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Abstract

Hole transport material (HTM) plays an important role in the efficiency and stability of

perovskite solar cells (PSCs). Spiro-MeOTAD, the commonly used HTM, is costly and can be

easily degraded by heat and moisture, thus offering hindrance to commercialize PSCs. There is

dire need to find an alternate inorganic and stable HTM to exploit PSCs with their maximum

capability. In this paper, a comprehensive device simulation is used to study various possible

parameters that can influence the performance of perovskite solar cell with CuI as HTM. These

include the effect of doping density, defect density and thickness of absorber layer, along with

the influence of diffusion length of carriers as well as electron affinity of electron transport layer

(ETM) and HTM on the performance of PSCs. In addition, hole mobility and doping density of

HTM is also investigated. CuI is a p-type inorganic material with low cost and relatively high

stability. It is found that concentration of dopant in absorber layer and HTM, the electron affinity

of HTM and ETM affect the performance of solar cell minutely, while cell performance

improves greatly with the reduction of defect density. Upon optimization of parameters, power

conversion efficiency for this device is found to be 21.32%. The result shows that lead-based

PSC with CuI as HTM is an efficient system. Enhancing the stability and reduction of defect

density are critical factors for future research. These factors can be improved by better

fabrication process and proper encapsulation of solar cell.

Keywords: perovskite solar cells, inorganic HTM, device simulation, defect density, copper

iodide

(Some figures may appear in colour only in the online journal)

1. Introduction

Lead-based perovskite solar cells (PSCs) have achieved

remarkable repute due to their simpler fabrication techniques

and lower cost as compared to traditional silicon solar cells

[1]. For the last few years, power conversion efficiency (PCE)

of lead-based PSCs has been significantly improved from

3.8% in 2009 to 22% in 2016 [2]. However, these power

conversion efficiencies are still low as compared to inorganic

solar cells such as copper indium gallium diselenide (CIGS,

22.6%), crystalline silicon (c-Si, 25.7%), gallium arsenide

(GaAs, 28.8%) and cadmium telluride (CdTe, 22.1%). Methyl

ammonium lead iodide (CH3NH3PbI3) with a band gap of

1.50 eV that covers absorption within wide range of visible

spectrum was reported by various experimental and theor-

etical studies [3]. Generally, PSCs consist of hole transporting

layer, electron transporting layer and absorber layer. The role

of each layer in PSCs should be understood in order to

improve the device performance [4].

The commonly used hole transport material (HTM) is

organic in nature and is known as spiro-MeOTAD [5].

There are two typical additives, 4-tert-butylpyridine (TBP) and

bis(trifluoromethane) sulfonamide lithium salt (Li-TFSI),

are used to improve the conductivity and hole mobility
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of spiro-MeOTAD. While promoting polarity in spiro-

