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Abstract

Conventional reduced order modeling techniques such as the reduced basis (RB) method

(relying, e.g., on proper orthogonal decomposition (POD)) may incur in severe limita-

tions when dealing with nonlinear time-dependent parametrized PDEs, as these are strongly

anchored to the assumption of modal linear superimposition they are based on. For problems

featuring coherent structures that propagate over time such as transport, wave, or convection-

dominated phenomena, the RB method may yield inefficient reduced order models (ROMs)

when very high levels of accuracy are required. To overcome this limitation, in this work, we

propose a new nonlinear approach to set ROMs by exploiting deep learning (DL) algorithms.

In the resulting nonlinear ROM, which we refer to as DL-ROM, both the nonlinear trial man-

ifold (corresponding to the set of basis functions in a linear ROM) as well as the nonlinear

reduced dynamics (corresponding to the projection stage in a linear ROM) are learned in a

non-intrusive way by relying on DL algorithms; the latter are trained on a set of full order

model (FOM) solutions obtained for different parameter values. We show how to construct

a DL-ROM for both linear and nonlinear time-dependent parametrized PDEs. Moreover, we

assess its accuracy and efficiency on different parametrized PDE problems. Numerical results

indicate that DL-ROMs whose dimension is equal to the intrinsic dimensionality of the PDE

solutions manifold are able to efficiently approximate the solution of parametrized PDEs,

especially in cases for which a huge number of POD modes would have been necessary to

achieve the same degree of accuracy.
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1 Introduction

The solution of a parametrized system of partial differential equations (PDEs) by means of a

full-order model (FOM), whenever dealing with real-time or multi-query scenarios, entails

prohibitive computational costs if the FOM is high-dimensional. In the former case, the FOM

solution must be computed in a very limited amount of time; in the latter one, the FOM must be

solved for a huge number of parameter instances sampled from the parameter space. Reduced

order modeling techniques aim at replacing the FOM by a reduced order model (ROM),

featuring a much lower dimension, which is still able to express the physical features of the

problem described by the FOM. The basic assumption underlying the construction of such

a ROM is that the solution of a parametrized PDE, belonging a priori to a high-dimensional

(discrete) space, lies on a low-dimensional manifold embedded in this space. The goal of

a ROM is then to approximate the solution manifold– that is, the set of all PDE solutions

when the parameters vary in the parameter space—through a suitable, approximated trial

manifold.

A widespread family of reduced order modeling techniques relies on the assumption that

the reduced order approximation can be expressed by a linear combination of basis func-

tions, built starting from a set of FOM solutions, called snapshots. Among these techniques,

proper orthogonal decomposition (POD) exploits the singular value decomposition of a suit-

able snapshot matrix (or the eigen-decomposition of the corresponding snapshot correlation

matrix), thus yielding linear ROMs, that is ROMs employing linear trial spaces, in which

the ROM approximation is given by the linear superimposition of POD modes. In this case,

the solution manifold is approximated through a linear trial manifold, that is, the ROM

approximation is sought in a low-dimensional linear trial subspace.

Projection-based methods are linear ROMs in which the ROM approximation of the PDE

solution, for any new parameter value, results from the solution of a low-dimensional (non-

linear, dynamical) system, whose unknowns are the ROM degrees of freedom (or generalized

coordinates). Despite the PDE (and thus the FOM) being linear or not, the operators appear-

ing in the ROM are obtained by imposing that the projection of the FOM residual evaluated

on the ROM trial solution is orthogonal to a low-dimensional, linear test subspace, which

might coincide with the trial subspace. Hence, the resulting ROM manifold is linear, that is,

the ROM approximation is expressed as the linear combination of a set of basis functions. In

particular, in projection-based ROMs, the reduced dynamics is obtained through a projection

process onto a linear subspace [9,10,48]. However, linear ROMs might experience compu-

tational bottlenecks at different extents when dealing with parametrized problems featuring

coherent structures (possibly dependent on parameters) that propagate over time, namely in

transport and wave-type phenomena, or convection-dominated flows, as soon as the physical

behavior under analysis is strongly affected by parametric dependence. Indeed, fluid flows

past complex geometries, featuring either turbulence effects or shocks and boundary layers,

have been addressed by linear ROMs, showing extremely good performance when the ROM

is tested for the same parameter values used to collect simulation data offline [15], or when

the solution exhibits a mild dependence on parametric variations [64]. For larger parametric

variations, or stronger dependence of coherent structures from parameters, the dimension

of the linear trial manifold can easily become extremely large (if compared to the intrinsic
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dimension of the solution manifold) thus compromising the ROM efficiency. To overcome

this issue, ad-hoc extensions of the POD strategy have been considered, see, e.g., [43,45].

In this paper, we propose a computational, non-intrusive approach based on deep learning

(DL) algorithms to deal with the construction of efficient ROMs (which we refer to as

DL-ROMs) in order to tackle parameter-dependent PDEs; in particular, we consider PDEs

that feature wave-type phenomena. A comprehensive framework is presented for the global

approximation of the map (t,μ) �→ uh(t,μ), where t ∈ (0, T ) denotes time, μ ∈ P ⊂ R
nμ a

vector of input parameters and uh(t,μ) ∈ R
Nh the solution of a large-scale dynamical system

arising from the space discretization of a parametrized, time-dependent (non)linear PDE.

Several recent works have shown possible applications of DL techniques to parametrized

PDEs – thanks to their approximation capabilities, their extremely favorable computational

performance during online testing phases, and their relative ease of implementation – both

from a theoretical [35] and a computational standpoint. Regarding this latter aspect, artificial

neural networks (ANNs), such as feedforward neural networks, have been employed to

model the reduced dynamics in a data-driven [55], and less intrusive way (avoiding, e.g.,

the costs entailed by projection-based ROMs), but still relying on a linear trial manifold

built, e.g., through POD. For instance, in [26,27,29,59] the solution of a (nonlinear, time-

dependent) ROM for any new parameter value has been replaced by the evaluation of ANN-

based regression models; similar ideas can be found, e.g., in [32,41,62]. Few attempts have

been made in order to describe the reduced trial manifold where the approximation is sought

(avoiding, e.g., the linear superimposition of POD modes) through ANNs, see, e.g., [37,40].

For instance, a projection-based ROM technique has been introduced in [37], in which the

FOM system is projected onto a nonlinear trial manifold identified by means of the decoder

function of a convolutional autoencoder. However, the ROM is defined by a minimum residual

formulation, for which the quasi-Newton method herein employed requires the computation

of an approximated Jacobian of the residual at each time instant. A ROM technique based

on a deep convolutional recurrent autoencoder has been proposed in [40], where a reduced

trial manifold is generated through a convolutional autoencoder; the latter is then used to

train a Long Short-Term Memory (LSTM) neural network modeling the reduced dynamics.

However, even if in principle LSTMs can handle parameters through the input at each time

instance or the initial hidden state, explicit parameter dependence in the PDE problem is not

considered in [40], apart from μ-dependent initial data. LSTMs have been recently employed

in [63] to realize efficient closure models based on the Mori-Zwanzig formalism, in order

to improve the stability and accuracy of projection-based ROMs; in particular, LSTMs are

used as the regression model of the memory integral which represents the impact of the

unresolved scales. Another promising application of machine learning techniques within a

ROM framework deals with the efficient evaluation of ROM errors, see, e.g., [22,44,46,61].

Our goal is to set up nonlinear ROMs whose dimension is nearly equal (if not equal)

to the intrinsic dimension of the solution manifold that we aim at approximating. Our DL-

ROM approach combines and improves the techniques introduced in [37,40] by shaping

an all-inclusive DL-based ROM technique, where we both (1) construct the reduced trial

manifold and (2) model the reduced dynamics on it by employing ANNs. The former task

is achieved by using the decoder function of a convolutional autoencoder; the latter task is

instead carried out by considering a feedforward neural network and the encoder function

of a convolutional autoencoder. Moreover, we set up a computational procedure performing

the training of both network architectures simultaneously, by minimizing a loss function

that weights two terms, one dedicated to each single task. In this respect, we are able to

design a flexible framework capable of handling parameters affecting both PDE operators

and data, which avoids both the expensive projection stage of [37] and the training of a more
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expensive LSTM network. In our technique, the intrusive construction of a ROM is replaced

by the evaluation of the ROM generalized coordinates through a deep feedforward neural

network taking only (t,μ) as inputs. The proposed technique is purely data-driven, that is, it

only relies on the computation of a set of FOM snapshots—in this respect, we do not replace

standard numerical methods to solve the FOM by DL algorithms as, e.g., in the works by

Karniadakis and coauthors [50–54] where the FOM is replaced by a physics-informed neural

network (PINN) trained by minimizing the residual of the PDE; rather, DL techniques are

built upon the high-fidelity FOM, to enhance its repeated evaluation for different values of

the parameters.

The structure of the paper is as follows. In Sect. 2 we show how to generate nonlinear

ROMs by reinterpreting the classical ideas behind linear ROMs for parametrized PDEs. In

Sect. 3 we detail the construction of the proposed DL-ROM, whose accuracy and efficiency

are numerically assessed in Sect. 4 by considering three different test cases of increasing

complexity (with respect to the parametric dependence, the nature of the PDE, and the spatial

dimension). Finally, the conclusions are drawn in Sect. 5. A quick overview of useful facts

about neural networks is reported in the Appendix A to make the paper self-contained.

2 From Linear to Nonlinear Dimensionality Reduction

Starting from the well-known setting of linear (projection-based) ROMs, in this section we

generalize this task to the case of nonlinear ROMs.

