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Abstract: Background: A high-throughput virtual screening pipeline has been extended from single 
energetically minimized structure Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) 
rescoring to ensemble-average MM/GBSA rescoring. The correlation coefficient (R2) of calculated 
and experimental binding free energies for a series of antithrombin ligands has been improved from 
0.36 to 0.69 when switching from the single-structure MM/GBSA rescoring to ensemble-average one. 
The electrostatic interactions in both solute and solvent are identified to play an important role in de-
termining the binding free energy after the decomposition of the calculated binding free energy. The 
increasing negative charge of the compounds provides a more favorable electrostatic energy change 
but creates a higher penalty for the solvation free energy. Such a penalty is compensated by the elec-
trostatic energy change, which results in a better binding affinity. A highly hydrophobic ligand is de-
termined by the docking program to be a non-specific binder.  

Results: Our results have demonstrated that it is very important to keep a few top poses for rescoring, 
if the binding is non-specific or the binding mode is not well determined by the docking calculation. 

Keywords: Docking, MM/GBSA, Rescoring, VinaLC, BINDSURF, Binding Affinity, Molecular Dynamics, Antithrombin. 

1. INTRODUCTION 

High-throughput virtual screening is one of the most 
commonly used techniques in the drug discovery procedure. 
A high throughput virtual screening pipeline has been built 
to leverage the high performance computing (HPC) resource 
at Lawrence Livermore National Laboratory for in-silico 
screening of large virtual compound databases [1]. The pipe-
line consists of five modules: receptor/target preparation, 
ligand preparation, VinaLC docking calculation [2], single-
structure MM/GBSA rescoring, and ensemble-average 
MM/GBSA rescoring [3]. The pipeline uses a down-
selecting scheme to filter large numbers of compounds 
through the docking, single-structure rescoring, and ensem-
ble-average rescoring. One of the notable features of this 
pipeline is an automated receptor preparation scheme with 
unsupervised binding site identification, which enables 
automatically running the whole pipeline with little or no 
human intervention. Perez-Sanchez and co-workers have 
developed a similar approach to improve drug discovery 
using massively parallel GPU hardware instead of 
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supercomputers [4]. Their GPU-based program, BINDSURF 
[5], takes advantage of massively parallel and high arithme-
tic intensity of GPUs to speed-up the calculation in low cost 
desktop machine. 

In molecular docking, scoring functions are employed to 
evaluate the docking poses generated by conformational 
searching applications. The scoring functions simplify the 
calculation with many approximations to achieve high 
throughput screening. In the previous study, we have demon-
strated the parallel VinaLC docking program can screen 1 
million compounds in less than 1.5 hours by using 15K 
CPUs [2]. Docking programs sacrifice accuracy for speed to 
make the assessments of a large number of compounds fea-
sible. Even though the ligand binding conformation can be 
identified in most cases by using various existing docking 
programs, there are no universal scoring functions for all 
types of molecules and protein families [6]. Rescoring steps 
are necessary for the accurate prediction of binding energies. 

By using approximated scoring functions, molecular 
docking usually fails to estimate binding energies when 
compared to experimental values [7]. The MM/GBSA 
method is selected for rescoring because it is the fastest 
force-field based method that computes the free energy of 
binding, as compared to the other computational free energy 
methods, such as free energy perturbation (FEP) or thermo-
dynamic integration (TI) methods [8]. Comparison studies 
have also shown that MM/GBSA outperforms Molecular 
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Mechanics/Poisson Boltzmann Surface Area MM/PBSA [9]. 
The MM/GBSA method has been widely exploited in free 
energy calculations [10, 11], and MM/GBSA rescoring 
overly yields better results than docking for the DUD-E (Di-
rectory of Useful Decoys, Enhanced) data set [1, 12]. 

There is evidence showing that molecular dynamics 
(MD) simulations are necessary for some systems to identify 
the correct binding conformations [9]. In this study, we have 
extended our pipeline from single-structure to ensemble-
average MM/GSBA rescoring by carrying out long-time MD 
simulations. To validate the new approach, we have gathered 
a panel of 8 antithrombin ligands (Fig. 1), including heparin 
and non-polysaccharide scaffold compounds. For the pur-
pose of comparison, both single-structure and ensemble-
average MM/GSBA rescoring are employed in the binding 
affinity calculations of antithrombin ligands. We must point 
out that estimation/calculations of the entropy term are 
tricky. In most scenarios, the entropy term is neglected in the 
calculation for relative free binding energies. Quite a few 
researchers dispute the benefits of including the entropy 
term, which can be a major source of error due to the draw-
back of the entropy calculation method [13, 14], despite oth-
ers who advocate its usage [15]. We choose to neglect the 
partial entropy effects estimated by the normal mode analy-
sis in our calculations.  