MeOTAD, unfortunately, TBP dissolves the absorber material

[6]. At the same time, Li-TFSI promotes the oxidation process

in spiro-MeOTAD which again destroys the absorber layer

[7, 8]. In addition to these drawbacks, spiro-MeOTAD is very

expensive (even more expensive than absorber material) due to

its multistep synthetic approach and time consuming purifica-

tion process [9]. Spiro-MeoTAD based PSCs has achieved

PCE from 6% [10] to almost 20% [11], but retained only 20%

of the initial PCE after 10 days due to its sensitivity to moisture

and oxygen [12]. Besides spiro-MeOTAD, other commonly

used organic HTMs in PSCs include PEDOT: PSS, P3HT and

PTAA. PEDOT: PSS based PSCs has achieved PCE from

3.9% [13] to 18.1% [14], but retained only 27% of its initial

PCE after 14 days [15]. PEDOT: PSS suffers poor chemical

stability, owing to that its hygroscopic nature lacks the ability

to block electrons, thus requiring extra layer for efficient per-

formance. In addition, PEDOT: PSS corrodes the substrates

due to its acidic nature [16]. P3HT based PSCs has achieved

PCE from 6.45% [17] to 15.3% in composite form with single

walled carbon nanotubes and degraded 5% in 60 s under

thermal stressing [18]. Furthermore, in order to avoid direct

contact of P3HT with back metal contact, a blocking layer

which is unable to transport charges such as poly methyl

methacrylate (PMMA) was used [19]. PTAA based PSCs has

achieved the PCE from 12% [20] to 20.2% [21] and degraded

only 5% in 20 days, showing the better performance than

PEDOT: PSS [22]. Organic HTMs guaranteeing high PCE of

PSCs, but the necessity of external doping make them more

prone to degradation over time under humidity. Furthermore,

manufacturing cost plays an important role in commercializing

PSC, while most of organic HTMs are too expensive. High

efficiency, long term stability, and low-cost are the main fac-

tors plays decisive role in the success of a photovoltaic tech-

nology [23, 24]. Therefore, it is dire need to replace costly and

unstable HTMs with a cost effective and stable HTM having

high hole mobility with ease of synthesis. Inorganic p-type

semi-conductor such as copper iodide is considered to be an

alternative of organic HTMs [25]. Moreover, CuI based PSCs

retained 90% of its initial PCE after 14 days storage in air [15]

and retained 92% of its initial PCE after 90 days storage in dark

[26]. Table 1 shows the cost, PCE and Voc of various organic

HTMs compared with CuI. It is obviously shown in table 1 that

CuI is a very low cost candidate HTM for efficient perovskite

solar cell. CuI exhibited electrical conductivity two orders of

magnitude higher than spiro-MeOTAD that allowed appreci-

ably higher fill factor (FF) as determined by impedance

spectroscopy [27]. In addition to high conductivity, low cost,

hydrophobic nature, excellent ambient stability, wide band gap

and solution processability make CuI a very promising HTM

material.

Further, CuI thin films show high transmittance in the

range of 450–800 nm [28, 29] than PEDOT: PSS, making it

potential material for HTM, as this transmittance range is

considered to be suitable to get good absorbance in absorber

layer of PSCs [13]. Due to its good transparent nature, more

photon flux can reach to absorber layer and more photo-

current could be generated. Above all, due to its inorganic

nature, CuI exhibits relatively high air stability, making it a

very promising candidate for PSCs with long term stability

[30]. Initially, PSCs achieved PCE of 6% with CuI as HTM

[31]. Recently, PCE has been greatly improved and reached

up to 17.6% when CuI film was prepared by facile spray

deposition [26]. Although the efficiency of PSCs improved

rapidly from last few years by various researchers, still their

efficiencies have not reached to the maximum theoretical

Shockley–Queisser limit (31.4%) [32, 33]. Except for

experiment work, it is also equally important to investigate

all aspects of the device theoretically in order to fully

understand the device mechanism and optimize the device

performance. Solar cell capacitance simulator (SCAPS) is

used for the simulation of lead-based and lead-free PSCs by

many researchers [34]. In terms of CuI as HTM in lead-

based PSCs, very little work has been done so far. For

example, perovskite (CH3NH3PbI3) solar cells with CuI as

HTM was simulated using SCAPS, while only the effect of

thickness of the absorber on the performance of PSCs was

investigated [35]. In another device modeling, perovskite

solar cell was simulated with various HTMs including CuI,

while only the effect of thickness and defect density of the

absorber layer were investigated [36]. In addition to the

thickness of the absorber, there are also many other critical

parameters which could affect the performance of PSCs.

These include doping concentration in the absorber layer,

defect density of the absorber layer taking into account the

diffusion length and electron affinity of ETM and HTM. For

example, selection of suitable electron affinity of ETM and

HTM can prevent interface recombination, thus can help to

improve device performance. Therefore, a detailed and

thorough investigation of all these parameters needs to be

done for further understanding of device mechanism and

thus improving device performance.

In this paper, SCAPS is used for the simulation of lead

based CH3NH3PbI3 PSCs with CuI as HTM and TiO2

as ETM. A detailed analysis is presented about the influence

of all above mentioned parameters on the performance

of PSCs.

2. Device simulation parameters

Planar heterojunction structure has been adopted for

CH3NH3PbI3 based solar cell with layer configuration of

glass substrate/TCO (transparent conducting oxide)/TiO2

(ETM)/absorber layer (CH3NH3PbI3)/CuI (HTM) /metal

back contact as shown in figure 1(a).