2.1 Problem Formulation

We formulate the construction of ROMs in algebraic terms, starting from the high-fidelity

(spatial) approximation of nonlinear, time-dependent, parametrized PDEs. By introducing

suitable space discretizations techniques (such as, e.g., the Finite Element method, Isogeo-

metric Analysis or the Spectral Element method) the high-fidelity, full order model (FOM)

can be expressed as a nonlinear parametrized dynamical system. Given μ ∈ P , we aim at

solving the initial value problem

{
u̇h(t;μ) = f(t, uh(t;μ);μ), t ∈ (0, T ),

uh(0;μ) = u0(μ),
(1)

where the parameter space P ⊂ R
nμ is a bounded and closed set, uh : [0, T )×P → R

Nh is the

parametrized solution of (1), u0 : P → R
Nh is the initial datum and f : (0, T )×R

Nh ×P →
R

Nh is a (nonlinear) function, encoding the system dynamics.

The FOM dimension Nh is related with the finite dimensional subspaces introduced for

the space discretization of the PDE – here h > 0 usually denotes a discretization parameter,

such as the maximum diameter of elements in a computational mesh – and can be extremely

small whenever the PDE problem shows complex physical behaviors and/or high degrees of

accuracy are required to its solution. The parameter μ ∈ P may represent physical or geomet-

rical properties of the system, like, e.g., material properties, initial and boundary conditions,

or the shape of the domain. In order to solve problem (1), suitable time discretizations are

employed, such as backward differentiation formulas [49].

Our goal is the efficient numerical approximation of the whole set

Sh = {uh(t;μ) | t ∈ [0, T ) and μ ∈ P ⊂ R
nμ} ⊂ R

Nh , (2)
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Fig. 1 A two-dimensional manifold embedded in R
3. Each curve represents the time-evolution of the first

three components of the solution of a (nonlinear) parametrized PDE for a fixed parameter value μ

of solutions to problem (1) when (t;μ) varies in [0, T ) × P , also referred to as solution

manifold (a sketch is provided in Fig. 1). Assuming that, for any given parameter μ ∈ P ,

problem (1) admits a unique solution, for each t ∈ (0, T ), the intrinsic dimension of the

solution manifold is at most nμ + 1 ≪ Nh , where nμ is the number of parameters (time

plays the role of an additional coordinate). This means that each point uh(t;μ) belonging

to Sh is completely defined in terms of at most nμ + 1 intrinsic coordinates, or equivalently,

the tangent space to the manifold at any given uh(t;μ) is spanned by nμ + 1 basis vectors.

2.2 Linear Dimensionality Reduction: Projection-Based ROMs

The most common way to build a ROM for approximating problem (1) relies on the intro-

duction of a reduced linear trial manifold, that is of a subspace S̃n = Col(V ) of dimension

n ≪ Nh , spanned by the n columns of a matrix V ∈ R
Nh×n . Hence, a linear ROM looks for

an approximation ũh(t;μ) ≈ uh(t;μ) in the form

ũh(t;μ) = V un(t;μ), (3)

where ũh : [0, T ) × P → S̃n .

Here un(t;μ) ∈ R
n for each t ∈ [0, T ), μ ∈ P denotes the vector of intrinsic coordinates

(or degrees of freedom) of the ROM approximation; note that the map

Ψ h : R
n → R

Nh , sn �→ s̃h = V sn

that, given the (low-dimensional) intrinsic coordinates, returns the (high-dimensional)

approximation of the FOM solution uh(t;μ), is linear.

POD is one of the most widely employed techniques to generate the linear trial manifold

[48]. Considering a set of Ntrain instances of the parameter μ ∈ P , we introduce the snapshot

matrix S ∈ R
Nh×Ns ,

S = [uh(t1;μ1) | . . . | uh(t Nt ;μ1) | . . . | uh(t1;μNtrain
) | . . . | uh(t Nt ;μNtrain

)],
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considering a partition of [0, T ] in Nt time steps {tk}Nt

k=1, tk = k�t , of size �t = T /Nt

and Ns = Ntrain Nt . Moreover, let us introduce a symmetric and positive definite matrix

Xh ∈ R
Nh×Nh encoding a suitable norm (e.g., the energy norm) on the high-dimensional

space and admitting a Cholesky factorization Xh = H T H . POD computes the singular value

decomposition (SVD) of H S,

H S = U�Z T ,

where U = [ζ 1| . . . |ζ Nh
] ∈ R

Nh×Nh , Z = [ψ1| . . . |ψ Ns
] ∈ R

Ns×Ns and � =
diag(σ1, . . . , σr ) ∈ R

Nh×Ns with σ1 ≥ σ2 ≥ . . . ≥ σr , and r ≤ min(Nh, Ns), and

sets the columns of V in terms of the first n left singular vectors of S that is, V =
[H−1ζ 1| . . . |H−1ζ n]. By construction, the columns of V are orthonormal (with respect

to the scalar product ( · , · )Xh
) and among all possible n-dimensional subspaces spanned by

the column of a matrix W ∈ R
Nh×n , V provides the best reconstruction of the snapshots,

that is,

Ntrain∑

i=1

Nt∑

k=1

‖uh(tk;μi ) − V V T Xhuh(tk;μi )‖2
Xh

= min
W∈Vn

Ntrain∑

i=1

Nt∑

k=1

‖uh(tk;μi ) − W W T Xhuh(tk;μi )‖2
Xh

,

(4)

where Vn = {W ∈ R
Nh×n : W T Xh W = I }; here V V T Xhuh(t;μ) is the optimal-POD

reconstruction of uh(t;μ) onto a reduced subspace of dimension n < Nh .

To model the reduced dynamics of the system, that is, the time-evolution of the generalized

coordinates un(t;μ), we can replace uh(t;μ) by (3) in system (1),
{

V u̇n(t;μ) = f(t, V un(t;μ);μ) t ∈ (0, T )

V un(0;μ) = u0(μ),
(5)

and impose that the residual

rh(V un(t;μ)) = V u̇n(t;μ) − f(t, V un(t;μ);μ) (6)

associated to the first equation of (5) is orthogonal to an n-dimensional subspace spanned

by the column of a matrix Y ∈ R
Nh×n , that is, Y T rh(V un) = 0. This condition yields the

following ROM
{

Y T V u̇n(t;μ) = Y T f(t, V un(t;μ);μ) t ∈ (0, T )

un(0;μ) = (Y T V )−1Y T u0(μ).
(7)

If Y = V , a Galerkin projection is performed, while the case Y �= V yields a more general

Petrov-Galerkin projection. Note that choosing Y such that Y T V = I ∈ R
Nh×Nh does not

automatically ensure ROM stability on long time intervals.

Although POD-(Petrov-)Galerkin methods have been successfully applied to a broad

range of parametrized time-dependent (non)linear problems (see, e.g., [39,45]), they usually

provide low-dimensional subspaces of dimension n ≫ nμ + 1 much larger than the intrinsic

dimension of the solution manifold – relying on a linear, global trial manifold thus represents

a major bottleneck to computational efficiency [43,45]. The same difficulty may also affect

hyper-reduction techniques, such as the (discrete) empirical interpolation method [8,16].

Such hyper-reduction techniques are essential to assemble the operators appearing in the

ROM (7) in order not to rely on expensive Nh-dimensional arrays [20].
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2.3 Nonlinear Dimensionality Reduction

A first attempt to overcome the computational issues entailed by the use of a linear, global

trial manifold is to build a piecewise linear trial manifold, using local reduced bases whose

dimension is smaller than the one of the global linear trial manifold. Clustering algorithms

applied on a set of snapshots can be employed to partition them into Nc clusters from which

POD can extract a subspace of reduced dimension; the ROM is then obtained by following

the strategy described above on each cluster separately [5,6]. An alternative approach based

on classification binary trees has been introduced in [4]. These strategies have been employed

(and compared) in [45] in order to solve parametrized problems in cardiac electrophysiology.

Using a piecewise linear trial manifold only partially overcomes the limitation of linear

ROMs; indeed local bases might still have a dimension which is much higher than the intrinsic

dimension of the solution manifold Sh . An approach based on a dictionary of solutions,

computed offline, has been developed in [2] as an alternative to using POD modes, together

with an online L1-norm minimization of the residual.

Other possible options involving nonlinear transformations of modes might rely on a

reconstruction of the POD modes at each time step using Lax pairs [23], on the solution

of Monge-Kantorovich optimal transport problems [31], on a problem-dependent change of

coordinates requiring the solution of an optimization problem repeatedly [14], on shifted POD

modes [56] after multiple transport velocities have been identified and separated, or again

basis updates are derived from querying the FOM at a few selected spatial coordinates [47].

Despite providing remarkable improvements compared to the classic (Petrov-)Galerkin-POD

approach, all these strategies exhibit some drawbacks, such as: (1) the high computational

costs entailed during the online testing evaluation stage of the ROM – which is not restricted

to the intensive offline training stage; (2) performance and settings are highly dependent

on the problem at hand; (3) the need to deal only with a linear superimposition of modes

(which characterizes linear ROMs), yielding low-dimensional spaces whose dimension is

still (much) higher than the intrinsic dimension of the solution manifold.

Motivated by the need of avoiding the drawbacks of linear ROMs and setting a general

paradigm for the construction of efficient, extremely low-dimensional ROMs, we resort to

nonlinear dimensionality reduction techniques.