Antithrombin is a glycoprotein that plays a crucial role in 
the regulation of blood coagulation by inactivating several 
enzymes of the coagulation system and, thus, is an important 
drug target for the anticoagulant treatment. Antithrombin has 
two major isoforms, α and β, in the blood circulation [16]. 
α-Antithrombin is the dominant form of antithrombin and 
consists of 432 amino acids with 4 glycosylation sites, where 
an oligosaccharide occupies each glycosylation site [17]. 
Heparin is the first compound that was identified and used as 
an anticoagulant and antithrombotic agent. It is a sulfated 
polysaccharide containing a specific pentasaccharide frag-
ment (Fig. 1, NTP) that binds and activates the antithrombin 
[18]. This binding localizes the function of antithrombin to 
inhibition of serine proteases in the coagulation cascade in 
the bloodstream, which allows coagulant activity in damaged 
tissue outside the vascular system [17].  

Due to increasing interests in clinical applications, com-
putational studies have been carried out to investigate the 
structure and behavior of antithrombin. Verli and co-workers 
performed molecular dynamics simulations to study the in-
duced-fit mechanism of the antithrombin-heparin interaction 
and effects of glycosylation on heparin binding [19, 20]. 
Several detailed conformational changes associated with 
heparin binding to antithrombin were revealed. They also 
confirmed an intermediate state between the native and acti-
vated forms of antithrombin. Because of the weak surface 
complementarity and the high charge density of the sulfated 
sugar chain, the docking of heparin to its protein partners 
presents a challenging task for computational docking. Wade 
and Bitomsky developed a protocol that can predict the 
heparin binding site correctly [21]. Navarro-Fernandez and 
colleagues screened a large database in silico by using Flex-
Screen docking program [22] and identified a new, non-
polysaccharide scaffold able to interact with the heparin 
binding domain of antithrombin [23]. They predicted D-

myo-inositol 3,4,5,6-tetrakisphosphate (Fig. 1, L1C4) to 
strongly interact with antithrombin, which was confirmed by 
experimental binding affinity study.  

Here, we carried out molecular dynamics (MD) simula-
tions of ligand recognition upon binding antithrombin and 
calculate the ligand binding affinity. According to the char-
acteristics of the compounds, we divide the study into two 
categories. The first category is devoted to the ligands that 
specifically binding in the active sites of the antithrombin. 
Compound L1C1, L1C2, L1C3, L1C4, L1C5, L1C6, and 
NTP belong to this category. The binding affinity of the top 
pose of each ligand-complex is computed by using the en-
semble-average MM/GBSA rescoring method, as a comple-
mentary study to the previous docking work [21, 23]. The 
advantage of long-time MD simulations is that more con-
figurational space can be explored and dynamical properties 
of systems can be revealed. Seven long-time MD simulations 
are performed for this category. The second category con-
tains only one ligand, named Penfluridol. As shown in the 
following section, Penfluridol is a non-specific binder as 
determined by the docking program. We selected top 10 
poses and three additional poses for ensemble-average 
MM/GBSA rescoring. Thus, thirteen long-time MD simula-
tions are performed for Penfluridol.  

2. METHODS 

In this study, a total of 20 MD simulations are performed. 
The initial structure for MD simulation of the antithrombin 
complex with Compound NTP is obtained from the PDB 
bank (PDB ID: 1AZX). The initial structures of the anti-
thrombin complex with Compound L1C1, L1C2, L1C3, 
L1C4, L1C5, and L1C6 (Fig. 1) are obtained from the Flex-
Screen docking program [22]. The initial structures of the 
antithrombin complex with Penfluridol are the top 10 poses 
from the docking calculation and three additional poses, 
where they are close to the active site of antithrombin. 

The MM/GBSA calculations are applied to these initial 
structures by using our in-house developed pipeline [1, 2] 
and Amber molecular simulation package [24]. The Amber 
forcefield f99SB [24] is employed in the calculation for the 
antithrombin receptor. Ligands use the Amber GAFF force-
field [25] as determined by the Antechamber program [26] in 
the Amber package. Partial charges of ligands are calculated 
using the AM1-BCC method [27]. The fourth module of the 
pipeline is employed for the single-structure MM/GBSA 
calculation, where the receptor-ligand complexes are ener-
getically minimized by the MM/GBSA method as imple-
mented in the Sander program of the Amber package [28]. 
The atomic radii developed by Onufriev and coworkers 
(Amber input parameter igb=5) are chosen for all GB calcu-
lations [29]. For the ensemble-average MM/GBSA rescor-

ing, a MD trajectory is obtained for each ligand-receptor 
complex. The snapshots of complex are extracted from the 

MD trajectory at every 10 ps, which yields 10,000 snapshots. 