The band diagram is shown in figure 1(b). It is clear

shown that the valence band offset at the CH3NH3PbI3/CuI
interface is +0.32 eV, which is crucial for the flow of holes to

the back-metal contact in order to avoid their recombination

with the electrons in the absorber layer. The conduction band

offset is +0.36 eV at the TiO2/CH3NH3PbI3 interface, which
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Table 1. Cost of various common HTMs in perovskite solar cells and the related device performance.

Absorber material HTM Cost/1 g ($) Device architecture Dopants PCE (%) Voc (V) References

CH3NH3PbI3 PEDOT: PSS 1.5–14.2a Inverted planar TBP, Li-TFSI 18.1 1.1 [14]

(FAPbI3)1 – x(MAPbBr3)x PTAA 2190a Mesoscopic TBP, Li-TFSI 20.2 1.06 [21]

CH3NH3PbI3 Spiro-MeoTAD 359a Mesoscopic TBP, Li-TFSI 19.7 1.0 [11]

CH3NH3PbI3 P3HT 525–596a Mesoscopic TBP, Li-TFSI PMMA 15.3 1.02 [18]

CH3NH3PbI3 CuI 0.5–3.5a Mesoscopic — 17.6 1.03 [26]

a

Prices are taken from sigma Aldrich website (www.sigmaaldrich.com/germany.html) on December 2017.
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is also critical for the flow of photo excited electrons to the

front electrode. Neutral Gaussian distribution defect is

selected in the absorber layer and characteristic energy is set

to be 0.1 eV. Two defect interfaces are inserted for carrier

recombination. One defect interface is TiO2/CH3NH3PbI3
and the other one is CH3NH3PbI3/CuI. The nature of the

defect is set as single and defect density is set as

1×1018 cm−3. Table 2 summarizes the defect parameters

which are set in the simulation. Absorption coefficient (α) is

obtained by tauc plot and αhn=Aα (hn – Eg)
1/2, which is

around 10+6 m−1 [37]. Basic parameters for each material

used in the simulation are summarized in table 3. Thermal

velocities of hole and electron are selected as 107 cm s−1 [38].

The optical reflectance is considered to be zero at the

surface and at each interface. Parameters are optimized in the

study by using control variable method. The initial total

Figure 1. (a) Schematic structure of the device (b) band diagram of the TiO2/CH3NH3PbI3/CuI/Ag.

Table 2. Defect parameters of interfaces and absorber.

Parameters CH3NH3PbI3 TiO2/CH3NH3PbI3 interface CH3NH3PbI3/CuI interface

Defect type Neutral Neutral Neutral

Capture cross section for electrons (cm2
) 2×10−15 2×10−16 2×10−14

Capture cross section for holes (cm2
) 2×10−15 2×10−16 2×10−14

Energetic distribution Gaussian Single Single

Energy level with respect to Ev (eV) 0.500 0.650 0.650

Characteristic energy (eV) 0.1 0.1 0.1

Total density (cm−3) 1×1015–1×1019 1×1018 1×1018

Table 3. Simulation parameters of PSCs devices.

Parameters TCO ETM (TiO2) Absorber(CH3NH3PbI3) HTM (CuI)

Thickness (μm) 0.500 0.030 0.350 0.100

Band gap energy Eg (eV) 3.5 3.2 [39] 1.50 [40] 2.98 [41]

Electron affinity χ (eV) 4 4.26 [42] 3.9 [43] 2.1 [44]

Relative permittivity er 9 38–108 [45] 10 [46] 6.5 [47]

Effective conduction band density Nc (cm−3) 2 .0×1018 2.0×1018 [48] 2.75×1018 [49] 2.8×1019 [50]

Effective valance band density Nv (cm−3) 1 .8×1019 1.8×1019 3.9×1018 [49] 1.0×1019 [50]

Electron mobility μn (cm2 V−1 s−1) 20 4 [51] 10 [52] 1.69×10−4

Hole mobility μp (cm2 V−1 s−1) 8 2 [51] 10 1.69×10−4 [53]

Donor concentration ND (cm−3) 2 .0×1019 1×1016 0 0

Acceptor concentration NA (cm−3) 0 0 2.1×1017 [54] 1×1018 [35]

Defect density Nt (cm−3) 1×1015 1×1015 [55] 4.5×1017 1×1015

4
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defect density of the absorber layer is assumed to be

4.5×1017 cm−3.
The current density–voltage curve has been drawn with

these initial parameters as shown in curve (a) of figure 2(a).