We build a nonlinear ROM to approximate uh(t;μ) ≈ ũh(t;μ) by

ũh(t;μ) = Ψ h(un(t;μ)), (8)

where Ψ h : R
n → R

Nh , Ψ h : sn �→ Ψ h(sn), n ≪ Nh , is a nonlinear, differentiable function;

similar approaches can be found in [37,40]. As a matter of fact, the solution manifold Sh is

approximated by a reduced nonlinear trial manifold

S̃n = {Ψ h(un(t;μ)) | un(t;μ) ∈ R
n, t ∈ [0, T ) and μ ∈ P ⊂ R

nμ} ⊂ R
Nh (9)

so that ũh : [0, T ) × P → S̃n . As before, un : [0, T ) × P → R
n denotes the vector-valued

function of two arguments representing the intrinsic coordinates of the ROM approximation.

Our goal is to set a ROM whose dimension n is as close as possible to the intrinsic dimension

nμ + 1 of the solution manifold Sh , i.e. n ≥ nμ + 1, in order to correctly capture the solution

of the dynamical system by containing the size of the approximation spaces [37].

To model the relationship between each couple (t,μ) �→ un(t,μ), and to describe the sys-

tem dynamics on the reduced nonlinear trial manifold S̃n in terms of the intrinsic coordinates,

we consider a nonlinear map under the form

un(t;μ) = Φn(t;μ), (10)

123



61 Page 8 of 36 Journal of Scientific Computing (2021) 87 :61

where Φn : [0, T ) × R
nμ → R

n is a differentiable, nonlinear function. No additional

assumptions such as, e.g., the (exact, or approximate) affine μ-dependence as in the RB

method, are required.

3 A Deep Learning-Based Reduced Order Model (DL-ROM)

We now detail the construction of the proposed nonlinear ROM. In this respect, we define the

functions Ψ h and Φn in (8) and (10) by means of DL algorithms, exploiting neural network

architectures. Besides their ability of effectively approximating nonlinear maps, learning

from data, and generalizing to unseen data, neural networks enable us to build non-intrusive,

purely data-driven ROMs. In particular, the construction of DL-ROMs only requires to access

the snapshot matrix and the corresponding parameter values, but not the high-dimensional

FOM operators appearing in (1). The DL-ROM technique is composed by two main blocks

responsible, respectively, for the reduced dynamics learning and the reduced trial manifold

learning (see Fig. 2). Hereon, we denote by Ntrain , Ntest and Nt the number of training-

parameter, testing-parameter, and time instances, respectively, and set Ns = Ntrain Nt . The

dimension of both the FOM solution and the ROM approximation is Nh , while n ≪ Nh

denotes the number of intrinsic coordinates.

For the description of the system dynamics on the reduced nonlinear trial manifold

(reduced dynamics learning), we employ a deep feedforward neural network (DFNN) with

L layers, that is, we define the function Φn in (10) as

Φn(t;μ, θ DF ) = φDF
n (t;μ, θ DF ), (11)

thus yielding the map

(t,μ) �→ un(t;μ, θ DF ) = φDF
n (t;μ, θ DF ),

where φDF
n takes the form (31), with t ∈ [0, T ), and results from the subsequent composition

of a nonlinear activation function, with a linear transformation of the input, L times. Here

θ DF denotes the vector of parameters of the DFNN.

Regarding instead the description of the reduced nonlinear trial manifold S̃n defined in

(9) (reduced trial manifold learning), we employ the decoder function of a convolutional

autoencoder (AE), that is, we define the function Ψ h appearing in (8) and (9) as

Ψ h(un(t;μ, θ DF ); θ D) = f D
h (un(t;μ, θ DF ); θ D), (12)

thus yielding the map

un(t;μ, θ DF ) �→ ũh(t;μ, θ) = f D
h (un(t;μ, θ DF ); θ D),

where f D
h results from the composition of several (possibly, convolutional) layers, overall

depending on the vector θ D of parameters of the decoder function.

Combining the two former stages, the DL-ROM approximation is given by

ũh(t;μ, θ) = f D
h (φDF

n (t;μ, θ DF ); θ D), (13)

where φDF
n (·; ·, θ DF ) : [0, T ) × R

nμ → R
n and f D

h (·; θ D) : R
n → R

Nh are defined as

in (11) and (12), respectively, and θ = (θ DF , θ D) are the parameters defining the neural

network. The architecture of DL-ROM is shown in Fig. 2.

Computing the ROM approximation (13) for any new value of μ ∈ P , at any given time,

requires evaluation of the map (t,μ) → ũh(t;μ, θ) at the testing stage, once the parameters
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Fig. 2 DL-ROM architecture (online stage, testing)

θ = (θ DF , θ D) have been determined, once and for all, during the training stage. The

training stage consists in solving an optimization problem (in the variable θ) after a set of

snapshots of the FOM have been computed. More precisely, provided the parameter matrix

M ∈ R
(nμ+1)×Ns defined as

M = [(t1,μ1)| . . . |(t Nt ,μ1)| . . . |(t1,μNtrain
)| . . . |(t Nt ,μNtrain

)], (14)

and the snapshot matrix S, we find the optimal parameters θ∗ solution of

J (θ) =
1

Ns

Ntrain∑

i=1

Nt∑

k=1

L(tk,μi ; θ) → min
θ

(15)

where

L(tk,μi ; θ) =
1

2
‖uh(tk;μi ) − ũh(tk;μi , θ)‖2

=
1

2
‖uh(tk;μi ) − f D

h (φDF
n (tk;μi , θ DF ); θ D)‖2.

(16)

To solve the optimization problem (15 and 16) we use the ADAM algorithm [33] which

is a stochastic gradient descent method [57] computing an adaptive approximation of the

first and second momentum of the gradients of the loss function. In particular, it computes

exponentially weighted moving averages of the gradients and of the squared gradients. We

set the starting learning rate to η = 10−4, the batch size to Nb = 20 and the maximum

number of epochs to Nepochs = 10000. We perform cross-validation, in order to tune the

hyperparameters of the DL-ROM, by splitting the data in training and validation sets, with

a proportion 8:2. Moreover, we implement an early-stopping regularization technique to

reduce overfitting [25], arresting the training if the loss does not decrease over 500 epochs.

As nonlinear activation function we employ the ELU function [18] defined as

σ(z) =
{

z z ≥ 0

exp(z) − 1 z < 0.

No activation function is applied at the last convolutional layer of the decoder neural network,

as usually done when dealing with AEs. The parameters, weights and biases, are initialized

through the He uniform initialization [28].

As we rely on a convolutional AE to define the function Ψ h , we also exploit the encoder

function

ũn(t;μ, θ E ) = f E
n (uh(t;μ); θ E ), (17)
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Fig. 3 DL-ROM architecture (offline stage, training and validation)

which maps each FOM solution associated to (t;μ) ∈ Col(M) provided as inputs to the feed-

forward neural network (11), onto a low-dimensional representation ũn(t;μ, θ E ) depending

on the parameters vector θ E defining the encoder function.

Indeed, the actual architecture of DL-ROM used only during the training and the validation

phases, but not during testing, is the one shown in Fig. 3.

In practice, we add to the DL-ROM architecture introduced above the encoder function

of the convolutional AE. This produces an additional term in the per-example loss function

(16), yielding the following optimization problem:

min
θ

J (θ) = min
θ

1

Ns

Ntrain∑

i=1

Nt∑

k=1

L(tk,μi ; θ), (18)

where

L(tk,μi ; θ) =
ωh

2
‖uh(tk;μi ) − ũh(tk;μi , θ DF , θ D)‖2

+
1 − ωh

2
‖ũn(tk;μi , θ E ) − un(tk;μi , θ DF )‖2

(19)

and θ = (θ E , θ DF , θ D), with ωh ∈ [0, 1]. The per-example loss function (19) combines

the reconstruction error (that is, the error between the FOM solution and the DL-ROM

approximation) and the error between the intrinsic coordinates and the output of the encoder.

Remark 1 Training the convolutional AE and the DFNN simultaneously by including in the

loss function the second term appearing in (19) allows to improve the overall DL-ROM

performance. Indeed, feeding the intrinsic coordinates (provided as outputs by the DFNN)

as inputs to the decoder function f D
h , enhances the model robustness, making the neural

network stable with respect to possible perturbations affecting the output of the DFNN un .

Moreover, training the neural networks all at once results in updates of the DFNN parameters

θ DF depending not only on the gradients of the error between the intrinsic coordinates and
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the encoder output, but also on the gradients of the reconstruction error. On the test cases

presented in this work, training the convolutional AE and the DFNN simultaneously impacts

both on the accuracy and computational times. For instance, as we will see in Test 3.1, training

the convolutional AE and the DFNN separately, which consists in training the convolutional

AE, projecting the FOM snapshots onto the latent space to generate training data for the

DFNN, and finally training the DFNN, entails a 15% more expensive training stage, however

yielding a higher error indicator ǫrel = 7.2×10−3 (compared to the value reported in Fig. 19).

