the

IKH model (solid and dashed lines) are given in (c). The data is for the same model system at the same temperature shown in Figs. 12 - 16,

with the same model parameters as in Fig. 12 and 13.

in the IKH model results in hysteresis being captured in the

stress ramp experiments. Specifically, a larger imposed stress

(asymptotic value of σs ≃ 2 Pa) is required to start the flow

from the structured state, and as the stress is decreased, the

same shear rates can be sustained at lower values of the ap-

plied stress (asymptotic value of σd ≃ 1.1 Pa). This essen-

tially corresponds to different measurements for the static and

dynamic yield stress within the material92, and the nonzero

value of the microstructural parameter λ is responsible for this

difference. While σ approaches the limit of C/q+ k3 = 2.35

Pa in the limit γ̇ → 0 for the rate-controlled experiment, the

asymptotic values of σ determined from the stress ramp exper-

iments are both different from this value. The difference be-

tween the static and dynamic yield stress is responsible for the

“avalanche effect” that is frequently observed in thixotropic

yield stress fluids93 - the supplementary information shows

how the IKH model can predict this avalanche effect.

The microstructural physics captured by the IKH model is

thus extremely versatile and is able to capture the complex

rheology of a structured and aging material such as an elasto-

viscoplastic crude oil. It can capture the salient features of the

response exhibited by the fluid to a number of different steady

and time-varying rheological flows. The numerical values of

the model parameters were consistent among these different

flows, so the measurements in Fig. 17 constitute a true test of

the predictive nature of the model.

4.3 Further Discussion

To conclude our discussion of the IKH model, we expand on a

few important points related to the current form of the model.

We will also comment on how this model is related to other

constitutive models that are commonly encountered in the lit-

erature.

4.3.1 Fitting procedure We outline a general fitting pro-

cedure used to determine values of the model parameters in

the IKH model. This procedure can be summarized as fol-

lows: We first fit the parameters µp, k3 and the ratios C/q and

k1/k2 to the steady state flowcurve in Fig. 6. Next frequency

sweeps at low strains below the yield point can be used to fit

the linear viscoelastic behavior. If the material is Maxwell-

like, then G, η and the corresponding viscoelastic relaxation

time η/G can be determined. Subsequently, LAOS can be

used to determine appropriate values of the back stress mod-

ulus C, and the constants q and m which control the shape

of the Lissajous curves. The rate constants k1 and k2 which

control the rate of thixotropic contraction towards a final pe-

riodic alternance state can also be determined from the LAOS
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measurements. Finally, stress overshoot measurements can be

used to verify that the value of the aging parameter 1/k1 agrees

with the critical waiting time tw required for the saturation of

the yield overshoot or yield peak. However, the fitting of the

parameters to the steady state flowcurve of Fig. 6 may pro-

ceed differently for different classes of thixotropic yield stress

fluids. Specifically, the nature of the unstable flow that was ob-

served in Sec. 3.2.1 may differ among different classes of soft

solids and gel-like materials. For example, an alternative shear

banding scenario may be observed where the non-monotonic

region of the flowcurve is inaccessible to time-averaged mea-

surement.

4.3.2 Accounting for shear heterogeneities The steady

state flowcurve of the IKH model show in Fig. 12 represents

a homogenous shear flow, however, at the lowest globally ap-

plied shear rates, PIV measurements indicate that the flow of

the model crude oil is not homogenous. The nonmonotonicity

of the IKH model means that it can predict these types of shear

heterogeneities. One way to account for these would be to ini-

tially specify a spatially heterogenous value of λ (y, t = 0), and

then allow for the material elements to evolve under applica-

tion of a constant global shear rate. The IKH model predicts

transient shear banding under such a scenario - regions with

initially high values of λ will not deform, but regions with

low values of λ will exhibit high shear rates. This shear band-

ing would be extremely sensitive to initial spatial variations

of λ (y). A heterogenous distribution of the λ parameter is

a reasonable assumption, given the observations in this work,

as well as previous observations that have shown thixotropic

yield stress fluids exhibiting an “erosion” behavior that is of-

ten spatially heterogenous38

Shear banding is also predicted by the IKH model under

deformations in geometries with sufficiently large stress gra-

dients. We illustrate this in Fig. 18 by simulating startup of

shearing flow for the IKH model in a Taylor-Couette cell un-

der a steady applied torque T . For the simulations in Fig. 18,

the inner radius of the cell is set to Rin = 23.7 mm and the

outer radius is Rout = 25 mm, corresponding to a typical ex-

perimental cup and bob. The dimensionless radial position is

defined as ρ ≡ (r−Rin)/(Rout −Rin), and thus varies from 0

to 1. The torque is set so as to impose a stress which varies (in

a 1/r2 fashion) from σ = 2.05 Pa at ρ = 0 to σ = 1.85 Pa at

ρ = 1. The IKH simulation presented in Fig. 18 assumes that

the fluid is initially in a fully structured state with spatially

uniform values of λ = 1 and back strain A = 0. The model

parameters used were G = 250 Pa, η = 500 Pa.s, µp = 0.42

Pa.s, k1 = 0.1 s−1, k2 = 3, k3 = 1.5 Pa, C = 70 Pa, q = 82

and m = 0.25 (these are consistent with the parameter values

for the real model waxy crude oil). The data in Fig. 18 is

plotted against dimensionless time t/tc, where tc = k2/(k1q).
The timescale tc arises from equating the natural timescales