The short-circuit current density (Jsc) of 15.57 mA cm−2,

open-circuit voltage (Voc) of 0.61 V, FF of 71.69%, and PCE

of 6.85% are obtained. The simulated device performance is

consistent with the experimental results of lead-based PSCs

[56, 57]. This consistency shows that input parameters are

valid and close to the real device. In the quantum efficiency

(QE) curve in figure 2(b), optical absorption edge is red

shifted to 830 nm which corresponds to a band gap of 1.50 eV

in CH3NH3PbI3. The QE covers the whole visible spectrum

with maximum absorbance at 400 nm along with absorption

onset to 830 nm, which is closer to the experimental

work [56, 57].

3. Results and discussion

3.1. Influence of doping concentration (NA) of absorber layer

Doping is very significant process in order to enhance the

performance of the solar cell. Doping can either be n-type or

p-type depending upon the type of dopants. Like the other

crystalline semiconductors, the shallow point defects in

absorber could cause unintentional doping at room temper-

ature. The performance of PSC can be enhanced by introducing

appropriate doping in absorber layer [58]. The self-doping

process can be adopted for n- or p-type doping in absorber

layer. Experimental studies show that n-type or p-type self-

doping in CH3NH3PbI3 lead towards the manipulation of car-

rier density, majority carrier type and charge transport by

changing the thermal annealing or precursor ratios in the

solutions [58, 59]. Formation of CH3NH3PbI3 involves organic

and inorganic precursors named methyl ammonium iodide

(MAI) and lead iodide (PbI2). The ratio between precursors

(PbI2/MAI) decides the doping of the absorber. Upon thermal

annealing, PbI2 rich absorber layer is n-doped and PbI2 deficit

absorber layer is p-doped [60]. Furthermore, CH3NH3PbI3 is

unstable in air and humidity.

When moist air comes in contact with device then PbI2 is

generated and oxidation state of lead is changed. This process

is the cause of introducing impurities in absorber layer. The

effect of doping concentration on the performance of per-

ovskite solar cell is studied by choosing the values of NA in

the range of 1014–1017 cm−3. Figure 3(a) gives the PCE of

PSC with various values of doping concentration. It is worth

noting that PCE is maximum when the value of NA is

5×1016 cm−3. Jsc and Voc also have the same behaviour. It

indicates that QE is maximum at 5×1016 cm−3. QE

increases when value of NA ranging from 1014 to 1016 cm−3

as shown in figure 3(b). The results above demonstrate that

charge carriers are transported and collected more efficiently

at the same irradiance when NA of the absorber is

5×1016 cm−3. Therefore, proper selection of NA is critical

for the improvement of performance of PSCs. On the other

hand, Jsc decreases when values of NA increases beyond

5×1016 cm−3. The variation in the cell performance with the

doping concentration can be explained in terms of built-in

electric field which is enhanced with the increase of doping

concentration. The charge carriers are separated and increased

by the increase of electric field resulting in the enhanced

performance of PSCs [61].

The decrease in Jsc with increasing doping concentration

could be explained from the perspective of Auger recombi-

nation. Auger recombination rate increases with further

increase of doping density beyond 5×1016 cm−3. It is also
clear that total recombination rate also increases when doping

density increases beyond 5×1016 cm−3 as shown in

figure 3(c). The scattering and recombination increases due to

increasing doping density thus suppressing hole transporta-

tion [62]. Therefore, optimum doping density enhances the

Voc and Jsc which in turn increases the PCE. While further

Figure 2. (a) Simulated optimized J–V curves and (b) quantum efficiency curve of PSC with parameters in tables 2 and 3.
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increase in doping density is not favourable due to high

recombination and scattering. There should be lower carrier

concentration in lead perovskite so that carrier mobility can

increase within the absorber. The optimum performance with

Jsc of 18.47 mA cm−2, Voc of 0.65 V, FF of 68.97% and PCE

of 8.31% is obtained under the doping density of

5×1016 cm−3. The comparison is shown between J–V

curves with and without optimizing of NA in curve (c) of

figure 2(a). With the optimization, PCE increases 1.47%

as compared with the device having initial value of

NA=2.1×1017 cm−3.