3.1 Training and Testing Algorithms

Let us now detail the algorithms through which the training and testing phases of the networks

are performed. First of all, data normalization and standardization enhance the training phase

of the network by rescaling all the dataset values to a common frame. For this reason, the

inputs and the output of DL-ROM are rescaled in the range [0, 1] by applying an affine

transformation. In particular, provided the training parameter matrix M train ∈ R
(nμ+1)×Ns ,

we define

M i
max = max

j=1,...,Ns

M train
i j ∈ R

(nμ+1), M i
min = min

j=1,...,Ns

M train
i j ∈ R

(nμ+1), (20)

so that data are normalized by applying the following transformation

M train
i j �→

M train
i j − M i

max

M i
max − M i

min

, i = 1, . . . , nμ + 1, j = 1, . . . , Ns . (21)

Each feature of the training parameter matrix is rescaled according to its maximum and

minimum values. Regarding instead the training snapshot matrix Strain ∈ R
Nh×Ns , we define

Smax = max
i=1,...,Nh

max
j=1,...,Ns

Strain
i j , Smin = min

i=1,...,Nh

min
j=1,...,Ns

Strain
i j (22)

and apply transformation (21) by replacing M i
max , M i

min with Smax , Smin ∈ R, respectively,

that is. we use the same maximum and minimum values for all the features of the snapshot

matrix, as in [37,40]. Using the latter approach or employing each feature’s maximum and

minimum values, for the matrix Strain , does not lead to remarkable changes in the DL-

ROM performance. Transformation (21) is applied also to the validation and testing sets, but

considering as maximum and minimum the values computed over the training set. In order to

rescale the reconstructed solution to the original values, we apply the inverse transformation

of (21). We point out that the input of the encoder function, the FOM solution uh = uh(tk;μi )

for a given (time, parameter) instance (tk,μi ), is reshaped into a matrix. In particular, starting

from uh ∈ R
Nh , we apply the transformation uR

h =reshape(uh) where uR
h ∈ R

N
1/2
h ×N

1/2
h . If

Nh �= 4m , m ∈ N, the input uh is zero-padded [25]. For the sake of simplicity, we continue

to refer to the reshaped FOM solution as to uh . The inverse reshaping transformation is

applied to the output of the last convolutional layer in the decoder function, yielding the

ROM approximation. Note that applying one of the functions (11, 12, 17) to a matrix means

applying it row-wise. The reduced dimension is chosen through hyperparameters tuning, i.e.

we start from n = nμ + 1 and select a different value of n only if it leads to a significant

increase of the performance of the neural network.

The training algorithm referring to the DL-ROM architecture of Fig. 3 is reported in

Algorithm 1. During the training phase, the optimal parameters of the DL-ROM neural

network are found by solving the optimization problem (18 and 19) through back-propagation
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Algorithm 1 DL-ROM training

Input: Parameter matrix M ∈ R
(nμ+1)×Ns , snapshot matrix S ∈ R

Nh×Ns , training-validation splitting

fraction α, starting learning rate η, batch size Nb , maximum number of epochs Nepochs , early stopping

criterion, number of minibatches Nmb = (1 − α)Ns/Nb .

Output: Optimal model parameters θ∗ = (θ∗
E
, θ∗

DF
, θ∗

D
).

1: Randomly shuffle M and S

2: Split data in M = [M train , Mval ] and S = [Strain , Sval ] (Mval , Sval ∈ R
Nh×αNs )

3: Normalize data in M and S according to (20)-(21)-(22)

4: Randomly initialize θ0 = (θ0
E
, θ0

DF
, θ0

D
)

5: ne = 0

6: while (¬early-stopping and ne ≤ Nepochs ) do

7: for k = 1 : Nmb do

8: Sample a minibatch (Mbatch , Sbatch) ⊆ (M train , Strain)

9: Sbatch = reshape(Sbatch)

10: S̃batch
n (θ

Nmbne+k

E
) = f E

n (Sbatch ; θ
Nmbne+k

E
)

11: Sbatch
n (θ

Nmbne+k

DF
) = φDF

n (Mbatch ; θ
Nmbne+k

DF
)

12: S̃batch
h

(θ
Nmbne+k

DF
, θ

Nmbne+k

D
) = f D

h
(Sbatch

n (θ
Nmbne+k

DF
); θ

Nmbne+k

D
)

13: S̃batch
h

= reshape(S̃batch
h

)

14: Accumulate loss (19) on (Mbatch , Sbatch) and compute ∇̂θJ

15: θ Nmbne+k+1 = ADAM(η, ∇̂θJ , θ Nmbne+k )

16: end for

17: Repeat instructions 9-13 on (Mval , Sval ) with the updated weights θ Nmbne+k+1

18: Accumulate loss (19) on (Mval , Sval ) to evaluate early-stopping criterion

19: ne = ne + 1

20: end while

Algorithm 2 DL-ROM testing

Input: Testing parameter matrix M test ∈ R
(nμ+1)×(Ntest Nt ), optimal model parameters (θ∗

DF
, θ∗

D
).

Output: ROM approximation matrix S̃h ∈ R
Nh×(Ntest Nt ).

1: Load θ∗
DF

and θ∗
D

2: Sn(θ∗
DF

) = φDF
n (M test ; θ∗

DF
)

3: S̃h(θ∗
DF

, θ∗
D

) = f D
h

(Sn(θ∗
DF

); θ∗
D

)

4: S̃h = reshape(S̃h)

and ADAM algorithms. At testing time, the encoder function is instead discarded (the DL-

ROM architecture is the one shown in Fig. 2) and the testing algorithm is provided by

Algorithm 2. The testing phase corresponds to a forward step of the DL-ROM neural network

in Fig. 2. We remark that with S̃n we refer to a matrix collecting column-wise the output of

the encoder function of the convolutional AE (17) applied to each column of the snapshot

matrix S. In the same way, the columns of Sn collect the intrinsic coordinates, output of the

DFNN (12), for each sample in the parameter matrix M , and S̃h is a matrix whose columns

are the ROM approximations, outputs of the decoder function of the convolutional AE (13),

associated to the columns of Sn .

We implement the neural networks required by the DL-ROM technique by means of

the Tensorflow DL framework [1]; numerical simulations are performed on a workstation

equipped with an Nvidia GeForce GTX 1070 8 GB GPU.
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4 Numerical Results

In this section, we report the numerical results obtained by applying the proposed DL-

ROM technique to three parametrized, time-dependent PDE problems, namely (1) Burgers

equation, (2) a linear transport equation, and (3) a coupled PDE-ODE system arising from

cardiac electrophysiology; this latter is a system of time dependent, nonlinear equations,

whose solutions feature a traveling wave behavior. We deal with problems set in d = 1, 2

(spatial) dimensions. In the one-dimensional test cases we aim at assessing the numerical

accuracy of the DL-ROM approximation, comparing it to the solution provided by a POD-

Galerkin ROM, which features linear (possibly, piecewise linear) trial manifolds. In the

two-dimensional test case we instead focus on computational efficiency, by comparing the

computational times of DL-ROM to the ones entailed by a POD-Galerkin method.

To evaluate the performance of DL-ROM we rely on the loss function (19) and on the

following error indicator

ǫrel =
1

Ntest

Ntest∑

i=1

⎛
⎝

√∑Nt

k=1 ||uk
h(μtest,i ) − ũk

h(μtest,i )||2√∑Nt

k=1 ||uk
h(μtest,i )||2

⎞
⎠ . (23)

4.1 Test 1: Burgers Equation

Let us consider the parametrized one-dimensional nonlinear Burgers equation

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
−

1

μ

∂2u

∂x2
= 0 (x, t) ∈ (0, L) × (0, T ),

u(0, t) = 0 t ∈ (0, T ),

u(L, t) = 0 t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ (0, L),

(24)

where

u0(x) =
x

1 +
√

1/A0 exp(μx2/4)
,

with A0 = exp(μ/8), L = 1 and T = 2. System (24) has been discretized in space by means

of linear finite elements, with Nh = 256 grid points, and in time by means of the Backward

Euler scheme, with Nt = 100 time instances. The parameter space, to which belongs the

single (nμ = 1) parameter, is given by P = [100, 1000]. We consider Ntrain = 20 training-

parameter instances uniformly distributed over P and Ntest = 19 testing-parameter instances,

each of them corresponding to the midpoint between two consecutive training-parameter

instances.

The configuration of the DL-ROM neural network used for this test case is the following.

We choose a 12-layer DFNN equipped with 50 neurons per hidden layer and n neurons in

the output layer, where n corresponds to the dimension of the reduced trial manifold. The

architectures of the encoder and decoder functions are instead reported in Tables 1 and 2,

and are similar to the ones used in [37]. The total number of parameters (i.e., weights and

biases) of the neural network is equal to 393051.

Problem (24) does not represent a remarkably challenging task for linear ROMs, such as the

POD-Galerkin method. Indeed, by using the POD method on the snapshot matrix (the latter

built by collecting the solution of (24) for Ns = Ntrain Nt training-parameter instances), we

find that a linear trial manifold of dimension 20 is enough to capture more than the 99.99% of
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Table 1 Test 1: Attributes of convolutional and dense layers in the encoder f E
n

Layer Input Output Kernel #Of filters Stride Padding

Dimension Dimension Size

1 [16, 16, 1] [16, 16, 8] [5, 5] 8 1 SAME

2 [16, 16, 8] [8, 8, 16] [5, 5] 16 2 SAME

3 [8, 8, 16] [4, 4, 32] [5, 5] 32 2 SAME

4 [4, 4, 32] [2, 2, 64] [5, 5] 64 2 SAME

5 Nh 256

6 256 n

Table 2 Test 1: Attributes of dense and transposed convolutional layers in the decoder f D
h

Layer Input Output Kernel #Of filters Stride Padding

dimension dimension size

1 n 256

2 256 Nh

3 [2, 2, 64] [4, 4, 64] [5, 5] 64 2 SAME

4 [4, 4, 64] [8, 8, 32] [5, 5] 32 2 SAME

5 [8, 8, 32] [16, 16, 16] [5, 5] 16 2 SAME

6 [16, 16, 16] [16, 16, 1] [5, 5] 1 1 SAME

the energy of the system [48,59]. In order to assess the DL-ROM performance, we compute the

DL-ROM solution by fixing the dimension of the nonlinear trial manifold to n = 20. In Fig. 4

we compare the DL-ROM and the FOM solutions, with the optimal-POD reconstructions

as measured by the discrete 2-norm (that is, the projection of the FOM solution onto the

POD linear trial manifold of dimension 20 for t = 0.02 and the testing-parameter instance

μtest = 976.32).