for the kinematic hardening and isotropic softening/hardening

processes.

At time t/tc = 0, the step increase in the torque is imposed

and the material starts to deform away from its fully structured

state (corresponding to λ = 1). There is initially a nonzero

shear rate across the gap, which decreases up until t/tc = 1.

During this initial deformation stage, the material deforms

elastically, begins to yield, and then kinematically hardens,

resulting in an increase in A and a strengthening of the mate-

rial in the flow direction. Consequently, the shear rate across

the gap decreases during this time period.

For t/tc > 1, the fluid begins to shear band. For the region

of the fluid located closest to the inner wall, i.e. for values

of ρ < 0.4, the isotropic softening process (accounted for by

the term −k2|γ̇
p|λ in the evolution equation for λ ) begins to

dominate over the kinematic hardening process. The value of

λ decreases in this region, and a high shear rate band forms in

the material closest to the inner wall. For times t/tc ≫ 1 the

material near the inner wall has fully yielded, and at ρ = 0 the

velocity reaches its maximum value, v= vm = 1.52 mm/s. The

material closer to the outer wall experiences lower shear rates

and continues to harden and age, until it exhibits a negligi-

bly small shear rate at long times. These steady shear banded

profiles (with one strongly sheared band and one stationary,

unsheared band) have been observed in numerous thixotropic

yield stress fluids; for example they are carefully documented

in the work by Martin and Hu94).

4.3.3 Genealogy of Constitutive Models.

The general IKH framework we have described in this work

can be simplified to several other constitutive models under

various limits. It can be reduced to the Bingham generalized

Newtonian fluid model by setting k3 = 0, and then taking the

limit of G → ∞ and C → ∞, while keeping the ratio C/q con-

stant and equal to the yield stress σy. This results in the back

stress σback immediately responding to a given stress level σy,

by either saturating at ±σ if |σ | < σy or saturating at ±σy

if |σ | > σy. An alternative way to reduce the IKH model to a

Bingham model would be to set the back stress to zero σback = 0

and set λ to a constant.

The IKH model can also be readily simplified to the kine-

matic hardening model used by Dimitriou et al.46 to describe

non-thixotropic yield stress fluids. This is accomplished by

setting k3 = 0. While the KH model was shown in that work

to predict the correct LAOS behavior for a “simple yield stress

fluid”91, it is not able to predict stress overshoots or prolonged

transients under multiple cycles of large amplitude deforma-

tion.

The limit of the inelastic Houska model studied by Cawk-

well and Charles9 and others33,41 can be realized by taking the

limit of C → ∞ while keeping the ratio C/q constant and equal

to their “fixed” component of the yield stress. The dependence
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Fig. 18 Shear banding predicted by the IKH model in a Taylor-Couette concentric cylinder geometry. A steady imposed torque T is applied,

resulting in a steady imposed, heterogenous stress in the material. The material is allowed to evolve from its initial configuration of being fully

structured, i.e. λ = 1. In (a), a space-time profile of the velocity field is shown. In (b) and (c) several velocity profiles are given for different

instants in time. Velocity is plotted in a non-dimensional form using the maximum velocity for long times at near the inner wall, vm = 1.52

mm/s.

of σy on λ however remains with an evolution equation for λ
resulting in the second component of the yield stress not vary-

ing. The Houska model also does not account for any elastic

behavior below yield, corresponding to the limit G → ∞.

Finally, the IKH model can be reduced to the “toy” λ -model

employed by Coussot et al.95. This limit can be achieved by

setting both yield parameters σy and σback equal to zero, taking

the limit of G → ∞, and making the viscosity µp a function

of λ . Coussot employs a different evolution equation for λ ,

which results in λ growing unbounded in time when the shear

rate is zero.

The IKH model is more broadly related to the Mujumdar17

and Souza Mendes19 models. These models exhibit key dif-

ferences from the IKH model. The Mujumdar model does

not explicitly decompose strain into elastic and plastic compo-

nents - as a result the authors necessarily introduce a critical

strain γc into the model which is used to determine whether or

not the structure of the material is breaking. The Mujumdar

model does utilize the same form of the evolution equation for

λ that is employed here.