3.2. Influence of electron affinity of ETM and HTM

The critical factor between TiO2/perovskite/CuI is band

offset which determines the carrier recombination at the

interface and is the measure of Voc. By varying the values of

electron affinities of TiO2 (3.7–4.6 eV) and CuI (2.0–3.0 eV),

the band offset can be adjusted. Figures 4 and 5(a) show

variation of PCE, Voc, Jsc and FF with electron affinity of

ETM and HTM respectively. The values of 2.2–2.6 eV and

3.9–4.0 eV give the better PCE for CuI and TiO2 respectively.

When the electron affinity of HTM is too low (lower than

2.1 eV), then Voc decreases slightly. When the electron affi-

nity of HTM is too high (higher than 2.6 eV), then Jsc
decreases appreciably.

PCE of 10.28%, Jsc of 16.35 mA cm−2, Voc of 0.90 V and

FF of 69.85% are obtained upon optimizing values of electron

affinity of ETM (3.85 eV) and HTM (2.57 eV). The optimized

Figure 3. Variation in (a) performance parameters (b) quantum efficiency of PSC and (c) total recombination rate with different NA values of
absorber layer.

Figure 4. Variation in performance parameters of PSC with electron
affinity of ETM.
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J–V curve with improved band offset values is shown in curve

(b) of figure 2(a). It is evident that proper ETM and HTM

selection with suitable electron affinity can reduce the

recombination of carriers and performance of PSCs can fur-

ther be optimised [63].

3.3. Influence of hole mobility and doping concentration (NA )

of HTM

Hole mobility is a measure of holes transport under the action

of electric field. Hole mobility is affected by doping level and

doping concentration of acceptor. Lattice scattering and

ionized impurity scattering limit the hole mobility in the

material at low acceptor doping and high acceptor doping

respectively.

The effect of hole mobility in CuI has been computed

on performance parameters. Figure 5(b) shows the increase

in Jsc and PCE with the increase in hole mobility which

signifies the better charge transport and charge extraction at

the HTM/absorber interface. Figure 5(c) represents the

effect of NA on the performance parameters. It indicates that

PCE is low at low level of NA which is due to high series

resistance in accordance to previous studies [64, 65]. PCE of

6.92%, Jsc of 15.60 mA cm−2, Voc of 0.613 V and FF of

72.31% are obtained upon optimizing values of hole mobi-

lity (5×10−2 cm2V−1 s−1) and doping concentration

(5×1019 cm−3). The optimised J–V curve with improved

performance is shown in curve (f) of figure 2(a).

3.4. Influence of defect density (Nt) and thickness of absorber

layer

By the adjustment of electron affinity of ETM and HTM as

well as doping concentration of absorber, solar cell PCE can

be enhanced to certain extent. For further improvement in

performance of PSC, defect density is another critical para-

meter which should be discussed. The performance of per-

ovskite solar cell is greatly affected by the morphology and

quality of absorber layer [66]. When light is irradiated upon

PSC, photoelectrons are generated in the absorber layer. Poor

film quality can affect the coverage of lead perovskite on

TiO2 layer [67, 68]. If the quality of film is poor then defect

density increases and recombination rate of carriers becomes

dominant in absorber layer which determine the Voc of the

solar cell.

Shockley–Read–Hall (SRH) recombination model is

used to determine the effect of defect density on performance

of PSC [69].

=
t t

-
+ + +

( )
( ) ( )

R , 1
n p n

n n p p

SRH .