The various free energy terms of complexes, receptors, and 
ligands derived from snapshots are calculated by the 

MM/GBSA methods. The final binding free energy is an 

average of the binding free energies of snapshot. The MD 
simulation for each ligand-receptor complex starts with the 

energetically minimized structure from single-structure 
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Fig. (1). Compounds targeting antithrombin. Compound NTP is a synthetic pentasaccharide compound from the crystal structure (PDB ID: 
1AZX). 
 

MM/GBSA rescoring. The systems are heated from 0 K to 
room temperature, 300 K. The MD simulations with a time 
step of 2 fs for the integration of the equations of motion are 
carried out at room temperature. The systems are equili-
brated at room temperature for 500 ps. Each MD trajectory is 
followed to 100 ns after equilibrium. Binding affinities of 
antithrombin and its 8 ligands are calculated by post-
processing the ensembles of structures extracted from MD 
trajectories using MM/GBSA calculations. In the 
MM/GBSA calculation, the binding free energy between a 
receptor and a ligand is calculated using the following equa-
tions: 

ΔGbind =Gcomplex -Greceptor –Gligand  (1) 

ΔGbind =ΔH-TΔS ≈ ΔEgas +ΔGsol -TΔS  (2) 

ΔEgas = ΔEint +ΔEELE +ΔEVDW  (3) 

ΔGsol = ΔGGB + ΔGSurf (4) 

The binding free energy (∆Gbind) is decomposed into dif-
ferent energy terms. Because the structures of complex, re-
ceptor, and ligand are extracted from the same trajectory, the 
internal energy change (∆Eint) is canceled. Thus, the gas-
phase interaction energy (∆Egas) between the receptor and 
the ligand is the sum of electrostatic (∆EELE) and van der 
Waals (∆EVDW) interaction energies. The solvation free en-
ergy (ΔGsol) is divided into the polar and non-polar energy 
terms. The polar solvation energy (∆GGB) is calculated by 
using the GB model. The non-polar contribution is calcu-
lated based on the solvent-accessible surface area (∆GSurf). A 
value of 80 is used for the solvent dielectric constant, and the 

solute dielectric constant is set to 1. The calculated binding 
free energy (∆Gbind) is the sum of the gas-phase interaction 
energy and solvation free energy because we neglect the 
entropy term. The experimental binding free energy is esti-
mated from the experimental dissociation constant (Kd) by 
the equation: 

∆GExp =-RT·ln(Kd) (5) 

where R is the gas constant, and T is temperature. 

To study the docking and rescoring, we choose a hydro-
phobic compound (Penfluridol) to carry out the docking and 
the ensemble-average rescoring calculations. To compare 
docking and rescoring, we utilize the BINDSURF program 
to explore all possible binding sites on the surface of anti-
thrombin and dock Penfluridol to the predicted binding sites 
by using the FlexScreen docking program. We use BIND-
SURF instead of FlexScreen because FlexScreen is designed 
to take into account the structure of the ligand, and the re-
sults obtained are similar (data not shown). The docking re-
sults have not shown much difference in docking scores for 

the top 50 poses (see Results and Discussion). In the previ-
ous study, the top 20 docking poses were kept for the 
MM/GBSA single-structure rescoring [1]. Due to the inten-
sive computational resource requirement in the ensemble-
average MM/GSBA rescoring calculations, here we keep 
only the top 10 docking poses for ensemble-average 
MM/GSBA rescoring of one ligand binding study. In the top 
10 docking poses, there is only one pose that is docked into 
the antithrombin active site. Because the poses near the ac-
tive site of antithrombin are our primary interests, we include 
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Table 1.  Calculated and experimental binding free energies (kcal/mol) of antithrombin ligands. 

Cmpd ΔΔEELE ΔEVDW ΔEgas ΔGSurf ΔGGB ΔGGB-ELE ΔGSol ΔGbind Kd(µM) ΔGExp 

L1C1 -552.67±33.60 -23.68±5.10 -576.35±32.43 -2.75±0.09 480.12±20.19 -72.55±18.72 477.37±20.22 -98.97±17.90 - - 

L1C2 -442.99±39.57 0.47±3.73 -442.52±38.98 -1.20±0.17 417.60±38.11 -25.39±6.40 416.41±38.09 -26.11±4.28 13700 -2.54 

L1C3 -836.77±43.49 -39.96±5.12 -876.73±43.67 -4.06±0.26 781.94±38.79 -54.83±11.15 777.88±38.68 -98.85±11.91 10.02 -6.81 

L1C4 -1599.09±166.95 33.02±14.06 -1566.07±156.65 -2.98±0.15 1261.05±93.52 -338.04±78.16 1258.07±93.43 -308.01±66.94 0.088 -9.62 