The latter testing value has been selected as the instance of μ for which the reconstruction

task results to be the most difficult both for POD and DL-ROM, being the diffusion term in

(24) smaller and the solution closer to the one of a purely hyperbolic system. In particular,

for μtest = 976.32, employing the DL-ROM technique allows us to halve the error indicator

ǫrel associated to the optimal-POD reconstruction. Referring to Fig. 4, the DL-ROM approx-

imation is more accurate than the optimal-POD reconstruction, indeed it mostly fits the FOM

solution, even in correspondence of its maximum, as shown in Fig. 4. The same comparison

of Fig. 4, but with a reduced dimension n = 10, is shown in Fig. 5, where the difference in

terms of accuracy is even more remarkable.

Finally, in Fig. 6 we highlight the accuracy properties of both the DL-ROM and POD

techniques by displaying the behavior of the error indicator ǫrel , defined in (23), with respect

to the dimension n of the corresponding reduced trial manifold. For n < 20 the DL-ROM

approximation is more accurate than the one provided by POD, and only for n = 20 the

two techniques provide almost the same accuracy. The lack of convergence of the DL-ROM

technique, with respect to n, is related to the almost unchanged capacity of the neural network.

In particular, by increasing the dimension n, for example, from 2 to 20, the total number of

parameters of the DL-ROM neural network varies from 393051 to 403203, that is we are

increasing the total number of weights and biases by almost the 2.5%, thus resulting in a
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Fig. 4 Test 1: FOM, optimal-POD and DL-ROM solutions for the testing-parameter instance μtest = 976.32

at t = 0.02, with n = 20

Fig. 5 Test 1: FOM, optimal-POD and DL-ROM solutions for the testing-parameter instance μtest = 976.32

at t = 0.02, with n = 10

slightly enhancement of the network capacity. Moreover, similar trends of suitable indicators

of the error between the FOM and the ROM approximation with respect to the reduced

dimension can also be observed in [11,29].
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Fig. 6 Test 1: Error indicator ǫrel vs. n on the testing set

4.2 Test 2: Linear Transport equation

Test 2.1: n� = 1 Input Parameter

First, we consider the parametrized one-dimensional linear transport equation

⎧
⎨
⎩

∂u

∂t
+ μ

∂u

∂x
= 0 (x, t) ∈ R × (0, T ),

u(x, 0) = u0(x) x ∈ R,
(25)

whose solution is u(x, t) = u0(x − μt); here u0(x) = (1/
√

2πσ)e−x2/2σ and T = 1.

Here the parameter represents the velocity of the traveling wave, varying in the parameter

space P = [0.775, 1.25]; we set σ = 10−4. The dataset is built by uniformly sampling the

exact solution in the domain (0, L) × (0, T ), with L = 1, considering Nh = 256 degrees of

freedom in the space discretization and Nt = 200 time instances. We consider Ntrain = 20

training-parameter instances uniformly distributed over P and Ntest = 19 testing-parameter

instances such that μtest,i = (μtrain,i + μtrain,i+1)/2, for i = 1, . . . , Ntest . This test case,

and more in general hyperbolic problems, are examples in which the use of a linear approach

to ROM might yield a loss of accuracy. Indeed, the dimension of the linear trial manifold

must be very large, if compared to the dimension of the solution manifold, in order to capture

the variability of the FOM solution over the parameter space P .

Figure 7 shows the exact solution and the DL-ROM approximation for the testing-

parameter instance μtest = 0.8625; here, we set the dimension of the nonlinear trial manifold

to n = 2, equal to the dimension nμ +1 of the solution manifold. Moreover, in Fig. 7 we also

report the relative error ǫk ∈ R
Nh , for k = 1, . . . , Nt , associated to the selected μtest ∈ P ,

defined as

ǫk =
|uk

h(μtest ) − ũk
h(μtest )|√

1
Nt

∑Nt

k=1 ||uk
h(μtest )||2

, (26)

whose largest values are found in proximity of the largest variations of the solution.
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Fig. 7 Test 2.1: Exact solution (left), DL-ROM solution with n = 2 (center) and relative error ǫk (right) for

the testing-parameter instance μtest = 0.8625 in the space-time domain

Fig. 8 Test 2.1: Exact solution, DL-ROM approximation and optimal-POD reconstruction for the testing-

parameter instance μtest = 0.8625 at t = 0.125, 0.5 and 0.625

In Fig. 8 we report the exact solution and the DL-ROM approximation with n = 2,

at three particular time instances. To compare the performance of DL-ROM with a linear

ROM, we performed POD on the snapshot matrix and report, for the same testing-parameter

instance, the optimal-POD reconstruction as measured by the 2-norm (that is, the projection

of the exact solution onto the POD linear trial manifold). Still with n = 50 POD modes,

the optimal-POD reconstruction is affected by spurious oscillations. On the other hand, the

DL-ROM approximation with n = 2 yields an error indicator ǫrel = 8.74×10−3; to achieve

the same accuracy obtained through DL-ROM over the testing set, a linear trial manifold

should have dimension n = 90.

Figure 9 shows the behavior of the error indicator (23) with respect to the reduced

dimension n. By increasing the dimension n of the nonlinear trial manifold there is a mild

improvement of the DL-ROM performance, i.e. the error indicator slightly decreases; how-

ever, such an improvement is not significant, in general: in this range of n, indeed, the number

of parameters of the DL-ROM neural network slightly increases, thus implying almost the

same approximation capability.
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Fig. 9 Test 2.1: Error indicator ǫrel vs. n on the testing set

Table 3 Test 2.1: Starting

configuration of DL-ROM
Kernel size #Hidden layers #Neurons

[3, 3] 1 50

Fig. 10 Test 2.1: Impact of the kernel size (left), the number of hidden layers (center) and the number of

neurons (right) on the validation and testing loss

Remark 2 (Hyperparameters tuning). The hyperparameters of the DL-ROM neural network

are tuned by evaluating the loss function over the validation set and by setting each of them

equal to the value minimizing the generalization error on the validation set. In particular,

we show the tests performed to choose the size of the (transposed) convolutional kernels in

the (decoder) encoder function, the number of hidden layers in the DFNN and the number

of neurons for each hidden layer. The hyperparameters evaluation starts from the default

configuration in Table 3.

Then, the best values are found iteratively by inspecting the impact of the variation of a

single hyperparameter at a time on the validation loss. Once the best value of each hyperpa-

rameter is found, it replaces the default value from that point on. For each hyperparameter

the tuning is performed in a range of values for which the training of the network is compu-

tationally affordable.

In Fig. 10, we show the impact of the size of the convolutional kernels on the loss over

the validation and testing sets, the number of hidden layers in the DFNN and the number of
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Table 4 Test 2.1: Final

Configuration of DL-ROM
Kernel size #Hidden layers #Neurons

[7, 7] 4 200

Fig. 11 Test 2.2: Exact solution (left), DL-ROM solution with n = 3 (center) and relative error ǫk (right) for

the testing-parameter instance μtest = (0.154375, 0.6375) in the space-time domain

neurons in each hidden layer by varying the reduced dimension in order to find the best value

of such hyperparameter over n. The final configuration of the DL-ROM neural network is

the one provided in Table 4.

Test 2.2: n� = 2 Input Parameters

Here we consider again the parametrized one-dimensional transport equation (25), whose

exact solution is u(x, t) = u0(x − t;μ); however, we now take

u0(x;μ) =
{

0 if x < μ1,

μ2 if x ≥ μ1,
(27)

as initial datum, where μ = [μ1, μ2]T . The nμ = 2 parameters belong to the parameter space

P = Pμ1 × Pμ2 = [0.025, 0.25] × [0.5, 1]. We build the dataset by uniformly sampling the

exact solution in the domain (0, L) × (0, T ), with L = 1 and T = 1, and by considering

Nh = 256 grid points for the space discretization and Nt = 100 time instances. We collect,

both for μ1 and μ2, Ntrain = 21 training-parameter instances uniformly distributed in the

parameter space P and Ntest = 20 testing-parameter instances, selected as in the other test

cases. Equation (25), completed with the initial datum (27), represents a challenging test bed

for linear ROMs because of the difficulty to accurately reconstruct the jump discontinuity of

the exact solution as a linear combination of basis functions computed from the snapshots,

for a testing-parameter instance. The architecture of the DL-ROM neural network used here

is the one presented in the Test 2.1.

In Fig. 11 we show the exact solution and the DL-ROM approximation obtained by setting

n = 3 (thus equal to nμ + 1) for the testing-parameter instance μtest = (0.154375, 0.6375),

along with the relative error ǫk , defined in (26). Also in this case, the relative error is larger

close to the solution discontinuity.
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Fig. 12 Test 2.2: Exact, DL-ROM and optimal-POD solutions for the testing-parameter instance μtest =
(0.154375, 0.6375) at t = 0.245, 0.495 and 0.745

In Fig. 12 we report the DL-ROM approximation, the optimal-POD reconstruction, as

measured in the 2-norm, and the exact solution, for the time instances t = 0.245, 0.495 and

0.745, and the testing-parameter instance μtest = (0.154375, 0.6375). The dimension of

the reduced manifolds are n = 3 and n = 50 for the DL-ROM and the POD techniques,

respectively. Also in this case, even by setting the dimension of the linear manifold equal

to n = 50, the reconstructed solution presents spurious oscillations. Moreover, the optimal-

POD reconstruction is not able to fit the discontinuity of the exact solution in a sharp way.