. .

i

p n

2

1 1

where n1 and p1 are concentrations of electrons and holes in
trap defects and in valence band respectively

= - -( ) ( )
( )

n N . exp , 2
E E

k T
1 c

.

c T

B L

= - -( ) ( )
( )

p N . exp , 3
E E

k1 v
. T

T v

B L

n and p are the concentrations of electrons and holes at

equlibrium and TL is lattice temperature while ni is the

intrinsic carrier concenntration

= = =
-( ) ( )n np n p N N exp . 4
E

k Ti
2

1 1 c v
.

g

B L

At the condition Eg(eV)?3 kB TL, ni
2 can be neglected

which are generated thermally. ET is the energy level of trap

defect and Nt is the density of trap defect. Carrier life time is

represented by tn p,

t =
s u

( ). 5n p
N

,
1

.n p, . th t

sn p, is capture cross-section of the electrons and holes and
vth=10

+7 cm s−1 is the thermal velocity.

Diffusion coefficient (D) is given by

= m
( )D . 6

k T

q

B

μ is the carrier mobility, kB is Boltzmann constant, T is

temperature in kelvin and q is magnitude of charge.

Diffusion length (L) is given by

t= ( )L D . 7

By equations (5)–(7), diffusion lengths of the electrons

(Ln) and holes (Lp) have been calculated. The simulated

values of diffusion length of electrons and holes are the same

as all parameters like capture cross section, thermal velocity

and mobility for electrons and holes in the absorber layer is

set to be same. In reality, holes have slightly small diffusion

length because of large effective mass. Larger diffusion

lengths corresponds to the better performance in perovskite as

well as bulk heterojunction solar cells [70, 71]. There is very

small effect on the validity of simulation by ignoring the

difference of diffusion lengths between electrons and holes.

The initial value of Nt in the absorber is set to be

4.5×1017 cm−3. Based on previous simulated studies

[36, 72], the range of defect density is considered to be

1014–1019 cm−3. The J–V curves with the defect density range

are shown in figure 6(a). The performance of the PSC

decreases with the increase of defect density in the absorber

as shown in figure 6(b). When Nt in the absorber is increased

from 1014 to 1015 cm−3, there is a slight degradation in the

cell performance. It is difficult to achieve such a low value of

defect density as low as 1014 cm−3 in experimental work.

Table 4. Variation in diffusion length with different values of defect density in absorber layer.

Defect density (cm−3) 1×1014 1×1015 1×1016 1×1017 1×1018 1×1019 1×1020

Diffusion length (μm) 508 160 50 16 5 1.6 0.5
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Therefore, we chose 1×1015 cm−3 as optimized value

of Nt. The device performance is optimized as Jsc of

18.72 mA cm−2, Voc of 0.62 V, FF of 77.31% and PCE of

8.99%. Carrier diffusion length is considered to analyse the

effect of defect density on the performance of device

depending on SRH effect and diffusion length formula. It is

clear from table 4 that the lower the defect density, the large is

the diffusion length which leads towards the better perfor-

mance of the cell. There is another parameter, thickness of

absorber layer, which affects the performance of solar cell.

The influence of thickness of absorber on the performance

parameters is shown in the figure 7(a). PCE is lower when

thickness of the layer is too small due to the poor light

absorption. PCE of PSCs increases with the increase of the

thickness of the absorber before reaches a constant value at

600 nm. For absorber thicker than 600 nm, the collection

of photo generated carriers decreased because of charge

recombination. Figure 7(b) indicates that QE increases with

the increase of absorber thickness up to 300 nm thickness.

After 300 nm thickness, no significant increase in QE is

observed. Carrier diffusion length is the crucial factor in

designing perovskite solar cell structure [73, 74]. The effect

of diffusion length on PCE taking into account the thickness

of absorber layer is shown in the Fig. 7(c).

The PCE of the device increases when thickness of the

absorber layer increases. PCE slows down when thickness is

larger than 600 nm. Considering the effect of Nt and thickness

of the absorber, the optimized parameters are PCE of 10.80%.

Jsc of 21.92 mA/cm2, Voc of 0.63V, and FF of 78.65%. The

J-V curve is shown in curve (d) of figure 2(a). The perfor-

mance is improved with the fact that lower defect density

leads to the larger diffusion length and lower recombination

rates at the interfaces [71, 75]. It is evident from literature that

pin hole free structure of methyl ammonium lead iodide

Figure 5. Variation in performance parameters of PSC with
(a) electron affinity of HTM (b) increasing hole mobility of HTM,
and (c) increasing doping concentration of HTM.