L1C5 -613.30±36.20 -19.00±4.52 -632.31±36.87 -2.57±0.15 525.82±19.51 -87.48±21.16 523.25±19.46 -109.06±22.04 0.69 -8.40 

L1C6 -818.73±121.90 8.21±5.04 -810.52±123.16 -1.54±0.15 752.94±127.91 -65.79±11.97 751.41±127.85 -59.11±9.01 17.52 -6.48 

NTP -2598.87±351.39 -60.89±7.55 -2659.76±351.76 -7.58±0.61 2387.77±301.40 -211.09±52.56 2380.20±300.83 -279.57±53.29 0.104 -9.52 

 
three additional poses near to the antithrombin active site 
based on the docking scores. Although these three poses are 
not in the top 10 list, the docking scores for them are very 
similar to those in the top 10 list. 

3. RESULTS AND DISCUSSION 

The calculated binding free energies of Compound 
L1C1, L1C2, L1C3, L1C4, L1C5, L1C6, and NTP using 
the ensemble-average MM/GBSA rescoring are shown in 
Table 1 together with their corresponding experimental 
values. Each calculated binding free energy is averaged 
from snapshots extracted from 100 ns MD trajectories. Ex-
cept for Compound L1C1, all the antithrombin ligands have 
experimental binding free energies. As determined experi-
mentally, Compound L1C4 is the best binder with a Kd 
value of 0.088 µM [23]. As predicted by the MM/GBSA 
method, Compound L1C4 has the most negative binding 
free energy (-308.01 kcal/mol), which is in agreement with 
the experimental results. The second best binder as pre-
dicted by the MM/GBSA calculation is Compound NTP 
with a calculated binding free energy of -279.57 kcal/mol, 
confirming the experimental ranking relative to Compound 
L1C4. Compound L1C2 is predicted to have the worst 
binding free energy of the six ligands, which is also in 
agreement with its experimental ranking value. In sum-
mary, the MM/GBSA calculations rank the binding affini-
ties of all six antithrombin ligands in the same exact order 
as that of experimental binding free energy rankings. The 
calculated binding free energies of six antithrombin ligands 
using the ensemble-average MM/GBSA rescoring have 
been plotted against the free energies derived from experi-
mental dissociation constants. The correlation coefficient 
(R2) is 0.69, which indicates good correlation between the 
calculated and experimental values (Fig. 2). Obviously, 
L1C2 is an outlier. The value of R2 increases to 0.85 after 
removing the outlier. By comparison, the correlation coef-
ficient calculated by single-structure MM/GBSA is only 
0.36, and Compound NTP is predicted to be the best 
binder, instead of Compound L1C4. Thus, using the en-
semble-average MM/GBSA rescoring method significantly 
improves the accuracy of the prediction over the single-
structure MM/GBSA rescoring. 

 

Fig. (2). The scatter plot of calculated MM/GBSA binding free 
energy versus experimental binding affinity estimated from disso-
ciation constant. 
 

As shown in Fig. (1), Compound L1C1, L1C2, L1C3, 
L1C4, L1C5, L1C6, and NTP contain negatively charged 
groups, suggesting electrostatic interactions should be a key 
factor in the binding affinity. Compound NTP has a total 
charge of -11, and Compound L1C4 has a total charge of -8. 
By decomposing the binding free energy, Compound NTP 
and L1C4 have the largest electrostatic energy changes upon 
binding in both gas phase (ΔEELE) and GB solvent (ΔGGB-ELE). 
The energy change upon binding in gas phase is equivalent 
to the energy change upon binding for the solute. Thus, in 
other words, Compound NTP and L1C4 have the largest 
electrostatic energy changes upon binding in solute and sol-
vent. In contrast, Compound L1C2 has the smallest electro-
static energy changes in solute and solvent. Although Com-
pound L1C4 has the least favorable van der Waals energy 
change upon binding, the electrostatic energy change com-
pensates significantly. For all ligands, the van der Waals 
energy changes (ΔEVDW) upon binding are less than the elec-
trostatic energy changes (ΔEELE) by 1-2 orders of magnitude. 
The contribution of the van der Waals energy change has 
been overpowered by the electrostatic energy change. Non-
polar contribution of solvation free energy of Compound 
NTP and L1C3 are more negative than that of the other 
compounds because the sizes of Compound NTP and L1C3 
are larger than the other compounds. Nevertheless, non-polar 
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contributions for all compounds are small. The non-polar 
contribution is overwhelmed by the polar contribution of 
solvation free energy. Thus, the two major factors to deter-
mine the binding affinity are the electrostatic energy change 
and solvation free energy change. The larger the total charge 
of the compound, the larger the penalty cost is for solvation 
free energy. However, the high penalty for large total charge 
of compound has already been paid by the favorable large 
changes in electrostatic energy. Although, the electrostatic 
energy change of Compound L1C4 is less than that of Com-
pound NTP, Compound L1C4 needs less compensation for 
the solvation free energy. Thus, Compound L1C4 is a better 
binder than Compound NTP. 