These oscillations are significantly mitigated by the use of our DL-ROM technique, which

is able to fit the jump discontinuity accurately, as shown in Fig. 12.

Finally, we remark how the relative error with respect to the reduced dimension n behaves

as in the previous test case (see Fig. 13). The DL-ROM approximation yields an error indicator

ǫrel = 2.85 × 10−2 with n = 3; a similar accuracy would be achieved by POD only through

a linear trial manifold of dimension n = 165.

4.3 Test 3: Monodomain Equation

Test 3.1: d = 1 Spatial Dimension

We now consider a one-dimensional coupled PDE-ODE nonlinear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
∂u

∂t
− μ2 ∂2u

∂x2
+ u(u − 0.1)(u − 1) + w = 0 (x, t) ∈ (0, L) × (0, T ),

dw

dt
+ (γw − βu) = 0 (x, t) ∈ (0, L) × (0, T ),

∂u

∂x
(0, t) = 50000t3e−15t t ∈ (0, T ),

∂u

∂x
(L, t) = 0 t ∈ (0, T ),

u(x, 0) = 0 w(x, 0) = 0 x ∈ (0, L),

(28)

where L = 1, T = 2,γ = 2 andβ = 0.5; the parameterμbelongs to the parameter spaceP =
5 · [10−3, 10−2]. This system consists in a parametrized version of the Monodomain equation

coupled with the FitzHugh-Nagumo cellular model, describing the excitation-relaxation of
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Fig. 13 Test 2.2: Error indicator ǫrel vs. n on the testing set

Fig. 14 Test 3.1: FOM solutions for different testing-parameter instances

the cell membrane in the cardiac tissue [21,42]. In such a model, the ionic current is a cubic

function of the electrical potential u and linear in the recovery variable w. System (28) has

been discretized in space through linear finite elements, by considering Nh = 256 grid points

and using a one-step, semi-implicit, first order scheme for time discretization; see, e.g., [45]1.

The solution of the former problem consists in a μ-dependent traveling wave, which exhibits

sharper and sharper fronts as μ gets smaller (see Fig. 14).

We consider Ntrain = 20 training-parameter instances uniformly distributed in the param-

eter space P and Ntest = 19 testing-parameter instances, each of them corresponding to the

midpoint between two consecutive training parameter instances. Figure 15 shows the FOM

solution and the DL-ROM one obtained by setting n = 2, the dimension of the solution

manifold, for the testing-parameter instance μtest = 0.0062. We also report in Fig. 15 the

relative error ǫk (26), which takes larger values close to the points where the FOM solution

1 The Matlab library used to compute snapshots and to implement the (local) POD-Galerkin method for

problem (28) is available at https://github.com/StefanoPagani/LocalROM
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Fig. 15 Test 3.1: FOM solution (left), DL-ROM solution with n = 2 (center) and relative error ǫk (right) for

the testing-parameter instance μtest = 0.0062 in the space-time domain

Table 5 Test 3: Maximum

number of basis functions for the

POD-Galerkin ROM

Nc = 1 Nc = 2 Nc = 4 Nc = 8 Nc = 16 Nc = 32

66 68 55 34 26 20

shows steeper gradients. The accuracy obtained by our DL-ROM technique with n = 2, and

measured by the error indicator on the testing set, is ǫrel = 3.42 × 10−3.

In order to assess the performance of the DL-ROM against a linear ROM, we consider

a POD-Galerkin ROM exploiting local reduced bases; these latter are obtained by applying

POD to a set of clusters which partition the original snapshot set. In particular, we employ

the k-means clustering algorithm [38], an unsupervised statistical learning technique for

finding clusters and cluster centers in an unlabeled dataset, to partition into Nc clusters the

snapshots, i.e. the columns of S, such that those within each cluster are more closely related

to one another than elements assigned to different clusters. In Table 5 we report the maximum

number of basis functions among all the clusters, i.e. the dimension of the largest linear trial

manifold, required by the (local) POD-Galerkin ROM, in order to achieve the same accuracy

obtained through a DL-ROM. By increasing the number Nc of clusters, the dimension of the

largest linear trial subspace decreases; this does not hold as long as the number of clusters is

larger than Nc = 32. Indeed, the dimension of some linear subspaces become so small that

the error might increase compared to the one obtained with fewer clusters.

In particular, in Figs. 16 and 17 the POD-Galerkin ROM approximations obtained by

considering n = 2 and n = 66 basis functions, and Nc = 16 and Nc = 32, where the

largest local linear trial manifold dimension is reported in Table 5, are shown. In Fig. 18 we

compare the FOM solution for μtest = 0.0157 at t = 0.4962, 0.9975 and 1.4987, with the

DL-ROM approximation obtained for n = 2, and the POD-Galerkin approximation with a

global (Nc = 1) linear trial manifold, of dimension n = 2, 20 and 66, respectively.

The convergence of the error indicator (23) as a function of the reduced dimension n is

shown in Fig. 19. For the (local) POD-Galerkin ROM, by increasing the dimension of the

largest linear trial manifold, the error indicator decreases; this also occurs for the DL-ROM

technique for n ≤ 20, although the error decay in this latter case is almost negligible, for

the same reason pointed out in Test 2.1. By considering larger values of n, e.g. n = 40,

overfitting might then occur, meaning that the neural network model is too complex with
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Fig. 16 Test 3.1: POD-Galerkin ROM solutions for the testing parameter instance μtest = 0.0062 with n = 2

(left) and n = 66 (right) in the space-time domain

Fig. 17 Test 3.1: POD-Galerkin ROM solutions for the testing parameter instance μtest = 0.0062 with

Nc = 16 (left) and Nc = 32 (right) in the space-time domain

Fig. 18 Test 3.1: FOM and DL-ROM solutions (left) and FOM and POD-Galerkin ROM solutions (right) for

the testing-parameter instance μtest = 0.0157 at t = 0.4962, 0.9975 and 1.4987
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Fig. 19 Test 3.1: Error indicator ǫrel vs. n on the testing set

Fig. 20 Test 3.1: Loss and error indicator ǫrel on the testing set vs. number of training-parameter instances of

the parameter μ

respect to the amount of data provided to it during the training phase. This might explain the

slight increase of the error indicator ǫrel for n = 40.

Finally, in Fig. 20 we report the behavior of the loss function and of the error indicator

ǫrel with respect to the number of training-parameter instances, i.e. the size of the training

dataset. By providing more data to the DL-ROM neural network, its approximation capability

increases, thus yielding a decrease in the generalization error and the error indicator. In

particular, the loss decay with respect to the number of training-parameter instances Ntrain is

of about order 1/N 3
train , while the decay of the error indicator (23) is of about order 1/N 2

train .
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Fig. 21 Test 3.1: Impact of the kernel size (left), the number of hidden layers (center) and the number of

neurons (right) on the validation and testing loss

Table 6 Test 3.1: Final

configuration of DL-ROM
Kernel size #Hidden layers #Neurons

[7, 7] 1 200

Remark 3 (Hyperparameters tuning). In order to perform hyperparameters tuning we follow

the same procedure used for Test 2.1. We start from the default configuration and we tune the

size of the (transposed) convolutional kernels in the (decoder) encoder function, the number

of hidden layers in the feedforward neural network and the number of neurons for each hidden

layer. In Fig. 21 we show the impact of the hyperparameters on the validation and testing

losses. The final configuration of the DL-ROM neural network is the one provided in Table 6.

Remark 4 (Sensitivity with respect to the weight ωh). For all the test cases, we set the param-

eter ωh in the loss function (19) equal to ωh = 1/2. To justify this choice, we performed

a sensitivity analysis for problem (28) as shown in Fig. 22. For extreme values of ωh , the

error indicator (23) worsens of about one order of magnitude. In particular, the case ωh = 1

(that is, not considering the contribution of the encoder function f E
n in the loss) yields worse

DL-ROM performance; similarly, the case ωh = 0 would neglect the reconstruction error

(that is, the first term in the per-example loss function (19)) – this is why the error indicator

is large for ωh = 0.1. All the values of ωh in the range [0.2, 0.9] do not yield significant

differences in terms of error indicator, so we decided to set ωh = 1/2.

Test 3.2: d = 2 Spatial Dimensions

We now consider a two-dimensional coupled PDE-ODE nonlinear system, in which the

Monodomain equation is coupled to the Aliev-Panfilov ionic model [3],
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− div(D(μ)∇u)+
K u(u − a)(u − 1) + uw = Iapp(x, t) (x, t) ∈ Ω × (0, T ),

∂w

∂t
+

(
ǫ0 +

c1w

c2 + u

)
(−w − K u(u − b − 1)) = 0 (x, t) ∈ Ω × (0, T ),

∇u · n = 0 (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = 0, w(x, 0) = 0 x ∈ Ω.