Figure 6. (a) J–V curves and (b) variation in performance parameters
of PSC with different values of defect density Nt.
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Figure 7. Variation in (a) performance parameters and (b) quantum efficiency of PSC with different thickness of absorber layer (c) variation
in PCE with various diffusion lengths and thickness of absorber layer.

Table 5. Optimized parameters of the device.

Optimized parameters ETM (TiO2) Absorber (CH3NH3PbI3) HTM (CuI)

Doping density (cm−3) — 5×1016 5×1019

Electron affinity (eV) 3.85 — 2.57

Defect density (cm−3) — 1×1015 —

Thickness (nm) — 600 —

Hole mobility (cm2 V−1 s−1) — — 5×10−2

Table 6. Photovoltaic parameters of CuI based perovskite solar cells reported in the experimental work in the literature and simulated results
using SCAPS.

Simulation
Experiment

Parameters Initial

Optimized

NA of

absorber

Optimized χ

of ETM

and HTM

Optimized Nt

and thickness

of absorber

Optimized μp

and NA

of HTM

Final

optimization [26] [56] [57]

PCE (%) 6.85 8.31 10.28 10.80 6.92 21.32 17.60 6 7.5

FF (%) 71.69 68.97 69.85 78.65 72.31 84.53 75 62 57

Jsc (mA cm–2
) 15.57 18.47 16.35 21.92 15.60 25.47 22.78 17.8 16.7

Voc (V) 0.61 0.65 0.90 0.63 0.61 0.99 1.03 0.55 0.78
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perovskite can be obtained by using dimethyl sulfoxide

(DMSO) and using polyethylene glycol (PEG) also gives a

better effects on the surface morphology [76, 77]. By using

solvent retarding method (SR), optimal thick and uniform

perovskite film can be deposited [78].

At the end, considering all the factors as doping density,

electron affinity, defect density and thickness, we obtained

encouraging results, Jsc of 25.47 mA cm−2, Voc of 0.99 V, FF

of 84.53% and PCE of 21.32%. The final optimized para-

meters and optimised J–V curve are shown in table 5 and

curve (e) of figure 2(a) respectively. We compared our

simulated results with the experiment work published by the

other researchers and the related data is summarized in

table 6. In the literature, the best efficiency of 17.60% has

been achieved for PSCs with CuI as HTM. Voc of 1.03 V

reported in the literature is already higher than the value

through our simulation, while the FF and Jsc still need be

increased to achieve 21.32% efficiency. This could be

achieved by further improve the film morphology and crys-

talline quality of both the absorber and CuI layer. Doping of

CuI by replacing either part of Cu or part of I by other ele-

ment might can further modify the charge carrier concentra-

tion and mobility of HTM.

4. Conclusion

The lead-based CH3NH3PbI3 perovskite solar cell with CuI as

HTM are studied by one dimensional simulation programme

in this work. The results exhibit that optimum doping density

in the absorber layer gives improved PCE with the fact that

electric field band alignment at the interfaces are changed.

While too high doping concentration leads to decrease of PCE

due to higher recombination rates. To reduce the recombi-

nation rates at the interfaces, proper selection is made for the

electron affinity of ETM and HTM. In the simulation, defect

density in the absorber layer is the most critical factor for the

high performance of solar cell. By choosing the defect density

as 1×1015 cm−3, PCE of PSCs increases from 6.85% to

10.80%. With the optimised thickness of 600 nm, absorber

layer can absorb more light, therefore, PCE of the device

increases although effect is small (6.85%–6.90%). With the

optimised HTM hole mobility of 5×10−2 cm2V−1 s−1 and

doping density of 5×1019 cm−3, charge transport and charge
extraction increase at the HTM/absorber interface, thus, PCE
increases up to 6.92% and overall up to 21.32% by using all

optimised parameters, which is encouraging. The results show

that CuI as alternate HTM has the potential to be used with

CH3NH3PbI3 and can replace the spiro-MeOTAD which is

costly HTM for perovskite solar cell. By optimizing the

fabrication parameters, PCE of the device can further be

increased.
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