Hydrogen bonding analysis determines the numbers of 
hydrogen bonds to antithrombin that are persistent at >20% 
of the time. Compound NTP has 40 hydrogen bonds to anti-
thrombin, while L1C4 has 25 hydrogen bonds. For Com-
pounds L1C1, L1C2, L1C3, L1C5, and L1C6, the numbers 
of hydrogen bonds are 5, 10, 12, 12, and 12, respectively. 
Taking the molecular weight into account and using a similar 
approach as Reynolds’ ligand efficiency method [30], Com-
pound L1C4 has the highest ligand efficiency. 

Compound L1C4 forms double hydrogen bonds with 
Arg47 (Fig. 3A). One hydrogen bond (O6-HH21-NH2) is 
94.81% persistent, and the other one (O6-HE-NE) is 89.55% 
persistent. The average hydrogen bond distances between the 
heavy atoms are 2.74 Å and 2.70 Å, respectively. Compound 
L1C4 has strong hydrogen bonds with Arg47, and one of the 
four phosphate groups from Compound L1C4 is locked to 
the Arg47. According to the hydrogen bonding analysis, 
Compound L1C4 is also hydrogen bonded to Arg46, Arg13, 
Lys114, Lys11, Lys125, and Asn45, which are key residues 
to the binding process. Except for the phosphate group 
locked to Arg47, the other three phosphate groups of Com-
pound L1C4 can rotate so that key residues can form hydro-
gen bonds to different oxygen atoms of phosphate at differ-
ent times during the MD trajectory. Notably, Arg13 starts far 
away from Compound L1C4 in the initial conformation. Af-
ter 8 ns of MD simulation, Arg13 begins to make hydrogen 
bonds with the phosphate group of Compound L1C4, which 
suggests that long-time MD simulations are essential to ob-
taining accurate binding affinities. As shown in Fig. (3B), 
Compound NTP makes hydrogen bonds to antithrombin 
mainly via its negatively charged sulfate groups. Compound 
NTP forms high persistent hydrogen bonds with Arg13, 
Arg129, Arg47, and Asn45 (70-88%) and forms medium 
persistent hydrogen bonds with Arg132, Lys125, and Thr44 
(43-66%). Only relatively weak hydrogen bonds are ob-
served with Arg46, Lys114 and Lys11. 

To compare the docking and rescoring procedures of 
previous and current studies, Penfluridol has been docked to 
antithrombin using BINDSURF. The distribution of docking 
scores shows little energetic difference between the docking 
poses (Fig. 4). The top 10 Penfluridol docking poses and 3 
additional poses near the active site of antithrombin are se-
lected for the MM/GBSA rescoring (Fig. 5). The Penfluridol 
(Fig. 1) compound consists of aromatic rings and alkane 
groups, which suggests that it is hydrophobic. Thus, the 
docking sites, as determined by the BINDSURF program, 
are close to hydrophobic surfaces of antithrombin, as shown 

in the Fig. (5). The active site of antithrombin is highly 
charged with many positively charged residues, such as ar-
ginine and lysine. In the end, most poses have been docked 
outside of the binding active site of antithrombin. The bind-
ing of Penfluridol to antithrombin is non-specific. 
 

 

Fig. (3). Initial structures of Compounds L1C4 (A) and NTP (B) 
complexed with antithrombin. 
 

The ensemble-average MM/GSBA rescoring has been 
performed for the selected 13 docking poses. The calculated 
binding free energies are shown in Table 2. The binding free 
energies for these selected poses range from -28.75 to -59.68 
kcal/mol, which are much smaller than those of good anti-
thrombin binders, e.g. Compound L1C4 and NTP. As ex-
pected, MM/GBSA rescoring ranks the poses differently 
than the docking method because the docking program uses 
an empirical scoring function as more like “machine learn-
ing” than direct physics-based in nature. The scoring func-
tion does not contain any exact terms for hydrophobic, 
VDW, or solvation components. In constrast, MM/GBSA is 
a physics-based method, which contains explicit terms for 
hydrophobic, VDW, or solvation components. Thus, the 
ranks of the poses from two methods could differ signifi-
cantly. The MM/GBSA method is considered to be more 
accurate at the cost of computer time. The top docking 
ranked poses are the lowest ranked poses using MM/GBSA 
rescoring, indicating the very importance of keeping a few 
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Fig. (4). Distribution of the docking scores for Penfluridol. 
 