(29)

Here, we consider a square domain Ω = (0, 10) cm and two (nμ = 2) parameters, consisting

in the electric conductivities in the longitudinal and the transversal directions to the fibers,
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Fig. 22 Test 3.1: Error indicator ǫrel vs. ωh

i.e., the conductivity tensor D(x;μ) takes the form

D(x;μ) = μ2 I + (μ1 − μ2)f0(x) ⊗ f0(x), (30)

where f0 = (1, 0)T and the parameters space is P = 12.9 · [0.02, 0.2] × 12.9 ·
[0.01, 0.1]cm2/ms. The applied current is defined as

Iapp(x, t) =
C

2πα
exp

(
−

||x||2

2β

)
1[0,t](t),

where C = 100 mA, α = 1, β = 1 cm2 and t = 2 ms. The parameters of the Aliev-Panfilov

ionic model are set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3,

see, e.g., [24]. The equations have been discretized in space through linear finite elements by

considering Nh = 4096 grid points. For the time discretization and the treatment of nonlinear

terms, we use a one-step, semi-implicit, first order scheme (see [45] for further details) by

considering a time step �t = 0.1 ms over the interval (0, T ), with T = 400 ms.

For the training phase, we uniformly sample Nt = 1000 time instances in the interval

(0, T ) and consider Ntrain = 25 training-parameter, i.e.μtrain = 12.9·(0.02+i0.045, 0.01+
j0.0225) with i, j = 0, . . . , 4. For the testing phase, Ntest = 16 testing-parameter instances

have been considered, each of them given by μtest = 12.9 · (0.0425 + i0.045, 0.0212 +
j0.0225) with i, j = 0, . . . , 3. The maximum number of epochs is Nepochs = 10000, the

batch size is Nb = 40 and, regarding the early-stopping criterion, we stop the training if the

loss function does not decrease along 500 epochs.

In Fig. 23 we show the FOM and the DL-ROM solutions, the latter obtained with n = 3,

for the testing-parameter instances μtest = 12.9 · (0.088, 0.066) cm2/ms and μtest = 12.9 ·
(0.178, 0.066) cm2/ms, respectively, at t = 47.7 ms, together with the relative error ǫk . We

remark the variability of the solution of (29) over P , characterized by the propagation of a

sharp front across the domain, depending on the parameter values.
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Fig. 23 Test 3.2: FOM solution (left), DL-ROM solution with n = 3 (center) and relative error ǫk (right) for the

testing-parameter instances μtest = 12.9 · (0.088, 0.066) cm2/ms (above) and μtest = 12.9 · (0.178, 0.066)

cm2/ms (bottom) at t = 47.4 ms

Table 7 Test 3.2: FOM, POD-Galerkin ROM and DL-ROM computational times along with FOM and reduced

trial manifold(s) dimensions

Time [s] FOM/ROM dimensions

FOM 243 Nh = 4096

DL-ROM 0.45 (1.8) n = 3

POD-Galerkin ROM (Nc = 1) 14 n = 87

POD-Galerkin ROM (Nc = 2) 11 n = 58, 49

POD-Galerkin ROM (Nc = 4) 9 n = 44, 33, 31, 29

POD-Galerkin ROM (Nc = 6) 8 n = 38, 33, 27, 26, 21, 6

POD-Galerkin ROM (Nc = 8) 8 n = 30, 25, 24, 22, 21, 20, 19, 6

Finally, we focus on the performance of our DL-ROM technique, in terms of computational

efficiency. In Table 7 we compare the computational times2 required to compute the solution

for a randomly sampled testing-parameter instance, over the entire time interval (0, T ), by

the FOM, the (local) POD-Galerkin ROM (for different values of Nc) and the DL-ROM,

keeping for the three models the same degree of accuracy achieved by DL-ROM, i.e. ǫrel =
5.87 × 10−3.

We emphasize that the DL-ROM solution can be queried at any desired time instance

t̄ ∈ [0, T ], without involving the solution of a dynamic system to determine its evolution up

to t̄ , unlike the FOM or the POD-Galerkin ROM. This latter still requires solving for whole

range of discrete times in the interval [0, t̄], with time-step size �t dependent on the desired

level of accuracy. In other words, when using the DL-ROM we are free to choose a larger time

resolution, to reach the same degree of accuracy, with respect to the time stepping required

2 Here we performed our simulations on a full 64 GB node (20 Intel® Xeon® E5-2640 v4 2.4GHz cores) of

the HPC cluster available at MOX, Politecnico di Milano.
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Fig. 24 Test 3.2: FOM and DL-ROM solutions for the testing-parameter instance μtest = 12.9·(0.088, 0.066)

cm2/ms at P1 and P2 (left). FOM, (local) POD-Galerkin ROM and DL-ROM computational times to compute

ũh(t̄) vs. t̄ averaged over the testing set (right)

in the solution of the POD-Galerkin ROM dynamical system. Indeed, the underlying nature

of the FOM in the test case at hand implies very small time step sizes when both solving the

POD-Galerkin ROM and sampling the FOM solution for the snapshot matrix assembling.

This feature allows to drastically reduce the testing computational time of DL-ROM with

respect to the ones required to compute the FOM or the POD-Galerkin ROM solutions at a

given time.

The speed up introduced by the DL-ROM technique with respect to the FOM is about 138

times, provided that we evaluate the solution at Nt = 4000 time steps as in the FOM; the

speedup increases to 536 times if the DL-ROM approximation is computed instead, ensuring

the same degree of accuracy, at Nt = 1000 time steps. Compared to the use of the local

POD-Galerkin ROM in the best case (i.e., with Nc = 6 or 8 local bases) leads to almost 30

times faster computations.

The computational gain is even more remarkable regarding the evaluation of the solution

at the final time t̄ = T : the DL-ROM directly provides it, as t̄ is an input of the neural network,

whereas a POD-Galerkin ROM still require solving for hundreds or thousands of discrete time

instances. In Fig. 24 (right) we show the DL-ROM, FOM and POD-Galerkin ROM CPU time

needed to compute the approximated solution at t̄ , for t̄ = 1, 10, 100 and 400 ms averaged over

the testing set. We perform the training phase of the POD-Galerkin ROM over the original

time interval (0, T ) ms and we report the results for Nc = 8 local bases, for which the smallest

computational time is obtained in Table 7. The DL-ROM CPU time to compute ũh(t̄) does

not vary over t̄ and by choosing t̄ = T ms the DL-ROM speed ups are equal to 7.1×104 and

2.4 × 103 with respect to the FOM and the POD-Galerkin ROM with Nc = 8 local bases3.

In Fig. 24 (left) we also show the comparison between the FOM solution and the DL-ROM

approximation (with n = 3) computed at P1 = (9.52, 4.76) cm and P2 = (1.9, 1.11) cm,

for the testing-parameter instance μtest = 12.9 · (0.132, 0.066) cm2/ms. The time evolution

of the FOM solution is sharply captured by our DL-ROM technique at both locations.

Last but not least, the weaker constraint on time stepping used in the DL-ROM also has a

positive impact on the size of the dataset used for its training phase. For the case at hand, (i)

we can train the DL-ROM on a snapshot matrix containing only 25% of the snapshots used

3 We did not investigate the case Nc > 8 due to the fact that the employing Nc = 6 or Nc = 8 clusters lead

to the same testing computational time.
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Fig. 25 Test 3.2: FOM solution (left), DL-ROM solution with n = 3 (center) and relative error ǫk (right) for

the testing-parameter instance μtest = 12.9 · (0.088, 0.066) cm2/ms at t = 47.4 ms on an unstructured mesh.

The mesh elements have been highlighted

to train the POD-Galerkin ROM – taking Nt = 1000 instead of 4000 as in the POD-Galerkin

case.

Remark 5 (Unstructured mesh). The FOM solution needs to be reshaped before entering the

encoder function. However, the fact that neighboring cells do not always have close cell

indices on unstructured meshes does not affect the DL-ROM performance. To show this fact,

we consider the previous test case on an unstructured mesh featuring Nh = 3964 degrees

of freedom. In order to recover a FOM dimension Nh = 4m , m ∈ N, we zero-padded the

snapshot matrix. In Fig. 25 we show the FOM and the DL-ROM solutions, the latter obtained

with n = 3, for the testing-parameter instance μtest = 12.9 · (0.088, 0.066) cm2/ms at

t = 47.7 ms, and the relative error ǫk . Note that larger errors no longer occur at locations

where the solution exhibits larger gradients. Moreover, almost the same number of epochs is

required on unstructured and structured meshes, and the same accuracy is reached – for the

case of Fig. 25, the error indicator is ǫrel = 4.84 × 10−3.

5 Conclusions

In this work we proposed a novel technique to build low-dimensional ROMs by exploiting

DL algorithms to overcome typical computational bottlenecks shown by classical, linear

projection-based ROM techniques when dealing with problems featuring coherent structures

propagating over time. Our DL-ROM technique allows approximating both the solution man-

ifold of a given parametrized nonlinear, time-dependent PDE by means of a low-dimensional,

nonlinear trial manifold, and the nonlinear dynamics of the generalized coordinates on such

reduced trial manifold, as a function of the time coordinate and the parameters. Both (1) the

nonlinear trial manifold and (2) the reduced dynamics are learnt in a non-intrusive way; the

former is learnt by means of the decoder function of a convolutional AE neural network,

whereas the latter through a DFNN, and the encoder function of the convolutional AE. The

numerical results obtained for three different test cases show that DL-ROMs provide suffi-

ciently accurate solutions to the parametrized PDEs involving a low-dimensional solution

manifold whose dimension is equal to (or slightly larger than) the solution manifold nμ + 1.

The proposed DL-ROM outperforms linear ROMs such as the RB method (relying on a global

POD basis), as well as nonlinear approaches exploiting local POD bases, when applied both

to (1) problems which are challenging for linear ROMs, such as the linear transport equation

or nonlinear diffusion-reaction PDEs coupled to ODEs, and (2) problems which are more
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tractable using a linear ROM, like Burgers equation, however featuring POD bases with much

higher dimension.