The Souza Mendes family of models19,57,96 use a different

form for the evolution equation of λ , specifically the stress

σ enters this equation and is assumed to be the driving force

for disrupting the material microstructure. Souza Mendes and

Thompson take this approach in order to avoid disruption of

the material microstructure in any elastic, reversible regime of

deformation57. The use of γ̇ p in our evolution equation in λ
achieves this same goal. Souza Mendes also writes the linear

viscoelastic moduli G and η as functions of λ , resulting in

additional material parameters that must be determined by re-

gression to data19. This may be required for a more complete

form of the IKH model, however for simplicity and compact-

ness these dependencies are neglected in the IKH model.

5 Conclusions

The primary goal of this work has been to develop a suitable

elasto-viscoplastic constitutive model that can predict the rhe-

ology of a thixotropic yield stress fluid. The fluid studied here

is a waxy crude oil that is relatively easy to formulate and pre-

pare in a repeatable manner, but still captures the rheological

complexity of a real crude oil.

To develop this model, Rheo-PIV measurements were first

used to distinguish between the material behavior under differ-

ent sample preparation protocols. We distinguished between

the material in a “slurry” state vs. a “strong gel” state. In the
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former, the material exhibits a weaker gel network and is less

likely to flow through the mechanism of interfacial wall slip.

In the latter, the material can undergo irreversible breakdown

of an initially strong gel network. Furthermore, the material in

its “strong gel” state is more likely to exhibit localized fracture

and failure at the fluid/solid interface.

Second, we outlined three canonical flow scenarios to probe

the rheology of the model fluid in its slurry state. These are

measurements of the steady (spatially averaged) flowcurve of

the material (σ̂ vs. ˆ̇γ), startup of steady shear flow follow-

ing different waiting times tw, and large amplitude oscillatory

shear strain (LAOStrain). Furthermore, we used Rheo-PIV

measurements to elucidate the nature of flow instabilities that

occur in the material at low shear rates. These coincide with a

non-monotonic region in the material’s flowcurve. The mate-

rial instabilities consist of spatially and temporally fluctuating

values of local shear rate and shear stress within the material,

with a constant globally applied shear rate ˆ̇γ and average shear

stress σ̂ .

Third, we developed an elastoviscoplastic constitutive

model (referred to for simplicity as the IKH model) which

quantitatively captures the material response to these three

flow scenarios. The key features of this model are the addi-

tive decomposition of strain into two components (γve and γ p)

and the use of the isotropic and kinematic hardening mech-

anisms adapted from plasticity theory. An added benefit of

this approach is that the model is extendable to a frame in-

variant, 3-dimensional tensorial form that can be utilized in

simulations of more complex flow scenarios. The IKH model

was fitted to the 10% wax in oil model system in its “slurry

state” at 27◦C, under these isothermal conditions it was capa-

ble of capturing the rheological aging behavior exhibited by

the fluid, and the subsequent effects of this aging process on

the material response to deformations. Values of the model

parameters were generally consistent across the three differ-

ent rheological flows. The IKH model was also shown to be

capable of predicting transient shear banding behavior under

deformations in geometries with sufficiently large gradients in

the stress.

There are several avenues for a continuation of this work on

the IKH model - some of which we have already highlighted.

These include accounting for additional slower restructuring

timescales which affect the high shear rate plastic viscosity.

In the present study we have taken this viscosity to be a con-

stant, µp. The IKH model could also be improved by intro-

ducing nonlocal terms into the constitutive model, to better

describe the nature of the flow instabilities that are observed

at low globally-applied shear rates18,97. Other than the results

presented in Sec. 4.3, all of the predictions of the IKH model

were obtained by assuming homogenous flow. The work by

Moorcroft et al.98,99 suggested that instances of inhomoge-

nous flow may be more ubiquitous than previously thought

(in particular where stress overshoots are present). Thus, un-

derstanding how the IKH framework might be able to predict

these instabilities in more detail would be a worthwhile en-

deavor. Finally, the model could be modified to capture the

continuous, temperature-dependent transition that the material

exhibits as it is cooled from above Twa (where it behaves as

a Newtonian liquid) to below Twa where it begins to exhibit

thixotropic, elastoviscoplastic behavior. The ultimate goal

of such work would be to develop a temperature-dependent

IKH model, which can then be implemented into simulations

of non-isothermal flow in pipelines for flow assurance appli-

cations. This would substantially build on the temperature-

dependent models that are available today, which typically as-

sume a generalized Newtonian fluid and do not account for

elastic or yielding behavior28,34. Practical applications for

such a model would be widespread, and would greatly assist

in optimizing operating conditions for pipelines that transport

waxy crude oil.
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