 

Fig. (5). Top 10 Penfluridol docking poses and three additional poses near the active site of antithrombin are selected for rescoring. The hy-
drophobic surfaces of antithrombin are colored in orange. The NTP compound is shown as a reference (carbon atoms shown in cyan). The 
color dots are the docking sites determined by BINDSURF. (The color version of the figure is available in the electronic copy of the article). 
 
top poses for rescoring, if the binding is non-specific or the 
binding mode is not well determined by the docking calcula-
tion. 

The decomposition of the calculated binding free energy 
has demonstrated that the electrostatic energy changes upon 
binding in both gas phase (ΔEELE) and GB solvent (ΔGGB-ELE) 
are much less than those of the compounds in Table 1. On 
average the van der Waals energy changes (ΔEVDW) upon 
binding are more than those of the compounds in Table 1. 
For Penfluridol, the ΔEVDW is the main factor to determine 
the binding affinity. Pose Top6 has the largest ΔEVDW, which 
results in the largest binding affinity for all thirteen docking 

poses. As we pointed out in the previous section, the electro-
static interaction plays a crucial role in the ligand binding of 
the antithrombin active site due to the large number of posi-
tively charge residues present in the active site. Compound 
L1C4 and NTP possess strong electrostatic interactions with 
antithrombin and can bind much tighter than Penfluridol.  

Penfluridol has only two hydrogen bond donors, nitrogen 
and oxygen (N1 and O1). Hydrogen bonding analysis of 
Penfluridol and antithrombin complex reveals that it has 
fewer hydrogen bond pairs and are less persistent during the 
MD simulations. For the pose Top1, there are only two hy-
drogen bonds (O1-HD22-ND2 and N1-HD22-ND2) formed 
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Table 2.  Calculated binding free energies (kcal/mol) of the selected 13 Penfluridol docking poses. 

Pose ΔΔEELE ΔEVDW ΔEgas ΔGSurf ΔGGB ΔGGB-ELE ΔGSol ΔGbind 

Top1 -30.48±7.18 -30.07±3.14 -60.59±9.69 -2.02±0.30 33.85±8.92 3.37±1.51 31.84±8.72 -28.75±3.62 

Top2 -25.67±6.60 -45.08±4.19 -70.40±7.83 -5.09±0.30 24.50±5.11 -1.17±3.02 19.41±5.03 -50.99±6.87 

Top3 -19.57±4.02 -47.70±4.10 -66.84±5.53 -4.73±0.23 18.73±3.98 -0.85±2.48 14.00±3.94 -52.84±4.87 

Top4 -24.64±7.57 -43.84±4.25 -68.63±7.74 -5.54±0.27 22.08±8.13 -2.56±3.92 16.54±8.22 -52.09±5.46 

Top5 -32.59±6.24 -34.51±5.67 -67.00±9.62 -3.23±0.39 30.85±5.15 -1.74±2.98 27.62±5.01 -39.38±6.47 

Top6 -33.11±4.60 -51.91±3.53 -84.45±5.18 -5.42±0.18 30.19±3.70 -2.92±3.49 24.77±3.70 -59.68±4.61 

Top7 -21.95±5.59 -44.37±3.96 -65.13±8.06 -4.48±0.27 21.31±6.01 -0.65±3.10 16.82±5.86 -48.31±4.75 

Top8 -32.17±5.25 -31.24±3.06 -62.71±6.16 -4.52±0.24 30.61±5.14 -1.56±2.32 26.09±5.14 -36.63±3.20 

Top9 -13.82±4.07 -31.10±4.06 -44.17±5.91 -2.63±0.30 9.49±4.10 -4.34±2.65 6.86±4.02 -37.31±3.93 

Top10 -35.34±9.07 -30.27±4.26 -66.02±10.92 -4.86±0.40 37.56±8.41 2.22±3.37 32.70±8.29 -33.32±5.40 

Near1 -26.13±4.93 -26.60±2.73 -52.66±5.31 -2.90±0.25 19.13±4.26 -6.99±3.76 16.23±4.17 -36.42±3.66 

Near2 -31.59±6.05 -41.50±4.57 -72.36±7.68 -4.73±0.37 25.85±4.85 -5.74±3.61 21.12±4.73 -51.24±5.24 