Regarding numerical accuracy, DL-ROMs provide approximations that are orders of

magnitude more accurate than the ones provided by linear ROMs, when keeping the same

dimension. Error decrease is moderate when considering low-dimensional spaces of increas-

ing dimensions, thus making, in the numerical tests considered, the accuracy of both

approximations comparable when dealing with O(102) POD basis functions. Regarding com-

putational efficiency, we have numerically assessed the computational speed up provided by

DL-ROMs compared to POD-Galerkin ROMs with local bases, obtaining a remarkable com-

putational gain when dealing with a parametrized coupled nonlinear PDE-ODE system on

a two-dimensional domain. This is motivated by the fact that DL-ROMs allow us to build

an approximated manifold by keeping its dimension extremely small and the use of a larger

time resolution than the POD-Galerkin ROM, thus decreasing the size of the training snap-

shot matrix and discarding solutions whose variation in time is not significant for preserving

the same degree of accuracy. Moreover, DL-ROMs are also able to directly approximate the

solution at any given time instance, without computing the whole dynamics until that time, as

it occurs instead with POD-Galerkin ROMs. In addition, compared to these latter, DL-ROMs

completely avoids the use of (very often, expensive) hyper-reduction techniques.

Numerical results show that DL-ROMs allow us to generate approximation spaces of

dimension close to the intrinsic dimension of the solution manifold, by providing remarkable

improvements in terms of computational efficiency when dealing with parametrized nonlinear

time-dependent PDEs defined in d ≥ 2 dimensional domains, yet at the same degree of

accuracy. This is a fundamental step toward the application of DL-ROMs to nonlinear PDEs

whose high-fidelity discretization involves a larger number Nh of degrees of freedom, a task

that represents the object of our ongoing research activities.
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A Basic Concepts of Deep Learning

Deep learning (DL) techniques have gained great attention in recent years in several areas like

computer vision [7,34], natural language processing [19,60] and speech recognition [13,17],

due to their ability to discover pattern and extract features from massive datasets, in order

to make predictions without providing hand-crafted features. In this section we provide an

overview of those deep-learning models which the proposed DL-ROM technique relies on.
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Fig. 26 Feedforward neural network

A.1 Deep Feedforward Neural Network

A remarkable example of DL model is the deep feedforward neural network (DFNN). A

DFNN is a mathematical function modeling the relationship between a set of input values

and some output values [25]. This mathematical function is obtained through composition of

simpler (nonlinear) functions, or layers, and allows to learn complex hierarchies of features.

More formally, provided an input x ∈ R
N0 a DFNN with L layers takes the form

φDF : (x; θ DF ) �→ φL(·; θ L) ◦ φL−1(·; θ L−1) ◦ . . . ◦ φ1(x; θ1), (31)

where φi (·; θ i ) : R
Ni −1 �→ R

Ni , i = 1, . . . , L , refers to the activation function applied at

layer i of the DFNN and θ i = (Wi , bi ), with Wi ∈ R
Ni ×Ni−1 and bi ∈ R

Ni , i = 1, . . . , L ,

are the weights and the bias of layer i such that θ DF = (θ1, . . . , θ L). We usually refer to the

collection of all weights and biases as to the parameters vector. Each layer of the network

corresponds to a matrix whose values are computed by applying a linear transformation to the

previous layer followed by the application of a nonlinear activation function. In particular,

referring to Fig. 26, y0 = x ∈ R
N0 is the input layer, yL = φDF (x; θ DF ) ∈ R

NL is the

output layer, and each hidden layer yi ∈ R
Ni , i = 1, . . . , L − 1, takes the form

yi = φi (Wi yi−1 + bi ).

Given a set of M input-output pair observations {(xi , yi )}M
i=1 and considering a supervised

learning paradigm [25], the learning task consists in finding the optimal parameters vector

θ∗
DF by solving the optimization problem

min
θ DF

J (θ DF ) = min
θ DF

1

M

M∑

i=1

L(yi , yi
L ; θ DF ) (32)

where J is the loss (or cost) function, and L is the per-example loss function, measuring the

mismatch between the desired observed output yi and the approximated one yi
L . Problem (32)

is usually solved by means of the gradient descent method exploiting the back-propagation

algorithm [58] to compute the derivatives of the loss function with respect to parameters. In

particular, the gradient descent method requires to evaluate

∇θ DF
J (θ DF ) =

1

M

M∑

i=1

∇θ DF
L(yi , yi

L ; θ DF ), (33)
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Fig. 27 Computation of the elements of a feature map in a convolutional layer

a task which might easily become prohibitive when the size M of the training dataset is very

large, thus causing a single step of the gradient descent method to require a huge amount of

time. The stochastic gradient descent (SGD) method allows to reduce the computational cost

associated to the computation of the gradient of the loss function, by exploiting the fact that

(33) can be considered as an expectation over the entire training dataset. Such an expectation

can be approximated using a small set (or minibatch) of samples; hence, at each iteration the

SGD method samples a minibatch of m < M data points, drawn (e.g., uniformly) from the

training dataset [25], and approximates the gradient (33) of the loss function by

∇̂θ DF
J (θ DF ) =

1

m

m∑

i=1

∇θ DF
L(yi , yi

L ; θ DF ).

A.2 Convolutional Neural Network

Convolutional neural networks (CNNs) [36] are the standard neural network architecture in

computer vision tasks, since they are well-suited to high-dimensional and spatially distributed

data like images. This is due to the local approach of convolutional layers which enables them

to exploit spatial correlations among pixels in order to extract low-level features of the input

to carry out the task. The main ingredients of a convolutional layer are convolutional kernels,

or filters, which consist in tensors of smaller dimensions with respect to the input. Each

element of a feature map is obtained by sliding the kernel over the image and by computing

the discrete convolution, as shown in Fig. 27.

Considering a 3-dimensional input Y0 = X ∈ R
N 1

0 ×N 2
0 ×N 3

0 and a bank of Ki convolutional

filters in layer i denoted as W k
i ∈ R

n1
i ×n2

i ×n3
i , i = 1, . . . , L and k = 1, . . . , Ki , the k-th

feature map is computed as

Y k
i = φi (W k

i ∗ Yi−1 + bk
i ).

where Yi ∈ R
N 1

i ×N 2
i ×N 3

i (or, equivalently, Y k
i ∈ R

N 1
i ×N 2

i ) with N 1
i and N 2

i depending on n1
i

and n2
i , respectively, the padding and the striding strategies, and N 3

i = Ki .

Convolutional layers are characterized by shared parameters, that is, weights are shared

by all the elements (neurons) in a particular feature map, and local connectivity, that is,

each neuron in a feature map is connected only to a local region of the input. Parameter

sharing allows convolutional layers to enjoy another property: translation invariance or, more

precisely, translation equivariance. This means that if the input varies, the output changes

accordingly [25]. In particular, if we apply a transformation to the input Y0 and then compute
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Fig. 28 Autoencoder neural

network

the convolution, the result is the same we would obtain by computing the convolution and

then applying the transformation to the output. The two properties above increase efficiency

of CNNs, both in terms of memory and computational costs, with respect to DFNNs, thus

making them preferable to the latter when dealing with extremely high-dimensional data.

A.3 Autoencoder Neural Network

Autoencoders (AEs) [12,30] are a particular type of feedforward neural networks aiming at

learning, under suitable constraints, the identity function

f AE (·; θ E , θ D) : xh �→ x̃h with x̃h ≃ xh . (34)

Internally, an autoencoder has a hidden layer consisting in a code used to represent the input.

We focus on undercomplete autoencoders [25] where the constraint imposed is the reduction

of the dimension of the code with respect to the input and output dimension.

By considering the input y0 = xh ∈ R
Nh and the output yL = x̃h ∈ R

Nh , an autoencoder

is composed by two main parts (see Fig. 28)

– The encoder function f E
n (·; θ E ) : xh �→ x̃n = f E

n (xh; θ E ), where f E
n (·; θ E ) : R

Nh → R
n

and n ≪ Nh , mapping the high-dimensional input xh onto the low-dimensional code x̃n .

The encoder function depends on a vector of parameters θ E ∈ R
NE collecting all the

weights and biases specifying the function itself;

– The decoder function f D
h (·; θ D) : x̃n �→ x̃h = f D

h (x̃n; θ D), where f D
h (·; θ D) : R

n →
R

Nh , mapping the code x̃n to an approximation of the original high-dimensional input x̃h .

Similarly to the encoder function, the decoder function depends on a vector of parameters

θ D ∈ R
ND collecting all the weights and biases specifying the function itself.

The autoencoder is then defined as

f AE (·; θ E , θ D) : xh �→ x̃h = f D
h (f E

n (xh; θ E ); θ D).

Autoencoder learning lays within the unsupervised learning paradigm [25] since its goal is

to reconstruct the input being the target output an approximation of the input. An autoencoder

not only learns a low-dimensional representation of the high-dimensional input but also learns

how to reconstruct the input from the code through the encoder and the decoder functions.

When dealing with large inputs, as the ones arising from the discretization of system (1),

the use of a feedforward autoencoder may become prohibitive as the number of parameters
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(weights and biases) required may be very large. As pointed out in A.2, parameter sharing and

local connectivity allow to reduce the numbers of parameters of the network and the number

of associated computations, both in the forward and in the backward pass, hence the idea of

relying on convolutional autoencoders for the sake of building our DL-ROM technique.
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