Near3 -30.45±7.44 -40.63±5.82 -69.95±10.60 -4.53±0.49 30.23±7.31 -0.22±4.45 25.70±7.01 -44.24±5.65 

 
during the MD simulation between Penfluridol and two as-
paragine residues (Asn61, Asn414). The hydrogen bond dis-
tances for O1-HD22-ND2 and N1-HD22-ND2 are 2.86 and 
2.92 Å, respectively. Both hydrogen bond angles are ~20 
degrees. The persistence of hydrogen bond O1-HD22-ND2 
is 16.62% and that of hydrogen bond N1-HD22-ND2 is 
36.11%. Only one hydrogen bond exists in the initial dock-
ing pose, where hydrogen bond O1-HD22-ND2 is formed 
between Penfluridol and Asn61. After ~18 ns of simulation, 
hydrogen bond O1-HD22-ND2 is split while hydrogen bond 
N1-HD22-ND2 starts to form. Pose Top2 has four hydrogen 
bonds between Penfluridol and two arginine residues. The 
persistence of these hydrogen bonds ranges from 15.25% to 
33.35%. There are no hydrogen bonds present in the initial 
docking pose. The docking score is relatively high in this 
pose because of a hydrophobic interaction between a phenyl 
ring and Val375 and a π-π interaction between a phenyl ring 
and Arg221. The π-π interaction is lost and two hydrogen 
bonds form between Penfluridol and Arg221 after 36 ns. 
Pose Top3 has only one hydrogen bond between Penfluridol 
and Asn121. However, the persistence is 55.15%, which is 
the largest among the thirteen docking poses. The hydrogen 
bond is absent from the initial docking pose but appears 
quick after ~4ns. Pose Top4 has four hydrogen bonds form 
between Penfluridol and Lys283/Ser277 during the course of 
the MD simulation. It is very interesting that the four hydro-
gen bonds appear and disappear one by one sequentially. So, 
any time point during the MD simulation, there is only one 
hydrogen bond present between Penfluridol and antithrom-
bin. Pose Top5 has three hydrogen bonds between Penfluri-
dol and Lys93. All of them are very weak hydrogen bonds 
with angles greater than 40 degrees. The persistence of them 
is about 10%. Pose Top6 has one hydrogen bond between 
Penfluridol and Trp175. The persistence is 46.85%. The hy-
drogen bond forms after less than 2 ns of MD simulation. 
Pose Top6 has the largest rescoring binding affinity amongst 

the thirteen docking poses, which is largely due to its bind-
ing in the hydrophobic groove of antithrombin. Pose Top7, 
Top8, Top9, Top10, Near1, Near2, and Near3 have 0, 1, 3, 3, 
4, 5, and 5, respectively. The poses nearest to the active site 
(Near1, Near2, and Near3) tend to have more hydrogen 
bonds. However, none of them are strong hydrogen bonds. 
The persistence is usually around 15% for them. The number 
of hydrogen bonds for the Penfluridol docking poses is no 
more than 5. The good binders (e.g. L1C4 and NTP) each 
have more than 25 hydrogen bonds. 

Navarro-Fernandez and colleagues have also predicted 
the interacting residues by using the FlexScreen scoring 
function [22]. For compound L1C4, they identified Lys11, 
Asn45, Arg46, Arg47, Lys114, and Lys125 as key residues, 
but Arg13 is missing from their list. For the Compound 
L1C4 docking calculation, they used the receptor structure 
from the X-ray crystal structure of antithrombin complexed 
with Compound NTP. Thus, the initial receptor structure for 
Compound L1C4 docking is biased. Docking calculations 
usually hold the receptor protein rigid. A few docking pro-
grams are able to have set side-chains of key residues in the 
receptor as flexible. However, most docking programs can-
not sample the larger configuration space for the whole 
ligand-receptor complex. From our MD simulations, we find 
that Arg13 is quite flexible and can be adjusted to accommo-
date both large (e.g. Compound NTP) and small (e.g. Com-
pound L1C4) compounds, which shows the advantages of 
using MD simulations over simple docking calculations.  

Judging from the hydrogen bond analysis on Compound 
L1C4 and NTP, Arg47, Arg13, and Asn45 play crucial roles 
in the antithrombin binding process. Antithrombin provides 
multiple sulfate/phosphate binding sites, consisting of mostly 
positively charged residues (arginine, lysine) and neutral 
charged residues that can provide rich hydrogen bond do-
nors/acceptors (asparagine). All four phosphate groups of 
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Compound L1C4 form hydrogen bonds with antithrombin 
while not all the sulfate groups of Compound NTP can form 
hydrogen bonds with antithrombin. As pointed out above, 
introducing a positively charged group in the ligand will 
result in a penalty for solvation free energy. If the positively 
charged group also cannot form favorable interactions (e.g. 
hydrogen bonding), ligand efficiency will be reduced, ex-
plaining why Compound L1C4 has higher ligand efficiency 
than Compound NTP.  

Comparing the results from single-structure and ensem-
ble-average MM/GBSA rescoring, the latter yields more 
accurate results. The ensemble-average MM/GBSA rescor-
ing ranks the binding affinities of antithrombin ligands in the 
order that agrees with the experimental results. The advan-
tage of ensemble-average MM/GBSA rescoring is that the 
binding affinity is averaged from an ensemble of structures 
extracted from long-time MD simulations. Long-time MD 
simulations can explore more configuration space and find 
energetically favorable configurations, which could offset 
the bias of initial structures. This can be verified in the MD 
trajectory of Compound L1C4. Arg13 is observed to form 
hydrogen bonds with the phosphate group of Compound 
L1C4 after 8 ns of MD simulation. Hou et al. have also iden-
tified the importance of MD sampling for recognizing the 
correct binding poses [11], although they carried out rela-
tively short-time (300ps) MD simulations for the top three 
poses of 13 protein–ligand complexes and extracted only 60 
snapshots from the trajectory for the ensemble-average 
MM/GBSA rescoring. They concluded even short MD simu-
lation could help MM/GBSA to identify the experimentally 
determined binding conformations in most cases. 

The ensemble-average MM/GBSA rescoring method is 
relatively accurate compared to single-structure MM/GBSA. 
However, the method to obtain an ensemble of structures, 
long-time MD simulations, is computationally intensive. 
Since the drug-like virtual libraries often contain millions of 
compounds, high-throughput virtual screening could be very 
costly, if using a more accurate, but expensive, method at the 
very beginning of the screening. To bridge the gap, our vir-
tual screening pipeline uses a down-select scheme, a hierar-
chical approach, to screen large virtual compound libraries. 
A standard procedure to run the pipeline is to down-select 
compounds after they pass each screening method as imple-
mented in the pipeline. The first screening method in the 
pipeline is VinaLC docking [2]. Top ranked poses of down-
selected compounds after docking are rescored using a sin-
gle-structure MM/GBSA rescoring method. From this study, 
we know it is important to keep a few top docking poses for 
rescoring because the best binding pose in rescoring is often 
not the top docking pose, especially for non-specific binding 
or not well-determined binding modes in the docking calcu-
lation. Finally, the most expensive ensemble-average MM/ 
GBSA rescoring method in the pipeline can be applied to an 
amenable number of compounds down-selected after single-
structure MM/GBSA rescoring, providing the accuracy 
needed for a fewer number of compounds. 

CONCLUSION 

In this article, we introduce a new addition, ensemble-
average MM/GBSA rescoring, to our virtual screening pipe-

line. As a proof of concept, we calculated the binding affini-
ties of eight antithrombin ligands by employing the previous 
single-structure MM/GBSA rescoring method and newly 
developed ensemble-average MM/GBSA rescoring method. 
A total of 20 MD simulations were performed for the en-
semble-average MM/GBSA rescoring method. The correla-
tion coefficient of calculated and experimental binding af-
finities is improved from 0.36 to 0.69 when using ensemble-
average MM/GBSA rescoring. The rank order of calculated 
binding free energies using ensemble-average MM/GBSA 
rescoring exactly matches the experimentally derived free 
energies. We demonstrate that long-time MD trajectory can 
explore more configuration space and find energetically fa-
vorable configurations so that it can offset the bias of initial 
structures and improve the accuracy of binding affinity pre-
diction. The electrostatic interactions in both solute and sol-
vent contribute favorably to the binding free energy. Adding 
more negatively charged groups to the ligand provides more 
favorable electrostatic energy change. However, simultane-
ously it creates a higher penalty for the solvation free energy. 
The penalty can be compensated for by forming more hy-
drogen bonds as more negatively charged groups are added 
into the ligand. The negatively charged groups added to the 
ligand must actively interact with the receptor by forming 
hydrogen bonds to achieve high ligand efficiency. Com-
pound L1C4 has higher ligand efficiency because it uses all 
its phosphate groups to form hydrogen bonds with anti-
thrombin while Compound NTP does not. A hydrophobic 
compound, Penfluridol, has been docked to the antithrombin, 
which has abundant charge residues on the surface and in the 
active site of the protein. The docking results have shown the 
binding of Penfluridol is non-specific. The electrostatic en-
ergy changes, upon binding Penfluridol in both gas phase 
and GB solvent, are much less than those of good binders. 
The van der Waals energy change upon binding is the domi-
nant factor for the Penfluridol binding affinity. The number 
of hydrogen bonds present in the Penfluridol MD simula-
tions are fewer than that of the good binders. We have also 
demonstrated that including a few top docking poses for res-
coring is important especially for non-specific binding or 
binding modes that are not well-determined in the docking 
calculation.  
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